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3.1 POWERS AND POLYNOMIALS

Derivative of a Constant Times a Function
Figure 3.1 shows the graph of y = f(z) and of three multiples: y = 3f(z), y = $/(z), and

y = —2f(x). What is the relationship between the derivatives of these functions? In other words,
for a particular x-value, how are the slopes of these graphs related?
Y Y Y Y
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Figure 3.1: A function and its multiples: Derivative of multiple is multiple of derivative

Multiplying the value of a function by a constant stretches or shrinks the original graph (and
reflects it in the x-axis if the constant is negative). This changes the slope of the curve at each point.
If the graph has been stretched, the “rises” have all been increased by the same factor, whereas the
“runs” remain the same. Thus, the slopes are all steeper by the same factor. If the graph has been
shrunk, the slopes are all smaller by the same factor. If the graph has been reflected in the z-axis,
the slopes will all have their signs reversed. In other words, if a function is multiplied by a constant,
¢, so is its derivative:

Theorem 3.1: Derivative of a Constant Multiple

If f is differentiable and c is a constant, then

d »
T fef (@) = ef'(a).

Proof Although the graphical argument makes the theorem plausible, to prove it we must use the definition
of the derivative:

d wocfte+h)—cf@) . flx4+h) = flz)
/@) = Jim h = i n

_ oo J@th) = @)

=efim TS =)

We can take c across the limit sign by the properties of limits (part 1 of Theorem 1.2 on page 53).

Derivatives of Sums and Differences

Suppose we have two functions, f(z) and g(x), with the values listed in Table 3.1. Values of the
sum f(z) 4+ g(«) are given in the same table.
Table 3.1 Sum of Functions

z | f@) | g(x) | fz)+g(z)
0 | 100 0 100

1| 110 02 1102

2 | 130 0.4 130.4

3| 160 0.6 160.6

4 | 200 0.8 200.8
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We see that adding the increments of f(x) and the increments of g(x) gives the increments of
f(2) + g(x). For example, as x increases from 0 to 1, f(x) increases by 10 and g(x) increases by
0.2, while f(2) + g(«) increases by 110.2 — 100 = 10.2. Similarly, as « increases from 3 to 4, f(x)
increases by 40 and g(x) by 0.2, while f(x) + g(z) increases by 200.8 — 160.6 = 40.2.

From this example, we see that the rate at which f(z)+ ¢(z) is increasing is the sum of the rates
at which f(z) and g(z) are increasing. Similar reasoning applies to the difference, f(z) — g(z). In
terms of derivatives:

Theorem 3.2: Derivative of Sum and Difference
If f and g are differentiable, then

d d

@) +g@)]=f@)+g') and —[f(x)—g(2)] = f'(z) - ¢ (@).

Proof Using the definition of the derivative:

[f(z+h)+ge+h)] - [f(z) +9(x)]
h

d .
= (/&) + g(w) = Jim

i [fE D) =S @) gz +h) — ()
h—0 h h
Limit of this is f(z) Limit of this is g’ ()

= f'(z) + ().

We have used the fact that the limit of a sum is the sum of the limits, part 2 of Theorem 1.2 on
page 53. The proof for f(z) — g(«) is similar.

Powers of =

In Chapter 2 we showed that

_d
Cdx
The graphs of f(r) = 22 and g(z) = 23 and their derivatives are shown in Figures 3.2 and 3.3.
Notice f’(x) = 2z has the behavior we expect. It is negative for z < 0 (when f is decreasing),
zero for x = 0, and positive for z > 0 (when f is increasing). Similarly, ¢’(z) = 322 is zero when
x = 0, but positive everywhere else, as ¢ is increasing everywhere else.

fl(x) = %(7‘2) =2z and ¢'(x) (x3) = 322

Voo f@) =2 v
20T 20— 3
’ ' (z) = 32° 104 g(x) ==
101 [(z) =22
1 -
-3 3
1 - —10+
=9 o ~20 ¢
_10 £
Figure 3.2: Graphs of f(z) = z* and Figure 3.3: Graphs of g(z) = z® and its

its derivative f'(x) = 2z derivative ¢’ () = 322
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These examples are special cases of the power rule which we justify for any positive integer n
on page 119:

The Power Rule

For any constant real number 7,

d

— (") =
dxx) nx

Problem 73 asks you to show that this rule holds for negative integral powers; such powers can also
be differentiated using the quotient rule (Section 3.3). In Section 3.6 we indicate how to justify the
power rule for powers of the form 1/n.

(B_3’ (b) xl/Q’ (C) 3

8w %H

(a) Forn = —3: d <i) = %(x_s) =33 1="3z"t=—
d(apy_ L a1 i 1
(272) = 3o 3 o

o
_ ood (1 d sy Loy Ly 1
(c) Forn=-1/3: . <\3/§> (x ) = 3x = 333 =55

. o S d, _ -
Use the definition of the derivative to justify the power rule for n = —2: Show — (z72) = —2x 2.

Example 1 Use the power rule to differentiate (a)
Solution el
dx \ 23
(b) Forn =1/2:
Example 2
Solution Provided x # 0, we have

1 1

d o d 1 . @th)E 22 o1 a2 - (x + h)2 (Combining fractions
—_— = — | — | =1 Y " =] _ over a common
dx (LL' ) dz <$2> errlO ( h h,li% h (CC ¥ h)Ql‘Q denominator)
lim l 1,2 — (1,2 +2zh + h2) (Multi;;lying
h—0 h (z + h)2z? out)
im —2xh — h?
h—0 h(x + h)%a?

(Simplifying numerator)

— lim —2x —h (Dividing numerato}rl
= and denominator b;
h—0 (x + h)2z? v

—2z
= ? (Letting h — 0)
= 2273

The graphs of =2 and its derivative, —22 2, are shown in Figure 3.4. Does the graph of the deriva-
tive have the features you expect?

—

Figure 3.4: Graphs of =2 and its derivative, —2z >
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— d .
Justification of e (z™) = nx™ !, for n a Positive Integer
€T

To calculate the derivatives of 22 and 23, we had to expand (z + h)? and (z + h)3. To calculate the
derivative of 2™, we must expand (2 + h)™. Let’s look back at the previous expansions:

(x+h)? = 2® 4+ 2xh + h?, (x +h)? =2 4+ 322h + 3xh? + b3,
and multiply out a few more examples:

(x4 h)* = 2" + 423h + 62202 + dah® + hY,
(z +h)® =2 + 5z*h + 102°h* + 10220 + 52h* + B°.

Terms involving h? and higher powers of h

In general, we can say

Terms involving h? and higher powers of h

We have just seen this is true for n = 2,3,4,5. It can be proved in general using the Binomial
Theorem (see www.wiley.com/college/hugheshallett). Now to find the derivative,

d ny __ (Cl? + h’)n —a"
a(x ) a h—0 h
. (" +nz" th4 o+ R) — a2
= lim
h—0 h

Terms involving A and higher powers of h

——
nz" " th+---+ "
h—0 h ’

When we factor out i from terms involving h? and higher powers of h, each term will still have an
h in it. Factoring and dividing, we get:

Terms involving A and higher powers of h

d n . h’(n$n71 +o /nil) n—1 n—1
& = " = fp(na A T,
But as h — 0, all terms involving an h will go to 0, so
d

—(:I?") = lim (nmn—l et hn—l) _ Tlilin_l.
dx h—0 ——

These terms go to 0

Derivatives of Polynomials

Now that we know how to differentiate powers, constant multiples, and sums, we can differentiate
any polynomial.

5
Example 3 Find the derivatives of (a) 5z2 + 3z + 2, (b) V32" — % + .

Solution (a) p y J p
JE— 2 = JE— 2 JE— JE—
d:p(BI +3z+2) 5dx(x)+3dx(:r)—|—dx(2)

=5-22+3-1+0 (Since the derivative of a constant, %(2), is zero.)
=10z + 3.
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(b)
d R ed . 1d, g d
E(ﬁx —EH)_\@%@) £ (@) + ()
1
= 3'7%6—5'51‘44—0 (Since 7 is a constant, d7 /dz = 0.)

= 7V3z5 — 2t

We can also use the rules we have seen so far to differentiate expressions which are not polynomials.

1 1
Example 4 Differentiate (a) 5v/z — —(2) +— ) 0.123 +22V2

T 2z

d 10 1 d 1
||n IRl =4 _ - _ r1/2_1 -2 _—1/2
Solutio (a) T <o\/5 = + 2\/5> o (ox 0x 2 + 57
[ P N I ey
_5.= —10(— R
5 5% 0(=2)z" + 5 —3)*
5 20 1

N
(b) %(o.u?’ +22V7) = 0.1%@3) + 2%@“5) = 0.32% + 2v/22V2> L,

Example 5 Find the second derivative and interpret its sign for
(@) flx) =22, ) g(z) =23, (© k(z)=a/2

. d
Solution (a) If f(x) = 22, then f'(z) = 2z, so f"(z) = d—(2x) = 2. Since f” is always positive, f is
x
concave up, as expected for a parabola opening upward. (See Figure 3.5.)
d d
(b) If g(z) = 22, then ¢/(x) = 322, so ¢/ (x) = d—(3:r2) = 3d—(:r2) = 3 -2z = 6z. This is
v v
positive for x > 0 and negative for z < 0, which means z* is concave up for z > 0 and concave
down for x < 0. (See Figure 3.6.)
(©) If k(z) = 2'/2, then k' (z) = $2(1/D=1 = 1471/2 50

d (1 11 1
PR (v W TR SR CY2) R R i V)
H@) =% <2$ > 3 () 1"

Now k" and k" are only defined on the domain of %, that is, x > 0. When = > 0, we see that
k" () is negative, so k is concave down. (See Figure 3.7.)

4 8+
g// > 0 2
/>0 E'<0
1 -
—2 2

. g// < 0 .

—2 2 -8+ 4
Figure 3.5: f(z) = z® and Figure 3.6: g(z) = 2® and Figure 3.7: k() = z'/? and

(@) =2 g"(z) = 6z K'(z) = —1a 3/
Example 6 If the position of a body, in meters, is given as a function of time ¢, in seconds, by

s = —4.9t% 4 5t 4 6,

find the velocity and acceleration of the body at time ¢.
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Solution The velocity, v, is the derivative of the position:
ds d
= — = —(—4.9t2 + 5t +6) = —9.8¢ + b,
U= T a +5t+6) +
and the acceleration, a, is the derivative of the velocity:
dv d
= — = — —9.8t 5 = _9.8.
o=~ +9)
Note that v is in meters/second and « is in meters/second?.
Example 7 Figure 3.8 shows the graph of a cubic polynomial. Both graphically and algebraically, describe the
behavior of the derivative of this cubic.
f/
A !
B
xr
A C
C B
Figure 3.8: The cubic of Example 7 Figure 3.9: Derivative of the cubic of Example 7
Solution

Graphical approach: Suppose we move along the curve from left to right. To the left of A, the slope
is positive; it starts very positive and decreases until the curve reaches A, where the slope is 0.
Between A and C' the slope is negative. Between A and B the slope is decreasing (getting more
negative); it is most negative at B. Between B and C the slope is negative but increasing; at C' the
slope is zero. From C' to the right, the slope is positive and increasing. The graph of the derivative
function is shown in Figure 3.9.

Algebraic approach: f is a cubic that goes to 400 as x — 400, so

f(x) = az® + bz +cx +d

with a > 0. Hence,
f'(x) = 3ax® + 2bx + ¢,

whose graph is a parabola opening upward, as in Figure 3.9.

Exercises and Problems for Section 3.1

Exercises

1. Let f(x) = 7. Using the definition of the derivative, For Exercises 6—47, find the derivatives of the given functions.

show that f’(x) = 0 for all values of . Assume that a, b, ¢, and k are constants.
2. Let f(z) = 17z +11. Use the definition of the derivative
to calculate f'(z). 6. y=az'' 7. y=a'"
For Exercises 3-5, determine if the derivative rules from this 8 g2 0, 4y g1
section apply. If they do, find the derivative. If they don’t ap- -Y=T Y=
ply, indicate why. . .
10. y = 232 11. y = /3

J.y==x

4. y:?)z S. yzw"r
12. y =%/ 13. y =23/
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1 1
4. f@)=— 15 g(t) = 5
1 1
18. y =z 19. f(z)= V=
1 1
22, f(x) =2 23, y = 42°/? —5a1/?
24, f(t) =3t —4t+1 25. y = 17z + 242/?
2 1 4 1
26. y=2"+ — 27. f(z) =5z2" + —
2z 2
28. h(w) = —2w *4+3vw 29, y = 62> + 4% — 2z
7 2 1
30. y=3t° -5Vt + — 3y=3t"+ — - —
Yy \/_+ P Yy \/z tz
32 y=alz+1) 33. y =224+ V1)
Problems

34.

36.

38.

40.

42,

4.

46.

3 4 1
h(t)y=-+ = 3B.y=Vvo | Vo+ —
t) t+t2 Yy \/_<\/_+\/§)
_I2+1 37 ,()_22+1
v= T - fz) = 3z
2+t -1 -1
t) = 9. y = ——
f(®) T 39. y 5
, * a ar +b
j(x) = o + 7%~ 41. f(x) = -
h(z) = 22+0 a3, g1y = YIL+D
c t
dV o 2 d’LU _ 2
ar itV = gmrob 45, 4 if w = 3ab*q
@ifyzax2+bx+c 47. EifP:a—i-b\/f
dx dt

For Problems 48-53, determine if the derivative rules from
this section apply. If they do, find the derivative. If they don’t
apply, indicate why.

48.
50.

52.

54.

S5,

56.

57.

58.

59.

y=(z+3)? 49. y=1"

glx)y=a" —a™" 51. y =322 +4
1 53 1 +1

YT 5214 YT T

The graph of y = 2® — 922 — 162 4 1 has a slope of 5
at two points. Find the coordinates of the points.

Find the equation of the line tangent to the graph of f at

(1,1), where f is given by f(z) = 22° — 222 + 1.

(a) Find the equation of the tangent line to f(z) = z*
at the point where = 2.

(b) Graph the tangent line and the function on the same
axes. If the tangent line is used to estimate values of
the function, will the estimates be overestimates or
underestimates?

Using a graph to help you, find the equations of all lines
through the origin tangent to the parabola
y=a®—2z+4.

Sketch the lines on the graph.

On what intervals is the function f(z) = z* — 42> both
decreasing and concave up?

For what values of z is the graph of y = x® — 5z both
increasing and concave up?

60.

61.

62.

63.

64.

If f(x) = x® — 62% — 15z + 20, find analytically all
values of x for which f/(z) = 0. Show your answers on
a graph of f.

(a) Find the eighth derivative of f(x) = z” + 5a°® —
42 + 62 — 7. Think ahead!
(The n** derivative, f(™ (z), is the result of differ-
entiating f(z) n times.)

(b) Find the seventh derivative of f(x).

Given p(z) = 2" — =, find the intervals over which p is
a decreasing function when:

(@) n=2 ® n=3 © n=-1

The height of a sand dune (in centimeters) is represented
by f(t) = 700 — 3t%, where t is measured in years since
2005. Find f(5) and f’(5). Using units, explain what

each means in terms of the sand dune.

A ball is dropped from the top of the Empire State build-
ing to the ground below. The height, y, of the ball above
the ground (in feet) is given as a function of time, ¢, (in
seconds) by

y = 1250 — 16t°.

(a) Find the velocity of the ball at time ¢. What is the
sign of the velocity? Why is this to be expected?

(b) Show that the acceleration of the ball is a constant.
What are the value and sign of this constant?

(¢) When does the ball hit the ground, and how fast is it
going at that time? Give your answer in feet per sec-
ond and in miles per hour (1 ft/sec = 15/22 mph).



65.

66.

67.

At a time ¢ seconds after it is thrown up in the air, a
tomato is at a height of f(t) = —4.9t> 4- 25¢ + 3 meters.

(a) What is the average velocity of the tomato during the
first 2 seconds? Give units.

(b) Find (exactly) the instantaneous velocity of the
tomato at ¢ = 2. Give units.

(¢) What is the acceleration at ¢t = 27?

(d) How high does the tomato go?

(e) How long is the tomato in the air?

The gravitational attraction, F', between the earth and a
satellite of mass m at a distance r from the center of the
earth is given by

GMm

F=22

’

where M is the mass of the earth, and G is a constant.
Find the rate of change of force with respect to distance.

The period, 7', of a pendulum is given in terms of its

length, [, by
T= 271'\/z R
g

where ¢ is the acceleration due to gravity (a constant).
(a) Find dT/dl.

3.2 THE EXPONENTIAL FUNCTION

68.

69.

70.

71.

72.

73.

3.2 THE EXPONENTIAL FUNCTION 123
(b) What is the sign of d7'/dl? What does this tell you
about the period of pendulums?

(a) Use the formula for the area of a circle of radius 7,
A = w2, to find dA/dr.

(b) The result from part (a) should look familiar. What
does dA/dr represent geometrically?

(c) Use the difference quotient to explain the observa-
tion you made in part (b).

What is the formula for V', the volume of a sphere of ra-
dius 7? Find dV' /dr. What is the geometrical meaning of
dv /dr?

Show that for any power function f(x) = 2", we have
I =n.

Given a power function of the form f(z) = az™, with
f/(2) =3 and f'(4) = 24, find n and a.

Is there a value of n which makes y = z" a solution to
the equation 13z (dy/dx) = y? If so, what value?

Using the definition of derivative, justify the formula
d(z")/dz = nz" ",

(a) Forn = —1;forn = —3.
(b) For any negative integer n.

What do we expect the graph of the derivative of the exponential function f(z) = a® to look like?
The exponential function in Figure 3.10 increases slowly for < 0 and more rapidly for x > 0, so
the values of f’ are small for x < 0 and larger for x > 0. Since the function is increasing for all
values of x, the graph of the derivative must lie above the z-axis. It appears that the graph of f’ may

resemble the graph of f itself.

xT

Figure 3.10: f(z) = a”, witha > 1

In this section we see that f'(z) = k- a®, so in fact f’(x) is proportional to f(x). This property
of exponential functions makes them particularly useful in modeling because many quantities have
rates of change which are proportional to themselves. For example, the simplest model of population

growth has this property.

Derivatives of Exponential Functions and the Number e

We start by calculating the derivative of g(z) = 2%, which is given by

= lim
h—0

= lim 2°

(5 = (55)

h
2" -1 T . = . . . .
h - 2%, (Since = and 2% are fixed during this calculation).
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To find limy, (2" — 1)/h, see Table 3.2 where we have substituted values of & near 0. The table
suggests that the limit exists and has value 0.693. Let us call the limit &, so k& = 0.693. Then

d
Z(2%) = k- 2% = 0.603 - 2°.
—(2") 0.693

So the derivative of 27 is proportional to 2% with constant of proportionality 0.693. A similar calcu-
lation shows that the derivative of f(z) = a” is

, L az+h_ax . ah—l .
f(”:)_%lfb( h = N A

Table 3.2 Table 3.3 Table 3.4

h 2" —1)/n a | k=limj_o4e= h (14 h)M/"
—-0.1 0.6697 2 0.693 —0.001 2.7196422
—0.01 0.6908 3 1.099 —0.0001 2.7184178
—0.001 0.6929 4 1.386 —0.00001 2.7182954
0.001 0.6934 5 1.609 0.00001 2.7182682
0.01 0.6956 6 1.792 0.0001 2.7181459

0.1 0.7177 7 1.946 0.001 2.7169239

The quantity limy,_o(a” — 1)/h is also a constant, although the value of the constant depends
on a. Writing k = lim;,_o(a” — 1)/h, we see that the derivative of f(z) = a® is proportional to
a®:

%(am) =k-a".

For particular values of a, we can estimate k by substituting values of A near 0 into the expres-
sion (a” — 1)/h. Table 3.3 shows the results. Notice that for a = 2, the value of k is less than 1,
while for a = 3,4, 5, .. ., the values of k are greater than 1. The values of k appear to be increasing,
so we guess that there is a value of a between 2 and 3 for which £ = 1. If so, we have found a value
of a with the remarkable property that the function a” is equal to its own derivative.

So let’s look for such an a. This means we want to find a such that

h h
;llii% a h ! =1, or, for small A, a4 h !

Solving for a, we can estimate @ as follows:

~ 1.

a" —1=~h, or  a'"~1+h, S0 a~(1+h)Y"

Taking small values of h, as in Table 3.4, we see a ~ 2.718 .. .. This is the number e introduced
in Chapter 1. In fact, it can be shown that if

h_q
¢ —1.

e:}{in})(1+h)1/":2.718... then  lim

h—0

This means that e” is its own derivative:

E(e)—e.

Figure 3.11 shows the graphs 2%, 3%, and e” together with their derivatives. Notice that the
derivative of 2 is below the graph of 2%, since £ < 1 there, and the graph of the derivative of 3*
is above the graph of 3%, since £ > 1 there. With e ~ 2.718, the function ¢” and its derivative are
identical.
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Note on Round-Off Error and Limits

If we try to evaluate (1 -+ h)'/" on a calculator by taking smaller and smaller values of A, the values
of (1+ h)l/ h at first get closer to 2.718 . . .. However, they will eventually move away again because
of the round-off error (i.e., errors introduced by the fact that the calculator can only hold a certain
number of digits).

As we try smaller and smaller values of A, how do we know when to stop? Unfortunately, there
is no fixed rule. A calculator can only suggest the value of a limit, but can never confirm that this
value is correct. In this case, it looks like the limit is 2.718. .. because the values of (¢ — 1)/h
approach this number for a while. To be sure this is correct, we have to find the limit analytically.

flz)=2° €” and its derivative g (z) ~ (1.1)3"

/
/

f'(z) ~ (0.69)2%

T T x

Figure 3.11: Graphs of the functions 2%, e, and 3” and their derivatives

A Formula for the Derivative of a*

To get a formula for the derivative of a”, we must calculate

, o a:c+h_ax_ ) ah—l .
Fo=m=— =)™
N——
k

However, without knowing the value of a, we can’t use a calculator to estimate k. We take a different
approach, rewriting a = e ¢, so

h _ Ina\h _ (Ina)h __
..a 1 . e 1 e 1
lim = lim ( ) = lim
h—0 ) h—0 h h—0 h
To evaluate this limit, we use a limit that we already know
h
.oet—1
lim =1.
h—0

In order to use this limit, we substitute t = (Ina)h. Since ¢ approaches 0 as h approaches 0, we
have

(lua)h,_l t_1q t_q t_q
lim S = lim ——— = lim (Ina- < —lna ( lim = (Ina) -1 =1Ina.
B0 h t—0 (t/Ilna) t=0 t i—0 t

Thus, we have

x+h @ h
by G —a” (.. a"—1
7o) = iy =
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Thus, for any a, the derivative of ¢” is proportional to a”. The constant of proportionality is In a. The
derivative of a” is equal to a” if the constant of proportionality is 1, that is, if Ina = 1, then a = e.
The fact that the constant of proportionality is 1 when ¢ = e makes e a particularly convenient base
for exponential functions.

Example 1 Differentiate 2 - 3* + 5e”.

Solution J J J
—(2-3" +5%) =2—(3%) + 5—(c¥) = 2In3 - 3% + 5¢” ~ (2.1972)3" + 5e*.
= ) =22 (37) + 5 (c") (21972)
Exercises and Problems for Section 3.2
Exercises
Find the derivatives of the functions in Exercises 1-26. As-  23. f(t) = 2 24, y=e"!
sume that a, b, ¢, and k are constants. )
25. y(x) = a® + 2. 26. f(z)=a" + (x°)"
1. f(x) = 2" 4 2* 2. y =5t + 4¢
3.y=5"42 4. f(x) =12e" +11*
Which of the functions in Exercises 27-35 can be differenti-
5 y="5z2+2"4+3 6. f(z)=2"+2-3% ated using the rules we have developed so far? Differentiate if
" 3 " you can; otherwise, indicate why the rules discussed so far do
7. y=4-10" —x 8. y=3r—-2-4
not apply.
9. y=2" 2 10. y = i 33
nY=2+3 Vet A 27. y=a?+2° 28. y =z —(3)°
11. z = (In4)e 12. z= (In4)4 29, y—a?.2° 30, y— —
13. f(t) = (In3)! 4. y=5-5+66 ““"
_ _x+b o, — 0T
15. h(z) = (In2)* 16. f(z) = €* +a° M.y=e R.y=e
17. f(z) = 2° +3° 18 y=r°+7° 3.y =49 34. f(z) = (V)
19. f(z) =e™ +7° 20. f(z)=n"+2" 35. f(0) =4V7
21, f(z) =" + &7 22, f(z) = 't

Problems

For Problems 36-37, determine if the derivative rules from 39. With ¢ in years since January 1, 1980, the population P
this section apply. If they do, find the derivative. If they don’t of Slim Chance has been given by

apply, indicate why. P = 35.000(0.98)"

_ 4% __Es_s
36. f(z) =4 37. f(s) =5% At what rate was the population changing on January 1,
2003?
38. With a year]y inflation rate of 5%, prices are given by 40. The population of the world in billions of people can be
. modeled by the function f(t) = 5.3(1.018)", where ¢ is
P = Py(1.05)", years since 1990. Find f(0) and f’(0). Find f(30) and

f'(30). Using units, explain what each answer tells you

where P is the price in dollars when ¢ = 0 and ¢ is time about the population of the world

in years. Suppose Pp = 1. How fast (in cents/year) are
prices rising when ¢ = 10?



41.

42.

43.

44.

During the 2000s, the population of Hungary' was ap-
proximated by

P =10.186(0.997)",

where P is in millions and ¢ is in years since 2000. As-
sume the trend continues.

(a) What does this model predict for the population of
Hungary in the year 2020?

(b) How fast (in people/year) does this model predict
Hungary’s population will be decreasing in 2020?

In 2005, the population of Mexico was 103 million and
growing 1.0% annually, while the population of the US
was 296 million and growing 0.9% annually.” If we mea-
sure growth rates in people/year, which population was
growing faster in 20057

The value of an automobile purchased in 2007 can be ap-
proximated by the function V() = 25(0.85)", where ¢
is the time, in years, from the date of purchase, and V' (t)
is the value, in thousands of dollars.

(a) Evaluate and interpret V'(4).

(b) Find an expression for V' (), including units.

(c) Evaluate and interpret V' (4).

(d) Use V(t), V'(t), and any other considerations you
think are relevant to write a paragraph in support of
or in opposition to the following statement: “From a
monetary point of view, it is best to keep this vehicle
as long as possible.”

(a) Find the slope of the graph of f(z) = 1 — e at the
point where it crosses the z-axis.

Find the equation of the tangent line to the curve at
this point.

Find the equation of the line perpendicular to the
tangent line at this point. (This is the normal line.)

(b)

(c)

3.3 THE PRODUCT AND QUOTIENT RULES

45.

46.

47.

48.

49.
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Find the value of ¢ in Figure 3.12, where the line [ tangent
to the graph of y = 2% at (0, 1) intersects the z-axis.

Yy y=2°

B

c

Figure 3.12

Find the quadratic polynomial g(z) = az? + bz + ¢
which best fits the function f(xz) = e” at x = 0, in the
sense that

9(0) = f(0), and ¢'(0) = f'(0), and g"(0) = f"(0).
Using a computer or calculator, sketch graphs of f and g
on the same axes. What do you notice?

Using the equation of the tangent line to the graph of e®
at z = 0, show that

e">1+2

for all values of . A sketch may be helpful.

For what value(s) of a are y = a” and y = 1 + x tangent
at = 0? Explain.

Explain for which values of a the function a” is increas-
ing and for which values it is decreasing. Use the fact
that, for a > 0,

d

E(am) = (Ina)a”.

We now know how to find derivatives of powers and exponentials, and of sums and constant multi-
ples of functions. This section shows how to find the derivatives of products and quotients.

Using A Notation

To express the difference quotients of general functions, some additional notation is helpful. We
write A f, read “delta f,” for a small change in the value of f at the point z,

Af =[x +h) = f(2).

In this notation, the derivative is the limit of the ratio A f /h:

Uhttp://sedac.ciesin.columbia.edu/gpw/country.jsp?iso=HUN and https://www.cia.gov/library/publications/
the-world-factbook/print/hu.html, accessed February 19, 2008.

2

en.wikipedia.org/wike/Demographics_of_Mexico and

www.census.gov/Press-Release/www/releases/archives/population/006142.html, accessed May 27, 2007.
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The Product Rule

Suppose we know the derivatives of f(x) and g(z) and want to calculate the derivative of the
product, f(x)g(z). The derivative of the product is calculated by taking the limit, namely,

df@@)] _ | fet bl + )~ F(z)o)
dx h—0 h ’

To picture the quantity f(x + h)g(z + h) — f(z)g(«), imagine the rectangle with sides f(z + h)
and g(« + h) in Figure 3.13, where Af = f(x + h) — f(z) and Ag = g(x + h) — g(«). Then
f(x+h)g(z+ h) — f(z)g(x) = (Area of whole rectangle) — (Unshaded area)

= Area of the three shaded rectangles
=Af-glx)+ f(z) - Ag+Af - Ag.

Now divide by h:
[+ hgla+h) - [(@)g@) _Af Ag . Af-Ag
. = 2L glo)+ f@)- 2+ 22
Area = Af - g(x) Area = Af - Ag
|
Af l
f(z+h)

f(:cl Area = f(x) - g(x) <~ Area = f(x) - Ag

g(x) } i
Ag

Figure 3.13: Tlustration for the product rule (with A f, Ag positive)

To evaluate the limit as h — 0, we examine the three terms on the right separately. Notice that

. Af o . Ag /
lim == g(z) = f(2)g(x) and lim f(z) - == = f(z)g(x).
Af A
In the third term we multiply the top and bottom by 5 to get Tf . Tg - h. Then,
. Af-Ag . Af Ag o Af L Ag o
i M S S LA

Therefore, we conclude that
i L@ 1) = F@)e@) (% Cgla) + fla) - % + Aff‘")

h—0 h h—0
L Af . Ag . Af-Ag
= Jim == - g(@) + Jim fz) - 57 o+ Jim ———

= f'(z)g(x) + f(2)g (2).

Thus we have proved the following rule:
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Theorem 3.3: The Product Rule
If u = f(z) and v = g(z) are differentiable, then

(f9)' = f'g+ fd'.

The product rule can also be written

d(uv)_d_u v+ @
der  dx U

In words:
The derivative of a product is the derivative of the first times the second plus the first
times the derivative of the second.

Another justification of the product rule is given in Problem 36 on page 163.

Example 1 Differentiate (a) z%e?, (b) (322 + 5x)e”, (c) Z—Q,
Solution (a) d(a%e") JEN (e o 2
7 :( 7r )e*—i—m 0 =2ze” + 1% = (20 + a7)e”.
® d((32% + 5x)e?) d(32% +52)\ 5 d(e®)
. = ( e ) e’ + (327 + 5m)w

= (62 +5)e” + (322 + 5z)e” = (322 + 11z + 5)e”.

. . €”
(c) First we must write — as the product z 2"
X

d (e_> _d(a") _ (d(ﬂ)) oy g2l

dz \ 22 dx dx dx

= 2273 f 272" = (=227 4 7 2)e".

The Quotient Rule

Suppose we want to differentiate a function of the form Q(x) = f(x)/g(x). (Of course, we have to

avoid points where g(z) = 0.) We want a formula for @’ in terms of f and ¢'.

Assuming that Q(z) is differentiable,? we can use the product rule on f(z) = Q(x)g(z):

f'(@) = Q' (x)g9(z) + Qx)g' (v)
=Q'(z)g(x f@) T
Solving for Q'(z) gives

f@)

() = 25/ @)

/
xTr) =
Multiplying the top and bottom by g(x) to simplify gives
d (f(fv)) _ ['@)g(x) - f2)g'(x)
dx \ g(x) (9(x))?
So we have the following rule:

3The method in Example 6 on page 137 can be used to explain why Q(«) must be differentiable.
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Theorem 3.4: The Quotient Rule
If u = f(z) and v = g(z) are differentiable, then
<i)' _J9—19
' g 9>
or equivalently,
du dv
d (u) o Y
de \v/ V2 '
In words:
The derivative of a quotient is the derivative of the numerator times the denominator
minus the numerator times the derivative of the denominator, all over the denomina-
tor squared.
2 e
Example 2 Differentiat —_, b , —
p ifferentiate (a) P (b) 1o © =
Solution (a) p 4
2 3 2 3
— 1) — — 1
d ( 5z* \ (dm (52 )> (@ +1) =57 dx (@ +1) ~ 10x(2® + 1) — 5a2(32?)
de \23+1) (23 +1)2 N (x3+1)2
_ —52 + 102
- (z3 +1)2
(b)
L)t -1
— er) —1— e
d 1 _ \dx dx _0(L+e%) —1(0 +e7)
de \1+e* ) (14e%)? (1+ev)2
p— _ex
(1 4e)?

(c) This is the same as part (c) of Example 1, but this time we do it by the quotient rule.

dr

d(e")

)= (5) e

sz

. (T2 =2z
= € 1 =

(w2)2 - 24

o[ T =2
e 3 .

This is, in fact, the same answer as before, although it looks different. Can you show that it is

the same?

Exercises and Problems for Section 3.3

Exercises

1. If f(z) = x®(2® + 5), find f'(z) two ways: by using
the product rule and by multiplying out before taking the
derivative. Do you get the same result? Should you?

2. If f(x) = 2% - 3%, find f'(z) two ways: by using the
product rule and by using the fact that 2% - 3* = 6. Do
you get the same result?

For Exercises 330, find the derivative. It may be to your ad-
vantage to simplify first. Assume that a, b, ¢, and k are con-
stants.

3. f(z) = ze”
5. y=x-2°

4. y=x-2%
6. y= (1 +3)c
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7. f(z) = (2° — Vz)3" 8. 2= (*—VE)(*HVE) 5y y® —6y° + 7y 2. 4= Vi
9. f(y) =42 —y?) 10. y = (2 — 71> + 1)et Yy t2+1
T 2522 241
1. f(x) = — 12. g(z) = — 23. f(z) = 2 24, w= 23
e € \/E 5+ 3z
t+1 w’? 2 2
3. y=—; 14. g(w) = r 3z
w 25. h(r)= 26. =
2 5 =5 e = o=
3r t—4
15. q(r) = 16. g(t) = — 17¢* 14p?
5r + 2 t+4 . - . - p
27. w(x) 5 28. h(p) 3727
3t+1 245t +2
T ht2 Boe=— lta az+b
29. = ’ 30, =
t?+3t+1 243 7@ 2 + 3w + 4x? f=) cx+k
i
19 z=—" "~ 20. f(x) =
t+1 T
Problems
In Problems 31-33, use Figure 3.14 to estimate the derivative, 34. h'(1) 35. K'(1) 36. h'(2)
or state that it does not exist. The graph of f(z) has a sharp
corner at x = 2. 37. k’(?) 38. l/(l) 39. l/(2)
)
4
40. Differentiate f(t) = e~ " by writing it as f(t) = e—lt
3
41. Differentiate f(z) = € by writing it as f(z) = e” - €”.
2
1 42. Differentiate f(x) = e*” by writingitas f(x) = e*-e**
z and using the result of Problem 41.
12 3 4 43. For what intervals is f(x) = xe” concave up?
Figure 3.14 44. For what intervals is g(z) = ﬂ;ﬂ concave down?
3L Let h(z) = f(z) - g(). Find: 45. Find theQi:Lf]EatE)ion of the tangent line to the graph of
@ (1) ® K(2) © R (3) fz) = =1 at the point at which z = 0.
32. Let k(z) = (f(x))/(g(2)). Find: 46. Find the equation of the ta2ngent lineatx = 1toy =
3x
K@ b) k(2 k'(3 =—.
@ KO0 KR © K (@) where f(w) = ——
33. Let j(z) = (g9(x))/(f(x)). Find: ) ) o o o
@ /(1) ® 72 © §'3) 47. (a) Differentiate y = - V= andy = g

For Problems 34-39, let h(z) = f(z) - g(z), and k(z) =
f(x)/g(x), and l(x) = g(x)/f(x). Use Figure 3.15 to esti-
mate the derivatives.

I f@)

9(2)
\

Figure 3.15

48.

€

(b) What do you anticipate the derivative of y = £
x’ﬂ
will be? Confirm your guess.

Suppose f and g are differentiable functions with the val-
ues shown in the following table. For each of the follow-
ing functions h, find h'(2).

@ h(z) = f(z) +g(x) M) h(z)= f(z)g(x)
(0 h(l‘)=@

g(z)
f(z) | 9(2) | f'(z) | ' (=)
2 3 4 5 —2
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49.

50.

51.

52.

53.

54.
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IfH(3) = 1,H'(3) = 3,F(3) = 5,F'(3) = 4, find:
(a) G'(3)if G(z) = F(z) - H()

(b) G'(3)if G(w) = F(w)/H (w)

Find a possible formula for a function y = f(z) such
that f'(z) = 102°€® + 2*%e®.

The quantity, ¢, of a certain skateboard sold depends on
the selling price, p, in dollars, so we write ¢ = f(p). You
are given that f(140) = 15,000 and f’(140) = —100.

(a) What do f(140) = 15,000 and f’(140) = —100
tell you about the sales of skateboards?
(b) The total revenue, R, earned by the sale of skate-

L .. d
boards is given by R = pq. Find dr

p=140

? If the skateboards
p=140
are currently selling for $140, what happens to rev-
enue if the price is increased to $141?

(¢) What is the sign of ﬁ

When an electric current passes through two resistors
with resistance 1y and 72, connected in parallel, the com-
bined resistance, R, can be calculated from the equation

R

1 1 1
T1 T2

Find the rate at which the combined resistance changes
with respect to changes in r1. Assume that 5 is constant.

A museum has decided to sell one of its paintings and
to invest the proceeds. If the picture is sold between the
years 2000 and 2020 and the money from the sale is in-
vested in a bank account earning 5% interest per year
compounded annually, then B(t), the balance in the year
2020, depends on the year, ¢, in which the painting is
sold and the sale price P(t). If ¢ is measured from the
year 2000 so that 0 < ¢ < 20 then

B(t) = P(t)(1.05)*°".

(a) Explain why B(t) is given by this formula.
(b) Show that the formula for B(t) is equivalent to

20 P(t)
(1.05)¢

B(t) = (1.05)

(¢c) Find B’(10), given that P(10)
P'(10) = 5000.

150,000 and

Let f(v) be the gas consumption (in liters/km) of a car
going at velocity v (in km/hr). In other words, f(v) tells
you how many liters of gas the car uses to go one kilo-
meter, if it is going at velocity v. You are told that

£(80) = 0.05 and f'(80) = 0.0005.

(a) Let g(v) be the distance the same car goes on one
liter of gas at velocity v. What is the relationship be-
tween f(v) and g(v)? Find g(80) and g'(80).

5S.

56.

57

58

(b) Let h(v) be the gas consumption in liters per hour.
In other words, h(v) tells you how many liters of
gas the car uses in one hour if it is going at velocity
v. What is the relationship between h(v) and f(v)?
Find h(80) and h'(80).

How would you explain the practical meaning of the
values of these functions and their derivatives to a
driver who knows no calculus?

(c)

The function f(z) = e® has the properties
f'(z) = f(z) and f(0) = 1.

Explain why f(x) is the only function with both these
properties. [Hint: Assume g'(z) = g(z), and g(0) = 1,
for some function g(x). Define h(xz) = g(x)/e®, and
compute k(). Then use the fact that a function with a
derivative of 0 must be a constant function. |

Find f’(x) for the following functions with the product
rule, rather than by multiplying out.

@ f(z)=(z—1)(z—-2).
(b) f(z) = (z —)(z —2)(z - 3).
© f(z) = (z—1(z—=2)(z—=3)(x—4).

. Use the answer from Problem 56 to guess f’(z) for the
following function:

f(@) = (z—r)(z—r2)(@—r3) - (x—7n)

where 71,72, ..., T, are any real numbers.

. (a) Provide a three-dimensional analogue for the geo-
metrical demonstration of the formula for the deriva-
tive of a product, given in Figure 3.13 on page 128.
In other words, find a formula for the derivative of
F(x)-G(x) - H(x) using Figure 3.16.

(b) Confirm your results by writing F'(z) - G(z) - H(x)
as [F(z) - G(x)] - H(x) and using the product rule
twice.

(¢) Generalize your result to n functions: what is the
derivative of

fi(@)- fa(@) - fs(@) - fn(2)?

—
|

p———

Figure 3.16: A graphical representation
of the three-dimensional product rule
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59. If P(z) = (x — a)?Q(z), where Q(x) is a polynomial, (b) If P(z) is a polynomial and P(a) = P'(a) = 0,
we call x = a a double zero of the polynomial P(x). show that 2 = a is a double zero of P(z).

(a) If z = a is a double zero of a polynomial P(zx), ) o q2
show that P(a) = P'(a) = 0. 60. Find and simplify s (f(z)g(x)).

3.4 THE CHAIN RULE

The chain rule enables us to differentiate composite functions such as sin(3t) or e~*". Before seeing
a formula, let’s think about the derivative of a composite function in a practical situation.

Intuition Behind the Chain Rule

Imagine we are moving straight upward in a hot air balloon. Let y be our distance from the ground.
The temperature, H, is changing as a function of altitude, so H = f(y). How does our temperature
change with time?

The rate of change of our temperature is affected both by how fast the temperature is chang-
ing with altitude (about 16°F per mile), and by how fast we are climbing (say 2 mph). Then our
temperature changes by 16° for every mile we climb, and since we move 2 miles in an hour, our
temperature changes by 16 - 2 = 32 degrees in an hour.

Since temperature is a function of height, H = f(y), and height is a function of time, y = g(t),
we can think of temperature as a composite function of time, H = f(g(t)), with f as the outside
function and ¢ as the inside function. The example suggests the following result, which turns out to
be true:

Rate of change Rate of change y Rate of change

of composite function of outside function of inside function

The Derivative of a Composition of Functions

We now obtain a formula for the chain rule. Suppose f(g(x)) is a composite function, with f being
the outside function and g being the inside. Let us write

z=g(z) and y= f(2), so y=f(g9(x)).

Then a small change in z, called Az, generates a small change in z, called Az. In turn, Az generates
a small change in y called Ay. Provided Ax and Az are not zero, we can say:

Ay Ay Az
Azr Az Az’
. dy . Ay . .
Since e = A11rn0 A this suggests that in the limit as Az, Ay, and Az get smaller and smaller,
we have:
The Chain Rule

dy dy dz
de  dz dx’

In other words:
The rate of change of a composite function is the product of the rates of change of
the outside and inside functions.
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d d
Since d—z = f'(2) and é = ¢'(z), we can also write

L9 = 7)o/ (@)

Substituting z = g(x), we can rewrite this as follows:

Theorem 3.5: The Chain Rule

If f and g are differentiable functions, then

L flgl@) = F(o(a)) o' ).

In words:
The derivative of a composite function is the product of the derivatives of the outside
and inside functions. The derivative of the outside function must be evaluated at the
inside function.

A justification of the chain rule is given in Problem 37 on page 164. The following example shows
how units confirm that the rate of change of a composite function is the product of the rates of
change of the outside and inside functions.

Example 1

Solution

The length, L, in micrometers (1m), of steel depends on the air temperature, H °C, and the tempera-
ture H depends on time, ¢, measured in hours. If the length of a steel bridge increases by 0.2 pm for
every degree increase in temperature, and the temperature is increasing at 3°C per hour, how fast is
the length of the bridge increasing? What are the units for your answer?

We want to know how much the length of the bridge changes in one hour; this rate is in pm/hr.
We are told that the length of the bridge changes by 0.2 um for each degree that the temperature
changes, and that the temperature changes by 3°C each hour. Thus, in one hour, the length of the
bridge changes by 0.2 - 3 = 0.6 pm.

Now we do the same calculation using derivative notation and the chain rule. We know that

dL
Rate length increasing with respect to temperature = T 0.2 um/°C

. . . . dH
Rate temperature increasing with respect to time = e 3°C/hr.

We want to calculate the rate at which the length is increasing with respect to time, or dL/dt. We
think of L as a function of H, and H as a function of ¢. The chain rule tells us that

dL dL dH / _um €\ _
E_d_H‘E_(O'%C) <3hr>_0.6um/hr.

Thus, the length is increasing at 0.6 pm/hr. Notice that the units work out as we expect.

Example 1 shows us how to interpret the chain rule in practical terms. The next examples show
how the chain rule is used to compute derivatives of functions given by formulas.
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Example 2 Find the derivatives of the following functions:

(@) (2% +1)t00 (b) V3x2+5x—2 ©)

p s d) e ) e

Solution (a) Here z = g(z) = x? + 1 is the inside function; f(z) = 2!%0 is the outside function. Now
¢'(x) = 2z and f'(z) = 100z%, so

d
d—((x? + 1)1 = 1002 - 22 = 100(z* 4 1)*? - 22 = 2002 (x* + 1)%°.
T

(b) Here z = g(z) = 32% + 5z — 2 and f(z) = /2,50 ¢'(x) = 6z + 5 and f'(z) = L Hence

ONE
L /327 450 —2) = —— (r+5) = —— (62 +5)
dx 2V 2v/32?% 4+ ba — 2
1
(©) Letz = g(z) = 2* + 2% and f(2) = 1/z,50 ¢'(x) = 22 + 42 and ['(2) = —27% = —=.
z
Then 5
d 1 1 20 + 4
_ ) — = ——(2 4y = —— =
dx <x2+m4> z2( z+477) (22 4 x#)?
We could have done this problem using the quotient rule. Try it and see that you get the same
answer!

(d) Let z = g(x) = 3z and f(z) = ¢*. Then ¢’(x) = 3 and f'(z) = ¢*, so

% (e¥%) = e* -3 = 3.

(e) To figure out which is the inside function and which is the outside, notice that to evaluate
e®” we first evaluate 22 and then take e to that power. This tells us that the inside function is
z = g(2) = 22 and the outside function is f(z) = e*. Therefore, ¢’ (x) = 2z, and f'(z) = €7,
giving
d 2

—(e" ) =¢€" -2z = e 21 = 2me™ .

dx

To differentiate a complicated function, we may have to use the chain rule more than once, as
in the following example.

Example 3 Differentiate: (a) Ve=%/7+5 (b) (1 —e2VH1o

Solution (a) Let z = g(x) = e~*/T 4 5 be the inside function; let f(z) = \/z be the outside function. Now
1
fl(z)= NG but we need the chain rule to find g’(z).

We choose new inside and outside functions whose composition is g(x). Let u = h(x) =
—x/Tand k(u) = e*+5s0 g(z) = k(h(z)) = e=*/T+5. Then I/ (z) = —1/7 and k¥’ (u) = ",

: 1 1
! —ou [ Y _ T —x/7
g(a:)—e < 7> = 76 .

Using the chain rule to combine the derivatives of f(z) and g(z), we have

d 1 1 6—x/7
A SoTrrn) = (Lpemy o T
Ve Ed) 2\/z< 7° ) 14ve/7 5
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(b) Let z = g(t) = 1 — €27 be the inside function and f(z) = 2'° be the outside function. Then
f(2z) = 192'® but we need the chain rule to differentiate g(¢).
Now we choose u = h(t) = 2v/t and k(u) = 1 — e, so g(t) = k(h(t)). Then R’ (t) =
1 1
2.t Y2 = — and k' (u) = —e¥, s0

2 Vi
1 62\/2_5
VA

Using the chain rule to combine the derivatives of f(z) and g(t), we have

i(1 — V19 — 19,18 (— €M> = - 62\/2(1 — e2V)18,

19—
z Vi Vi

It is often faster to use the chain rule without introducing new variables, as in the following
examples.

Exampled  Differentiate /1 + eV3+2?,

Solution The chain rule is needed four times:
1 =\ —1/2 -
%( 1—|—eV3+x2) :5(14—6 3“”2) %(1—1—6“3“”2)

_! (1 +e 3“”2)_1/2 CeVite. < (\/3—1— T2)
2 dx
]. 3 2 _1/2 \/3—2 ]. 2 —1/2 d 2
1 V3T T2 3327 L 2\ —1/2

:5(14—6 + ) ceVit '5(34- ) -2

Example 5 Find the derivative of ¢2% by the chain rule and by the product rule.

Solution Using the chain rule, we have
d d
o (e®®) = e . o (2z) = * - 2 = 2627,

Using the product rule, we write ¢2* = ¢ - ¢*. Then

d 2x_d T x\ __ d x x x d x _ T x x xr __ 2x
dx(e )_dx(ee)_(dm(e ))e +e (dm(e ))—e e’ +e" - e = 2e"".

Using the Product and Chain Rules to Differentiate a Quotient

If you prefer, you can differentiate a quotient by the product and chain rules, instead of by the
quotient rule. The resulting formulas may look different, but they will be equivalent.
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Example 6

Solution

. / . _ L
Find £/ (z) if k(x) PR

One way is to use the quotient rule:

1-(z2+1) -2 (22)

K@) = (22 +1)2
1—a?
GEa

Alternatively, we can write the original function as a product,

1
2 +1

k(z) =z =z (22 +1)7 1
and use the product rule:

F(a)=1-(2+ 1) 4a- % (2% +1)71].

Now use the chain rule to differentiate (2 4 1)~!, giving

d oo o ~1 2 —2 —2z
— 1 = — 1 2= .
T [(l‘ +1) ] (z"+1) €L (z2+ 1)2
Therefore,
1 —2ux 1 222

k() = . - _ )
@)= T e T Erl i

Putting these two fractions over a common denominator gives the same answer as the quotient rule.

Exercises and Problems for Section 3.4

Exercises
Find the derivatives of the functions in Exercises 1-50. As- 21. y=e * 22. y=vs3+1
sume that a, b, ¢, and k are constants. )
23 y=te " 24. f(z) =/ze ?
L f(z)=(z+1)" 2. w= (2 +1)'°
f@) =( ) ( ) 25. z(z) = ¥2° +5 26, 2 =277
3. (42® +1)7 4. f(z) = /1 —2a2
(42” +1) f(@) v 2. w= /(% 5 28. f(y) = VIOG ¥
5. Ver +1 6. w=(Vt+1)'®°
, N N
7. h(w) = (w* — 2w)® 8. w(r)=vrt+1 29. f(2) = o 30. y = o
9. k(zx) = (2% +e”)* 10. f(z) =e*® (932 + 5””) )
2?42 z2 49
1. f(t) = 12. g(x) = €™ 3y = < 3 32. h(x) = 13
13. f(0)=2""° 14. y = 7@+2 o .
15. g(z) = 3=+ 16. f(t) = te® 2 3B.y= 2+ 1 Moy= €37 4 g2
17. p(t) = e+ 18. v(t) = t?e™ b\t 1
. 35. h(z) = ( ) 36. f(z) = ————
19. g(t) = e(113° 20. w=e"* ) a+ 22 f(2) (e* +1)2
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37.

39.

41.

43.
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w=(2+31)(1—e"2t) 38, h(z)=2°"

Fl@) =66 +e=° 40, fz)=e @

f(w) = (5w? + 3)e®”

y= 1/6_3t2+5

2. f(0)= (" +e !

4. z = (te*" +¢e)°

Problems

45.

47.

49.

fly) = e 46. f(t) = 2"

f(z) = (az?® 4+ )3 48. f(t) = ae®

2

f(z) = axe™® 50. g(a) =e*

In Problems 51-54, use Figure 3.14 to estimate the derivative,
or state it does not exist. The graph of f(x) has a sharp corner

atz = 2.
Y f(x)
4
3
2
1
1 2 3 4 !
Figure 3.17
51. Let h(z) = f(g(x)). Find:
@ £'(1) (b) K (2) (© h(3)
52. Letu(z) = g(f(z)). Find:
@ /(1) (b) u'(2) (© u'(3)
53. Letv(z) = f(f(z)). Find:
@ (1) (b v'(2) (© v'(3)
54. Let w(z) = g(g(x)). Find:
@ w'(1) (b) w'(2) (© w'(3)

In Problems 55-58, use Figure 3.18 to evaluate the derivative.

S5,
57.

80 30
g(z)
f(@)
0 80 ! 0 30 v
Figure 3.18
2 F(9(2))]e=s0 56. L f(g(z))]azro
a=9(f(@))]a=30 58. Lg(f(x))]aero

59.

60.

61.

62.
63.

64.

65.

66.

67.

68.

69.

Find the equation of the tangent line to f(z) = (z — 1)*
at the point where z = 2.

Find the equation of the line tangent to y = f(x) at
z = 1, where f (a:) is the function in Problem 39.
For what values of x is the graph of y = e~ concave

down?
For what intervals is f(z) = xze™ concave down?

Suppose f(z) = (2 + 1)'(3xz — 1)”. Find a formula
for f’(z). Decide on a reasonable way to simplify your
result, and find a formula for f”(x).

A fish population is approximated by P(t) = 10e%-°,
where ¢ is in months. Calculate and use units to explain
what each of the following tells us about the population:

(a) P(12) (b) P'(12)

At any time, ¢, a population, P(t), is growing at a rate
proportional to the population at that moment.

(a) Using derivatives, write an equation representing the
growth of the population. Let k be the constant of
proportionality.

(b) Show that the function P(t) = Aeft satisfies the
equation in part (a) for any constant A.

Find the mean and variance of the normal distributizog)l of
statistics using parts (a) and (b) with m (¢) = ettt /2,
(a) Mean = m/(0)

(b) Variance = m” (0) — (m/(0))?

If the derivative of y = k(x) equals 2 when z = 1, what
is the derivative of

(@) k(2z) when z = %?

(b) k(x+ 1) when x = 0?

(¢) k (im) when z = 4?

. . d
Is z = /2t + 5 a solution to the equation 3z> d—f =27
Why or why not?

Find a possible formula for a function m(z) such that
m'(z) = 7° - @),



70. Given F(2) = 1, F'(2) =5,F(4) = 3, F'(4) = 7and

71.

G(4) =2,G'(4) = 6,G(3) = 4,G'(3) = 8, find:

(@) H(4) it () = F(C(x))
(b) H'(4)if H(x) = F(G(x))
(©) H(4)if H(z) = G(F(z))
(@) H'(4)if H(z) = G(F(x))
(© H'(4)if H(z) = F(x)/G(x)

Giveny = f(x) with f(1) = 4 and f'(1) = 3, find

@ ¢'(1)if g(x) =/ f ().
(b) 1/ (1)if h(z) = f(/7).

In Problems 72-76, use Figures 3.19 and 3.20 and h(z) =

fg(x)).
d— f(z)
b 4
H 1 H x
—d—c — a b cd
Figure 3.19
d
b,,
H 1 1 H x
—d—c /b —a a b\ ¢d
—b+
—d - 9(z)
Figure 3.20

72. Evaluate h(0) and h'(0).

73. At x = —c, is h positive, negative, or zero? Increasing
or decreasing?

74. Atx = a,is h increasing or decreasing?

75. What are the signs of h(d) and h'(d)?

76. How does the value of i () change on the interval —d <
xr < —b?

77. The world’s population is about f(t) = 6e”-°*3" billion,
where t is time in years since 1999. Find f(0), f'(0),
£(10), and f'(10). Using units, interpret your answers
in terms of population.

78. On October 17, 2006, the US population was 300 mil-

lion and growing exponentially. If the population was in-
creasing at a rate of 2.9 million a year on that date, find
a formula for the population as a function of time, ¢, in
years since that date.

79.

80.

81.

82.

83.

84.

85.

86.
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It you invest P dollars in a bank account at an annual
interest rate of r%, then after ¢ years you will have B
dollars, where

B=r(1+-L)

=P (1+5g5)

(a) Find dB/dt, assuming P and r are constant. In
terms of money, what does dB /dt represent?

(b) Find dB/dr, assuming P and t are constant. In
terms of money, what does dB/dr represent?

The theory of relativity predicts that an object whose
mass is mo when it is at rest will appear heavier when
moving at speeds near the speed of light. When the ob-
ject is moving at speed v, its mass m is given by

m=—0 where c is the speed of light.

V1= (02/2)

(a) Find dm/dv.
(b) In terms of physics, what does dm /dv tell you?

The charge, (), on a capacitor which starts discharging at
time t = 0 is given by

-

where R and C are positive constants depending on the
circuit and Qo is the charge at ¢ = 0, where Qo # 0. The
current, I, flowing in the circuit is given by I = dQ/dt.

Qo fort < 0
Qoe YR fort >0,

(a) Find the current [ for ¢ < 0 and for ¢ > 0.
(b) Is it possible to define I att = 0?
(c) Is the function @ differentiable at t = 0?

A particle is moving on the z-axis, where z is in centime-
ters. Its velocity, v, in cm/sec, when it is at the point with
coordinate x is given by

v=2>+3z—2.

Find the acceleration of the particle when it is at the point
= 2. Give units in your answer.

A particle is moving on the z-axis. It has velocity v(x)
when it is at the point with coordinate z. Show that its
acceleration at that point is v(x)v’(z).
A polynomial f is said to have a zero of multiplicity m at
r=aif

f(@) = (z —a)"h(z),
with h a polynomial such that h(a) # 0. Explain why
a polynomial having a zero of multiplicity m at x = a
satisfies fP)(a) = 0,forp=1,2,...m — 1.
[Note: f® is the p'" derivative.]

2
Find and simplify % (f(g(2))).
axr

2
Find and simplify j? (%)
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3.5 THE TRIGONOMETRIC FUNCTIONS

Derivatives of the Sine and Cosine

Since the sine and cosine functions are periodic, their derivatives must be periodic also. (Why?) Let’s
look at the graph of f(z) = sinx in Figure 3.21 and estimate the derivative function graphically.

f(z) =sinz

i |

—27 —T J» T 2 3 4
=1

Figure 3.21: The sine function

First we might ask where the derivative is zero. (At z = +7/2, £37/2, £57/2, etc.) Then ask
where the derivative is positive and where it is negative. (Positive for —7/2 < x < 7/2; negative
for m/2 < x < 3m/2, etc.) Since the largest positive slopes are at z = 0, 27, and so on, and the
largest negative slopes are at x = 7, 37, and so on, we get something like the graph in Figure 3.22.

f'(=)

i i 1 1 1 =z
—27 —T J» ™ 27 3 4
—1

Figure 3.22: Derivative of f(z) = sinx

The graph of the derivative in Figure 3.22 looks suspiciously like the graph of the cosine func-
tion. This might lead us to conjecture, quite correctly, that the derivative of the sine is the cosine.

Of course, we cannot be sure, just from the graphs, that the derivative of the sine really is the
cosine. However, for now we’ll assume that the derivative of the sine is the cosine and confirm the
result at the end of the section.

One thing we can do now is to check that the derivative function in Figure 3.22 has amplitude
1 (as it ought to if it is the cosine). That means we have to convince ourselves that the derivative of
f(z) = sina is | when 2 = 0. The next example suggests that this is true when « is in radians.

Example 1 Using a calculator set in radians, estimate the derivative of f(z) = sinz at z = 0.
Solution Since f(z) =sinz,
s o sin(04+h) —sin0 . sinh
F(0) = Jimy h = o=

Table 3.5 contains values of (sin h)/h which suggest that this limit is 1, so we estimate

, . sinh
0) = lim =1.
£(0) = lim —
Table 3.5
h (radians) —0.1 —0.01 —0.001 —0.0001 0.0001 0.001 0.01 0.1
(sinh)/h 0.99833 0.99998 1.0000 1.0000 1.0000 1.0000 0.99998 0.99833

Warning: It is important to notice that in the previous example h was in radians; any conclusions
we have drawn about the derivative of sin x are valid only when =z is in radians. If you find the
derivative with & in degrees, you get a different result.
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Example 2

Solution

Starting with the graph of the cosine function, sketch a graph of its derivative.

The graph of g(x) = cos z is in Figure 3.23(a). Its derivative is 0 at x = 0, 7, =27, and so on; it is
positive for —m < x < 0, 7 < & < 2, and so on; and it is negative for 0 < z < 7, 27 < x < 3,
and so on. The derivative is in Figure 3.23(b).

(@) g(z) = cosx

™ 2 3w 4

Figure 3.23: g(x) = cos x and its derivative, g’ ()

As we did with the sine, we use the graphs to make a conjecture. The derivative of the cosine in
Figure 3.23(b) looks exactly like the graph of sine, except reflected about the z-axis. But how can
we be sure that the derivative is — sin z?

Example 3

Solution

Lood d )
Use the relation d—(sm x) = cos z to show that d—(cos x) = —sinw.
X X

Since the cosine function is the sine function shifted to the left by 7 /2 (that is, cos z = sin (x + 7/2)),
we expect the derivative of the cosine to be the derivative of the sine, shifted to the left by 7 /2. Dif-
ferentiating using the chain rule:

%(cosm) = % (Sin (m—i— g)) = cos (m—i— g) .

But cos(z + 7/2) is the cosine shifted to the left by 7/2, which gives a sine curve reflected about
the x-axis. So we have

d ™ .
%(cosx) = cos (1‘ + 5) = —sinz.

At the end of this section and in Problems 53 and 54, we show that our conjectures for the
derivatives of sin x and cos x are correct. Thus, we have:

. . d . d )
For z in radians, e (sinz) = cosz and . (cosx) = —sinw.
x x
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Example 4 Differentiate (a) 2sin(30), (b) cos®z, (c) cos(z?), @ e sint,
Solution Use the chain rule:
(a) i(2 (30)) = i( (30)) = 2(cos(30) —(39) 2(cos(30))3 = 6 cos(30)
@) - sin =2 sin cos 7 = 2(cos = 6 cos(30).
(©) - (cos? ) = L ((cos2)?) = 2(cos) - - (cos a) = 2(cos)(~ sina) = ~2cossin
7, (cos x) e (cosz)?) = 2(cosx 75 (cos ) = 2(cosz)(—sinz) = ~2coswsina.

(c) % (cos(z?)) = —sin(z?) - %(:ﬁ) = —2zsin(z?).

d —sint\ __ —sintd . _ —sint
(d) dt(e )=e dt( sint) = —(cost)e .

Derivative of the Tangent Function

Since tanx = sinxz/ cosx, we differentiate tan 2 using the quotient rule. Writing (sin )’ for
d(sin ) /dz, we have:

d d (sinz (sinz)’(cosz) — (sinz)(cosx)  cos?x +sin’ 1
—(tanx) = — = = = .
dx dx \ cosx cos? cos? cos?

For  in radians d (tanx) =
’ dzx ~ cos?z’

The graphs of f(z) = tanz and f’(z) = 1/ cos® x are in Figure 3.24. Is it reasonable that f’ is
always positive? Are the asymptotes of f’ where we expect?

, 1
| | F@) = cos?x | Q
| | I | z+h
| | | p
S i N
| | | 3
- : | - — @ sinleth) | .
} } } 1 } s T
| | | ) |
| | | |
} |~— f(z) =tanz | X L ‘
‘ ‘ ‘ 0 k Cosx
Figure 3.24: The function tan 2 and its derivative Figure 3.25: Unit circle showing sin(z + k) and sin z
1+ tant
Example5  Differentiate (a) 2 tan(3¢), (b) tan(l — 6), © 1+—tant
— tan
Solution (a) Use the chain rule:

d 1 d 6

—(2tan(3t)) =2————(3t) = ———.

dt( an(31)) cos?(3t) dt( ) cos?(3t)
(b) Use the chain rule:

d 1 d -1
tan(l —0)) = ——— —(1-0) = ——+———.
=0 =n e W ) T e



(c) Use the quotient rule:

dt

d(1 + tant)
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) (1 —tant) — (14 tant)

d(1 —tant)

dt

¢ (1)

dt \1—tant

cos? t

(1 —tant)?

(I —tant) — (1 + tant) (—

1
cos?t

)

2

(1 —tant)?

cos?t- (1 —tant)?’

Informal Justification of -2 (sinx) = cos«
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Consider the unit circle in Figure 3.25. To find the derivative of sin z, we need to estimate

sin(z + h) —sinz

h

In Figure 3.25, the quantity sin(x + h) — sinz is represented by the length QA. The arc QP is of

length h, so

sin(z + h) —sinz

__ed

h

~ Arc QP

Now, if h is small, QAP is approximately a right triangle because the arc QP is almost a straight
line. Furthermore, using geometry, we can show that angle AQP = x + h. For small h, we have

sin(x + h) — sin

T

QA

h

As h — 0, the approximation gets better, so

d, . .
) =

Arc QP

sin(z + h) —sinz

h

~ cos(z + h).

— COST.

Other derivations of this result are given in Problems 53 and 54 on page 145.

Exercises and Problems for Section 3.5

Exercises

1. Construct a table of values for cosz, x =
0,0.1,0.2,...,0.6. Using the difference quotient, es-
timate the derivative at these points (use h = 0.001), and
compare it with (— sin ).

Find the derivatives of the functions in Exercises 2-39. As-
sume a is a constant.

2. r(0) =sin + cos
4. z = cos(40)

6. g(x) =sin(2 — 3x)
8. g(0) = sin*(20) — 70

3. s(0) = cosfsinf
5. f(xz) = sin(3x)
7. R(x) =10—3cos(mx)

9. f(x) = 2%cosx

10.

12.

14.

16.

18.

20.

22.

w = sin(e")

fly) =e™?
R(6) = 5n(30)
w(z) = tan(z?)
f(x) = cos(sinz)
k(z) = /(sin(2z))?

y = e’ sin(26)

13.

15.

17.

. f(x) — eCOSCE

y = 960059

g(0) = sin(tan 0)

fl2) = vI—cosz

. f(x) = tan(sin x)
. f(z) = 2zsin(3z)

. f(x) =e " .sinz
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24. z = /sint 25. y =sin® 0 34. y = sin(sinz + cosz)  35. y = sin(2z) - sin(3z)
26. g(z) = tan(e®) 27. z = tan(e~%%)
a0 cos 0 1—sinzx

28, w=¢ " 29. h(t) =tcost+ tant 36. 1(0) = — 3. fla) = ———

sin 1 —cosx

30. f(a) =cosa+3sina 31 k(a) =sin® acos® a o

Y sin“x + 1
38. r(y) = 39. G(z) = —————
3 R R cosy +a cos?x + 1

32. f(0) =0°cost 33. y = cos® w + cos(w?)

Problems

40. Ts the graph of y = sin(2*) increasing or decreasing (b) What is the period, 7', of the oscillation?
when = = 107 Is it concave up or concave down? (¢) Find dT'/dm. What does the sign of dT'/dm tell

41. Find the fiftieth derivative of y = cos . you?

42. Find a possible formula for the function g(z) such that ~ 48. With ¢ in years, the population of a herd of deer is repre-

N - sented by
q'(m) _e"-sinz —e” -cosw
(sinz)? P(t) = 4000 + 500 sin (27rt - g) .
43. Find a function F(x) satisfying F’(x) = sin(4x). (a) How does this population vary with time? Graph
. . P(t) for one year.

44. On page 33 ~the depth, y, in feet, of water in quton h?lr- (b) When in the year the population is a maximum?
bf)r is given in terms of ¢, the number of hours since mid- What is that maximum? Is there a minimum? If so,
night, by - when?

y=95+4.9cos (gt) . (¢) When is the population growing fastest? When is it
) ) decreasing fastest?
(a) Find dy/dt. What does dy/dt represent, in terms of (d) How fast is the population changing on July 1?
water level?
(b) For 0 < t < 24, when is dy/dt zero? (Figure 1.51  49. The metal bar of length [ in Figure 3.26 has one end at-
on page 33 may be helpful.) Explain what it means tached at the point P to a circle of radius a. Point () at
(in terms of water level) for dy/dt to be zero. the other end can slide back and forth along the z-axis.

45. A boat at anchor is bobbing up and down in the sea. The (a) Find z as a function 9f 0. '
vertical distance, y, in feet, between the sea floor and the (b) Assume lengths are in centimeters and the angular
boat is given as a function of time, #, in minutes, by speed (d@/dt) is 2 radians/second counterclockwise.

Find the speed at which the point () is moving when
y = 15 + sin(2mt).
i) 0=m/2, ii) 0 =m/4
(a) Find the vertical velocity, v, of the boat at time ¢. ® m/ (i) m/
(b) Make rough sketches of y and v against £.

46. The voltage, V, in volts, in an electrical outlet is given
as a function of time, ¢, in seconds, by the function
V = 156 cos(1207¢).

(a) Give an expression for the rate of change of voltage
with respect to time.
(b) Is the rate of change ever zero? Explain.
(¢) What is the maximum value of the rate of change?
Figure 3.26
47. The function y = Asin ((\ / %) t) represents the os-

cillations of a mass m at the end of a spring. The constant
k measures the stiftness of the spring.

(a) Find a time at which the mass is farthest from its
equilibrium position. Find a time at which the mass
is moving fastest. Find a time at which the mass is
accelerating fastest.

50.

Find the equations of the tangent lines to the graph of
f(z) = sinz at v = 0 and at z = 7/3. Use each
tangent line to approximate sin(7/6). Would you expect
these results to be equally accurate, since they are taken
equally far away from x = 7 /6 but on opposite sides? If
the accuracy is different, can you account for the differ-
ence?



51. If k > 1, the graphs of y = sinz and y = ke™” inter-
sect for > 0. Find the smallest value of & for which the
graphs are tangent. What are the coordinates of the point
of tangency?

52. Find d*xz/dt? as a function of  if da:/dt = 2 sin x.
53. We will use the following identities to calculate the
derivatives of sin « and cos x:
sin(a 4+ b) = sinacosb + sinbcos a
cos(a + b) = cosacosb —sinasinb.
(a) Use the definition of the derivative to show that if
f(z) =sinz,
cosh —1 sin h

5 +COS$;PE%)T'

(b) Estimate the limits in part (a) with your calculator to
explain why f’(x) = cosz.

(c) If g(x) = cosz, use the definition of the derivative
to show that ¢’ (z) = — sin .

! — q 1.
f(z) =sinz Lim

54. In this problem you will calculate the derivative of tan 6
rigorously (and without using the derivatives of sin 6 or
cos @). You will then use your result for tanf to cal-
culate the derivatives of sinf and cos#@. Figure 3.27
shows tan 0 and A(tan #), which is the change in tan 0,
namely tan(f + Af) — tan 6.

(a) By paying particular attention to how the two figures
relate and using the fact that

Area of Area of Area of
Sector OAQ — Triangle OQR — Sector OBR

explain why

A6 T < A(tan6) - Af ™

27 (cos0)? — 2

[Hint: A sector of a circle with angle « at the center
has area o/ (27) times the area of the whole circle.]
(b) Use part (a) to show as Af — 0 that

Atan@ ( 1 )2
- b

Af cos 0
d(tan) (1 \?
and hence that —m (w) .

= 271 (cos(0 + AG))?"
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2
(¢) Derive the identity (tan 6)® +1 = (L) . Then
cosf

differentiate both sides of this identity with respect
to 6, using the chain rule and the result of part (b) to

d
show that ¥ (cos@) = —sind.

(d) Differentiate both sides of the identity (sin)? +
(cos0)? = 1 and use the result of part (c) to show

d, .
that @(sm 0) = cos@.

R
|
|
! A(tan0)
|
1
o
i
|
|
!
} tan 6
A6 I
|
0 1
0 Py
I 1 {
R
|
|
1
1 1
cos(f + AB) } B
|
|
Q i
|
]
1 1
cosf | bred
.

1
Figure 3.27: tan 0 and A(tan 0)

3.6 THE CHAIN RULE AND INVERSE FUNCTIONS

In this section we will use the chain rule to calculate the derivatives of fractional powers, logarithms,
exponentials, and the inverse trigonometric functions.* The same method is used to obtain a formula

for the derivative of a general inverse function.

Finding the Derivative of an Inverse Function: Derivative of z:'/2

Earlier we calculated the derivative of ™ with n an integer, but we have been using the result
for non-integral values of n as well. We now confirm that the power rule holds for n = 1/2 by

“It requires a separate justification, not given here, that these functions are differentiable.
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calculating the derivative of f(x) = x'/? using the chain rule. Since

@) =,

the derivative of [f(z)]? and the derivative of z must be equal, so

d d
@ = ().
We can use the chain rule with f(z) as the inside function to obtain:
d
Z(f@) =2f(@) @) = 1.
Solving for f(x) gives
N
f (93) - 2f($) - 21’1/27
o d 1 1
A o1/2y _ 11y
PR A

1/n

A similar calculation can be used to obtain the derivative of 2*/™ where 7 is a positive integer.

Derivative of In =

We use the chain rule to differentiate an identity involving In . Since e™* = x, we have
d Inx d
—(e"") = —(x),
(€)= —(@).
Inz d
e . d_ (hl xX ) =1. (Since e” is outside function and 1n z is inside function)
x
Solving for d(In x) /dx gives
d 1 1
%(ln :1)) = elnw = ;’

SO

d 1
—(1 = -
daz(nx) T

Example 1 Differentiate (a) In(z?+1) (b) t2Int (© +1+In(1l-—y).
Solution (a) Using the chain rule:

1 d
22+ 1dx

2x
x2+1"

d 2 _ 2 _
- (In(2? + 1)) = (+1)=

(b) Using the product rule:

d o d o 2 d o 1
—(t“Int) = — (%) -Int +t*—(Int) = 2tInt + ¢t - — =2tInt + t.
dt( nt) dt( )-Int+ dt(n> nt—+ / nt—+

(c) Using the chain rule:

d —\ _ d 1/2
o ( 1+1In(1— y)) =7 (1+In(1—y))
1 _
= 5 (1 =+ 111(1 — y)) 1/2 . % (1 + 111(1 — y)) (Using the chain rule)
! ! d (I—y) (Using the chain rule again)
= . = — 1 sing the chain rule again
2/1+mn(l—y) 1-y dy Y ¢ ¢
-1

201 —y)/T+In(l —y)
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Derivative of a*

In Section 3.2, we saw that the derivative of a” is proportional to a”. Now we see another way of
calculating the constant of proportionality. We use the identity

In(a”) = zlna.

d 1
Differentiating both sides, using T (Inz) = — and the chain rule, and remembering that Ina isa
iy T

constant, we obtain:
d 1
—(na®) = —

d
dx a® dx
Solving gives the result we obtained earlier:

(¢®) =Ina.

d x\ T
%(a ) = (lna)a”.

Derivatives of Inverse Trigonometric Functions

In Section 1.5 we defined arcsinx as the angle between —7/2 and 7/2 (inclusive) whose sine
is x. Similarly, arctan « as the angle strictly between —7/2 and 7/2 whose tangent is z. To find

o (arctan ) we use the identity tan(arctan x) = x. Differentiating using the chain rule gives
X

1
———— - —(arctanx) = 1,
cos?(arctan x) drc( )

SO p
— (arctan ) = cos®(arctan z).
< (arctan ) = cos”(arctan 2)

, and replacing 6 by arctan x, we have

1
Using the identity 1 + tan®?0 = ———
sing the identity 1 + tan o520

1 1
1+ tan?(arctanz) 1+ 22

cos? (arctan ) =

Thus we have

d (arct ) 1
— (arctanz) = .
dx 1+ 22
By a similar argument, we obtain the result:
1

% (arcsinz) =

Nl

Example 2

Solution

Differentiate (a) arctan(t?) (b) arcsin(tané).

Use the chain rule:

d 2\ 1 d, o 2t
(a) p (arctan(t )) =17 e (t*) = A

(b) 4 (arcsin(tan@)) = S S i(tan 0) = ! !
dt ~ J/1—(tan6)? df © V1—tan?f cos?f’
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Derivative of a General Inverse Function

Each of the previous results gives the derivative of an inverse function. In general, if a function f
has a differentiable inverse, f !, we find its derivative by differentiating f(f~!(x)) = z by the

chain rule:
d ... B
—(F(f @) =1
@) A () = 1
d 0 1
& V) = pray

Thus, the derivative of the inverse is the reciprocal of the derivative of the original function, but
evaluated at the point f~1(x) instead of the point .

Example 3 Figure 3.28 shows f(z) and f~!(z). Using Table 3.6, find

(@ @@ f(2) () (2 (i)  f'(2) i) (f1'(2)
(b) The equation of the tangent lines at the points P and Q.
(c) What is the relationship between the two tangent lines?

Table 3.6

z | fl=) | f'(=®)

0 1 0.7

1 2 1.4

2 4 2.8

3 8 5.5

Figure 3.28
Solution (a) Reading from the table, we have
i) f(2) =4.
() f'(2) =1
(iii) f'(2) =2.8.
(iv) To find the derivative of the inverse function, we use
1 1 1
(fH'(2) = — =0.714.

FU2) @) 14
Notice that the derivative of f~! is the reciprocal of the derivative of f. However, the
derivative of f —1 is evaluated at 2, while the derivative of f is evaluated at 1, where
f712)=1and f(1) = 2.

(b) At the point P, we have f(3) = 8 and f/(3) = 5.5, so the equation of the tangent line at P is

y —8=5.5(x — 3).
At the point O, we have f~1(8) = 3, so the slope at Q is

I | 11
U E = wmmy T e " 5s

Thus, the equation of the tangent line at @) is

1
y=3=<(—8).
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(c) The two tangent lines have reciprocal slopes, and the points (3, 8) and (8, 3) are reflections of
one another in the line y = x. Thus, the two tangent lines are reflections of one another in the

liney = x.

Exercises and Problems for Section 3.6

Exercises

For Exercises 1-33, find the derivative. It may be to your ad-
vantage to simplify before differentiating. Assume a, b, ¢, and

k are constants.
1. f(t) =In(t* +1) 2. f(z) =1In(1—xz)
3. f(z) = In(e*) 4. fz) =
5 f(z) =In(l —e™®) 6. f(a) =In(sina)
7. f(z) = In(e” +1) 8. y=azlnz—z+2
9. j(z) = In(e* +b) 10. h(w) = w® In(10w)

11.
13.
15.

17.

19.

. f(l‘) _ e(lnz)+1
. f(t) = In(e™?)
. g(t) = arctan(3t — 4)

f(z) =1n(e™)
f(w) = In(cos(w—1))

f(y) = arcsin(y?)

g(ov) = sin(arcsin o) . glt) = arctan(3t?)

g(t) = cos(Int) . h(z) = 22

Problems

21.

23.

25.

27.

28.
29.
30.

31.

32.

33.

h(w) = w arcsinw 22. f(z) = ek

r(t) = arcsin(2t) 24. j(x) = cos (sin_1 a:)

f(x) = cos(arctan3z)  26. f(z) = IL
nz

B T
) = 1+ Inx

y=2zx(lnxr+1In2) —2x+e
f(x) = In(sinx + cos )

f(®) =In(Int) + In(In 2)

)

T(u) = arctan (1

1—cost\*
() = (T eont)
f(z) = cos(arcsin(z + 1))

For Problems 34-37, let h(z) = f(g(x)) and k(z) =
g(f(2)). Use Figure 3.29 to estimate the derivatives.

3 3
-3 30 -3\ NEN
™ \
-3 -3
Figure 3.29
3.0/(1) 35 K(1) 36 K(2) 37 K(2)
38. On what intervals is In(x? 4 1) concave up?

39.

Use

e (arcsinz).

the chain rule to obtain the formula for

40.

41.

42,

Using the chain rule, find % (log x).
(Recall log x = log,, x.)

To compare the acidity of different solutions, chemists
use the pH (which is a single number, not the product of
p and H). The pH is defined in terms of the concentra-
tion, x, of hydrogen ions in the solution as

pH = —logz.

Find the rate of change of pH with respect to hydrogen
ion concentration when the pH is 2. [Hint: Use the result
of Problem 40.]

A firm estimates that the total revenue, R, in dollars, re-
ceived from the sale of ¢ goods is given by

R = In(1 + 1000¢%).

The marginal revenue, MR, is the rate of change of
the total revenue as a function of quantity. Calculate the
marginal revenue when ¢ = 10.
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43.

44.

45.

46.
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(a) Find the equation of the tangent line to y = Inz at
=1

Use it to calculate approximate values for In(1.1)
and In(2).

Using a graph, explain whether the approximate val-
ues are smaller or larger than the true values. Would
the same result have held if you had used the tangent
line to estimate In(0.9) and In(0.5)? Why?

Find the equation of the best quadratic approxima-
tiontoy = Inz atz = 1. The best quadratic approx-
imation has the same first and second derivatives as
y=Inzatzr=1.

Use a computer or calculator to graph the approxi-
mation and y = In x on the same set of axes. What
do you notice?

Use your quadratic approximation to calculate ap-
proximate values for In(1.1) and In(2).

(b)
(c)

(a)

(b)

(c)

(a) For z > 0, find and simplify the derivative of
f(z) = arctanz + arctan(1/x).
(b) What does your result tell you about f?

Imagine you are zooming in on the graph of each of the
following functions near the origin:

y==x y=vz

y = 2> y =sinzx

y =xsinx y =tanxzx
y=\z/(z+1)y=2°
y=In(z+1) y=31iln(z*+1)

y=VIr—a=

Which of them look the same? Group together those
functions which become indistinguishable, and give the
equations of the lines they look like.

y=1—cosx

In Problems 47-50, use Figure 3.30 to find a point x where
h(z) = n(m(z)) has the given derivative.

47.

49.

100 m(x) 100
L1 n(z)
x €T
0 100 0 100
Figure 3.30
R (z)=-2 48. h'(z) =2
W(x)=1 50. h'(v) = —1

In Problems 51-53, use Figure 3.31 to calculate the derivative.

51.
52.
53.
54.

55.

56.

57.

58.

f(@)

Figure 3.31

W(2) it h(z) = (f(2))°

K'(2) if k(z) = (f(2)) 7"

g(5) it gla) = 1 (2)

(@) Given that f(z) = z°, find f'(2).

(b) Find ().

(¢) Use your answer from part (b) to find (f~")'(8).

(d) How could you have used your answer from part (a)
to find (f71)"(8)?

(a) For f(x) = 22" + 32® + =, find f'(x).

(b) How can you use your answer to part (a) to deter-
mine if f(x) is invertible?

(c) Find f(1).

(d) Find f'(1).

(e) Find (f71)'(6).

Given that f and g are differentiable everywhere, g is the

inverse of f, and that f(3) = 4, f'(3) = 6, f'(4) = 7,

find g'(4).

Use the table and the fact that f(z) is invertible and dif-
ferentiable everywhere to find (f 1)’ (3).

z | f(=) | f'(=)
3] 1 7
6| 2 10
9| 3 5

Let P = f(t) give the US population® in millions in
year t.

(a) What does the statement f(2005) = 296 tell you
about the US population?

(b) Find and interpret f~*(296). Give units.

(¢) What does the statement f’(2005) = 2.65 tell you
about the population? Give units.

(d) Evaluate and interpret (f~1)’(296). Give units.

SData from www.census.gov/Press-Release/www/releases/archives/population/006142.html, accessed May 27, 2007.
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59. Figure 3.32 shows the number of motor vehicles,® f(#), 61. An increasing function f(x) has the value f(10) = 5.

in millions, registered in the world ¢ years after 1965. Explain how you know that the calculations f'(10) = 8
With units, estimate and interpret and (f~1)'(5) = 8 cannot both be correct.
(@ f(20) () f'(20)
(© f'(500) @ (F1)(500) 62. An invertible function f(z) has values in the table. Eval-
uate
(millions)
800 @ f'a)- (74 B fO)-(f7)(B)
600 © f'(- (1)
100 —
200
x a|lb|c|d
(year) flz) | A| B|C
‘65 70 75 80 '85 90 95 2000
Figure 3.32
60. Using Figure 3.33, where f/'(2) = 2.1, f'(4) = 3.0,
f/((j) = 3.7, f'(8) = 4.2, find (f—l)’(g). 63. If f is continuous, invertible, and defined for all =, why
must at least one of the statements (f~')'(10) = 8,
o4 } (£71)(20) = —6 be wrong?
6 ()
64. (a) Calculate limp_o(In(1 + h)/h) by identifying the
8 limit as the derivative of In(1 4 z) at x = 0.
. (b) Use the result of part (a) to show that
2 4 6 8 ' limp_o(1 + h)/" =e.
) (¢) Use the result of part (b) to calculate the related
Figure 3.33 limit, limp—oo(1 +1/n)".

3.7 IMPLICIT FUNCTIONS

In earlier chapters, most functions were written in the form y = f(x); here y is said to be an explicit
function of z. An equation such as
24yt =4
is said to give y as an implicit function of x. Its graph is the circle in Figure 3.34. Since there are
z-values which correspond to two y-values, y is not a function of = on the whole circle. Solving
gives
y=+v4— 122

where y = v/4 — 22 represents the top half of the circle and y = —v/4 — 22 represents the bottom
half. So y is a function of = on the top half, and y is a different function of = on the bottom half.

But let’s consider the circle as a whole. The equation does represent a curve which has a tangent
line at each point. The slope of this tangent can be found by differentiating the equation of the circle
with respect to x:

d, d , 4 d
— — = —(4).
@)+ ) = ()
If we think of y as a function of « and use the chain rule, we get
d
2z + 2y—y =0.
dr
Solving gives

d_’y_:L'

de vy’

Swww.earth-policy.org, accessed May 18, 2007.
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Top half:

=4 —z2

Bottom half:

y=—V4— a2

1 :
-2 12 z \ "7

Yy Yy
2 Negative slope = —z/y
92— “— Curve has slope 2/5 here

Positive slope = —x/y \

Figure 3.35: Graph of 3*> — zy = —6 and its
Figure 3.34: Graph of 22 +y? = 4 tangent line at (7, 2)

-2

The derivative here depends on both = and y (instead of just on x). This is because for many x-
values there are two y-values, and the curve has a different slope at each one. Figure 3.34 shows
that for 2 and y both positive, we are on the top right quarter of the curve and the slope is negative
(as the formula predicts). For x positive and y negative, we are on the bottom right quarter of the
curve and the slope is positive (as the formula predicts).

Differentiating the equation of the circle has given us the slope of the curve at all points except
(2,0) and (—2,0), where the tangent is vertical. In general, this process of implicit differentiation
leads to a derivative whenever the expression for the derivative does not have a zero in the denomi-
nator.

Example 1

Solution

Make a table of = and approximate y-values for the equation > — xy = —6nearxz = 7,y = 2.
Your table should include the x-values 6.8,6.9,7.0,7.1, and 7.2.

We would like to solve for y in terms of z, but we cannot isolate y by factoring. There is a formula
for solving cubics, somewhat like the quadratic formula, but it is too complicated to be useful here.
Instead, first observe that x = 7, y = 2 does satisfy the equation. (Check this!) Now find dy/dx by
implicit differentiation:

L)~ A (o) = - (-6)
3y23—i —1-y— :cj—i =0 (Differentiating with respect to )
d d
3y2d—z — .L% =y
(3y* — g;)j—i =4 (Factoring out 4%)
dy __y
dr  3y? —ux

When 2 = 7 and y = 2, we have
dy 2 2

de — 12-7 5
(See Figure 3.35.) The equation of the tangent line at (7, 2) is

2
y—2=3(if—7)
or

y = 0.4x —0.8.

Since the tangent lies very close to the curve near the point (7, 2), we use the equation of the tangent
line to calculate the following approximate y-values:

x 6.8 6.9 7.0 7.1 7.2
Approximate y 1.92 1.96 2.00 2.04 2.08
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Notice that although the equation y® — 2y = —6 leads to a curve which is difficult to deal with
algebraically, it still looks like a straight line locally.

Example 2

Solution

Find all points where the tangent line to 4> — 2y = —6 is either horizontal or vertical.
. d . .
From the previous example, d—y = 3+ The tangent is horizontal when the numerator of dy /dx
x y?—x
equals 0, so y = 0. Since we also must satisfy y> — xy = —6, we get 0> — x - 0 = —6, which is

impossible. We conclude that there are no points on the curve where the tangent line is horizontal.
The tangent is vertical when the denominator of dy/dz is 0, giving 3y% — z = 0. Thus, x = 3y>
at any point with a vertical tangent line. Again, we must also satisfy y* — 2y = —6, so

y* — (3y*)y = —6,
_2y3 = _67
y = V3~ 1.442.

We can then find z by substituting y = /3 in y> — 2y = —6. We get 3 — 2(/3) = —6, so
x=9/(/3) ~ 6.240. So the tangent line is vertical at (6.240, 1.442).

Using implicit differentiation and the expression for dy/dz to locate the points where the tan-
gent is vertical or horizontal, as in the previous example, is a first step in obtaining an overall picture
of the curve y* — 2y = —6. However, filling in the rest of the graph, even roughly, by using the sign
of dy/dzx to tell us where the curve is increasing or decreasing can be difficult.

Exercises and Problems for Section 3.7

Exercises

For Exercises 1-18, find dy/dz. Assume a, b, c are constants. In Exercises 19-22, find the slope of the tangent to the curve

at the point specified.

2, 2 2 32 ‘ ‘
L 2> +y° =7 2. 2ty —y =2y 19. 2% + % = Lat (0, 1)
. oy+ax+y=>5 4. 2*y—2y+5=0 20. sin(zy) =z at (1,7/2)
3 2 _
5. i =57 6. Vit T=25 21, x° + 2xy+y- =4at(l,1)
22, 2% +52%y + 2y =4y + 11 at (1,2)
7. 0y—x—3y—4=0 8. 622 + 49> = 36
2 2 _ 2 2
9. ax” —by"=c 10. Inz +In(y”) =3 For Exercises 23-27, find the equations of the tangent lines to
1. zlny+4° = Inz 12. sin(zy) = 22 + 5 the following curves at the indicated points.
13. cos’y+siny=y+2 14, Y = 2% arctany 23 2y’ =1 at(1,-1) 24. In(zy) =2z at (1,€°)
2 x
25. 4% = 4,2) 26, y=—
15. arctan(z?y) = zy? 16. ¢ + Iny =0 Sy xy —4 at (4,2) 6.y y+a at(0,0)

17. (z —a)* +y* = a® 18 oP 4y = a7 23 2 2 2P (a,0)
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Problems

28.

29.

30.

31.

32.

Find dy/dx given that 2 4 y® — 4z 4 Ty = 15.
Under what conditions on x and/or y is the tangent
line to this curve horizontal? Vertical?

(a)
(b)

(a) Find the slope of the tangent line to the ellipse
2y

J— + =z
25 9 . .
Are there any points where the slope is not defined?

= 1 at the point (x, y).
(b)
(a) Find the equations of the tangent lines to the circle
x? 4+ 3% = 25 at the points where = = 4.

Find the equations of the normal lines to this circle
at the same points. (The normal line is perpendicular
to the tangent line at that point.)

(c) At what point do the two normal lines intersect?

(@) If 2® + y® — xy? = 5, find dy/du.

(b) Using your answer to part (a), make a table of ap-
proximate y-values of points on the curve near z =
1,y = 2. Include = = 0.96,0.98,1,1.02, 1.04.
Find the y-value for x = 0.96 by substituting = =
0.96 in the original equation and solving for y using
a computer or calculator. Compare with your answer
in part (b).

Find all points where the tangent line is horizontal
or vertical.

(b)

(c)

(d)
Find the equation of the tangent line to the curve y = x>
at = 1. Show that this line is also a tangent to a circle
centered at (8, 0) and find the equation of this circle.

3.8 HYPERBOLIC FUNCTIONS

33.

34.

35.

36.

At pressure PP atmospheres, a certain fraction f of a gas
decomposes. The quantities P and f are related, for some
positive constant K, by the equation

4f°P
1—f2

(a) Find df /dP.
(b) Show that df /dP < 0 always. What does this mean
in practical terms?

Sketch the circles y? 4 2% = 1 and ¢* 4 (= — 3)? = 4.
There is a line with positive slope that is tangent to both
circles. Determine the points at which this tangent line
touches each circle.

Show that the power rule for derivatives applies to ratio-
nal powers of the form y = ™/™ by raising both sides
to the n*® power and using implicit differentiation.

For constants a, b, n, R, Van der Waal’s equation relates
the pressure, P, to the volume, V, of a fixed quantity of
a gas at constant temperature 7":

nza
(P'Fi7; U/—-nb)::nRji

Find the rate of change of volume with pressure, dV/dP.

There are two combinations of e® and e~* which are used so often in engineering that they are
given their own name. They are the hyperbolic sine, abbreviated sinh, and the hyperbolic cosine,
abbreviated cosh. They are defined as follows:

Hyperbolic Functions

e =
cosh x 5

e’ +e "

sinhx =

Properties of Hyperbolic Functions

The graphs of cosh z and sinh x are given in Figures 3.36 and 3.37 together with the graphs of
multiples of e” and e~*. The graph of cosh z is called a catenary; it is the shape of a hanging cable.

Figure 3.36: Graph of y = cosh x

y = cosh(z)

Vi
S _ .
y=ler 1 + = sinh(z)
| |

===

= .
-3 Ty = —%e*m 3

xT

Figure 3.37: Graph of y = sinh x
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The graphs suggest that the following results hold:

cosh0 =1 sinh0 =0

cosh(—x) = coshx sinh(—z) = —sinhz

To show that the hyperbolic functions really do have these properties, we use their formulas.

Example 1 Show that (a) cosh(0) =1 (b) cosh(—x) = coshx

Solution (a) Substituting x = 0 into the formula for cosh x gives
0, ,—0
e’ +e 1+1
‘h = = = ]_
cosh 0 5 >

(b) Substituting —x for x gives

e 4 e (=% e+

cosh(—z) = 5 = cosh z.
Thus, we know that cosh x is an even function.
Example 2 Describe and explain the behavior of cosh « as © — oo and @ — —oo.
Solution From Figure 3.36, it appears that as x — oo, the graph of coshz resembles the graph of %e””.

Similarly, as &z — —oo, the graph of cosh x resembles the graph of %e‘m. This behavior is explained
by using the formula for cosh x and the facts that e™ — 0 as x — oo and e” — 0 as ¢ — —o0:

x —T 1
As z — 00, coshx:ie—ez.
2 2
x /—17 1
Asx — —o0, coshx = % — 56_‘”.

Identities Involving cosh = and sinh =

The reason the hyperbolic functions have names that remind us of the trigonometric functions is
that they share similar properties. A familiar identity for trigonometric functions is

(cosz)? 4 (sinz)? = 1.

To discover an analogous identity relating (cosh )2 and (sinh x)2, we first calculate

er +e—z)2 B 821' +2€m€—z +e—2m eQm +2+e—2m

s = (£

4 4
T —z\ 2 2x T ,—x —2x 2x —2x
e’ —e et —2e¢%e " +e et —2+e
1 h 2 = = =
(sinh z) ( 5 ) 1 1

If we add these expressions, the resulting right-hand side contains terms involving both €% and
e~ 2% If, however, we subtract the expressions for (coshx)? and (sinhz)?, we obtain a simple

result:
2_e2x+2+e—2m 6233_2+e—2w_4_1

)2 _ (g
(coshx)?® — (sinhx) 1 1 1
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Thus, writing cosh? 2: for (cosh )2 and sinh? z: for (sinh )2, we have the identity

cosh?z —sinh?z =1

The Hyperbolic Tangent

Extending the analogy to the trigonometric functions, we define

sinh x et —e "
tanhx = =
coshz €T 4 e 2

Derivatives of Hyperbolic Functions

We calculate the derivatives using the fact that d—(e“) = ¢”. The results are again reminiscent of
x
the trigonometric functions. For example,

%(coshx) = % (e., te ) =% "% _inha

d
We find o (sinh ) similarly, giving the following results:
x

%(cosh x) = sinhx %(Sinh x) = coshz

Example 3 Compute the derivative of tanh .

Solution Using the quotient rule gives

d (sinhx) _ (coshz)? — (sinhz)? 1

i(tamh )= — =
dz ~ dx \ coshz (coshz)? ~ cosh?z’

Exercises and Problems for Section 3.8

Exercises

Find the derivatives of the functions in Exercises 1-11.

1. y = cosh(2z) 2. y =sinh(3z +5) 7. (t) = cosh(e™) 8. y = tanh(3 + sinh )
3. f(t) = cosh(sinht) 4. f(t) = t3sinht 9- f(y) = sinh (sinh(3y))
10. g(6) = In (cosh(1 + 0))

_ 2 _ .
5. g(t) = cosh®¢ 6. y = cosh(3t) sinh(4t) 11. f(t) = cosh®t — sinh? ¢
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12. Show that sinh 0 = 0. Simplify the expressions in Exercises 15-16.
13. Show that sinh(—x) = — sinh(z). 15. sinh(Int) 16. cosh(In t)
14. Show that d(sinh z)/dz = cosh z.
Problems
17. Describe and explain the behavior of sinhxz as z — oo 30. The cable between the two towers of a power line hangs

18.

19.

and as x — —oo0.

Is there an identity analogous to sin(2z) = 2sinx cos
for the hyperbolic functions? Explain.

Is there an identity analogous to cos(2z) = cos®a —
sin? z for the hyperbolic functions? Explain.

Prove the identities in Problems 20-21.

20.
21.

sinh(A 4+ B) = sinh A cosh B + sinh B cosh A
cosh(A + B) = cosh A cosh B + sinh B sinh A

In Problems 22-25, find the limit of the function as x — oo.

22,

24.

26.

27.

28.

29.

cosh(2z) sinh(2z)
sinh(3z) " cosh(3x)
e sinh(z?)
sinh(2x) " cosh(z2)
For what values of £ is lim sinh finite?

z—oc cOsh 2x

3

For what values of k is lim e °” cosh kz finite?

r— 00

(a) Using a calculator or computer, sketch the graph of
y=2e"+5e Pfor-3<x<3,0<y<20.
Observe that it looks like the graph of y = cosh x.
Approximately where is its minimum?

Show algebraically that y = 2e® + 5e~* can be
written in the form y = A cosh(xz — ¢). Calculate
the values of A and c. Explain what this tells you
about the graph in part (a).

(b)

The following problem is a generalization of Problem 28.
Show that any function of the form

y=Ae"+Be ", A>0, B>0,
can be written, for some K and c, in the form

y = K cosh(z — ¢).

What does this tell you about the graph of y = Ae® +
Be ™7

31.

32.

in the shape of the curve
Yy =— COgh (—w )
Y E T 9

where 7" is the tension in the cable at its lowest point and
w is the weight of the cable per unit length. This curve is
called a catenary.

(a) Suppose the cable stretches between the points x =
—T/w and z = T/w. Find an expression for the
“sag” in the cable. (That is, find the difference be-
tween the height of the cable at the highest and low-
est points.)

Show that the shape of the cable satisfies the equa-

tion
dzy_w dy 2
e T\/”(a) ’

The Saint Louis arch can be approximated by using a
function of the form y = b — a cosh(z/a). Putting the
origin on the ground in the center of the arch and the y-
axis upward, find an approximate equation for the arch
given the dimensions shown in Figure 3.38. (In other
words, find a and b.)

(b)

615 ft

530 ft
Figure 3.38

(a) Find tanhO.

(b) For what values of x is tanh x positive? Negative?
Explain your answer algebraically.

(¢) On what intervals is tanh 2 increasing? Decreasing?
Use derivatives to explain your answer.

(d) Find lim,_, o, tanh z and lim,_, _, tanh z. Show
this information on a graph.

(e) Does tanh x have an inverse? Justify your answer
using derivatives.
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3.9 LINEAR APPROXIMATION AND THE DERIVATIVE

The Tangent Line Approximation

When we zoom in on the graph of a differentiable function, it looks like a straight line. In fact, the
graph is not exactly a straight line when we zoom in; however, its deviation from straightness is so
small that it can’t be detected by the naked eye. Let’s examine what this means. The straight line that
we think we see when we zoom in on the graph of f(x) at 2 = « has slope equal to the derivative,
1/ (a), so the equation is

y = fla) + fl(a)(z —a).

The fact that the graph looks like a line means that y is a good approximation to f(x). (See Fig-
ure 3.39.) This suggests the following definition:

The Tangent Line Approximation

Suppose f is differentiable at a. Then, for values of x near a, the tangent line approximation
to f(z) is

f(@) = f(a) + f'(a)(z — a).
The expression f(a) + f'(a)(z — a) is called the local linearization of f near z = a. We are

thinking of « as fixed, so that f(a) and f’(a) are constant.
The error, F(z), in the approximation is defined by

E(z) = f(z) = f(a) = f'(a)(x — a).

It can be shown that the tangent line approximation is the best linear approximation to f near a. See

Problem 38.
True value f(x) Error B(z)
Tangent
line
L Approximation
f'(a)(z —a)
xr—a
f(a) I f(a)
x
a xT

Figure 3.39: The tangent line approximation and its error

Example 1 What is the tangent line approximation for f(z) = sinz near z = 0?

Solution The tangent line approximation of f near x = 0 is

f@) = f(0) + £/ (0)(x — 0).
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If f(z) = sinx, then f'(x) = cosx, so f(0) = sin0 = 0 and f’(0) = cos0 = 1, and the
approximation is
sinx ~ x.
This means that, near = 0, the function f(x) = sin x is well approximated by the function y = z.

If we zoom in on the graphs of the functions sin x and x near the origin, we won’t be able to tell
them apart. (See Figure 3.40.)

y =sinzx

ISIERE

Figure 3.40: Tangent line approximation to y = sinx

Example 2 What is the local linearization of e** near 2 = 0?
Solution If f(z) = ¥, then f(0) = 1 and, by the chain rule, f’(x) = ke**, so f/(0) = ke*? = k. Thus
fx) = f(0) + £'(0)(z — 0)

becomes
er ~ 1+ k.

This is the tangent line approximation to ¢*® near 2 = 0. In other words, if we zoom in on the
functions f(2) = €*® and y = 1 + ka near the origin, we won’t be able to tell them apart.

Estimating the Error in the Approximation

Let us look at the error, £(z), which is the difference between f(z) and the local linearization.
(Look back at Figure 3.39.) The fact that the graph of f looks like a line as we zoom in means that
not only is F(x) small for = near a, but also that F(x) is small relative to (z — a). To demonstrate
this, we prove the following theorem about the ratio E(x)/(xz — a).

Theorem 3.6: Differentiability and Local Linearity

Suppose f is differentiable at x = a and E(x) is the error in the tangent line approximation,
that is:

E(z) = f(z) - f(a) = f'(a)(z — a).
Then

lim 20

T—a T — a

=0.
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Proof Using the definition of F'(x), we have

E(x)  fx) = fla) = f(a)(z—a) flz)=fla) ().

r—a r—a r—a

Taking the limit as  — «a and using the definition of the derivative, we see that

lim E@) = lim (M — f’(a)) = f'(a) — f'(a) = 0.

r—a l — Q r—a xTr—a

Theorem 3.6 says that E(x) approaches 0 faster than (z — a). For the function in Example 3,
we see that E(z) ~ k(x — a)? for constant k if x is near a.

Example 3

Solution

Let E(x) be the error in the tangent line approximation to f(x) = 23 — 5x + 3 for = near 2.

(a) What does a table of values for E(z)/(x — 2) suggest about lim, .o F(z)/(z —2)?
(b) Make another table to see that E(x) ~ k(x — 2)2. Estimate the value of k. Check that a possible
value is k = f"(2)/2.

(a) Since f(z) = 2® — 5 + 3, we have f’(2) = 322 — 5, and f” () = 6. Thus, f(2) = 1 and
f'(2) = 3-22 — 5 = 7, so the tangent line approximation for z near 2 is
flz)~ f(2)+ f(2)(z - 2)
fle) = 1+7(x - 2).
Thus,
E(x) = True value — Approximation = (2 — 52 +3) — (1 + 7(x — 2)).

The values of E(x)/(x — 2) in Table 3.7 suggest that E(z)/(xz — 2) approaches 0 as x — 2.
(b) Notice that if E(z) ~ k(z — 2)?, then E(z)/(z — 2)? ~ k. Thus we make Table 3.8 showing
values of E(x)/(z — 2)?. Since the values are all approximately 6, we guess that & = 6 and
E(x) ~ 6(x — 2)2.
Since f/(2) = 12, our value of k satisfies k = f"(2)/2.

Table 3.7 Table 3.8
z E(z)/(z - 2) z B(z)/ (v — 2)°
2.1 0.61 2.1 6.1
2.01 0.0601 2.01 6.01
2.001 0.006001 2.001 6.001
2.0001 0.00060001 2.0001 6.0001

The relationship between F(x) and f”'(z) that appears in Example 3 holds more generally. If
f(x) satisfies certain conditions, it can be shown that the error in the tangent line approximation
behaves near x = a as

Blz)~ L ”2(“) (z — a)2.

This is part of a general pattern for obtaining higher order approximations called Taylor polynomi-
als, which are studied in Chapter 10.

Why Differentiability Makes A Graph Look Straight

We use the properties of the error F(z) to understand why differentiability makes a graph look
straight when we zoom in.
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Example 4

Solution

Consider the graph of f(x) = sinx near & = 0, and its linear approximation computed in Exam-
ple 1. Show that there is an interval around 0 with the property that the distance from f(z) = sinx
to the linear approximation is less than 0.1|z| for all z in the interval.

The linear approximation of f(2) = sinx near 0 is y = x, so we write
sine = + E(z).
Since sin x is differentiable at x = 0, Theorem 3.6 tells us that

lim @

z—0

=0.

If we take € = 1/10, then the definition of limit guarantees that there is a § > 0 such that

< 0.1 forall [z]<§é.

In other words, for « in the interval (—4,d), we have |z| < J, so
|E(x)] < 0.1]x|.
(See Figure 3.41.)

|E(z)] < 0.1|z]

-4 0 6

Figure 3.41: Graph of y = sin x and its linear
approximation y = x, showing a window in which the
magnitude of the error, | E(x)|, is less than 0.1|z| for all
x in the window

We can generalize from this example to explain why differentiability makes the graph of f look
straight when viewed over a small graphing window. Suppose f is differentiable at © = a. Then we

E
know lim () = 0. So, for any € > 0, we can find a § small enough so that
rT—a |T — aQ
E
() <€, for a—d<x<a-+.
r —a

So, for any « in the interval (a — §,a + d), we have
|E(x)] < €|z — al.

Thus, the error, E'(x), is less than € times |2 — al, the distance between x and a. So, as we zoom in
on the graph by choosing smaller ¢, the deviation, |F'(x)|, of f from its tangent line shrinks, even
relative to the scale on the z-axis. So, zooming makes a differentiable function look straight.
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Exercises and Problems for Section 3.9

Exercises

1.

Find the local linearization of f(z) = % near x = 1.

2. Find the tangent line approximation for /1 4 x near

xz=0.

. What is the tangent line approximation to e near x = 0?
. Find the tangent line approximation to 1/x near x = 1.
. Show that 1 — x/2 is the tangent line approximation to

1/4/1+ x near x = 0.

. Show that e™" ~ 1 — x near x = 0.
2
. What is the local linearization of e near x = 1?
. Local linearization gives values too small for the func-

tion 22 and too large for the function /2. Draw pictures
to explain why.

Problems

9.

10.

Using a graph like Figure 3.40, estimate to one decimal
place the magnitude of the error in approximating sin
by z for —1 < x < 1. Is the approximation an over- or
an underestimate?

For x near 0, local linearization gives

e ~1+x.

Using a graph, decide if the approximation is an over-
or underestimate, and estimate to one decimal place the
magnitude of the error for —1 <z < 1.

11.

12.

13.

14.

15.

(a) Find the best linear approximation, L(x), to f(z) =
e” near x = 0.

(b) What is the sign of the error, F(z) = f(z) — L(x)

for x near 0?

Find the true value of the function at x = 1. What

is the error? (Give decimal answers.) Illustrate with

a graph.

Before doing any calculations, explain which you

expect to be larger, £(0.1) or E(1), and why.

Find £(0.1).

(c)

(d)
(e)

Graph f(x) = «® — 32% + 3z + 1.

Find and add to your sketch the local linearization to
f(z)atz = 2.

Mark on your sketch the true value of f(1.5), the
tangent line approximation to f(1.5) and the error
in the approximation.

(@)
(b)

(©)

(a) Find the tangent line approximation to cos x at x =
/4.

Use a graph to explain how you know whether the
tangent line approximation is an under- or overesti-
mate for 0 < 2 < 7/2.

To one decimal place, estimate the error in the ap-

proximation for 0 < x < /2.

(b)

(c)

Show that 14k is the local linearization of (1+x)*
near z = 0.

Someone claims that the square root of 1.1 is about
1.05. Without using a calculator, do you think that
this estimate is about right?

(¢) Is the actual number above or below 1.05?

(a)
(b)

Figure 3.42 shows f(z) and its local linearization at
z = a. What is the value of a? Of f(a)? Is the approx-
imation an under- or overestimate? Use the linearization
to approximate the value of f(1.2).

Yy f(z)

/ 7 y=2r—1

T
1 2

Figure 3.42

The equations in Problems 16—17 have a solution near z = 0.
By replacing the left side of the equation by its linearization,
find an approximate value for the solution.

16.

18.

19.

20.

el +r=2 17. z+In(1 +2) =0.2
(a) Explain why the following equation has a solution
near 0:
e’ =0.02¢ + 1.098.

(b) Replace e by its linearization near 0. Solve the new
equation to get an approximate solution to the origi-
nal equation.

The speed of sound in dry air is

T
T) = 331. 1 s/
f(T) =331.34/1 + 77315 meters /second

where T is the temperature in ° Celsius. Find a linear
function that approximates the speed of sound for tem-
peratures near 0°C.

Air pressure at sea level is 30 inches of mercury. At an
altitude of h feet above sea level, the air pressure, P, in
inches of mercury, is given by

—3.23x107°h
P = 30e



(a) Sketch a graph of P against h.

(b) Find the equation of the tangent line at A = 0.

(¢) A rule of thumb used by travelers is that air pressure
drops about 1 inch for every 1000-foot increase in
height above sea level. Write a formula for the air
pressure given by this rule of thumb.

(d) What is the relation between your answers to parts
(b) and (c¢)? Explain why the rule of thumb works.

(e) Are the predictions made by the rule of thumb too
large or too small? Why?

21. Writing ¢ for the acceleration due to gravity, the period,
T, of a pendulum of length [ is given by

T:27r\/z.
g

(a) Show that if the length of the pendulum changes by
Al, the change in the period, AT, is given by

T
AT =~ = Al
2l

(b) If the length of the pendulum increases by 2%, by
what percent does the period change?

22. Suppose now the length of the pendulum in Problem 21
remains constant, but that the acceleration due to gravity
changes.

(a) Use the method of the preceding problem to relate
AT approximately to Ag, the change in g.
(b) If g increases by 1%, find the percent change in 1"

23. Suppose f has a continuous positive second derivative
for all z. Which is larger, f(1+Az) or f(1)+ f'(1)Az?
Explain.

24. Suppose f’(x) is a differentiable decreasing function for
all . In each of the following pairs, which number is the
larger? Give a reason for your answer.

(@ f'(5)and f'(6)
(b) f”(5) and 0
(©) f(5+ Az)and f(5) + f'(5)Ax

Problems 25-27 investigate the motion of a projectile shot
from a cannon. The fixed parameters are the acceleration of
gravity, g = 9.8 m/ sec2, and the muzzle velocity, vop =
500 m/sec, at which the projectile leaves the cannon. The an-
gle 6, in degrees, between the muzzle of the cannon and the
ground can vary.

25. The range of the projectile is

. v . mh .o

f() = 7 sin gowg = 25510 sin 90 meters.

(a) Find the range with § = 20°.

(b) Find a linear function of € that approximates the
range for angles near 20°.

(c) Find the range and its approximation from part (b)
for 21°.
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26. The time that the projectile stays in the air is

t(0) = % sin % = 102sin % seconds.
(a) Find the time in the air for § = 20°.
(b) Find a linear function of 6 that approximates the
time in the air for angles near 20°.
(¢) Find the time in air and its approximation from
part (b) for 21°.

27. Atits highest point the projectile reaches a peak altitude
given by

2
vy . o mH
h(0) = —sin” —
(0) = 545" 130
(a) Find the peak altitude for @ = 20°.
(b) Find a linear function of € that approximates the
peak altitude for angles near 20°.

(c) Find the peak altitude and its approximation from
part (b) for 21°.

_ in? 70
= 12755 sin 120 meters.

In Problems 28-32, find a formula for the error E(x) in the
tangent line approximation to the function near x = a. Using
a table of values for E(x)/(x — a) near z = a, find a value of
k such that F(x)/(z — a) =~ k(x — a). Check that, approxi-
mately, k = f”(a)/2 and that E(x) =~ (f"(a)/2)(x — a)?.
28. f(z)=2* a=1
30. f(z)=¢€", a=0
32. f(z)=lnz, a=1

29. f(x)=cosz, a=0
3. f(z) =+, a=1

33. Multiply the local linearization of e” near z = 0 by itself
to obtain an approximation for e?*. Compare this with
the actual local linearization of ¢>®. Explain why these
two approximations are consistent, and discuss which
one is more accurate.

34. (a) Show that 1 — x is the local linearization of

near x = 0.
(b) From your answer to part (a), show that near z = 0,
1 2
~1-—
14 a2 v

(¢) Without differentiating, what do you think the

derivative of T 3 isatx = 0?

+x

35. From the local linearizations of ¢* and sinx near x =
0, write down the local linearization of the function
e® sin z. From this result, write down the derivative of
e’ sinz at x = 0. Using this technique, write down the
derivative of e* sinz /(1 4+ z) at x = 0.

36. Use local linearization to derive the product rule,

[f(2)g(@)] = f'(x)g(x) + f(z)g (z).
[Hint: Use the definition of the derivative and the local
linearizations f(z+h) ~ f(z)+f'(z)hand g(z+h) ~
g(x) + ¢ (x)h.]



164 Chapter Three  SHORT-CUTS TO DIFFERENTIATION

37. Derive the chain rule using local linearization. [Hint: In
other words, differentiate f(g(x)), using g(z + h) =~
g(z)+ g'(@)hand f(z + k) = f(2) + f'(2)k.]

38. Consider a function f and a point a. Suppose there is a
number L such that the linear function g

9(x) = f(a) + L(x — a)

is a good approximation to f. By good approximation,

we mean that
. Fr(x
lim £ =0,
x—a T — Q

39.

where E'r, () is the approximation error defined by
f(z) = g(z) + Er(z) = f(a) + L(z — a) + Er(z).

Show that f is differentiable at # = a and that f'(a) =
L. Thus the tangent line approximation is the only good
linear approximation.

Consider the graph of f(x) = z” near z = 1. Find an
interval around = 1 with the property that throughout
any smaller interval, the graph of f(z) = z? never dif-
fers from its local linearization at x = 1 by more than
0.1)z — 1].

3.10 THEOREMS ABOUT DIFFERENTIABLE FUNCTIONS

A Relationship Between Local and Global: The Mean Value Theorem

We often want to infer a global conclusion (for example, f is increasing on an interval) from local
information (for example, f’ is positive at each point on an interval.) The following theorem relates
the average rate of change of a function on an interval (global information) to the instantaneous rate
of change at a point in the interval (local information).

Theorem 3.7: The Mean Value Theorem

If f is continuous on a < = < b and differentiable on a < = < b, then there exists a number
¢, with a < ¢ < b, such that

In other words, f(b) — f(a) = f'(¢)(b— a).

To understand this theorem geometrically, look at Figure 3.43. Join the points on the curve
where x = a and x = b with a secant line and observe that

Slope of secant line = M
b—a

Now consider the tangent lines drawn to the curve at each point between x = ¢ and z = b. In
general, these lines have different slopes. For the curve shown in Figure 3.43, the tangent line at
x = a is flatter than the secant line. Similarly, the tangent line at x = b is steeper than the secant
line. However, there appears to be at least one point between a and b where the slope of the tangent
line to the curve is precisely the same as the slope of the secant line. Suppose this occurs at z = c.
Then

b) —
Slope of tangent line = f’(c) = M
—a
The Mean Value Theorem tells us that the point x = ¢ exists, but it does not tell us how to find c.
Problems 43 and 44 in Section 4.2 show how the Mean Value Theorem can be derived.



3.10 THEOREMS ABOUT DIFFERENTIABLE FUNCTIONS 165

f(z)

Secant line: Slope = M
b—a

(b, 7(b))

(a, f(a) |
Tangent line: Slope = f'(c)

|

|

| |

| |
| | | €T
a C b

Figure 3.43: The point ¢ with f'(c) = {&-1(2)

If f satisfies the conditions of the Mean Value Theorem on a < z < band f(a) = f(b) =0,
the Mean Value Theorem tells us that there is a point ¢, with @ < ¢ < b, such that f'(¢) = 0. This
result is called Rolle’s Theorem.

The Increasing Function Theorem

We say that a function f is increasing on an interval if, for any two numbers x; and x5 in the
interval such that x; < xo, we have f(x1) < f(z2). If instead we have f(z1) < f(x2), we say f is
nondecreasing.

Theorem 3.8: The Increasing Function Theorem

Suppose that f is continuous on @ < x < b and differentiable on @ < = < b.
o If f/(x) >0ona < x < b, then f is increasingon a < x < b.

o If f/(x) > 0ona < x <b,then f is nondecreasing on a < x < b.

Proof Suppose a < x1 < x5 < b. By the Mean Value Theorem, there is a number ¢, with 7 < ¢ < o,

such that
f(@2) = f(z1) = f(e) (w2 — x1).

If f'(c) > 0, this says f(z2) — f(z1) > 0, which means f is increasing. If f’(¢) > 0, this says
f(z2) — f(z1) > 0, which means f is nondecreasing.

It may seem that something as simple as the Increasing Function Theorem should follow imme-
diately from the definition of the derivative, and you may be surprised that the Mean Value Theorem
is needed.

The Constant Function Theorem

If f is constant on an interval, then we know that f'(x) = 0 on the interval. The following theorem
is the converse.

Theorem 3.9: The Constant Function Theorem

Suppose that f is continuous on ¢ < 2 < b and differentiable on a < x < b. If f'(x) = 0 on
a < x < b, then f is constanton a < x < b.
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Proof The proof is the same as for the Increasing Function Theorem, only in this case f'(¢) = 0 so

f(z2) = f(z1) = 0. Thus f(22) = f(x1) fora < a1 < 29 < b, so f is constant.
A proof of the Constant Function Theorem using the Increasing Function Theorem is given in
Problems 17 and 24.

The Racetrack Principle

Theorem 3.10: The Racetrack Principle’

Suppose that g and h are continuous on a < x < b and differentiable on a < = < b, and that
g'(x) < h'(z) fora < x < b.
o If g(a) = h(a), then g(x) < h(z) fora <z <.

o If g(b) = h(b), then g(x) > h(x) fora < z <b.

The Racetrack Principle has the following interpretation. We can think of g(z) and h(x) as the
positions of two racehorses at time =, with horse / always moving faster than horse g. If they start
together, horse h is ahead during the whole race. If they finish together, horse g was ahead during
the whole race.

Proof Consider the function f () = h(z) — g(x). Since f/(z) = h'(z) — ¢’(x) > 0, we know that f is

nondecreasing by the Increasing Function Theorem. So f(z) > f(a) = h(a) — g(a) = 0. Thus
g(z) < h(x) for a < 2 < b. This proves the first part of the Racetrack Principle. Problem 23 asks
for a proof of the second part.

Example 1

Solution

Explain graphically why e® > 1 + x for all values of =. Then use the Racetrack Principle to prove
the inequality.

The graph of the function y = e® is concave up everywhere and the equation of its tangent line at
the point (0, 1) is y = x + 1. (See Figure 3.44.) Since the graph always lies above its tangent, we
have the inequality

e’ >1+ .

Now we prove the inequality using the Racetrack Principle. Let g(x) = 1 4+ 2 and h(z) = e”.
Then ¢(0) = h(0) = 1. Furthermore, ¢'(xz) = 1 and h/(z) = e¢*. Hence ¢'(z) < I/(x) for z > 0.
So by the Racetrack Principle, with a = 0, we have g(x) < h(z), thatis, 1 + = < e”.

For z < 0 we have h/(z) < ¢'(z). So by the Racetrack Principle, with b = 0, we have
g(x) < h(x), thatis, 1 + 2 < e*.

Figure 3.44: Graph showing thate® > 1 + x

"Based on the Racetrack Principle in Calculus & Mathematica, by William Davis, Horacio Porta, Jerry Uhl (Reading:
Addison Wesley, 1994).
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Decide if the statements in Exercises 1-5 are true or false.
Give an explanation for your answer.

1. Let f(x) = [z]. the greatest integer less than or equal to
x. Then f'(x) = 0, so f(x) is constant by the Constant
Function Theorem.

2. The Racetrack Principle can be used to justify the state-
ment that if two horses start a race at the same time, the
horse that wins must have been moving faster than the
other throughout the race.

3. Two horses start a race at the same time and one runs
slower than the other throughout the race. The Racetrack
Principle can be used to justify the fact that the slower
horse loses the race.

4. Ifa < band f'(z) is positive on [a, b] then f(a) < f(b).

5. If f(z) is increasing and differentiable on the interval
[a, b], then f'(x) > 0 on [a,b].

Do the functions graphed in Exercises 6-9 appear to satisfy

Problems

the hypotheses of the Mean Value Theorem on the interval
[a, b]? Do they satisfy the conclusion?

6. 7. ‘ f(z)
f(z) |
|
z I
a b |
a b *
8 9. f(z)
@) /7
\
a b ’ @ b

10. Applying the Mean Value Theorem witha = 2,b =7
to the function in Figure 3.45 leads to ¢ = 4. What is the
equation of the tangent line at 4?7

(2,5)

Figure 3.45

11. Applying the Mean Value Theorem with ¢ = 3, b = 13
to the function in Figure 3.46 leads to the point ¢ shown.
What is the value of f’(¢)? What can you say about the
values of f'(z1) and f'(22)?

f(@)

(3,12)

(13,7)

Figure 3.46

12. Letp(z) = 2° +8x* — 302" + 302 — 312+ 22. What is
the relationship between p(z) and f(x) = 5z* + 322> —
9022 4 60z — 31? What do the values of p(1) and p(2)
tell you about the values of f(x)?

13. Let p(z) be a seventh degree polynomial with 7 distinct
zeros. How many zeros does p’ () have?

14. Use the Racetrack Principle and the fact that sin0 = 0
to show that sinx < x forall x > 0.

15. Use the Racetrack Principle to show that lnz < x — 1.

16. Use the fact that In 2 and e” are inverse functions to show
that the inequalities ¢* > 1+ and Inz <z —1 are
equivalent for x > 0.

17. State a Decreasing Function Theorem, analogous to
the Increasing Function Theorem. Deduce your theorem
from the Increasing Function Theorem. [Hint: Apply the
Increasing Function Theorem to — f.]

Use one of the theorems in this section to prove the statements
in Problems 18-21.

18. If f'(x) < 1forall z and f(0) = 0, then f(z) <  for
allz > 0.

19. If f"(¢t) < 3 forall ¢t and f(0) = f’(0) = 0, then
f(t) < 2¢% forall t > 0.
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20.

21.

22.

23.

24.

25.
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If f'(z) = g'(x) for all z and f(5) =
f(z) = g(z) for all z.

If f is differentiable and f(0) < f(1), then there is a
number ¢, with 0 < ¢ < 1, such that f'(c) > 0.

The position of a particle on the x-axis is given by s =
f(t); its initial position and velocity are f(0) = 3 and
1/(0) = 4. The acceleration is bounded by 5 < f”(t) <
7 for 0 < ¢t < 2. What can we say about the position
f(2) of the particle at t = 27

Suppose that g and h are continuous on [a, b] and dif-
ferentiable on (a,b). Prove that if ¢'(z) < h/(z) for
a < x < band g(b) = h(b), then h(z) < g(z) for
a<xz<b.

Deduce the Constant Function Theorem from the In-
creasing Function Theorem and the Decreasing Function
Theorem. (See Problem 17.)

Prove that if f'(z) = g¢'(z) for all = in (a,b), then
there is a constant C' such that f(z) = g(z) + C on
(a,b). [Hint: Apply the Constant Function Theorem to

h(z) = f(z) — g(z)]

g(5), then

26.

27.

28.

Suppose that f'(x) = f(z) for all z. Prove that f(x) =
Ce” for some constant C'. [Hint: Consider f(z)/e®.]

Suppose that f is continuous on [a, b] and differentiable
on (a,b) and that m < f'(z) < M on (a,b). Use
the Racetrack Principle to prove that f(z) — f(a) <
M(z — a) for all z in [a,b], and that m(z — a) <
f(z) — f(a) for all = in [a,b]. Conclude that m <
(f(b) — f(a))/(b —a) < M. This is called the Mean
Value Inequality. In words: If the instantaneous rate of
change of f is between m and M on an interval, so is the
average rate of change of f over the interval.

N

Suppose that f”(z) > 0 for all z in (a, b). We will show
the graph of f lies above the tangent line at (¢, f(c)) for
any c witha < ¢ < b.

(a) Use the Increasing Function Theorem to prove that
f'(e) < f/(z) for ¢ < 2 < band that f'(z) <
fl(c)fora <z <e

(b) Use (a) and the Racetrack Principle to conclude that
fle)+ f'(e)(x—c) < f(z), fora <z <b.

CHAPTER SUMMARY (see also Ready Reference at the end of the book)

e Derivatives of elementary functions

Power, polynomial, rational, exponential, logarithmic,
trigonometric, inverse trigonometric, and hyperbolic
functions.

e Derivatives of sums, differences, and constant multi-

ples

e Product and quotient rules

e Chain rule

Differentiation of implicitly defined functions, inverse
functions.

Tangent line approximation, local linearity
Hyperbolic functions

Theorems about differentiable functions
Mean value theorem, increasing function theorem, con-
stant function theorem, Racetrack Principle.

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER THREE

Exercises

Find derivatives for the functions in Exercises 1-74. Assume
a, b, ¢, and k are constants.

Low=(t*+ 1)1 2. y=ev/?
3. f(t) = 2tet — L 4. g(t) = L
' Vi TR
4—t e
2+ 3z +2 .
7. = 8. g(0) = e*n?
) = == 9(0) =
9. h(A) =0(6~*—67%) 10. f(6) = In(cosh)
11. f(y) =1In (ln(2y3)) 12. g(z) = 2" + k°
1B.y=e "+n ¢ 14. z =sin®0

15.

17.

19.

21.

23.

27.

f(t) = cos®(3t + 5) 16. M(a) = tan*(2 + 3a)

5(0) = sin?(30 — ) 18. h(t) =1n (eft — t)

sin(b — 0) 0
0) = —— 20. w(f) = ——
po) = 25 W) = ——
1 1
0) = —— 22. = —
50) = o) = 5
2*+Vz+1 sin(22)
9(@) = =2 24. h(z) = cos(2z2)
. q(0) = 26, w=2"sin(nz)

462 — sin®(26)

s(z) = arctan(2 — x) . r(0) = e’ +e™®



29. m(n) = sin(e™) 30. k() = etantine)
31. g(t) = tcos(Vte") 32. f(r) = (tan2+tanr)*
33. h(z) = xen” 34. y = €*"sin®(3x)
35. g(z) = tan *(32°+1) 36. y = 2% cosx
37. h(z) =1Ine®® 38. k(zx) =lne** +1nb
39. f(0) =e" —1 40. f(t) = e *sint
41. H(t) = (at® + b)e 42. g(6) = /a2 —sin?6
a® — 22
43. =a"" 44. = —
f@)=a fa) = s
ar? a? — §*
45, ?U(’I') = b—|-—'r3 46. f(b) = \/CLQ—?
47—t(2) 48. r(t) = In [ sin ( -
- y =arctan | — . 7(t) =In | sin %
49. g(w) = __5 50. y = efoe”
-9 _(az_wz)z 'y_ex+e—x
Cau e(LIE _ 6—[1“'15
SL oW = e VS e
In(kt) + t e’ 4t
53. g(t) = ——— 54. z =
9(t) In(kt) —t ‘ sin(2t)
1/3
55. f(t) =sinvet +1 56. g(y) = 2
57. g(z) = —1(2° + 22— 9)
58. y = —3x* —42® — 62+ 2
27 +52° — 23
59. 9(2) = ———
z
Problems
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60. f(2) = (In3)2> 4 (Ind)e*

61. g(z) =2z — ;E—I—Sz—e

62. f(z) = (322 +m)(e” —4)

63. f(#) =0%sin® + 20 cosf — 2sin b
64. y = \/cos(50) + sin?(66)

65. r(0) = sin ((30 — m)?)

66. y = (2* +5)" (32° — 2)”

67. N(0) = tan(arctan(k0))

68. h(t) = e*(sin at + cos bt)

69. f(x) = (2 — 4z — 32%)(62° — 3m)
70. f(t) = (sin(2t) — cos(3t))*

71. s(y) = /(cos2y + 3 + sin’ y)

72. f(x) = (4 —a® +22%)(6 — 4o +27)
73 h(w) = (5 - =) (260 +4)

74. f(z):x/§+5\/2+%—\/g+x/5

For Exercises 75-76, assume that y is a differentiable function
of  and find dy /dzx.

75 2® 4+ —4xPy =0
76. sin(ay) + cos(bz) = zy

77. Find the slope of the curve 2> + 3y = 7 at (2, —1).

78. Assume y is a differentiable function of x and that
y+siny+z? = 9. Find dy/dz at the point z = 3,y = 0.

79. Find the equations for the lines tangent to the graph of
xy +y* = 4 where x = 3.

80. If f(t) = 2t* — 4t* + 3t — 1, find f'(¢) and f"(t).

81. If f(z) = 13 — 82 + /22 and f'(r) = 4, find 7.

82. If f(x) = 4a® + 62 — 23z + 7, find the intervals on
which f/(x) > 1.

83. If f(z) = (3z + 8)(2x — 5), find f'(z) and f"(x).

For Problems 8489, use Figure 3.47.

Figure 3.47

84. Let h(z) = t(z)s(x) and p(x) = t(x)/s(x). Estimate:
(@ K(1) (b) R'(0) (© »'(0)
85. Letr(z) = s(t(z)). Estimate r’(0).
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86. Let h(z) = s(s(x)). Estimate:

@ h'(1) (b) h(2)

87. Estimate all values of x for which the tangent line to

y = s(s(x)) is horizontal.

88. Let h(x) = x°t(x) and p(x) = t(x?). Estimate:

(@ K (-1) M) p'(-1)

89. Find an approximate equation for the tangent line to

r(z) = s(t(z)) atz = 1.

In Problems 90-92, use Figure 3.48 to evaluate the deriva-
tives.

20 7 0.8 1]

5 f(=) 06 /(@)

10 0.4 \

5 0.2 I

0 10 20 30 40 ! 0 10 20 30 40 !
Figure 3.48

90. (f71)'(5) 9. (F71)'(10) 92 (f7)(15)

93. Suppose W is proportional to 7>, The derivative dW/dr
is proportional to what power of r?

94. Using the information in the table about f and g, find:

@ h(4)if h(z) = f(g(x))
(b) R'(4) if h(z) = f(g(x))
(©) h(4)if h(x) = g(f(x))
(@) n'(4)if h(z) = g(f(x))
(e) I'(4)if h(z) = g(x)/ f(x)

®) K (4)if h(z) = f(z)g(x)
T 112134
f@) |3]2|1]4
fl)|1|al2]3
glz) |2|1]4]3
gx)|4]12]3]|1
95. Given: r(2) = 4, s(2) = 1, 5(4) = 2,7'(2) = -1,

s'(2) = 3, s'(4) = 3. Compute the following deriva-
tives, or state what additional information you would
need to be able to do so.

(a) H'(2) if H(z) =r(z)-s(z)
(b) H'(2) if H(z) = \/r(x)
() H'(2) if H(z) = r(s(z))
() H'(2) if H(z) = s(r(z))

96. If g(2) = 3 and g'(2) = —4, find f'(2) for the follow-
ing:

€T

@ f(z)=2a"—4g(z) O f(’“"):g(x)

© f(x)=2g(z) @ f(z) = (g9(x))?
() f(z)=wsin(g(x)) ® f[f(z)=2"In(g(x))

For parts (a)—(f) of Problem 96, determine the equation
of the line tangent to f at x = 2.

97.

98. Imagine you are zooming in on the graphs of the follow-

ing functions near the origin:
y = arcsinx

y=sinx —tanx y=x—sinz

= arctan x —ﬂ -z

vy= y_l—i—sin:c y_x2+1
_1—cosz oz ’_sinx_l
Y= "cosa Y= V="
y=—xlnz y=¢e"—1 y=z0+ Yz
o

y_:r+1

Which of them look the same? Group together those
functions which become indistinguishable, and give the
equation of the line they look like. [Note: (sinx)/z — 1
and —x In « never quite make it to the origin.]

99. The graphs of sinz and cos « intersect once between 0
and 7 /2. What is the angle between the two curves at the
point where they intersect? (You need to think about how

the angle between two curves should be defined.)

In Problems 100-101, show that the curves meet at least once
and determine whether the curves are perpendicular at the
point of intersection.
100.
101.
102.

y=1l+z—2’andy=1—2+2*
y=1-2%/3andy =z —1

For some constant b and z > 0, let y = z In x — bz. Find
the equation of the tangent line to this graph at the point
at which the graph crosses the x-axis.

In Problems 103-105, find the limit as x — —oo.

cosh(2z) e 2
sinh(3z) " sinh(27)

sinh(z?)

103.  coh )

106. Consider the function f(x) = /z.

(a) Find and sketch f(x) and the tangent line approxi-
mation to f(x) near v = 4.

(b) Compare the true value of f(4.1) with the value ob-
tained by using the tangent line approximation.



107.

108.

109.

110.
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(¢) Compare the true and approximate values of f(16). 111. The depth of the water, y, in meters, in the Bay of Fundy,

(d) Using a graph, explain why the tangent line approx-
imation is a good one when x = 4.1 but not when
z = 16.

Figure 3.49 shows the tangent line approximation to f ()
near r = a.

(a) Find a, f(a), f'(a).

(b) Estimate f(2.1) and f(1.98). Are these under or
overestimates? Which estimate would you expect to
be more accurate and why?

y=-3cv+7

f(@)

! T
2

Figure 3.49

Some antique furniture increased very rapidly in price
over the past decade. For example, the price of a particu-
lar rocking chair is well approximated by

V = 75(1.35)",

where V' is in dollars and ¢ is in years since 2000. Find
the rate, in dollars per year, at which the price is increas-
ing at time ¢.

The acceleration due to gravity, g, at a distance r from
the center of the earth is given by

GM

9=—=

r2’

where M is the mass of the earth and G is a constant.

(a) Find dg/dr.

(b) What is the practical interpretation (in terms of ac-
celeration) of dg/dr? Why would you expect it to
be negative?

You are told that M/ = 6-10°* and G = 6.67-10~*°
where M is in kilograms and r in kilometers. What
is the value of dg/dr at the surface of the earth
(r = 6400 km) ?

What does this tell you about whether or not it is rea-
sonable to assume g is constant near the surface of
the earth?

(c)

(@)

The distance, s, of a moving body from a fixed point is
given as a function of time, ¢, by s = 20et/2.

(a) Find the velocity, v, of the body as a function of .
(b) Find a relationship between v and s, then show that
s satisfies the differential equation s’ = %s.

112.

113.

114.

115.

Canada, is given as a function of time, ¢, in hours after
midnight, by the function

y = 10 + 7.5 cos(0.507¢).

How quickly is the tide rising or falling (in meters/hour)
at each of the following times?

(a) 6:00 am (b) 9:00 am
(¢) Noon (d) 6:00 pm

A yam is put in a hot oven, maintained at a constant tem-
perature 200°C. At time ¢ = 30 minutes, the temperature
T of the yam is 120° and is increasing at an (instanta-
neous) rate of 2°/min. Newton’s law of cooling (or, in
our case, warming) implies that the temperature at time ¢
is given by

T(t) = 200 — ae™ ™.
Find a and b.
An object is oscillating at the end of a spring. Its posi-
tion, in centimeters, relative to a fixed point, is given as a
function of time, ¢, in seconds, by

Yy = yo cos(2mwt),  with w a constant.

(a) Find an expression for the velocity and acceleration
of the object.

(b) How do the amplitudes of the position, velocity, and
acceleration functions compare? How do the periods
of these functions compare?

(¢) Show that the function y satisfies the differential
equation

d?y
dar?

The total number of people, N, who have contracted a

disease by a time ¢ days after its outbreak is given by

1,000,000
= 1+5,000e 0L

(a) In the long run, how many people get the disease?

(b) Is there any day on which more than a million peo-
ple fall sick? Half a million? Quarter of a million?
(Note: You do not have to find on what days these
things happen.)

+ 47T2w2y =0.

The world population was 6.7 billion at the beginning of
2008. An exponential model predicts the population to be
P(t) = 6.7¢™ billion t years after 2008, where  is the
continuous annual growth rate.

(a) How long does the model predict it will take for the
population to reach 10 billion, as a function f(k)?
(b) One current estimate is &k = 0.012 = 1.2%. How
long will it take for the population to reach 10 bil-
lion if k has this value?
For continuous growth rates near 1.2%, find a lin-
ear function of & that approximates the time for the
world population to reach 10 billion.
Find the time to reach 10 billion and its approxima-
tion from part (c) if the continuous growth rate is
1.0%.

(o)

(d)



172 Chapter Three  SHORT-CUTS TO DIFFERENTIATION

116. The acceleration due to gravity, g, is given by

(b) f'(20)(f71)'(10) = 2.

_ aM 119. If f is decreasing and f(20) = 10, which of the follow-
2 ing must be incorrect?
where M is the mass of the earth,  is the distance from 1y . 1y
i 20) = —3. b 10) = 12.
the center of the earth, and G is the universal gravita- @ (F7)0) ® ()10
tional constant. 120. Find the n™ derivative of the following functions:
(a) Show thaft when r changes by A‘r, the change in the (@ Inz (b) we” © € cosw
acceleration due to gravity, Ag, is given by
Ar 121. The derivative f’ gives the (absolute) rate of change of a
Ag~ —2g—. quantity f, and f’/f gives the relative rate of change of
T . .
] o S the quantity. In this problem, we show that the product
(b) What is the significance of the negative sign? rule is equivalent to an additive rule for relative rates of
(¢) What is the percent change in g when moving from change. Assume h = f - g with f # 0 and g # 0.
sea level to the top of Pike’s Peak (4.315 km)? As- »
sume the radius of the earth is 6400 km. (a) Show that the additive rule
117. At a particular location, f(p) is the number of gallons of f_' g_/ _ h_'
gas sold when the price is p dollars per gallon. f g h
(a) What does the statement f(2) = 4023 tell you about implies the product rule, by multiplying through by
gas sales?. . h and using the fact that h = f - g.
(b) Find and interpret f (402?)’ . (b) Show that the product rule implies the additive rule
(¢c) What does the statement f'(2) = —1250 tell you in part (a), by starting with the product rule and di-
about gas sales? viding through by h = f - g.
(d) Find and interpret (f ')’ (4023)
122. The relative rate of che f a functi is defined to by
118. If f is increasing and f(20) = 10, which of the two op- / " rel;l_ l‘ée rafe ot e d_ngefo dhunc 1101? Jis de r;e h obe
L b), must be wrong? f'/f. Find an expression for the relative rate of change
tions, (a) or (b), ’ of a quotient f/g in terms of the relative rates of change
(@) f(10)(f1)'(20) = 1. of the functions f and g.
CAS Challenge Problems
123. (a) Use a computer algebra system to differentiate derivative of the given function.
(x + 1)* and (sin x)T o . (b) Without a computer algebra system, use differentiation
(b) CQHJCCHIT? a rule‘for dlﬁereptlatlng (f(2))*, where rules to calculate the derivative. Make sure that the an-
fis f‘ny dlffereintlable funCtIOil. N swer simplifies to the same answer as in part (a).
A = *.D an- . . L
(©) Apply your e o g(z) = ( . z) 0cs your an (¢) Explain how you could have predicted the derivative by
swer agree with the answer given by the computer . . o
using algebra before taking the derivative.
algebra system?
(d) Prove your conjecture by rewriting (f(x))® in the . .
form @) 124. f(x) = sin(arcsin x)
125. g(r) =27°"4"
For Problems 124-126,
(a) Use a computer algebra system to find and simplify the 126. h(t) =In(1 —1/t) +In(t/(t — 1))
CHECK YOUR UNDERSTANDING
Are the statements in Problems 1-14 true or false? Give an 6. If f'(2) = 3.1 and ¢'(2) = 7.3, then the graph of
explanation for your answer. f(x) + g(x) has slope 10.4 at z = 2.
1. The derivati ¢ ! ialis al | - 7. Let f and g be two functions whose second derivatives
. The derivative of a polynomial is always a polynomial. are defined. Then
2. The derivative of 7 /% is —7 /.
(f9)" =fg"+f"9g.
3. The derivative of tan 6 is periodic.
2 .
4. The graph of In(2°) is concave up for z > 0. 8. If a function is periodic, with period ¢, then so is its
5. If f/(x) is defined for all z, then f(z) is defined for all z. derivative.



9. If y satisfies the equation y* + zy — 1 = 0, then dy/dz
exists everywhere.

10. The function tanhz is odd, that is, tanh(—z) =
— tanh z.

11. The 100*™" derivative of sinh z is cosh z.
12. sinhz + coshz = e”.
13. The function sinh x is periodic.

14. The function sinh? z is concave down everywhere.

Are the statements in Problems 15-21 true or false? If a state-
ment is true, explain how you know. If a statement is false,
give a counterexample.

15. TIf f(z) is defined for all z, then f’(x) is defined for all
z.

16. If f(x) is increasing, then f’(z) is increasing.

17. The only functions whose fourth derivatives are equal to
cost are of the form cos t + C, where C' is any constant.

18. If f(x) has an inverse function, g(x), then the derivative
of g(x)is 1/ f'(x).

19. (fg)'(x) is never equal to f'(x)g’ ().

20. If the function f(z)/g(z) is defined but not differen-
tiable at = = 1, then either f(z) or g(x) is not differ-
entiable at z = 1.

21. If the derivative of f(g(x)) is equal to the derivative of
f(x) for all , then g(x) = x for all .

Suppose that f” and g” exist and that f and g are concave up
for all . Are the statements in Problems 22-25 true or false
for all such f and ¢? If a statement is true, explain how you
know. If a statement is false, give a counterexample.

22. f(x) 4+ g(z) is concave up for all z.

23. f(x)g(zx) is concave up for all z.

24. f(x) — g(x) cannot be concave up for all .

25. f(g(x)) is concave up for all .

26. Let f be a differentiable function and let L be the linear
function L(z) = f(a) + k(x — a) for some constant a.
Decide whether the following statements are true or false
for all constants k. Explain your answer.

(a) L is the local linearization for f near x = a,
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(b) If lim (f(xz) — L(x)) = 0, then L is the local lin-

earization for f near x = a.

27. Which of the following would be a counterexample to the
product rule?

(a) Two differentiable functions f and g satisfying
(fg)' =f'g"

(b) A differentiable function f such that (xzf(x))" =
zf'(z) + f(x).

(¢) A differentiable function f such that (f(x)?) =
2f ().

(d) Two differentiable functions f and g such that
f'(a) = 0and ¢g'(a) = 0 and fg has positive slope
atz = a.

Are the statements in Problems 28-31 true or false for a func-
tion f whose domain is all real numbers? If a statement is true,
explain how you know. If a statement is false, give a coun-
terexample.

28. If f/(x) > O for all z, then f(a) < f(b) whenever
a <b.

29. If f'(z) < ¢'(z) for all z, then f(z) < g(z) for all z.
30. If f'(x) = ¢'(x) for all z, then f(z) = g(x) for all z.

31. If f/(z) < 1forall z and f(0) = 0, then f(z) < x for
all x.

In Problems 32-34, give an example of function(s) with the
given properties.

32. A continuous function f on the interval [—1, 1] that does
not satisfy the conclusion of the Mean Value Theorem.

33. A function f that is differentiable on the interval (0, 2),
but does not satisfy the conclusion of the Mean Value
Theorem on the interval [0, 2].

34. A function that is differentiable on (0, 1) and not contin-
uous on [0, 1], but which satisfies the conclusion of the
Mean Value Theorem.

The “Rule of 70” is a rule of thumb to estimate how long it takes money in a bank to
double. Suppose the money is in an account earning 7% annual interest, compounded yearly.
The Rule of 70 says that the time it takes the amount of money to double is approximately 70 /i
years, assuming ¢ is small. Find the local linearization of In(1 + ), and use it to explain why

this rule works.
2. Newton’s Method

Read about how to find roots using bisection and Newton’s method in Appendices A and C.
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(a) What is the smallest positive zero of the function f(x) = sina? Apply Newton’s method,
with initial guess zy = 3, to see how fast it converges to m = 3.1415926536 . . . .

(i) Compute the first two approximations, x1 and xo; compare zo with 7.

(ii)) Newton’s method works very well here. Explain why. To do this, you will have to
outline the basic idea behind Newton’s method.
(iii) Estimate the location of the zero using bisection, starting with the interval [3, 4]. How
does bisection compare to Newton’s method in terms of accuracy?
(b) Newton’s method can be very sensitive to your initial estimate, x. For example, consider
finding a zero of f(z) =sinz — %ZL’
(i) Use Newton’s method with the following initial estimates to find a zero:

xo = 0.904, z9=0.905, =z = 0.906.

(ii) What happens?



