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DIRECT AND INVERSE THEOREMS OF APPROXIMATION

THEORY FOR A GENERALISED MODULUS OF SMOOTHNESS

M. K. POTAPOV AND F. M. BERISHA

Abstract. An asymmetric operator of generalised translation is introduced in

this paper. Using this operator, we define a generalised modulus of smoothness
and prove direct and inverse theorems of approximation theory for it.

Introduction

In a number of papers (see, e.g., [1, 3, 6, 8]) direct and inverse theorems of
approximation theory are proved for generalised moduli of smoothness defined by
means of symmetric operators of generalised translation. It is of interest to ob-
tain the same results for a moduli of smoothness defined by means of asymmetric
operators of generalised translation.

In the present paper such an operator is introduced, the generalised modulus of
smoothness is defined by its means, and direct and inverse theorems of approxima-
tion theory are proved for that modulus.

1. By Lp we denote the set of functions f such that in the case 1 ≤ p < ∞, f is
measurable on the segment [−1, 1] and

‖f‖p =

(∫ 1

−1
|f(x)|p dx

)1/p

<∞;

and in the case p =∞, the function f is continuous on the segment [−1, 1], and

‖f‖∞ = max
−1≤x≤1

|f(x)|.

Denote by Lp,α the set of functions f such that f(x)(1− x2)α ∈ Lp, and put

‖f‖p,α = ‖f(x)(1− x2)α‖p.

By En(f)p,α we denote the best approximation of the function f ∈ Lp,α by
algebraic polynomials of degree not greater than n− 1, in Lp,α metrics, i.e.,

En(f)p,α = inf
Pn∈Pn

‖f − Pn‖p,α ,

where Pn is the set of algebraic polynomials of degree not greater than n− 1.
By Dx,ν,µ we denote the operator

Dx,ν,µ = (1− x2)
d2

dx2
+ (µ− ν − (ν + µ+ 2)x)

d

dx
.

It is obvoious that

Dx,ν,µ = (1− x)−ν(1 + x)−µ
d

dx
(1− x)ν+1(1 + x)µ+1 d

dx
.
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We say that g(x) ∈ AD(p, α) if g(x) ∈ Lp,α, the derivative g′(x) is absolutely
continuous on every segment [a, b] ⊂ (−1, 1), and Dx,2,2g(x) ∈ Lp,α.

Let

K(f, δ)p,α = inf
g∈AD(p,α)

(
‖f − g‖p,α + δ2 ‖Dx,2,2g(x)‖p,α

)
denote the K-functional of Peetre interpolating between spaces Lp,α and AD(p, α).

We define the operator of generalised translation τ̂t (f, x) by

τ̂t (f, x) =
1

π(1− x2) cos4 t/2

×
∫ π

0

(
2
(√

1− x2 cos t+ x sin t cosϕ+
√

1− x2(1− cos t) sin2 ϕ
)2

− 1 +
(
x cos t−

√
1− x2 sin t cosϕ

)2)
f
(
x cos t−

√
1− x2 sin t cosϕ

)
dϕ.

By means of the operator of generalised translation, for a function f ∈ Lp,α, we
define the generalised modulus of smoothness as follows

ω̂(f, δ)p,α = sup
|t|≤δ
‖τ̂t (f, x)− f(x)‖p,α .

Put y = cos t, z = cosϕ in the operator τt (f, x), we denote it by τy (f, x) and
rewrite it in the form

τy (f, x) =
4

π(1− x2)(1 + y)2

∫ 1

−1
By(x, z,R)f(R)

dz√
1− z2

,

where

R = xy − z
√

1− x2
√

1− y2,

By(x, z,R) = 2
(√

1− x2y + zx
√

1− y2 +
√

1− x2(1− y)(1− z2)
)2
− (1−R2).

By P
(α,β)
ν (x) (ν = 0, 1, . . . ) we denote the Jacobi polynomials, i.e., the algebraic

polynomials of degree ν, orthogonal with the weight function (1 − x)α(1 + x)β on
the segment [−1, 1], and normed by the condition

P (α,β)
ν (1) = 1 (ν = 0, 1, . . . ).

Denote by an(f) the Fourier–Jacobi coefficients of a function f , integrable with
the weight function (1− x2)2 on the segment [−1, 1], with respect to the system of

Jacobi polynomials
{
P

(2,2)
n (x)

}∞
n=0

, i.e., let

an(f) =

∫ 1

−1
f(x)P (2,2)

n (x)(1− x2)2 dx (n = 0, 1, . . . ).

The following symmetric operator of generalised translation will play an auxiliary
role in the sequel:

T2;y(f, x) =
8

3π

∫ 1

−1
(1− z2)2f(R)

dz√
1− z2

,

where

R = xy − z
√

1− x2
√

1− y2.
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2.

Lemma 2.1. The operator τy (f, x) has the following properties:

1) it is linear,
2) τ1 (f, x) = f(x),

3) τy

(
P

(2,2)
ν , x

)
= P

(2,2)
ν (x)P

(0,4)
ν (y) (ν = 0, 1, . . . ),

4) τy (1, x) = 1,

5) an(τy (f, x)) = an(f)P
(0,4)
n (y) (n = 0, 1, . . . ).

Proof. Properties 1) and 2) follow immediately from the definition of the opera-
tor τy (f, x).

In order to prove 3), we consider the functions

P lmn(z) =

P (α,β)
ν (z)

(
ν + α

α

)
2−mim−n

√
(l −m)!(l +m)!

(l − n)!(l + n)!
(1− z)(m−n)/2(1 + z)(m+n)/2,

where

l = ν +
α+ β

2
, m =

α+ β

2
, n =

α− β
2

.

Putting n = 0, m = k = 2 in the formula of multiplication for functions P lmn (see [9,
p. 138], we obtain the required equalities.

Property 4) is proved by means of P
(2,2)
0 (x) in 3).

We prove the equality in 5). To this effect, consider

I = an(τy (f, x)) =

∫ 1

−1
τy (f, x)P (2,2)

n (x)(1− x2)2 dx =

=
4

π(1 + y)2

∫ 1

−1

∫ 1

−1
By(x, z,R)f(R)P (2,2)

n (x)(1− x2)
dz dx√
1− z2

,

where

R = xy − z
√

1− x2
√

1− y2,

By(x, z,R) = 2
(√

1− x2y + zx
√

1− y2 +
√

1− x2(1− y)(1− z2)
)2
− (1−R2).

Performing the change of variables

x = Ry + V
√

1−R2
√

1− y2,(2.1)

z = − R
√

1− y2 − V y
√

1−R2√
1−

(
Ry + V

√
1−R2

√
1− y2

)2
in the double integral, we obtain

I =
4

π(1 + y)2

∫ 1

−1

∫ 1

−1
By(R, V, x)(1−R2)f(R)P (2,2)

n (x)
dV dR√
1− V 2

.

Therefore,

I =

∫ 1

−1
f(R)(1−R2)2

4

π(1−R2)(1 + y)2

∫ 1

−1
By(R, V, x)P (2,2)

n (x)

× dV√
1− V 2

dR =

∫ 1

−1
f(R)(1−R2)2τy

(
P (2,2)
n , R

)
dR.
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Hence property 3) yields

I = P (0,4)
n (y)

∫ 1

−1
f(R)P (2,2)

n (R)(1−R2)2 dR = an(f)P (0,4)
n (y).

Lema 2.1 is proved. �

Lemma 2.2. Let the numbers p and α be such that 1 ≤ p ≤ ∞;

1/2 < α ≤ 1 for p = 1,

1− 1

2p
< α <

3

2
− 1

2p
for 1 < p <∞,

1 ≤ α < 3/2 for p =∞.

R = x cos t− z
√

1− x2 sin t.

Then for every function f ∈ Lp,α, we have∥∥∥∥ 1

1− x2

∫ 1

−1
(1−R2)|f(R)| dz√

1− z2

∥∥∥∥
p,α

≤ C ‖f‖p,α ,

where the constant C does not depend on f and x.

Lemma 2.2 is proved in a more generalised form in [7].

Lemma 2.3. Let the numbers p and α be such that 1 ≤ p ≤ ∞;

1/2 < α ≤ 1 for p = 1,

1− 1

2p
< α <

3

2
− 1

2p
for 1 < p <∞,

1 ≤ α < 3/2 for p =∞.
If f ∈ Lp,α, then

‖τ̂t (f, x)‖p,α ≤
C

cos4 t/2
‖f‖p,α ,

where constant C does not depend on f and t.

Proof. Let

I = ‖τ̂t (f, x)‖p,α =
1

π cos4 t/2

∥∥∥∥ 1

1− x2

∫ 1

−1
Bcos t(x, z,R)f(R)

dz√
1− z2

∥∥∥∥
p,α

,

where

R = x cos t− z
√

1− x2 sin t,

By(x, z,R) = 2
(√

1 + x2y + zx
√

1− y2 +
√

1− x2(1− y)(1− z2)
)2
− (1−R2).

Since

R2 +
(√

1− x2y + zx
√

1− y2
)2

= 1− (1− y2)(1− z2),

we have

(2.2)
∣∣∣√1− x2y + zx

√
1− y2

∣∣∣ ≤√1−R2

and
(1− y2)(1− z2) ≤ 1−R2.

Since R is symmetric in x and y, the last inequality yields

(1− x2)(1− z2) ≤ 1−R2.

Applying this inequality and inequality (2.2), we get

|By(x, z,R)| ≤ 19(1−R2).
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Applying Lemma 2.2, we obtain

I ≤ C1

cos4 t/2

∥∥∥∥ 1

1− x2

∫ 1

−1
(1−R2)|f(R)| dz√

1− z2

∥∥∥∥
p,α

≤ C2

cos4 t/2
‖f‖p,α .

Lemma 2.3 is proved. �

Lemma 2.4. If g(x)τy (f, x) ∈ L1,2 for each y ∈ (−1, 1), then∫ 1

−1
f(x)τy (g, x) (1− x2)2 dx =

∫ 1

−1
g(x)τy (f, x) (1− x2)2 dx.

Proof. We have

I =

∫ 1

−1
f(x)τy (g, x) (1− x2)2 dx

=
4

π(1 + y)2

∫ 1

−1

∫ 1

−1
f(x)g(R)By(x, z,R)(1− x2)

dz dx√
1− z2

,

where

R = x cos t− z
√

1− x2 sin t,

By(x, z,R) = 2
(√

1− x2y + zx
√

1− y2 +
√

1− x2(1− y)(1− z2)
)2
− (1−R2).

Performing the change of variables in this double integral by formulas (2.1), we
obtain

I =
4

π(1 + y)2

∫ 1

−1

∫ 1

−1
f(x)g(R)By(R, V, x)(1−R2)

dV dR√
1− V 2

=

∫ 1

−1
g(R)τy (f,R) (1−R2)2 dR.

Lemma 2.4 is proved. �

Lemma 2.5. Assume that the derivative f ′(x) is absolutely continuous on every
segment [a, b] ⊂ (−1, 1) and Dx,2,2f(x) ∈ L1,2. Then

1) for fixed y ∈ (−1, 1), the derivative d
dxτy (f, x) is absolutely continuous on

every segment [c, d] ⊂ (−1, 1),
2) for almost every x ∈ (−1, 1) and every y ∈ (−1, 1), the following equality

holds true

τy (Dx,2,2f, x) = Dx,2,2τy (f, x) .

Proof. In order to prove 1), we consider the function

ϕ(x) =
By(x, z,R)

(1− x2)(1 + y)2
√

1− z2
f(R),

where By(x, z,R) and R have been defined in Lemma 2.4. It is obvious that the
function ϕ′(x) is continuous on every segment [c, d] ⊂ (−1, 1). Hence 1) follows by
applying Lebesgue’s dominated convergence theorem.

In order to prove 2), first we prove the equality

(2.3) τy (Dx,2,2f, x) = Dx,2,2τy (f, x)

for infinitely differentiable functions f which are equal to zero outside of some
segment [a, b] ⊂ (−1,−y) ∪ (−y, y) ∪ (y, 1).

From 1) it follows that Dx,2,2τy (f, x) exists.
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Assume that the function f is infinitely differentiable and is equal to zero outside
of some segment [a, b] ⊂ (−1,−y)∪ (−y, y)∪ (y, 1). Applying Lemmas 2.4 and 2.1,
we obtain

I =

∫ 1

−1
τy (Dx,2,2f, x)P (2,2)

n (x)(1− x2)2 dx

= P (0,4)
n (y)

∫ 1

−1
Dx,2,2f(x)P (2,2)

n (x)(1− x2)2 dx.

Integrating by parts twice and taking into account that f(x) = 0 and f ′(x) = 0
outside of [a, b] ⊂ (−1, 1), we have

I = P (0,4)
n (y)

∫ 1

−1
Dx,2,2P

(2,2)
n (x)f(x)(1− x2)2 dx.

It is well known [2, p. 171] that

Dx,2,2P
(2,2)
n (x) = −n(n+ 5)P (2,2)

n (x).

Therefore

I = −n(n+ 5)P (0,4)
n (y)

∫ 1

−1
f(x)P (2,2)

n (x)(1− x2)2 dx.

Applying Lemmas 2.1 and 2.4, integrating by parts twice, and considering that
τy (f, x) = 0 outside of some segment [γ, δ] ⊂ (−1, 1), we obtain

I =

∫ 1

−1
Dx,2,2τy (f, x)P (2,2)

n (x)(1− x2)2 dx.

Thus for fixed y, all the Fourier–Jacobi coefficients of the function

F (x) = τy (Dx,2,2f, x)−Dx,2,2τy (f, x)

with respect to the system
{
P

(2,2)
n (x)

}∞
n=0

of polynomials are equal to zero. Hence

it follows that F (x) = 0 almost everywhere on [−1, 1].
Thus, equality (2.3) has been proved for infinitely differentiable functions which

are equal to zero outside of some segment [a, b] ⊂ (−1,−y) ∪ (−y, y) ∪ (y, 1).
Now, let the function f(x) satisfy the conditions of the lemma. Let a func-

tion g(x) be infinitely differentiable and equal to zero outside of some segment
[c, d] ⊂ (−1,−y) ∪ (−y, y) ∪ (y, 1). Integrating by parts twice and taking into
account that

g(x)(1− x2)3
d

dx
τy (f, x)→ 0 and τy (f, x) (1− x2)3

d

dx
g(x)→ 0

for x→ −1 + 0 and x→ 1− 0,

we obtain

J1 =

∫ 1

−1
Dx,2,2τy (f, x) g(x)(1− x2)2 dx =

∫ 1

−1
Dx,2,2g(x)τy (f, x) (1− x2)2 dx.

Applying Lemma 2.1, we get

J1 =

∫ 1

−1
f(x)τy (Dx,2,2g, x) (1− x2)2 dx.

On the other hand, let

J2 =

∫ 1

−1
τy (Dx,2,2f, x) g(x)(1− x2)2 dx.
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Applying Lemma 2.4 and then integrating by parts twice, we have

J2 =

∫ 1

−1
Dx,2,2τy (g, x) f(x)(1− x2)2 dx.

Therefore, we obtain

J2 − J1 =

∫ 1

−1
(Dx,2,2τy (g, x)− τy (Dx,2,2g, x)) f(x)(1− x2)2 dx.

But for the function g(x) we have already proved equality (2.3) for almost every
x ∈ (−1, 1). Hence

J2 − J1 =

∫ 1

−1
(τy (Dx,2,2f, x)−Dx,2,2τy (f, x)) g(x)(1− x2)2 dx = 0

for every y. Now, equality (2.3) follows from the fact that the segment [c, d] ⊂
(−1,−y) ∪ (−y, y) ∪ (y, 1) and the function g(x) can be arbitrarily chosen.

Lemma 2.5 is proved. �

Lemma 2.6. Assume that the derivative f ′(x) is absolutely continuous on every
segment [a, b] ⊂ (−1, 1) and Dx,2,2f(x) ∈ L1,2. Then for almost every x ∈ (−1, 1)
and every y ∈ (−1, 1)

(2.4) τy (f, x)− f(x) =

∫ y

1

(1− v)−1(1 + v)−5
∫ v

1

(1 + u)4τu (Dx,2,2f, x) du dv

and

(2.5) τy (f, x)− τ0 (f, x)

= −
∫ y

0

(1− v)−1(1 + v)−5
∫ −1
v

(1 + u)4τu (Dx,2,2f, x) du dv.

Proof. We prove equality (2.4). If f is an infinitely differentiable function, equal
to zero outside of some segment [a, b] ⊂ (−1,−y)∪ (−y, y)∪ (y, 1), then for almost
every x ∈ (−1, 1) and almost every u ∈ (−1, 1) the following equality holds true

τu (Dx,2,2f, x) = Du,0,4τu (f, x) .

Applying this equality and Lemma 2.1, we obtain∫ y

1

(1− v)−1(1 + v)−5
∫ v

1

(1 + u)4τu (Dx,2,2f, x) du dv

=

∫ y

1

(1− v)−1(1 + v)−5
∫ v

1

(1 + u)4Du,0,4τu (f, x) du dv = τy (f, x)− f(x).

Now let the function f(x) satisfy the conditions of the lemma and let g(x)
be an infinitely differentiable function, equal to zero outside of some segment
[c, d] ⊂ (−1,−y) ∪ (−y, y) ∪ (y, 1). Then by Lemma 2.4, analogously to the proof
of Lemma 2.5, while integrating by parts twice, it is easy to prove that

J =

∫ 1

−1

∫ y

1

(1− v)−1(1 + v)−5
∫ v

1

(1 + u)4τu (Dx,2,2f, x) g(x)(1− x2)2 du dv dx

=

∫ 1

−1
f(x)(1− x2)2

∫ y

1

(1− v)−1(1 + v)−5
∫ v

1

(1 + u)4Dx,2,2τu (g, x) du dv dx.

Making use of Lemma 2.5 and the fact that we have already proved equality (2.4)
for almost every x ∈ (−1, 1) in the case of any infinitely differentiable function g(x),
equal to zero outside of the segment [c, d] ⊂ (−1,−y) ∪ (−y, y) ∪ (y, 1), we obtain

J =

∫ 1

−1
(τy (g, x)− g(x))f(x)(1− x2)2 dx.
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Applying once more Lemma 2.4, we get that

J =

∫ 1

−1
(τy (f, x)− f(x))g(x)(1− x2)2 dx.

Hence equality (2.4) follows by taking into account the fact that the segment [c, d]
and the function g(x) can be arbitrarily chosen.

Equality (2.5) is proved in an analogous way.
Lemma 2.6 is proved. �

Corollary 2.1. Assume that the derivative f ′(x) is absolutely continuous on every
segment [a, b] ⊂ (−1, 1) and Dx,2,2f(x) ∈ L1,2. Then for almost every x ∈ (−1, 1)
and every t ∈ (−π, π)

τ̂t (f, x)− f(x)

=

∫ t

0

(sin v/2)−1(cos v/2)−9
∫ v

0

τ̂u (Dx,2,2f, x) sinu/2(cosu/2)9 du dv

and

τ̂t (f, x)− τ̂π/2 (f, x)

= −
∫ t

π/2

(sin v/2)−1(cos v/2)−9
∫ π

v

τ̂u (Dx,2,2f, x) sinu/2(cosu/2)9 du dv.

The first equality follows immediately from equality (2.4) by substituting cosu
and cos v for u and v, respectively. In an analogous way, the second equality follows
from equality (2.5).

Lemma 2.7. Let Pn be an algebraic polynomial of degree not greater than n − 1,
1 ≤ p ≤ ∞, ρ ≥ 0;

α > −1/p for 1 ≤ p <∞,
α ≥ 0 for p =∞.

Then the following inequalities hold true:

‖P ′n‖p,α+1/2 ≤ C1n ‖Pn‖p,α ,
‖Pn‖p,α ≤ C2n

2ρ‖Pn‖p,α+ρ,
where the constants C1 and C2 do not depend on n.

Lemma is proved in [4].

Lemma 2.8. Let q and m be natural numbers and let f ∈ L1,2. Then the function

Q(x) =

∫ π

0

T2;cos t(f, x)

(
sin mt

2

sin t
2

)2q+4

sin5 t dt

is an algebraic polynomial of degree not greater than (q + 2)(m− 1).

Lemma is proved in [5].

Lemma 2.9. Let the numbers p and α be such that 1 ≤ p ≤ ∞;

−1/2 < α ≤ 2 for p = 1,

− 1

2p
< α < 5/2− 1

2p
for 1 < p <∞,

0 ≤ α < 5/2 for p =∞.
If f ∈ AD(p, α), then

En(f)p,α ≤ C
1

n2
‖Dx,2,2f(x)‖p,α ,
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where the constant C does not depend on f and n.

Proof. For a fixed natural number q > 2, we chose the natural number m such that

n− 1

q + 2
< m ≤ n− 1

q + 2
+ 1.

It is easy to prove that under the conditions of the lemma, f ∈ Lp,α implies
f ∈ L1,2. Hence by Lemma 2.8, it follows that the function

Q(x) =
1

γm

∫ π

0

T2;cos t(f, x)

(
sin mt

2

sin t
2

)2q+4

sin5 t dt,

where

γm =

∫ π

0

(
sin mt

2

sin t
2

)2q+4

sin5 t dt,

is an algebraic polynomial of degree not greater than n− 1. Therefore, by applying
the generalised Minkowski inequality, we have

En(f)p,α ≤ ‖f −Q‖p,α

≤ 1

γm

∫ π

0

‖T2;cos t(f, x)− f(x)‖p,α

(
sin mt

2

sin t
2

)2q+4

sin5 t dt.

Reasoning as in the proof of inequality (2.2) of Theorem 3.1, i.e., applying the
appropriately modified versions of Lemmas 2.6 and 2.3 for the operator T2;cos t(f, x),
we obtain

En(f)p,α ≤ C1 ‖Dx,2,2f(x)‖p,α
1

γm

∫ π

0

t2
(

sin mt
2

sin t
2

)2q+4

sin5 t dt.

Making use of an estimate of Jackson kernel, we get

En(f)p,α ≤ C2
1

m2
‖Dx,2,2f(x)‖p,α ≤ C3

1

n2
‖Dx,2,2f(x)‖p,α .

Lema 2.9 is proved. �

3.

Theorem 3.1. Let the numbers p and α be such that 1 ≤ p ≤ ∞;

1/2 < α ≤ 1 for p = 1,

1− 1

2p
< α <

3

2
− 1

2p
for 1 < p <∞,

1 ≤ α < 3/2 for p =∞.

If f ∈ Lp,α, then for all δ ∈ [0, π),

C1K(f, δ)p,α ≤ ω̂(f, δ)p,α ≤ C2
1

cos4 δ/2
K(f, δ)p,α,

where the positive constants C1 and C2 do not depend on f and δ.

Proof. We prove that for every function g(x) ∈ AD(p, α) and every t ∈ (−π, π), we
have

(3.1) ‖τ̂t (g, x)− g(x)‖p,α ≤ C3
1

cos4 t/2
t2 ‖Dx,2,2g(x)‖p,α ,

where the constant C3 does not depend on g dhe t.



10 M. K. POTAPOV AND F. M. BERISHA

Let 0 < t ≤ π/2. Then Corollary of Lemma 2.6 yields

I1 = ‖τ̂t (g, x)− g(x)‖p,α

=

∥∥∥∥∫ t

0

(sin v/2)−1(cos v/2)−9
∫ v

0

τ̂u (Dx,2,2g, x) sinu/2(cosu/2)9 du dv

∥∥∥∥
p,α

.

Applying the generalised Minkowski inequality and Lemma 2.3, we get

I1 ≤
∫ t

0

(sin v/2)−1(cos v/2)−9

×
∫ v

0

‖τ̂u (Dx,2,2g, x)‖p,α sinu/2(cosu/2)9 du dv

≤ C4 ‖Dx,2,2g(x)‖p,α
∫ t

0

(sin v/2)−1(cos v/2)−9
∫ v

0

(
sin

u

2

)(
cos

u

2

)5
du dv.

Since the inequality∫ t

0

(sin v/2)−1(cos v/2)−9
∫ v

0

(
sin

u

2

)(
cos

u

2

)5
du dv ≤ C5t

2

holds for 0 < t ≤ π/2, we obtain

I1 ≤ C6t
2 ‖Dx,2,2g(x)‖p,α ≤ C6

1

cos4 t/2
t2 ‖Dx,2,2g(x)‖p,α .

For t = 0 inequality (3.1) is trivial.
Let π/2 ≤ t < π. Then by Corollary of Lemma 2.6, we get

I2 =
∥∥τ̂t (g, x)− τ̂π/2 (g, x)

∥∥
p,α

=

∥∥∥∥∥
∫ t

π/2

(sin v/2)−1(cos v/2)−9
∫ π

v

τ̂u (Dx,2,2g, x) sinu/2(cosu/2)9 du dv

∥∥∥∥∥
p,α

.

Applying the generalised Minkowski inequality and then Lemma 2.3, we have

I2 ≤ C7 ‖Dx,2,2g(x)‖p,α

×
∫ t

π/2

(sin v/2)−1(cos v/2)−9
∫ π

v

(
sin

u

2

)(
cos

u

2

)5
du dv.

Considering that for π/2 ≤ t < π we have∫ t

π/2

(sin v/2)−1(cos v/2)−9
∫ π

v

(
sin

u

2

)(
cos

u

2

)5
du dv ≤ C8

1

cos4 t/2
,

it follows that

(3.2) I2 ≤ C9
1

cos4 t/2
‖Dx,2,2g(x)‖p,α ≤ C9

1

cos4 t/2
t2 ‖Dx,2,2g(x)‖p,α .

Since

‖τ̂t (g, x)− g(x)‖p,α ≤
∥∥τ̂t (g, x)− τ̂π/2 (g, x)

∥∥
p,α

+
∥∥τ̂π/2 (g, x)− g(x)

∥∥
p,α

,

applying inequality (3.2) and the fact that inequality (3.1) has been proved for
0 ≤ t ≤ π/2, we obtain

‖τ̂t (g, x)− g(x)‖p,α ≤ C10
1

cos4 t/2
t2 ‖Dx,2,2g(x)‖p,α

for π/2 ≤ t < π.
Thus, inequality (3.1) is proved for 0 ≤ t < π. Since

τcos t (g, x) = τcos (−t) (g, x) ,
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we conclude that inequality (3.1) holds for every t ∈ (−π, π).
Let f ∈ Lp,α and 0 ≤ |t| ≤ δ < π. Then for every function g(x) ∈ AD(p, α),

applying Lemma 2.3 gives

‖τ̂t (f, x)− f(x)‖p,α ≤ ‖τ̂t (f − g, x)‖p,α + ‖τ̂t (g, x)− g(x)‖p,α + ‖g − f‖p,α

≤ C11
1

cos4 t/2
‖f − g‖p,α + ‖τ̂t (g, x)− g(x)‖p,α .

Making use of inequality (3.1), we get

‖τ̂t (f, x)− f(x)‖p,α ≤ C12
1

cos4 t/2

(
‖f − g‖p,α + t2 ‖Dx,2,2g(x)‖p,α

)
,

where the constant C12 does not depend on f , g and t. This proves the right-hand
side inequality of the theorem.

In order to prove the left-hand side inequality, we consider the function

gδ(x) =
1

κ(δ)

∫ δ

0

(sin v/2)−1(cos v/2)−9
∫ v

0

τ̂u (f, x) sinu/2(cosu/2)9 du dv,

where

κ(δ) =

∫ δ

0

(sin v/2)−1(cos v/2)−9
∫ v

0

sinu/2(cosu/2)9 du dv.

Let 0 < δ < π/2, then

(3.3) C13δ
2 ≤ κ(δ) ≤ C14δ

2.

Applying the generalised Minkowski inequality and Lemma 2.3, we obtain

‖gδ(x)‖p,α

≤ 1

κ(δ)

∫ δ

0

(sin v/2)−1(cos v/2)−9
∫ v

0

‖τ̂u (f, x)‖p,α sinu/2(cosu/2)9 du dv

≤ C15
1

cos4 δ/2
‖f‖p,α ,

that is, gδ(x) ∈ Lp,α.
Put

g(x) = −
∫ x

0

(1− y2)−3
∫ 1

y

(1− z2)2
(
f(z)− c1

c0

)
dz dy,

where

c1 =

∫ 1

−1
(1− z2)2f(z) dz, c0 =

∫ 1

−1
(1− z2)2 dz.

Since
Dx,2,2g(x) = f(x)− c1

c0
,

we have

gδ(x) =
1

κ(δ)

∫ δ

0

(sin v/2)−1(cos v/2)−9

×
∫ v

0

τ̂u (Dx,2,2g, x) sinu/2(cosu/2)9 du dv +
c1
c0
.

Applying Corollary of Lemma 2.6 gives

gδ(x) =
1

κ(δ)
(τ̂δ (g, x)− g(x)) +

c1
c0
.

Applying the operator Dx,2,2 and then Lemma 2.5, it follows that

Dx,2,2gδ(x) =
1

κ(δ)
(τ̂δ (Dx,2,2g, x)−Dx,2,2g(x)) =

1

κ(δ)
(τ̂δ (f, x)− f(x)).
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Therefore, by Lemmas 2.3 and 2.5, we conclude that gδ(x) ∈ AD(p, α).
By the last equality and inequality (3.3), we obtain

‖Dx,2,2gδ(x)‖p,α ≤ C16
1

δ2
‖τ̂δ (f, x)− f(x)‖p,α ,

that is,

‖Dx,2,2gδ(x)‖p,α ≤ C16
1

δ2
ω̂(f, δ)p,α.

On the other hand, by applying the Minkowsky inequality, we get

‖f(x)− gδ(x)‖p,α ≤
1

κ(δ)

∫ δ

0

(sin v/2)−1(cos v/2)−9

×
∫ v

0

‖f(x)− τ̂u (f, x)‖p,α sinu/2(cosu/2)9 du dv ≤ ω̂(f, δ)p,α.

Thus, for 0 < δ ≤ π/2 we have proved that

I(δ) = ‖f(x)− gδ(x)‖p,α + δ2 ‖Dx,2,2gδ(x)‖p,α ≤ C17ω̂(f, δ)p,α.

Since for π/2 ≤ δ < π we have δ2 < π2 · 1 and 1 < π/2, it follows that

K(f, δ)p,α ≤ π2
(
‖f(x)− g1(x)‖p,α + 12 · ‖Dx,2,2g1(x)‖p,α

)
= π2I(1) ≤ π2C17ω̂ (f, 1)p,α ≤ C18ω̂(f, δ)p,α.

Thus, we have proved the left-hand side inequality of the theorem for 0 < δ < π.
For δ = 0 this inequality is trivial.

Theorem 3.1 is proved. �

Theorem 3.2. Let the numbers p and α be such that 1 ≤ p ≤ ∞;

1/2 < α ≤ 1 for p = 1,

1− 1

2p
< α <

3

2
− 1

2p
for 1 < p <∞,

1 ≤ α < 3/2 for p =∞.

If f ∈ Lp,α, then for every natural number n

C1En(f)p,α ≤ ω̂ (f, 1/n)p,α ≤ C2
1

n2

n∑
ν=1

νEν (f)p,α ,

where the positive constants C1 and C2 do not depend on f and n.

Proof. For every function g(x) ∈ AD(p, α), we have

En(f)p,α ≤ En (f − g)p,α + En (g)p,α .

Applying Lemma 2.9 gives

En(f)p,α ≤ ‖f − g‖p,α + C3
1

n2
‖Dx,2,2g(x)‖p,α ,

where the constant C3 does not depend on f , g and n. Therefore, we get

En(f)p,α ≤ C4K (f, 1/n)p,α .

Hence Theorem 3.1 yields

En(f)p,α ≤ C5ω̂ (f, 1/n)p,α ,

which proves the left-hand side inequality of the theorem.
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We prove the right-hand side inequality. Let Pn(x) be the algebraic polynomial of
best approximation for f in the metrics Lp,α whose degree is not greater than n−1.
Let k be chosen such that

(3.4) n/2 < 2k ≤ n+ 1.

Since P2k(x) ∈ AD(p, α), Theorem 3.1 yields

ω̂ (f, 1/n)p,α ≤ C6
1(

cos 1
2n

)4K (f, 1/n)p,α

≤ C7

(
‖f − P2k‖p,α +

1

n2
‖Dx,2,2P2k‖p,α

)
.

Since

Dx,2,2P2k(x) =

k−1∑
ν=0

Dx,2,2 (P2ν+1(x)− P2ν (x)) ,

Lemma 2.7 yields

‖Dx,2,2Pn(x)‖p,α ≤
∥∥(1− x2)P ′′n (x)

∥∥
p,α

+ 6 ‖P ′n(x)‖p,α
≤ C8n‖P ′n(x)‖p,α+1/2 ≤ C9n

2 ‖Pn‖p,α ,

whence we obtain

‖Dx,2,2P2k(x)‖p,α ≤ C10

k−1∑
ν=0

22(ν+1) ‖P2ν+1(x)− P2ν (x)‖p,α

≤ C10

k−1∑
ν=0

22(ν+1)(‖P2ν+1(x)− f(x)‖p,α + ‖f(x)− P2ν (x)‖p,α)

≤ C10

k−1∑
ν=0

22(ν+1)(E2ν+1 (f)p,α + E2ν (f)p,α) ≤ 2C10

k−1∑
ν=0

22(ν+1)E2ν (f)p,α .

Therefore, inequality (3.4) implies

ω̂ (f, 1/n)p,α ≤ C11

(
E2k (f)p,α +

1

n2

k−1∑
ν=0

22(ν+1)E2ν (f)p,α

)

≤ C11
1

n2

k∑
ν=0

22(ν+1)E2ν (f)p,α .

We note that
2ν−1∑
µ=2ν−1

µEµ (f)p,α ≥ 22(ν−1)E2ν (f)p,α

holds for ν = 1, 2, . . . , k. Hence we have

ω̂ (f, 1/n)p,α ≤ C12
1

n2

(
4E1 (f)p,α +

k∑
ν=1

2ν−1∑
µ=2ν−1

µEµ (f)p,α

)

≤ C13
1

n2

2k−1∑
ν=1

νEν (f)p,α ≤ C13
1

n2

n∑
ν=1

νEν (f)p,α .

Theorem 3.2 is proved. �
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