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256 Chapter Five KEY CONCEPT: THE DEFINITE INTEGRAL
5.1 HOW DO WE MEASURE DISTANCE TRAVELED?

For positive constant velocities, we can find the distance a moving object travels using the formula
Distance = Velocity x Time.

In this section we see how to estimate the distance when the velocity is not a constant.

A Thought Experiment: How Far Did the Car Go?

Velocity Data Every Two Seconds

A car is moving with increasing velocity. Table 5.1 shows the velocity every two seconds:

Table 5.1 Velocity of car every two seconds

Time (sec) 0 2 4 6 8 10
Velocity (ft/sec) 20 30 38 44 48 50

How far has the car traveled? Since we don’t know how fast the car is moving at every moment,
we can’t calculate the distance exactly, but we can make an estimate. The velocity is increasing, so
the car is going at least 20 ft/sec for the first two seconds. Since Distance = Velocity x Time, the
car goes at least 20 - 2 = 40 feet during the first two seconds. Likewise, it goes at least 30 - 2 = 60
feet during the next two seconds, and so on. During the ten-second period it goes at least

20-2430-2+38-2+44-2+48 -2 = 360 feet.

Thus, 360 feet is an underestimate of the total distance traveled during the ten seconds.

To get an overestimate, we can reason this way: During the first two seconds, the car’s velocity
is at most 30 ft/sec, so it moved at most 30 - 2 = 60 feet. In the next two seconds it moved at most
38 - 2 = 76 feet, and so on. Therefore, over the ten-second period it moved at most

30-2+38-2+44-2+48 -2+ 502 = 420 feet.

Therefore,
360 feet < Total distance traveled < 420 feet.

There is a difference of 60 feet between the upper and lower estimates.

Velocity Data Every One Second

What if we want a more accurate estimate? Then we make more frequent velocity measurements,
say every second, as in Table 5.2.

As before, we get a lower estimate for each second by using the velocity at the beginning of that
second. During the first second the velocity is at least 20 ft/sec, so the car travels at least 20 - 1 = 20
feet. During the next second the car moves at least 26 feet, and so on. We have

New lower estimate =20-1+26-1+30-14+34-14+38-1
+41-1444-1+46-14+48-14+49-1
= 376 feet.

Table 5.2 Velocity of car every second

Time (sec) 0 1 2 3 4 5 6 7 8 9 10
Velocity (ft/sec) 20 26 30 34 38 41 44 46 48 49 50
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Notice that this lower estimate is greater than the old lower estimate of 360 feet.

We get a new upper estimate by considering the velocity at the end of each second. During the
first second the velocity is at most 26 ft/sec, so the car moves at most 26 - 1 = 26 feet; in the next
second it moves at most 30 feet, and so on.

New upper estimate =26-14+30-1+34-1438-1+41-1
+44-14+46-14+48-14+49-14+50-1
= 4006 feet.

This is less than the old upper estimate of 420 feet. Now we know that
376 feet < Total distance traveled < 406 feet.

The difference between upper and lower estimates is now 30 feet, half of what it was before. By
halving the interval of measurement, we have halved the difference between the upper and lower
estimates.

Visualizing Distance on the Velocity Graph: Two Second Data

We can represent both upper and lower estimates on a graph of the velocity. The graph also shows
how changing the time interval between velocity measurements changes the accuracy of our esti-
mates.

The velocity can be graphed by plotting the two-second data in Table 5.1 and drawing a curve
through the data points. (See Figure 5.1.) The area of the first dark rectangle is 20- 2 = 40, the lower
estimate of the distance moved during the first two seconds. The area of the second dark rectangle is
30 - 2 = 60, the lower estimate for the distance moved in the next two seconds. The total area of the
dark rectangles represents the lower estimate for the total distance moved during the ten seconds.

If the dark and light rectangles are considered together, the first area is 30 - 2 = 60, the upper
estimate for the distance moved in the first two seconds. The second area is 38 - 2 = 76, the upper
estimate for the next two seconds. The upper estimate for the total distance is represented by the
sum of the areas of the dark and light rectangles. Therefore, the area of the light rectangles alone
represents the difference between the two estimates.

To visualize the difference between the two estimates, look at Figure 5.1 and imagine the light
rectangles all pushed to the right and stacked on top of each other. This gives a rectangle of width 2
and height 30. The height, 30, is the difference between the initial and final values of the velocity:
30 = 50 — 20. The width, 2, is the time interval between velocity measurements.

) Difference
velocity between
estimates
50 T
Overestimate 40
of distance
(area of dark and 30 (= 50 — 20)
light rectangles)
30
20
Underestimate
of distance p—2
(area of dark
rectangles) 10

time
2 4 6 8 10

Figure 5.1: Velocity measured every 2 seconds
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) Difference
velocity between
estimates
50 =T
40 |
] i — 30 (=50 — 20)
Overestimate of distance
(area of darkand 30
light rectangles) L
. i 20 —
Underestimate of distance ]
(area of dark ]
rectangles)
10
time

2 4 6 8 10

Figure 5.2: Velocity measured every second

Visualizing Distance on the Velocity Graph: One Second Data

Figure 5.2 shows the velocities measured every second. The area of the dark rectangles again rep-
resents the lower estimate, and the area of the dark and light rectangles together represent the upper
estimate. As before, the difference between the two estimates is represented by the area of the light
rectangles. This difference can be calculated by stacking the light rectangles vertically, giving a
rectangle of the same height as before but of half the width. Its area is therefore half what it was
before. Again, the height of this stack is 50 — 20 = 30, but its width is now 1.

Example 1

Solution

What would be the difference between the upper and lower estimates if the velocity were given
every tenth of a second? Every hundredth of a second? Every thousandth of a second?

Every tenth of a second: Difference between estimates = (50 — 20)(1/10) = 3 feet.
Every hundredth of a second: Difference between estimates = (50 — 20)(1/100) = 0.3 feet.
Every thousandth of a second: Difference between estimates = (50 — 20)(1/1000) = 0.03 feet.

Example 2

Solution

How frequently must the velocity be recorded in order to estimate the total distance traveled to
within 0.1 feet?

The difference between the velocity at the beginning and end of the observation period is 50 — 20 =
30. If the time between the measurements is h, then the difference between the upper and lower
estimates is (30)h. We want

(30)h < 0.1,

or

0.1
h < — =0.0033.
30

So if the measurements are made less than 0.0033 seconds apart, the distance estimate is accurate
to within 0.1 feet.
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Visualizing Distance on the Velocity Graph: Area Under Curve

As we make more frequent velocity measurements, the rectangles used to estimate the distance trav-
eled fit the curve more closely. See Figures 5.3 and 5.4. In the limit, as the number of subdivisions
increases, we see that the distance traveled is given by the area between the velocity curve and the
horizontal axis. See Figure 5.5. In general:

If the velocity is positive, the total distance traveled is the area under the velocity curve.

velocity velocity g
50 50 50
40 40 :
30 » 30
20 20 "‘" 20
10 10 10

time time time

2 4 6 8 10 2 4 6 8 10 SR E—

Figure 5.3: Velocity measured every ~ Figure 5.4: Velocity measured every  Figure 5.5: Distance traveled is area

1/2 second 1/4 second under curve

With time ¢ in seconds, the velocity of a bicycle, in feet per second, is given by v(¢) = 5¢. How far
The velocity is linear. See Figure 5.6. The distance traveled is the area between the line v(¢) = 5¢
and the ¢-axis. Since this region is a triangle of height 15 and base 3

1
Distance traveled = Area of triangle = 3 153 = 22.5 feet.

velocity (ft/sec)
15
v(t) =5t

time, ¢ (sec)

Figure 5.6: Shaded area represents distance traveled

In the thought experiment, the velocity is positive and our sums represent distance traveled. What if

A particle moves along the y-axis with velocity 30 cm/sec for 5 seconds and velocity —10 cm/sec for
the next 5 seconds. Positive velocity indicates upward motion; negative velocity represents down-

305+ (—10) - 57

Example 3
does the bicycle travel in 3 seconds?
Solution
Negative Velocity and Change in Position
the velocity is sometimes negative?
Example 4
ward motion. What is represented by the sum
Solution

The first term in the sum represents an upward motion of 30 -5 = 150 centimeters. The second term
represents a motion of (—10) - 5 = —50 centimeters, that is, 50 centimeters downward. Thus, the
sum represents a change in position of 150 — 50 = 100 centimeters upward.
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v (cm/sec)
30
~<~——+ Area = 150 Upward motion
10
5 t (sec)
—10 ~ x

Area = 50 Downward motion

Figure 5.7: Difference in areas gives change in position

Figure 5.7 shows velocity versus time. The area of the rectangle above the #-axis represents
upward distance, while the area of the rectangle below the ¢-axis represents downward distance.

In general, if the velocity can be negative as well as positive, the limit of the sums represents
change in position, rather than distance.

Left and Right Sums

‘We now write the estimates for the distance traveled by the car in new notation. Let v = f(¢) denote
any nonnegative velocity function. We want to find the distance traveled between times ¢ = « and

t = b. We take measurements of f(¢) at equally spaced times to, t1, to, ..., t,, With time tg = a
and time ¢,, = b. The time interval between any two consecutive measurements is
b—ua
At = ,
n

where At means the change, or increment, in ¢.
During the first time interval, from ¢, and ¢, the velocity can be approximated by f(tg), so the
distance traveled is approximately
f(to)At.

During the second time interval, the velocity is about f(¢1), so the distance traveled is about
f (tl ) At.

Continuing in this way and adding all the estimates, we get an estimate for the total distance traveled.
In the last interval, the velocity is approximately f(¢,—1), so the last term is f(t,—1)At:

Total di I
otal distance traveled ~ f(to)At + f(tl)At + f(tQ)At + -4 f(tn—l)At'
betweent = aand t = b

This is called a left-hand sum because we used the value of velocity from the left end of each time
interval. It is represented by the sum of the areas of the rectangles in Figure 5.8.

We can also calculate a right-hand sum by using the value of the velocity at the right end of
each time interval. In that case the estimate for the first interval is f(¢;)At, for the second interval
itis f(t2)At, and so on. The estimate for the last interval is now f(t¢,,)At, so

Total distance traveled ~ f(t1)At+ f(t2) At + f(t3) At + -+ -+ f(tn) AL
betweent =aandt = b

The right-hand sum is represented by the area of the rectangles in Figure 5.9.

If f is an increasing function, as in Figures 5.8 and 5.9, the left-hand sum is an underestimate
and the right-hand sum is an overestimate of the total distance traveled. If f is decreasing, as in
Figure 5.10, then the roles of the two sums are reversed.
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v v
v =f(t) v=f(1)
f(tn)
.f(tn—l)
= At~ = At~
t st I
1
f(to) l
t t
a=tp t1 to " tho1 th =0 a=to t1 to " tho1 tn, =0
Figure 5.8: Left-hand sums Figure 5.9: Right-hand sums

Accuracy of Estimates

For either increasing or decreasing velocity functions, the exact value of the distance traveled lies
somewhere between the two estimates. Thus, the accuracy of our estimate depends on how close
these two sums are. For a function which is increasing throughout or decreasing throughout the
interval [a, b]:

f(a) and f(b)

Difterence between
upper and lower estimates

‘ Difference between

’ CAL=|f(8) - f(a)] - AL

(Absolute values make the differences nonnegative.) In Figure 5.10, the area of the light rectangles
is the difference between estimates. By making the time interval, A¢, between measurements small
enough, we can make this difference between lower and upper estimates as small as we like.

Eiftf\zrence
etween
v AL~ estimates
v=f(t)
|£(6) — f(a)l
f(a) 1
e At
1)
\ t
a=to t1 to th =0

Figure 5.10: Left and right sums if f is decreasing
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Exercises and Problems for Section 5.1

Exercises

1. The velocity v(t) in Table 5.3 is increasing, 0 < ¢ < 12.

(a) Find an upper estimate for the total distance traveled

using
i n=4 (i) n=2
(b) Which of the two answers in part (a) is more accu-
rate? Why?
(¢) Find a lower estimate of the total distance traveled
using n = 4.
Table 5.3

t ol 3] 6| 912
v(t) | 34 |37 | 38| 40| 45

2. The velocity v(t) in Table 5.4 is decreasing, 2 < ¢t < 12.
Using n = 5 subdivisions to approximate the total dis-
tance traveled, find

(a) An upper estimate (b) A lower estimate

Table 5.4

t | 2| 4| 6| 8|10]12
v(t) | 44 [ 42| 41| 40| 3735

3. A car comes to a stop six seconds after the driver ap-
plies the brakes. While the brakes are on, the velocities
recorded are in Table 5.5.

Table 5.5

Time since brakes applied (sec) | 0 2| 4
Velocity (ft/sec) 88 | 45 | 16

(a) Give lower and upper estimates for the distance the
car traveled after the brakes were applied.

(b) On a sketch of velocity against time, show the lower
and upper estimates of part (a).

4. Figure 5.11 shows the velocity, v, of an object (in me-
ters/sec). Estimate the total distance the object traveled
between t = 0 and ¢ = 6.

v (m/sec)
40

30
20

10

t (sec)

Figure 5.11

5. Figure 5.12 shows the velocity of a particle, in cm/sec,
along the ¢-axis for —3 <t < 3.

(a) Describe the motion in words: Is the particle chang-
ing direction or always moving in the same direc-
tion? Is the particle speeding up or slowing down?

(b) Make over and underestimates of the distance trav-
eled for —3 < ¢ < 3.

1
/'\
2
1 N

-4 -3 -2-1 0 1 2 3 4

t
Figure 5.12

6. Use the expressions for left and right sums on page 260
and Table 5.6.
(a) If n = 4, what is At? What are to, t1, t2,t3,t4?

What are f(to), f(t1), f(t2), f(t3), f(ts)?
(b) Find the left and right sums using n = 4.
(¢) If n = 2, what is At? What are t¢, t1, t>? What are

f(to), f(t1), f(t2)?

(d) Find the left and right sums using n = 2.
Table 5.6

t 1517|1921 |23
f@) | 10| 13| 18|20 30

7. Use the expressions for left and right sums on page 260
and Table 5.7.
(a) If n = 4, what is At? What are to, t1, t2,t3,t4?

What are f(to), f(t1), f(t2), f(ts), f(ta)?
(b) Find the left and right sums using n = 4.
(¢) If n = 2, what is At? What are t¢, t1,t>? What are

[(to), f(t1), f(t2)?
(d) Find the left and right sums using n = 2.

Table 5.7

t | o 4| 8|12]16
f@y {25 2322217

8. Attime, t, in seconds, your velocity, v, in meters/second,

is given by
v(t) =141t for 0<t<6.

Use At = 2 to estimate the distance traveled during this
time. Find the upper and lower estimates, and then aver-
age the two.



9. For time, ¢, in hours, 0 < ¢ < 1, a bug is crawling at a

10.

velocity, v, in meters/hour given by

.
T4t

Use At = 0.2 to estimate the distance that the bug crawls
during this hour. Find an overestimate and an underesti-
mate. Then average the two to get a new estimate.

The velocity of acaris f(t) = 5t meters/sec. Use a graph
of f(t) to find the exact distance traveled by the car, in
meters, from t = 0 to ¢ = 10 seconds.

Exercises 11-14 show the velocity, in cm/sec, of a particle
moving along the z-axis. Compute the particle’s change in po-
sition, left (negative) or right (positive), between times ¢ = 0
and t = 5 seconds.

Problems

11.

13.
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12. v(t)
2 —
—————+ t
4+t
o(t) P 3 5
-3 _3 L
10 14. 3
v(t)
o(t) o ¢
. -2 4

15.

A student is speeding down Route 11 in his fancy red
Porsche when his radar system warns him of an obsta-
cle 400 feet ahead. He immediately applies the brakes,
starts to slow down, and spots a skunk in the road directly
ahead of him. The “black box” in the Porsche records the
car’s speed every two seconds, producing the following
table. The speed decreases throughout the 10 seconds it
takes to stop, although not necessarily at a uniform rate.

Time since brakes applied (sec) 0 2 4 6 8

10

Speed (ft/sec)

100 | 80 | 50 | 25 | 10| O

16.

(a) What is your best estimate of the total distance the
student’s car traveled before coming to rest?

(b) Which one of the following statements can you jus-
tify from the information given?

(i) The car stopped before getting to the skunk.
(i1) The “black box” data is inconclusive. The
skunk may or may not have been hit.

(iii) The skunk was hit by the car.

Roger runs a marathon. His friend Jeff rides behind him
on a bicycle and clocks his speed every 15 minutes.
Roger starts out strong, but after an hour and a half he
is so exhausted that he has to stop. Jeff’s data follow:

Time since start (min) | O | 15 | 30 | 45 | 60 | 75 | 90

Speed (mph) 12 11|10 | 10| 8 7 0

(a) Assuming that Roger’s speed is never increasing,
give upper and lower estimates for the distance
Roger ran during the first half hour.

(b) Give upper and lower estimates for the distance
Roger ran in total during the entire hour and a half.

(¢) How often would Jeff have needed to measure
Roger’s speed in order to find lower and upper esti-
mates within 0.1 mile of the actual distance he ran?

In Problems 17-20, find the difference between the upper and
lower estimates of the distance traveled at velocity f(¢) on the
interval a < ¢t < b for n subdivisions.

17.
18.
19.

20.
21.

22.

23.

24.

f(t)y=5t4+8,a=1,b=3,n=100
f&)=25—-1t*,a=1,b=4,n=>500

f(t)y=sint,a =0,b =m/2,n =100

ft)=e /2 a=0b=2,n=20

The velocity of a particle moving along the z-axis is
given by f(t) = 6 — 2t cm/sec. Use a graph of f(t)
to find the exact change in position of the particle from
time ¢ = 0 to ¢ = 4 seconds.

A baseball thrown directly upward at 96 ft/sec has veloc-
ity v(t) = 96 — 32t ft/sec at time ¢ seconds.

(a) Graph the velocity fromt =0to ¢t = 6.

(b) When does the baseball reach the peak of its flight?
How high does it go?

(¢) How high is the baseball at time ¢t = 57

A car initially going 50 ft/sec brakes at a constant rate
(constant negative acceleration), coming to a stop in 5
seconds.

(a) Graph the velocity fromt =0to ¢ = 5.

(b) How far does the car travel?

(¢) How far does the car travel if its initial velocity is
doubled, but it brakes at the same constant rate?

An object has zero initial velocity and a constant accel-
eration of 32 ft/sec®. Find a formula for its velocity as a
function of time. Use left and right sums with At = 1
to find upper and lower bounds on the distance that the
object travels in four seconds. Find the precise distance
using the area under the curve.



264 Chapter Five KEY CONCEPT: THE DEFINITE INTEGRAL

25. A woman drives 10 miles, accelerating uniformly from 27. Two cars travel in the same direction along a straight

rest to 60 mph. Graph her velocity versus time. How long road. Figure 5.14 shows the velocity, v, of each car at
does it take for her to reach 60 mph? time ¢. Car B starts 2 hours after car A and car B reaches
26. Two cars start at the same time and travel in the same a maximum velocity of 50 km/hr.

direction along a straight road. Figure 5.13 gives the ve-

locity, v, of each car as a function of time, ¢. Which car: (a) For approximately how long does each car travel?

(b) Estimate car A’s maximum velocity.

(a) Attains the larger maximum velocity? (¢) Approximately how far does each car travel?

(b) Stops first?
(¢) Travels farther?

v (km/hr) v (km/hr) Car A
Car A
Car B
Car B /\
! t ()
t () Figure 5.14
Figure 5.13

5.2 THE DEFINITE INTEGRAL

In Section 5.1, we saw how distance traveled can be approximated by a sum of areas of rectangles.
We also saw how the approximation improves as the width of the rectangles gets smaller. In this
section, we construct these sums for any function f, whether or not it represents a velocity.

Sigma Notation

Suppose f(t) is a continuous function for a < ¢ < b. We divide the interval from « to b into n equal
subdivisions, and we call the width of an individual subdivision A, so

b—a

n

At =

Let o, t1, to, ..., t, be endpoints of the subdivisions. Both the left-hand and right-hand sums can
be written more compactly using sigima, or summation, notation. The symbol ) is a capital sigma,
or Greek letter “S.” We write

Right-hand sum = f(t1)At + f(t2)At + - + f(t,)At = i f(t:)At.
=1

The > tells us to add terms of the form f(¢;)At. The “i = 1” at the base of the sigma sign tells us
to start at ¢ = 1, and the “n” at the top tells us to stop at ¢ = n.
In the left-hand sum we start at ¢ = 0 and stop at i = n — 1, so we write

n—1

Left-hand sum = f(t9)At + f(t1)At + -+ + f(tn—1)At = Z ft)At.

i=0

Taking the Limit to Obtain the Definite Integral

Now we take the limit of these sums as n goes to infinity. If f is continuous for a < t < b, the
limits of the left- and right-hand sums exist and are equal. The definite integral is the limit of these
sums. A formal definition of the definite integral is given in the online supplement to the text at
www.wiley.com/college/hugheshallett.
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Suppose f is continuous for a < t < b. The definite integral of f from a to b, written

/a g

is the limit of the left-hand or right-hand sums with 7 subdivisions of a < ¢t < b as n gets
arbitrarily large. In other words,

b n—1
/ f(#)dt = lim (Left-hand sum) = lim (Z f (ti)At)
@ n—00 n—oo =0

and
b n
/ f(t)dt = lim (Right-hand sum) = lim (Z f(@At) .
a n—oo n—oo im1
Each of these sums is called a Riemann sum, f is called the integrand, and a and b are called
the limits of integration.

The f ” notation comes from an old-fashioned “S,” which stands for “sum” in the same way
that Y does. The “dt” in the integral comes from the factor A¢. Notice that the limits on the
symbol are 0 and n — 1 for the left-hand sum, and 1 and n for the right-hand sum, whereas the limits
on the [ sign are a and b.

Computing a Definite Integral

In practice, we often approximate definite integrals numerically using a calculator or computer.
They use programs which compute sums for larger and larger values of n, and eventually give a
value for the integral. Some (but not all) definite integrals can be computed exactly. However, any
definite integral can be approximated numerically.

In the next example, we see how numerical approximation works. For each value of n, we
show an over- and an under-estimate for the integral || 12(1 /t) dt. As we increase the value of n, the
over- and under-estimates get closer together, trapping the value of the integral between them. By
increasing the value of n sufficiently, we can calculate the integral to any desired accuracy.

Example 1

Solution

2
1
Calculate the left-hand and right-hand sums with n = 2 for — dt. What is the relation between

1
the left- and right-hand sums for n = 10 and n = 250 and the integral?

Here a = 1 and b = 2, so for n = 2, At = (2 — 1)/2 = 0.5. Therefore, to = 1,¢; = 1.5 and
to = 2. (See Figure 5.15.) We have

Left-hand sum = f(1)At + f(1.5)At = 1(0.5) + %5(0.5) = 0.8333,

1 1
Right-hand sum = f(L3)At + f(2)At = —(0.5) + 5(0.5) = 0.5833.

In Figure 5.15 we see that the left-hand sum is bigger than the area under the curve and the right-
hand sum is smaller. So the area under the curve f(t) = 1/t from ¢t = 1to ¢t = 2 is between
them:

2
0.5833 < / %dt < 0.8333.
J1

Since 1/t is decreasing, when n. = 10 in Figure 5.16 we again see that the left-hand sum is larger
than the area under the curve, and the right-hand sum smaller. A calculator or computer gives

2
0.6688 < / n dt < 0.7188.
1
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=7 1) =5

t

1 15 2 1 15 2 1 15 2

Figure 5.15: Approximating f 12 1dt Figure 5.16: Approximating f 12 1dt Figure 5.17: Shadec21 e:rea is exact value
with . = 2 with n = 10 of f[ ¢ dt

The left- and right-hand sums trap the exact value of the integral between them. As the subdivisions
become finer, the left- and right-hand sums get closer together.
When n = 250, a calculator or computer gives

2
1
0.6921 < / n dt < 0.6941.
1

So, to two decimal places, we can say that

21
/ —dt ~ 0.69.
J1 t

2
1
The exact value is known to be / n dt =1n2 = 0.693147. ... See Figure 5.17.
J1

The Definite Integral as an Area

If f(z) is positive we can interpret each term f(zg)Ax, f(x1)Ax, ... in aleft- or right-hand Rie-
mann sum as the area of a rectangle. See Figure 5.18. As the width Ax of the rectangles approaches
zero, the rectangles fit the curve of the graph more exactly, and the sum of their areas gets closer
and closer to the area under the curve shaded in Figure 5.19. This suggests that:

When f (z) > 0and a < b:

Area under graph of f and above x-axis / b F2)d
= x)dx.
between a and b Ja
f(=) Area = fab f(x)dw f@)
— x xT
a Az b a b
Figure 5.18: Area of rectangles Figure 5.19: The definite integral f: f(z)dx

approximating the area under the curve
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1
Example 2 Consider the integral / V1-—z2dx.
—1
(a) Interpret the integral as an area, and find its exact value.
(b) Estimate the integral using a calculator or computer. Compare your answer to the exact value.
Solution (a) The integral is the area under the graph of y = v/1 — x2 between —1 and 1. See Figure 5.20.
Rewriting this equation as z:? + 2 = 1, we see that the graph is a semicircle of radius 1 and
area /2.
(b) A calculator gives the value of the integral as 1.5707963 . . ..
Y
Area = f_ll VI—a2dx
x
-1 1
Figure 5.20: Area interpretation of f_l V1—a?dr
When f (z) is Not Positive
We have assumed in drawing Figure 5.19 that the graph of f(z) lies above the z-axis. If the graph
lies below the z-axis, then each value of f(z) is negative, so each f(x)Ax is negative, and the area
gets counted negatively. In that case, the definite integral is the negative of the area.
When f () is positive for some x values and negative for others, and a < b:
b
/ f(x) dz is the sum of areas above the z-axis, counted positively, and areas below the
x(—laxis, counted negatively.
1
Example 3 How does the definite integral / (22 — 1) dz relate to the area between the parabola y = 22 — 1
—1
and the z-axis?
Solution A calculator gives j_11 (22 — 1) dv = —1.33. The parabola lies below the axis between = —1 and

x = 1. (See Figure 5.21.) So the area between the parabola and the x-axis is approximately 1.33.

y
1 [
Yy y= 221
\ Ay =0.89
] 1 z Var
x
Area = 1.33 and VT
[, @@*—1)de=-1.33 Ay =0.46
y = sin(z?)
-1 —1r
. 1 . . =
Figure 5.21: Integral f_l(m2 — 1) dz is negative of shaded Figure 5.22: Integral fO\/z_ sin(z?) dr = A; — As

area
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Example 4

Solution

Var
Interpret the definite integral / sin(2?) dx in terms of areas.
0

The integral is the area above the z-axis, A, minus the area below the x-axis, Ao. See Figure 5.22.
Estimating the integral with a calculator gives

Var
/ sin(z?) dz = 0.43.
0

The graph of y = sin(z?) crosses the z-axis where 22 = 7, that is, at = /7. The next crossing is
at z = v/27. Breaking the integral into two parts and calculating each one separately gives

NG Var
/ sin(z?)dz = 0.89 and / sin(x?) de = —0.46.
0 VT
So A; = 0.89 and A5 = 0.46. Then, as we would expect,

Var
/ sin(z?)dz = A} — Ay = 0.89 — 0.46 = 0.43.
J0

More General Riemann Sums

Left- and right-hand sums are special cases of Riemann sums. For a general Riemann sum we
allow subdivisions to have different lengths. Also, instead of evaluating f only at the left or right
endpoint of each subdivision, we allow it to be evaluated anywhere in the subdivision. Thus, a
general Riemann sum has the form

n
Z Value of f(t) at some point in i*? subdivision x Length of i*? subdivision.
i=1
(See Figure 5.23.) As before, we let ¢, 1, . . ., t,, be the endpoints of the subdivisions, so the length
of the i-th subdivision is At; = ¢; — t;_1. For each i we choose a point ¢; in the i-th subinterval at
which to evaluate f, leading to the following definition:

A general Riemann sum for | on the interval [a, b] is a sum of the form
n
> fleAt,
=1

where a =tg<t1<---<t,=b,and, fori =1,...,n, At; =t; —t;_1,and t; 1 < ¢; < t;.

If f is continuous, we can make a general Riemann sum as close as we like to the value of
the definite integral by making the interval lengths small enough. Thus, in approximating definite
integrals or in proving theorems about them, we can use general Riemann sums rather than left- or
right-hand sums. Generalized Riemann sums are especially useful in establishing properties of the
definite integral; see www.wiley.com/college/hugheshallett.

f®)

b— At; —

1
f(Ci)i
|

a t; Ci i1 b

Figure 5.23: A general Riemann sum approximating f: f(t)dt
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Exercises

5.2 THE DEFINITE INTEGRAL 269

1. Figure 5.24 shows a Riemann sum approximation with n
subdivisions to fab f(z)de.

(a) Is it a left- or right-hand approximation? Would the
other one be larger or smaller?
(b) What are a, b, n and Ax?

Figure 5.24

2. Using Figure 5.25, draw rectangles representing each of
the following Riemann sums for the function f on the
interval 0 < t < 8. Calculate the value of each sum.

(a) Left-hand sum with At =4
(b) Right-hand sum with At =4
(¢) Left-hand sum with At = 2
(d) Right-hand sum with At = 2

32 |

28

24 F(t) -

20

16

12
8
4

2 4 6 8
Figure 5.25

3. Use Figure 5.26 to estimate f 03 f(x)dx.

16
12
8 F(@)
4
x
1 2 3
Figure 5.26

4. Use Figure 5.27 to estimate fio f(z)dx.

| | f(=)
f%g
] /
20 Vi
To
x
—-10 0 10
Figure 5.27

5. Use Figure 5.28 to estimate f_zcl)5 f(x) d.

300 —
f(z)

200

/|

100

—-10 0 10 20

Figure 5.28

6. The graph of a function f(¢) is given in Figure 5.29.
Which of the following four numbers could be an esti-
mate of | 01 f(t)dt accurate to two decimal places? Ex-
plain how you chose your answer.

(a) —98.35 (b) T71.84
(¢) 100.12 (d) 93.47
100 RNEO)
80
60 \
40
20
t
0.5 1.0
Figure 5.29

7. Use the table to estimate | 040 f(x)dx. What values of n
and Az did you use?

T 0 10 | 20 | 30 | 40
f(x) | 350 | 410 | 435 | 450 | 460
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8. Use the table to estimate fols f(x)dx.

x o 3| 6| 91215
F(x) | 50 | 48 | 44 | 36 | 24 | 8

9. Use the table to estimate f 012 f(z)dx.

@ of 3| 6| 912
flo) | 3222|1511 | 9

10. Write out the terms of the right-hand sum with n = 5
7

that could be used to approximate /
3

dx. Do not

T
evaluate the terms or the sum.

In Exercises 11-13, use a calculator or a computer to find the
value of the definite integral.

3 1 1 )
11. / e 12 / sin(t?)dt 13, / e da
0 0 —1

14. (a) What is the area between the graph of f(x) in Fig-
ure 5.30 and the x-axis, between £ = 0 and x = 5?

Problems

(b) Whatis [ f(z)dz?

Area =7

(@)

/

Area = 6

Figure 5.30

In Exercises 15-21, find the area of the regions between the
curve and the horizontal axis

15. Under the curve y = cost for 0 <t < /2.

16. Under y = 62° — 2 for 5 < z < 10.

17. Undery = Inxfor 1 < x < 4.

18. Under the curve y = cos/z for 0 < z < 2.

19. Under y = 2cos(t/10) for1 <t < 2.

20. Under the curve y = 7 — z* and above the z-axis.

21. Above the curve y = z* — 8 and below the z-axis.

22. (a) On a sketch of y = In «, represent the left Riemann
sum with n = 2 approximating f 12 Inx dzx. Write
out the terms in the sum, but do not evaluate it.

On another sketch, represent the right Riemann sum
with n = 2 approximating f 12 In x dx. Write out the
terms in the sum, but do not evaluate it.

(¢) Which sum is an overestimate? Which sum is an un-

derestimate?

(b)

23. (a) Draw the rectangles that give the left-hand sum ap-

proximation to [ sin: da with n = 2.

(b) Repeat part (a) for fir sin x dx.

(¢) From your answers to parts (a) and (b), what is
the value of the left-hand sum approximation to
fjﬂ sinz dx with n = 47

24. (a) Use a calculator or computer to find f 06(582 +1)dx.
Represent this value as the area under a curve.
Estimate [ 06(362 + 1) dz using a left-hand sum with
n = 3. Represent this sum graphically on a sketch
of f(z) = 2® + 1. Is this sum an overestimate or
underestimate of the true value found in part (a)?
(c) Estimate f 06 (2 4+ 1) da using a right-hand sum with
n = 3. Represent this sum on your sketch. Is this
sum an overestimate or underestimate?

(b)

25. Estimate f 12 z? dx using left- and right-hand sums with
four subdivisions. How far from the true value of the in-
tegral could your estimate be?

26. Without computing the sums, find the difference between
the right- and left-hand Riemann sums if we use n. = 500
subintervals to approximate | N ,(22° + 4) d.

27. (a) Graph f(z) = z(x + 2)(z — 1).
(b) Find the total area between the graph and the z-axis
between z = —2 and = = 1.
(¢) Find f _1 o (z) dz and interpret it in terms of areas.

28. Compute the definite integral f 04 cos \/T dx and interpret
the result in terms of areas.

. . Sy e 2T g . . .
29. Without computation, decide if f o "e” sin x dx is posi-
tive or negative. [Hint: Sketch e~ sin x.]

—x 0<x<1

1
30. (a) Graphf(x):{x_l l<z<2

(b) Find/ f(x)dx.

Jo

(¢) Calculate the 4-term left Riemann sum approxima-
tion to the definite integral. How does the approxi-
mation compare to the exact value?



31. Use Figure 5.31 to find the values of

@ [ f(z)de b [ f(e)de
© [°f(x)dx @ [°|f(z)|da

f(z)
Area = 13

Figure 5.31

32. Given ffz f(x)dx = 4 and Figure 5.32, estimate:

@ [ f(z)ds ) [?, f(z)da
(c) The total shaded area.

f(@)

Figure 5.32

33. (a) Using Figure 5.33, find jfs f(z)dx.

(b) If the area of the shaded region is A, estimate

f:ls f(z)dx.

T T T T T
—4 —N—z -1 l 12
-1

Figure 5.33
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34.

35.

36.

37.

Write a few sentences in support of or in opposition to
the following statement:

“If a left-hand sum underestimates a definite integral
by a certain amount, then the corresponding right-hand
sum will overestimate the integral by the same amount.”

Sketch the graph of a function f (you do not need to give
a formula for f) on an interval [a,b] with the property
that with n = 2 subdivisions,

b
/ f(z) dx < Left-hand sum < Right-hand sum.

Three terms of a left-hand sum used to approximate a
definite integral f: f(x) dx are as follows.

4\? 4 4\2 4 4\? 4
.2) L2 1.2) .2 R
<2+0 3) 3+(2+ 3) 3+<2+2 3) 3

Find possible values for a and b and a possible formula
for f(z).

Consider the integral || 12 (1/t) dt in Example 1. By divid-
ing the interval 1 < ¢ < 2 into 10 equal parts, we can
show that

1 1 an
1=+ =+, +2l< /| Zat
0 [1.1+1.2Jr +2}_/1t

and

2

1 11 1

— < 0. — —_— — .
/1tdlt—01[1+1.1Jr +1.9}

(a) Now divide the interval 1 < ¢ < 2 into n equal parts
to show that

n 1 21 n—1 1
< —dt < .
Zn—i-r /l t ;n-i-r

r=1

(b) Show that the difference between the upper and
lower sums in part (a) is 1/(2n).

(c) The exact value of ff(l /t)dt is In2. How large
should n be to approximate In 2 with an error of at
most 5 - 10, using one of the sums in part (a)?

5.3 THE FUNDAMENTAL THEOREM AND INTERPRETATIONS

The Notation and Units for the Definite Integral

Just as the Leibniz notation dy/dx for the derivative reminds us that the derivative is the limit of a
ratio of differences, the notation for the definite integral helps us recall the meaning of the integral.

The symbol

/ab f(x)dz

reminds us that an integral is a limit of sums of terms of the form “f(x) times a small differ-
ence of z.” Officially, dx is not a separate entity, but a part of the whole integral symbol. Just as
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one thinks of d/dx as a single symbol meaning “the derivative with respect to x of...,” one can
think of ff ... dx as a single symbol meaning “the integral of ... with respect to =.”

However, many scientists and mathematicians informally think of dz as an “infinitesimally”
small bit of = multiplied by f(x). This viewpoint is often the key to interpreting the meaning of a
definite integral. For example, if f(¢) is the velocity of a moving particle at time ¢, then f(¢) dt may
by thought of informally as velocity x time, giving the distance traveled by the particle during a
small bit of time d¢. The integral f; f(t) dt may then be thought of as the sum of all these small
distances, giving us the net change in position of the particle between ¢t = a and ¢t = b. The notation
for the integral suggests units for the value of the integral. Since the terms being added up are
products of the form “f(z) times a difference in x,” the unit of measurement for f; f(z)dzx is
the product of the units for f(x) and the units for z. For example, if f(t) is velocity measured in
meters/second and ¢ is time measured in seconds, then

/a ' F(t) dt

has units of (meters/sec)x(sec) = meters. This is what we expect, since the value of this integral
represents change in position.

As another example, graph y = f() with the same units of measurement of length along the
z- and y-axes, say cm. Then f(x) and z are measured in the same units, so

/ab f(z)dx

is measured in square units of cm X cm = cm?. Again, this is what we would expect since in this
context the integral represents an area.

The Fundamental Theorem of Calculus

We have seen that change in position can be calculated as the limit of Riemann sums of the velocity
function v = f(¢). Thus, change in position is given by the definite integral fab f(t)dt. If we let
F(t) denote the position function, then the change in position can also be written as F'(b) — F(a).
Thus we have:

b . .
/ £t dt = Change in position from — F(b) — F(a)
a t=atot=2>

We also know that the position F' and velocity f are related using derivatives: ' (t) = f(¢).
Thus, we have uncovered a connection between the integral and derivative, which is so important
it is called the Fundamental Theorem of Calculus. It applies to any function F' with a continuous
derivative f = F”.

Theorem 5.1: The Fundamental Theorem of Calculus!

If f is continuous on the interval [, b] and f(t) = F’(t), then

/bf(t) dt = F(b) — F(a).

To understand the Fundamental Theorem of Calculus, think of f(¢) = F’(t) as the rate of
change of the quantity F'(¢). To calculate the total change in F'(¢) between times ¢t = @ and ¢ = b,
we divide the interval a < ¢ < b into n subintervals, each of length A¢. For each small interval, we

IThis result is sometimes called the First Fundamental Theorem of Calculus, to distinguish it from the Second Funda-
mental Theorem of Section 6.4.
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estimate the change in F'(¢), written AF', and add these. In each subinterval we assume the rate of
change of F'(t) is approximately constant, so that we can say

AF =~ Rate of change of F' x Time elapsed.
For the first subinterval, from ¢, to 1, the rate of change of F(t) is approximately F”(¢g), so
AF = F' (ty) At.
Similarly, for the second interval
AF =~ F' (1) At.
Summing over all the subintervals, we get

n—1

Total change in F'(t) _SAFNZF, (t:) At
betweent =caandt = b ‘=0 e A

We have approximated the change in F'(t) as a left-hand sum.

However, the total change in F'(t) between the times ¢ = a and ¢ = b is simply F(b) — F(a).
Taking the limit as n goes to infinity converts the Riemann sum to a definite integral and suggests
the following interpretation of the Fundamental Theorem of Calculus:?

. b
FO) - Fla) = e EO [ g
betweent = aandt = b a

In words, the definite integral of a rate of change gives the total change.

This argument does not, however, constitute a proof of the Fundamental Theorem. The errors
in the various approximations must be investigated using the definition of limit. A proof is given in
Section 6.4 where we learn how to construct antiderivatives using the Second Fundamental Theorem
of Calculus.

Example 1

Solution

If F'(t) = f(t) and f(t) is velocity in miles/hour, with ¢ in hours, what are the units of ff f(t)dt
and F(b) — F(a)?

Since the units of f(¢) are miles/hour and the units of ¢ are hours, the units of f: f(t)dt are
(miles/hour) x hours = miles. Since F' measures change in position, the units of F'(b) — F'(a)

are miles. As expected, the units of f: f(t)dt and F(b) — F(a) are the same.

The Definite Integral of a Rate of Change: Applications of the Fundamental Theorem

Many applications are based on the Fundamental Theorem, which tells us that the definite integral
of a rate of change gives the total change.

Example 2

Solution

Let F'(t) represent a bacteria population which is 5 million at time ¢ = 0. After ¢ hours, the popu-
lation is growing at an instantaneous rate of 2! million bacteria per hour. Estimate the total increase
in the bacteria population during the first hour, and the population at ¢ = 1.

Since the rate at which the population is growing is F’(t) = 2¢, we have

1
Change in population = F (1) — F(0) = / 2" dt.
0

Using a calculator to evaluate the integral,

1
Change in population = / 2" dt = 1.44 million bacteria.
0

ZWe could equally well have used a right-hand sum, since the definite integral is their common limit.



274 Chapter Five KEY CONCEPT: THE DEFINITE INTEGRAL

Since F'(0) = 5, the population at ¢ = 1 is given by

1
Population = F(1) = F(0) + / 2! dt = 5 + 1.44 = 6.44 million.
0

The following example shows how representing a quantity as a definite integral, and thereby as
an area, can be helpful even if we don’t evaluate the integral.

Example 3

Solution

Two cars start from rest at a traffic light and accelerate for several minutes. Figure 5.34 shows their
velocities as a function of time.

(a) Which car is ahead after one minute? (b) Which car is ahead after two minutes?

v (ft/min)

Car2

3000 Car 1
A/

. 5 t (min)

Figure 5.34: Velocities of two cars in Example 3.
Which is ahead when?

(a) For the first minute car 1 goes faster than car 2, and therefore car 1 must be ahead at the end of
one minute.

(b) At the end of two minutes the situation is less clear, since car 1 was going faster for the first
minute and car 2 for the second. However, if v = f(t) is the velocity of a car after ¢ minutes,
then we know that

2
Distance traveled in two minutes = / f(t)dt,
Jo

since the integral of velocity is distance traveled. This definite integral may also be interpreted
as the area under the graph of f between 0 and 2. Since the area representing the distance
traveled by car 2 is clearly larger than the area for car 1 (see Figure 5.34), we know that car 2
has traveled farther than car 1.

Example 4

Biological activity in water is reflected in the rate at which carbon dioxide, COs, is added or re-
moved. Plants take CO2 out of the water during the day for photosynthesis and put CO5 into the
water at night. Animals put CO; into the water all the time as they breathe. Figure 5.35 shows the
rate of change of the CO, level in a pond.? At dawn, there were 2.600 mmol of CO, per liter of
water.

(a) At what time was the CO; level lowest? Highest?

(b) Estimate how much CO; enters the pond during the night (1 = 12 to t = 24).
(c) Estimate the COs level at dusk (twelve hours after dawn).

(d) Does the COs level appear to be approximately in equilibrium?

3Data from R. J. Beyers, The Pattern of Photosynthesis and Respiration in Laboratory Microsystems (Mem. 1st. Ital.
Idrobiol., 1965).
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E%t%ol/liter per hour)
0.06 A
0.04
0.02
0 t (hours)
—0.02
—0.04
—0.06

J

6 12 18 24
Time (hours past dawn)

Figure 5.35: Rate at which CO enters a pond over a 24-hour period

Let f(t) be the rate at which COs is entering the water at time ¢ and let F(¢) be the concentration
of COz in the water at time ¢, so F'(t) = f(t).

(a)

(b)

(©)

(d)

From Figure 5.35, we see f(¢) is negative for 0 < ¢ < 12, so the CO4 level is decreasing during
this interval (daytime). Since f(¢) is positive for 12 < t < 24, the COq level is increasing
during this interval (night). The CO, is lowest at ¢ = 12 (dusk) and highest at ¢ = 0 and t = 24
(dawn).

We want to calculate the total change in the CO; level in the pond, F'(24) — F'(12). By the
Fundamental Theorem of Calculus,

F(24) — F(12) = . F(t) dt.

We use values of f(¢) from the graph (displayed in Table 5.8) to construct a left Riemann sum
approximation to this integral with n = 6, At = 2:

24
F)dt = f(12) -2+ f(14) - 2+ f(16) - 24 --- + f(22) - 2
12
~ (0.000)2 + (0.045)2 + (0.035)2 + - - - + (0.012)2 = 0.278.

Thus, between ¢ = 12 and ¢ = 24,

24

Change in CO; level = F'(24) — F(12) = f(t) dt = 0.278 mmol/liter.
12

To find the CO; level at t = 12, we use the Fundamental Theorem to estimate the change in

COy, level during the day:
12

F(12) — F(0) = ft)dt
0
Using a left Riemann sum as in part (c), we have

F(12) — F(0) = N F(t) dt ~ —0.328.
0

Since initially there were £'(0) = 2.600 mmol/liter, we have
F(12) = F(0) — 0.328 = 2.272 mmol/liter.

The amount of CO4 removed during the day is represented by the area of the region below the
t-axis; the amount of CO2 added during the night is represented by the area above the ¢-axis.
These areas look approximately equal, so the COq level is approximately in equilibrium.
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Table 58 Rate, f(t), at which COs is entering or leaving water (read from Figure 5.35)

f(#) t f(#) ¢ f(t) t f(t) ¢ f(t) ¢ f(t)

0.000 4 —0.039 8 —0.026 12 0.000 16 0.035 20 0.020
—0.044 6 —0.035 10 —0.020 14 0.045 18 0.027 22 0.012

Using Riemann sums to estimate these areas, we find that about 0.278 mmol/1 of CO2 was
released into the pond during the night and about 0.328 mmol/1 of CO5 was absorbed from the
pond during the day. These quantities are sufficiently close that the difference could be due to
measurement error, or to errors from the Riemann sum approximation.

The Definite Integral as an Average

We know how to find the average of n numbers: Add them and divide by n. But how do we find the
average value of a continuously varying function? Let us consider an example. Suppose f(t) is the
temperature at time ¢, measured in hours since midnight, and that we want to calculate the average
temperature over a 24-hour period. One way to start is to average the temperatures at n equally
spaced times, t1, ta, . .., t,, during the day.

f(t1)+f(t2)+"'+f(tn).

The larger we make n, the better the approximation. We can rewrite this expression as a Riemann
sum over the interval 0 < ¢ < 24 if we use the fact that At = 24/n, son = 24/At:

J(t) + ft2) + -+ f(tn)
24/ At

_ S@)AL+ f{t) AL+ -+ f(t) At
24

F(t:)At.
1

Avera ge temperature ~

Average temperature =

24

1 n

=

As n — o0, the Riemann sum tends toward an integral, and 1/24 of the sum also approximates the
average temperature better. It makes sense, then, to write

Average temperature = lim — ti)At = — t)dt.

ge temp MO%;f(z) 21/, IO

We have found a way of expressing the average temperature over an interval in terms of an integral.
Generalizing for any function f, if a < b, we define

b
Average valueof f 1 / flx)da.
from a to b b—aj,

How to Visualize the Average on a Graph
The definition of average value tells us that
b
(Average value of f)- (b—a) = / f(x)dz.
a

Let’s interpret the integral as the area under the graph of f. Then the average value of f is the height
of a rectangle whose base is (b — a) and whose area is the same as the area under the graph of f.
(See Figure 5.36.)
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f(z)
Area under curve =
Area of rectangle
Average
value
of f
L,

a b
} b—a 1

Figure 5.36: Area and average value

Example 5

Solution

Suppose that C'(t) represents the daily cost of heating your house, measured in dollars per day,
90

where ¢ is time measured in days and ¢ = 0 corresponds to January 1, 2008. Interpret C(t)dt
0
90

and 500 /, C(t) dt.

-90
The units for the integral / C'(t) dt are (dollars/day) x (days) = dollars. The integral represents

the total cost in dollars toOheat your house for the first 90 days of 2008, namely the months of
January, February, and March. The second expression is measured in (1/days)(dollars) or dollars
per day, the same units as C'(¢). It represents the average cost per day to heat your house during the
first 90 days of 2008.

Example 6

Solution

On page 10, we saw that the population of Nevada could be modeled by the function
P = f(t) = 2.020(1.036)",

where P is in millions of people and ¢ is in years since 2000. Use this function to predict the average
population of Nevada between the years 2000 and 2020.

We want the average value of f(t) between ¢ = 0 and ¢ = 20. This is given by

20

1 1
Average population = 20-0 | f)dt = %(58.748) = 2.937.

We used a calculator to evaluate the integral. The average population of Nevada between 2000 and
2020 is predicted to be about 2.9 million people.

Exercises and Problems for Section 5.3

Exercises

1. If f(¢) is measured in dollars per year and ¢ is measured 2. If f(t) is measured in meters/second? and ¢ is measured
in years, what are the units of fab f(t)de? in seconds, what are the units of fab f(t)de?

3. If f(z) is measured in pounds and z is measured in feet,
what are the units of fab f(z)dz?
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In Exercises 4-7, explain in words what the integral represents
and give units.

4. f 13 v(t) dt, where v(t) is velocity in meters/sec and ¢ is

time in seconds.
5. f 06 a(t) dt, where a(t) is acceleration in km/hr® and ¢ is
time in hours.

6. /. 220(:)004 f(t) dt, where f(¢) is the rate at which the world’s
population is growing in year ¢, in billion people per

year.

7. . 0° s(z) dz, where s(z) is rate of change of salinity (salt
concentration) in gm/liter per cm in sea water, where x is
depth below the surface of the water in cm.

8. For the two cars in Example 3, page 274, estimate:

(a) The distances moved by car 1 and car 2 during the
first minute.

(b) The time at which the two cars have gone the same
distance.

In Exercises 9-12, find the average value of the function over
the given interval.

9. g(t) = 1+tover[0,2] 10. g(t) = e’ over [0, 10]

11. f(z) = 2 over [a, b] 12. f(z) = 4a + 7 over

(1,3]

Problems

13. How do the units for the average value of f relate to the
units for f(x) and the units for 2?

14. Oil leaks out of a tanker at a rate of r = f(¢) gallons per
minute, where ¢ is in minutes. Write a definite integral
expressing the total quantity of oil which leaks out of the
tanker in the first hour.

15. Water is leaking out of a tank at a rate of R(¢) gal-
lons/hour, where ¢ is measured in hours.

(a) Write a definite integral that expresses the total
amount of water that leaks out in the first two hours.

(b) In Figure 5.37, shade the region whose area repre-
sents the total amount of water that leaks out in the
first two hours.

(c) Give an upper and lower estimate of the total amount
of water that leaks out in the first two hours.

L R(t)

1 2

Figure 5.37

16. The rate at which the world’s oil is being consumed
is continuously increasing. Suppose the rate of oil con-
sumption (in billions of barrels per year) is given by the
function » = f(t), where ¢ is measured in years and
t = 0 is the start of 2004.

(a) Write a definite integral which represents the total
quantity of oil used between the start of 2004 and
the start of 2009.

(b) Suppose 7 = 32¢%°%, Using a left-hand sum with
five subdivisions, find an approximate value for the
total quantity of oil used between the start of 2004
and the start of 2009.

(¢) Interpret each of the five terms in the sum from part
(b) in terms of oil consumption.

17. As coal deposits are depleted, it becomes necessary to
strip-mine larger areas for each ton of coal. Figure 5.38
shows the number of acres of land per million tons of coal
that will be defaced during strip-mining as a function of
the number of million tons removed, starting from the
present day.

(a) Estimate the total number of acres defaced in ex-
tracting the next 4 million tons of coal (measured
from the present day). Draw four rectangles under
the curve, and compute their area.

(b) Reestimate the number of acres defaced using rect-
angles above the curve.

(¢) Use your answers to parts (a) and (b) to get a better
estimate of the actual number of acres defaced.

acres defaced
per million tons
4
3
2
million tons of
1 coal extracted
§measured '
rom presen
0.2 —] day)

Figure 5.38

18. After a spill of radioactive iodine, measurements showed
the ambient radiation levels at the site of the spill to be
four times the maximum acceptable limit. The level of
radiation from an iodine source decreases according to
the formula

R(t) — Roe—0.004t



19.

20.

where R is the radiation level (in millirems/hour) at time
t in hours and Ry is the initial radiation level (at t = 0).

(a) How long will it take for the site to reach an accept-
able level of radiation?

(b) How much total radiation (in millirems) will have
been emitted by that time, assuming the maximum
acceptable limit is 0.6 millirems/hour?

In 20035, the population of Mexico was growing at 1% a
year. Assuming that this growth rate continues into the
future and that ¢ is in years since 2005, the Mexican pop-
ulation, P, in millions, will be given by

P =103(1.01)".

(a) Predict the average population of Mexico between
2005 and 2055.

(b) Find the average of the population in 2005 and the
predicted population in 2055.

(c) Explain, in terms of the concavity of the graph of P
why your answer to part (b) is larger or smaller than
your answer to part (a).

The following table gives the emissions, I, of nitrogen
oxides in millions of metric tons per year in the US? Let
t be the number of years since 1970 and E = f(¢).

(a) What are the units and meaning of f 030 F(t)de?

(b) Estimate [ f(t)d.

Year | 1970 | 1975 | 1980 | 1985 | 1990 | 1995 | 2000
E 26.9 | 26.4 | 27.1 | 25.8 | 25.5 | 25.0 | 22.6
21. Coal gas is produced at a gasworks. Pollutants in the gas

are removed by scrubbers, which become less and less
efficient as time goes on. The following measurements,
made at the start of each month, show the rate at which
pollutants are escaping (in tons/month) in the gas:

Time (months) o112} 3 4 5 6

Rate pollutants escape | 5 | 7 10 | 13| 16 | 20

(a) Make an overestimate and an underestimate of the
total quantity of pollutants that escape during the
first month.

Make an overestimate and an underestimate of the
total quantity of pollutants that escape during the six
months.

How often would measurements have to be made to
find overestimates and underestimates which differ
by less than 1 ton from the exact quantity of pollu-
tants that escaped during the first six months?

(b)

(c)
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When an aircraft attempts to climb as rapidly as possi-
ble, its climb rate decreases with altitude. (This occurs
because the air is less dense at higher altitudes.) The ta-
ble shows performance data for a single-engine aircraft.

Altitude (1000 ft) 0 1 2 3 4 5
Climb rate (ft/min) | 925 | 875 | 830 | 780 | 730 | 685
Altitude (1000 ft) 6 7 8 9 10

Climb rate (ft/min) | 635 | 585 | 535 | 490 | 440

23.

24.

25.

(a) Calculate upper and lower estimates for the time re-
quired for this aircraft to climb from sea level to
10,000 ft.

(b) If climb rate data were available in increments of
500 ft, what would be the difference between a lower
and upper estimate of climb time based on 20 subdi-
visions?

A two-day environmental clean up started at 9 am on the
first day. The number of workers fluctuated as shown in
Figure 5.39. If the workers were paid $10 per hour, how
much was the total personnel cost of the clean up?

workers

50/\

40
30

o I

8 16 24 32 40 48

A

hours

Figure 5.39

Suppose in Problem 23 that the workers were paid $10
per hour for work during the time period 9 am to 5 pm
and were paid $15 per hour for work during the rest of the
day. What would the total personnel costs of the clean up
have been under these conditions?

A warehouse charges its customers $5 per day for ev-
ery 10 cubic feet of space used for storage. Figure 5.40
records the storage used by one company over a month.
How much will the company have to pay?

cubic feet
30,000
20,000
10,000
days
10 20 30
Figure 5.40

4The World Almanac and Book of Facts 2005, p. 177 (New York: World Almanac Books).
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26. A cup of coffee at 90°C is put into a 20°C room when
t = 0. The coffee’s temperature is changing at a rate of
r(t) = —=7e %! °C per minute, with ¢ in minutes. Esti-
mate the coffee’s temperature when ¢ = 10.

27. The amount of waste a company produces, WV, in tons per
week, is approximated by W = 3.75¢ 298 where t is
in weeks since January 1, 2005. Waste removal for the
company costs $15/ton. How much does the company
pay for waste removal during the year 20057

28. Let F(z) = |, Ox 2t dt. Then F'(x) is the area under the
line y = 2t from the origin to z.

(a) Construct a table showing the values of F' for x =
0,1,2,3,4,5.

(b) Is F increasing or decreasing when z > 0? Concave
up or down? Explain.

(¢) Whent < 0, the line y = 2t is below the t-axis (the
horizontal axis). Explain why F'(—1) is positive.

29. A force F' parallel to the z-axis is given by the graph in
Figure 5.41. Estjmate the work, W, done by the force,
where W = L/;)lb F(z) de.

force (newton)

2 F
1 \ 14 16

T ——  (meter)
_1k 4 810 l/

-2
30. (a) Using Figures 5.42 and 5.43, find the average value
on0 <z <2of
@ f(z) i) g(z) (i) f(x)-g(x)
(b) Is the following statement true? Explain your an-
swer.

Figure 5.41

Average( f) - Average(g) = Average(f - g)

LR (@) 1 g(@)

-z -z

1 2 1 2

Figure 5.42 Figure 5.43

31. (a) Using Figure 5.44, find fla f(z)de.
(b) What is the average value of f on [1,6]?

3

()

x

1 2 3 4 5 6

Figure 5.44

32. (a) Using Figure 5.45, estimate ff3 f(z)dx.
(b) Which of the following average values of f(x) is
larger?

(i) Betweenz = —3andz = 3

(i) Betweenz =0andz = 3

/
=~

f(z) 4

Nt

1A
—4a

Figure 5.45

33. For the even function f in Figure 5.46, write an expres-
sion involving one or more definite integrals that denotes:

(a) The average value of f for 0 < x < 5.
(b) The average value of |f| for 0 < z < 5.

T J(x)

I
T 1
-2 2\ 5

Figure 5.46

34. For the even function f in Figure 5.46, consider the av-
erage value of f over the following intervals:

I 0<z<2

L 0<z<
0 IV. —2<z<2

r <1
111, <z<5

(a) For which interval is the average value of f least?

(b) For which interval is the average value of f greatest?

(c) For which pair of intervals are the average values
equal?

35. (a) Without computing any integrals, explain why the
average value of f(z) = sinz on [0, 7] must be be-
tween 0.5 and 1.
(b) Compute this average.

36. (a) What is the average value of f(x) = v/1 — 22 over
the interval 0 < x < 1?
(b) How can you tell whether this average value is more
or less than 0.5 without doing any calculations?



37.

38.

39.

40.

Figure 5.47 shows the rate of change of the quantity of
water in a water tower, in liters per day, during the month
of April. If the tower had 12,000 liters of water in it on
April 1, estimate the quantity of water in the tower on
April 30.

rate (liters/day)

150

100
50

0 t (days)
30

Figure 5.47

A bicyclist pedals along a straight road with velocity, v,
given in Figure 5.48. She starts 5 miles from a lake; pos-
itive velocities take her away from the lake and negative
velocities take her toward the lake. When is the cyclist
farthest from the lake, and how far away is she then?

v (mph)
30
20
10 \
0 I t (hours)
—10

Figure 5.48

The value, V', of a Tiffany lamp, worth $225 in 1975, in-
creases at 15% per year. Its value in dollars ¢ years after
1975 is given by

V = 225(1.15)".

Find the average value of the lamp over the period 1975-
2010.

A car speeds up at a constant rate from 10 to 70 mph
over a period of half an hour. Its fuel efficiency (in miles
per gallon) increases with speed: values are in the table.
Make lower and upper estimates of the quantity of fuel
used during the half hour.

Speed (mph) 10 | 20 | 30 | 40 | 50 | 60 | 70

Fuel efficiency (mpg) | 15 | 18 [ 21 [ 23 | 24 | 25| 26

41.

The number of hours, H, of daylight in Madrid as a func-
tion of date is approximated by the formula

H =12+ 2.4sin[0.0172(¢ — 80)],
where ¢ is the number of days since the start of the year.
Find the average number of hours of daylight in Madrid:
(a) (b)

(d) Explain why the relative magnitudes of your an-
swers to parts (a), (b), and (c) are reasonable.

in January in June (c) overayear
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42. Height velocity graphs are used by endocrinologists to

43.

4.

follow the progress of children with growth deficiencies.
Figure 5.49 shows the height velocity curves of an aver-
age boy and an average girl between ages 3 and 18.

(a) Which curve is for girls and which is for boys? Ex-
plain how you can tell.

(b) About how much does the average boy grow be-
tween ages 3 and 10?

(¢) The growth spurt associated with adolescence and
the onset of puberty occurs between ages 12 and 15
for the average boy and between ages 10 and 12.5
for the average girl. Estimate the height gained by
each average child during this growth spurt.

(d) When fully grown, about how much taller is the av-
erage man than the average woman? (The average
boy and girl are about the same height at age 3.)

y (emiyr)
10

/1

6
D il \

[~

2 4 6 8 10 12 14 16 18

x (years)

Figure 5.49

In Chapter 2, the average velocity over the time interval
a < t < b was defined to be (s(b) — s(a))/(b — a),
where s(t) is the position function. Use the Fundamental
Theorem of Calculus to show that the average value of
the velocity function v(t), on the interval a < ¢ < b is

also (s(b) — s(a))/(b — a).

If you jump out of an airplane and your parachute fails to
open, your downward velocity ¢ seconds after the jump
is approximated, for g = 9.8 m/sec® and k = 0.2 sec, by

o(t) = L(1—e™).

(a) Write an expression for the distance you fall in 7'
seconds.

If you jump from 5000 meters above the ground,
write an equation whose solution is the number of
seconds you fall before hitting the ground.

Estimate the solution to the equation in part (b).

(b)

(c)
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9.4 THEOREMS ABOUT DEFINITE INTEGRALS

Properties of the Definite Integral

For the definite integral ff f(x) dz, we have so far only considered the case a < b. We now allow
a > b. We still set 9 = a, &, = b, and Az = (b — a)/n. As before, we have ff f(x)de =
limy, o Y oiy flai)Az.

Theorem 5.2: Properties of Limits of Integration

If a, b, and ¢ are any numbers and f is a continuous function, then

1. /baf(a:)dm = —/abf(x)dx.

c b b
2. / f(z)dz + / f(z)dz = / f(x)dz.
In words:
1. The integral from b to a is the negative of the integral from a to b.

2. The integral from a to ¢ plus the integral from c to b is the integral from a to b.

By interpreting the integrals as areas, we can justify these results for f > 0. In fact, they are true
for all functions for which the integrals make sense. For a formal proof, see the online supplement
at www.wiley.com/college/hugheshallett.

Why is fba f(x)dx = — f: f(x) dx?

By definition, both integrals are approximated by sums of the form > f(z;) Az. The only difference
in the sums for [, f(x)dx and f: f(z) dz is that in the first Az = (a — b)/n = —(b — a)/n and
in the second Az = (b — a)/n. Since everything else about the sums is the same, we must have

fba flz)dr = — f; f(z)dz.
Whyis [7 f(z) dz + [, f(=) do = [, f(=) dz?

Suppose a < ¢ < b. Figure 5.50 suggests that [ f(x) da;—i—ff flx)dx = fab f(2) dx since the area
under f from a to ¢ plus the area under f from c to b together make up the whole area under f from
atob.

This property holds for all numbers a, b, and ¢, not just those satisfying a < ¢ < b. (See
Figure 5.51.) For example, the area under f from 3 to 6 is equal to the area from 3 to 8 minus the
area from 6 to 8, so

/?)Gf(m)dmz/?’Sf(m)dm—/:f(m)dm=/3.8f(m)dm+/;f(g;)dm.

f(z) f(=z)

x T
a c b a b c

Figure 5.50: Additivity of the definite Figure 5.51: Additivity of the definite
integral (a < ¢ < b) integral (a < b < ¢)
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Example 1 Given that fo cos(x?) dz = 0.98 and fol cos(x?) dz = 0.90, what are the values of the following
integrals? (See Figure 5.52.)
1.25

. 1 -1
(a) / cos(z?) dx (b) / cos(z?) dx (©) cos(z?) dx
1 -1

1.25

AWA f\ AN
AR VA

Figure 5.52: Graph of f(z) = cos(z?)

Solution (a) Since, by the additivity property,

1.25 1 1.25
/ cos(z?) dx = / cos(z?) da +/ cos(x?) di,
0 0 1

we get
1.25
0.98 = 0.90 + / cos(z?) dx,
1
SO

1.25
/ cos(z?) dx = 0.08.
1

(b) By the additivity property, we have

1 0 1
/ cos(z?) dr = / cos(z?) dx + / cos(z?) dx.
—1 0

-1

By the symmetry of cos(x2) about the y-axis,

0 1
/ cos(2?) dx = / cos(z?) dz = 0.90.
0

-1
So

1
/ cos(z?) dx = 0.90 + 0.90 = 1.80.
—1

(c) Using both properties in Theorem 5.2, we have

/1_2:) cos(z?) dx = — /_11.25 cos(z?) dx = — (/_01 cos(2?) dx + /01.25 COS(:Ez)d:L'>

= —(0.90 + 0.98) = —1.88.
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Theorem 5.3: Properties of Sums and Constant Multiples of the Integrand

Let f and g be continuous functions and let ¢ be a constant.

1. /ab(f(a:) +g(x))de = /abf(x)dx:t/abg(:c)dm.
2. /abcf(ac)dac:c/abf(m)dm.

In words:
1. The integral of the sum (or difference) of two functions is the sum (or difference) of their
integrals.
2. The integral of a constant times a function is that constant times the integral of the func-
tion.

Why Do these Properties Hold?

Both can be visualized by thinking of the definite integral as the limit of a sum of areas of rectangles.

For property 1, suppose that f and ¢ are positive on the interval [a,b] so that the area under
J(z)+g(z) is approximated by the sum of the areas of rectangles like the one shaded in Figure 5.53.
The area of this rectangle is

(F(as) + glw))Ar = f(a:) Az + gla;) Aa.

Since f(x;)Aux is the area of a rectangle under the graph of f, and g(x;)Ax is the area of a rectangle
under the graph of g, the area under f(x) + g(x) is the sum of the areas under f(x) and g(z).

For property 2, notice that multiplying a function by c stretches or shrinks the graph in the
vertical direction by a factor of c. Thus, it stretches or shrinks the height of each approximating
rectangle by ¢, and hence multiplies the area by c.

\\,\
T f(@) +g(2)
g(z:)
T~ (@)
f(z:)
a _ﬂA;_ b

Figure 5.53: Area = fab[f(x) +g(z)]dz = fab f(z)dx + flf g(z)dz

Example 2

Solution

2
Evaluate the definite integral / (14 3z) dz exactly.
0

We can break this integral up as follows:

"2 -2 -2 -2 -2
/ (1+3m)dm=/ ldz + / 3.77(1,90:/ 1d.1:+3/ x dx.
0 0 0 0 0

From Figures 5.54 and 5.55 and the area interpretation of the integral, we see that

2 2
1

/ 1= 0T _9 g / vde= Do 1oy o

Jo rectangle Jo triangle 2
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Y Y
2 2
y=1 =
1 v=e
2 2
/ ldx =2 rdr =2
© 0
T x
2 2
Figure 5.54: Area representing f 02 ldx Figure 5.55: Area representing f 02 rdx

Therefore,
2 2 2
/(1+3x)dm=/ 1dx—|—3/ rdr=2+3-2=28.
0 0 0

Area Between Curves

Theorem 5.3 enables us to find the area of a region between curves. We have the following result:

If the graph of f(x) lies above the graph of g(x) for a < 2 < b, then

Area between f and g
fora <z <b

b
- / (f(2) — g(z)) do.

Example 3 Find the area of the shaded region in Figure 5.56.

glz) =a® —dz +5

1 1
} | (z) = —a® +4x — 1
\ \ T

Figure 5.56: Area between two parabolas

Solution The curves cross where
22 —dx+5=—-2>+4x—1
207 — 8z +6=0
2 —1)(x—3)=0
r=1,3.

Since f(r) = —2%+4x — 1 is above g(x) = 2> — 4z + 5 for = between 1 and 3, we find the shaded
area by subtraction:

Area = [  fa)de - / ey do = / @) — (e da
_ /13((—332 +45—1) — (2 — 42+ 5)) da

3
= / (—2172 + 8z — 6) do = 2.667.
1




286 Chapter Five KEY CONCEPT: THE DEFINITE INTEGRAL

Using Symmetry to Evaluate Integrals

Symmetry can be useful in evaluating definite integrals. An even function is symmetric about the
y-axis. An odd function is symmetric about the origin. Figures 5.57 and 5.58 suggest the following
results:

a

a a
If f is even, then flz)de = 2/ f(z)dx. If g is odd, then / g(x)dx = 0.
—a 0

—a

@) g(z)
—a
xX
P a
7 §
Figure 5.57: For an even function, Figure 5.58: For an odd function,
O f@)yde =2 [ f(z)dx SO, 9(@)de =0
Example 4 Given that foﬂ sintdt = 2, find (a) sintdt (b) | sint| dt
Solution Graphs of sint and | sin ¢| are in Figures 5.59 and 5.60.

(a) Since sint is an odd function

s
/ sintdt = 0.
(b) Since |sint| is an even function

/ |sint|dt:2/ |sint|dt = 4.
-7 0

Figure 5.59 Figure 5.60

Using the Fundamental Theorem to Compute Integrals

The Fundamental Theorem provides an exact way of computing certain definite integrals.

3
Example 5 Compute / 2x dx by two different methods.
J1

Solution Using left- and right-hand sums, we can approximate this integral as accurately as we want. With
n = 100, for example, the left-sum is 7.96 and the right sum is 8.04. Using n = 500 we learn

3
7.992 < / 2x dr < 8.008.
1
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The Fundamental Theorem, on the other hand, allows us to compute the integral exactly. We take

f(x) = 22. We know that if F(z) = 22, then F'(x) = 2x. So we use f(x) = 2x and F(z) = 22
and obtain

3
/ 2vdr = F(3) — F(1) =3 -1 =8.
1

Integrals

Suppose we have constants m and M such that m < f(z) < M fora < x < b. We say f is
bounded above by M and bounded below by m. Then the graph of f lies between the horizontal
lines y = m and y = M. So the definite integral lies between m(b — a) and M (b — a). See
Figure 5.61.

Suppose f(z) < g(z) for a < x < b, as in Figure 5.62. Then the definite integral of f is less
than or equal to the definite integral of g. This leads us to the following results:

)
i 1 M Total b
: ~ : 9(x) shaded = g(z) dx
! ! area "
I
x flz
I j;( ) o Dt = [ s
s T f(z)de
! a b N x '
. a b
Figure 5.61: The area under the graph of f
lies between the areas of the rectangles Figure 5.62: If f(z) < g(x) then f: flx)de < fab g(x) dx

Theorem 5.4: Comparison of Definite Integrals
Let f and g be continuous functions.

b
1. fm < f(z) < M fora < x < b, then m(b—a)g/f(;v)dang(b—a).

b b
2. If f(z) < g(x) for a < x < b, then / flx)dz < / g(x)dz.

Example 6

Solution

N

Explain why / sin(z?) dz < /7.
0

Since sin (z%) < 1 for all = (see Figure 5.63), part 2 of Theorem 5.4 gives

VT e
/ sin(2?) dr < / ldx = /7.
0

0

y = sin(z?)

1k

Figure 5.63: Graph showing that | 0‘/; sin(2?) dz < /7
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Exercises and Problems for Section 5.4

Exercises

1. (a) Suppose f'(z) = sin(x?) and f(0) = 2. Use a Find the area of the regions in Exercises 4—11.
graph of f’(z) to decide which is larger:

@@ f(0)or f(1) (i)  f(2)or f(2.5) 4. Undery = e” and above y = 1 for0 < z < 2.
(b) Estimate f(b) forb=0,1,2,3. 5. Under y = 51n(2z) and above y = 3 for 3 < z < 5.
2. The graph of a derivative f’(z) is shown in Figure 5.64. 5 5
Fill in the table of values for f(x) given that f(0) = 2. 6. Betweeny =2~ andy = 2" for0 <o < 1.
. =z1/?, =z!/3 <z<
. olil2l3l21516 7. Betweeny =z /“andy =a /" for0 < a < 1.
f(z) 8. Betweeny =sinz + 2 and y = 0.5 for 6 < z < 10.
1 (@) 9. Betweeny = costand y =sint for0 <t < 7.
( 10. Betweeny = e " and y = 4(x — 2?).
R — F—t =
L 1 2 3/4 5 6 11. Betweeny = e “andy =Ilnzforl <z < 2.
—1
In Exercises 12-17, let f(t) = F'(t). Write the integral
Figure 5.64: Graph of f’, not f f: f(t) dt and evaluate it using the Fundamental Theorem of
Calculus.
3. Figure 5.65 shows f.If F' = f and F(0) = 0, find F'(b) )
forb=1,2,3,4,5,6. . F(t)=t5a=1,b=3
1 £t) 13. F(t) =3t> +4t;a=2,b=5

‘ 14. F(t)=Int;a=1,b=5

15. F(t) =sint;a =0,b=7/2

_1 [
) 16. F(t)=7-4a=2,b=3
Figure 5.65
17. F(t) =tant;a =0,b=m7
Problems
18. (a) If F(t) = t(Int) — t, find F'(t). 3. [7((f(2))? ~ (9(x))?) da
12
(b) Find / Int dt two ways: 24. f: (f(x))? do — (f: f(x) dx)?
10
(i) Numerically. 25. [V (crg(@) + (c2f (2))?) da
(i) Using the Fundamental Theorem of Calculus. 26. f;:; Flz —5)de
2
19. (a) If F(x) = e, find F'(z). 27. In Exercises 6 and 7 we calculated the areas between

: x? . y =a?andy = 2° and betweeny = z'/? and y = x*/3
F 2 :
(b) Find /O xe® dx two ways on 0 < x < 1. Explain why you would expect these two
(1) Numerically. areas to be equal.

(ii) Using the Fundamental Theorem of Calculus.

In Problems 28-31, find [’ f(z) dz.
20. (a) If F(z) = sinw, find F'(z).
/2

. 5
(b) Find / cos T dx two ways: 28. f(z)isoddand [, f(x)dz =8
0

. 2 5
(i) Numerically. 29. f(x)iseven, f_2 f(z)dz = 6, and f_5 flz)de =14

(ii) Using the Fundamental Theorem of Calculus.  30. f 25(3 f(x)+4)dx =18

Let [* f@)de = 8 [*(f@)?de = 12, [ gtyde = 2, 31 [y 2f(@)de=8and [[ f(x)do =1

and fab (g(t))? dt = 3. Find the integrals in Problems 21-26.  32. (a) Using a graph, decide if the area under y = em™/2
between 0 and 1 is more or less than 1.
21 [(f(z) + g(@)) dz 2. [Pef(2)dz (b) Find the area.



33. Without any computation, find the values of

2

(a) /

™
113
r 7 d.

J -7

(b)

sinz dz,
2

34.

35. Without calculating the integral, explain why the follow-

ing statements are false.

-1
(@) / e dr=-3 (b) /
—2

Using Figure 5.66, write fo flz

I f(@) de and [ f(x) da.
8

cos(z +2)
1+tan?z

36. )dz in terms of

Figure 5.66

37. Using the graph of f in Figure 5.67, arrange the follow-

ing quantities in increasing order, from least to greatest.

Gy J7 f(x)de

@iv) J; f(z)dx

(vi) The number O
(viii) The number —10

N
x

2 3

@ f) f(x)de
Qi) [ f(x)de

™ — [7 f(x)da
(vii) The number 20

.
o)

Figure 5.67

38. Find the shaded area in Figure 5.68.
f(z) = 0.5 + sin(mwa/4)

Figure 5.68

39. (a) Let f03 f(x)dr = 6. What is the average value of
f(z) on the interval z = 0 to « = 3?

(b) If f(x) is even, what is fjd f(z)dx? What is the

average value of f(x) on the interval z = —3 to
z=3?

(c) If f(z) is odd, what is jjz f(z)dz? What is the
average value of f(z) on the interval z = —3 to

z = 3?

2
Without computation, show that 2 < / V14 a3dr <6.
0

=0
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40. (a) Use Figure 5.69 to explain why jj 3 ze " dz = 0.
(b) Find the left-hand sum approximation with n = 3
to f 03 ze " dz. Give your answer to four decimal
places.
(¢) Repeat part (b) for f 33 ze~ da.
(d) Do your answers to parts (b) and (c) add to 0? Ex-
plain.

Figure 5.69

41. (a) For any continuous function f, is
ff f(x)de + f; f(x)de = ff’ f(x)dx?

(b) For any function f, add the left-hand sum approx-
imation with 10 subdivisions to f 12 f(x)dx to the
left-hand sum approximation with 10 subdivisions to

3 L
f 5 f (z) dz. Do you get tl;e left sum approximations
with 10 subdivisions to f . f(x) dz?If not, interpret
the result as a different Riemann Sum.

Problems 42—43 concern the graph of f’ in Figure 5.70.

Figure 5.70: Graph of f’, not f

42. Which is greater, f(0) or f(1)?
43. List the following in increasing order:

LTOIO - js) -, 5 - 1),

For Problems 44—47, mark the following quantities on a copy
of the graph of f in Figure 5.71.

f(z)
a b ’
Figure 5.71
44. A length representing f(b) — f(a).
45. A slope representing 1 ) a(a)’

46. An area representing F’ (b) — F(a), where F’

47. A length roughly approximating
w, where F' = f.
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48. Figure 5.72 shows the standard normal distribution from
statistics, which is given by

L e /2,

V2m

Statistics books often contain tables such as the follow-
ing, which show the area under the curve from 0 to b for
various values of b.

0 b
Figure 5.72

b #‘[‘Obe_ﬁﬁdm
1 0.3413
2 0.4772
3 0.4987
4 0.5000

Use the information given in the table and the symmetry
of the curve about the y-axis to find:

@ —— /3 lra ) /3 =
a — e XL — e L
27 )y 2 ),

49. Use the property fba flz)de = — fab f(z) dx to show
that Jaa f(z)dx = 0.
50. The average value of y = v(x) equals 4 for 1 < z < 6,

and equals 5 for 6 < x < 8. What is the average value
ofv(z) forl <z < 8?

CHAPTER SUMMARY (see also Ready Reference at the end of the book)

e Definite integral as limit of right or left sums
e Fundamental Theorem of Calculus

o Interpretations of the definite integral
Area, total change from rate of change, change in posi-
tion given velocity, (b — a)- average value.

o Properties of the definite integral

Properties involving integrand, properties involving lim-
its, comparison between integrals.

e Working with the definite integral
Estimate definite integral from graph, table of values, or
formula. Units of the definite integral.

o Theorems about definite integrals

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER FIVE

Exercises

1. A village wishes to measure the quantity of water that
is piped to a factory during a typical morning. A gauge
on the water line gives the flow rate (in cubic meters per
hour) at any instant. The flow rate is about 100 m® /hr at
6 am and increases steadily to about 280 m® /hr at 9 am.

(a) Using only this information, give your best estimate
of the total volume of water used by the factory be-
tween 6 am and 9 am.

(b) How often should the flow rate gauge be read to ob-
tain an estimate of this volume to within 6 m*?

2. A car comes to a stop five seconds after the driver applies
the brakes. While the brakes are on, the velocities in the
table are recorded.

(a) Give lower and upper estimates of the distance the
car traveled after the brakes were applied.

(b) On a sketch of velocity against time, show the lower
and upper estimates of part (a).

(¢) Find the difference between the estimates. Explain
how this difference can be visualized on the graph in
part (b).

Time since brakes applied (sec) | 0 1 2|1 3] 4
Velocity (ft/sec) 88 | 60 | 40 | 25 | 10

3. You jump out of an airplane. Before your parachute
opens you fall faster and faster, but your acceleration de-
creases as you fall because of air resistance. The table
gives your acceleration, a (in m/sec2), after ¢ seconds.

a | 981 | 803|653 538|441 | 3.61

(a) Give upper and lower estimates of your speed at
t=5.

(b) Get a new estimate by taking the average of your
upper and lower estimates. What does the concavity
of the graph of acceleration tell you about your new
estimate?



4. Use Figure 5.73 to estimate f 020 f(x)dx.

]
f(z)

=N W R Ot

T
4 8 12 16 20

Figure 5.73

5. Using Figure 5.74, estimate f E’ 3 f(z)dz.

10 ‘
~ |
5
T
—377—‘1 4
o /()
Ll
Figure 5.74

6. Using the table, estimate fom() f(t)dt.

t 0 20| 40| 60| 80| 100
f&) | 12| 28| 40| 47| 51 5.2

Find the area of the regions in Exercises 7-13.

7. Between the parabola y = 4 — % and the z-axis.

8. Between y = 2 — 9 and the x-axis.

9. Under one arch of y = sin = and above the z-axis.
10. Between the line y = 1 and one arch of y = sin 6.
11. Between y = —x2 + 52 — 4 and the z-axis, 0 < - < 3.
12. Betweeny = cosx + Tandy = In(x — 3),5 <z < 7.

Problems
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13. Above the curve y = —e® + €@~ and below the -
axis, for x > 0.

14. A car going 80 ft/sec (about 55 mph) brakes to a stop in
8 seconds. Its velocity is recorded every 2 seconds and is
given in the following table.

(a) Give your best estimate of the distance traveled by
the car during the 8 seconds.

(b) To estimate the distance traveled accurate to within
20 feet, how often should you record the velocity?

t (seconds) 0 2 4 6
v(t) (f'sec) | 80 | 52 | 28 | 10

15. A car accelerates smoothly from 0 to 60 mph in 10 sec-
onds with the velocity given in Figure 5.75. Estimate how
far the car travels during the 10-second period.

v (mph)
60 =
40
20
=
t (sec)
5 10
Figure 5.75

16. Your velocity is v(t) = In(t* + 1) ft/sec for ¢ in sec-
onds, 0 < ¢ < 3. Estimate the distance traveled during
this time.

17. Your velocity is v(t) = sin(t*) mph for 0 < ¢ < 1.1.
Estimate the distance traveled during this time.

In Exercises 18-19, let f(t) = F'(t). Write the integral

fab f(t) dt and evaluate it using the Fundamental Theorem of

Calculus.

18. Fit)=t',a=—-1,b=1

19. F(t) =3t* = 5t° +5t;a=—-2,b=1

20. Statisticians sometimes use values of the function

b
F(b):/ e da.
0

(a) Whatis F'(0)?

(b) Does the value of F' increase or decrease as b in-
creases? (Assume b > 0.)

(c) Estimate F'(1), F/(2), and F(3).

21. (a) If F(t) = % sin®¢, find F/(¢).
0.4
(b) Find / sint cos t dt two ways:
0.2

(i) Numerically.

(ii) Using the Fundamental Theorem of Calculus.
22. 1f [7(2f(2) + 3) de = 17, find [} f(z) da.
. 3 3

23. If f(z)isoddand [~ f(x)dz = 30, find [} f(x)da.

24. If f(z) is even and [ (f(z) — 3)de = 8, find
f02 f(x)dz.

25. If the average value of f on the interval 2 < z < 5is 4,
find [ (3f(x) + 2) dz.

26. Find f_ll || dz geometrically.
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27.

28.

29.

30.
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/4
Without any computation, find / 2% cos z? da.
—7/4
(a) Sketch a graph of f(x) = sin(z?) and mark on it
the points z = /7, v/2m, V37, V4.

(b) Use your graph to decide which of the four numbers
T
/ sin(z®)de n=1,2,34
0

is largest. Which is smallest? How many of the num-
bers are positive?

Two trains travel along parallel tracks. The velocity, v, of
the trains as functions of time ¢ are shown in Figure 5.76.

(a) Describe in words the trips taken by each train.
(b) Estimate the ratio of the following quantities for
Train A to Train B:

(i) Maximum velocity (ii) Time traveled
(iii) Distance traveled

v (km/hr) Train A

Train B

Figure 5.76

Annual coal production in the US (in quadrillion BTU
per year) is given in the table.’ Estimate the total amount
of coal produced in the US between 1960 and 1990. If
r = f(t) is the rate of coal production ¢ years since
1960, write an integral to represent the 1960-1990 coal
production.

Year

1960 | 1965 | 1970 | 1975 | 1980 | 1985 | 1990

Rate

10.82 | 13.06 | 14.61 | 14.99 | 18.60 | 19.33 | 22.46

31.

32.

An old rowboat has sprung a leak. Water is flowing into
the boat at a rate, 7(¢), given in the following table.

10
24

15
16

t minutes 0 5
12 | 20

r(t) liters/min

(a) Compute upper and lower estimates for the volume
of water that has flowed into the boat during the 15
minutes.

(b) Draw a graph to illustrate the lower estimate.

Figure 5.77 gives your velocity during a trip starting from
home. Positive velocities take you away from home and
negative velocities take you toward home. Where are you

SWorld Almanac, 1995.

33.

34.

at the end of the 5 hours? When are you farthest from
home? How far away are you at that time?
v (km/hr)

© 7
20 \

10 \

t (hours)
-10
—20

Figure 5.77

A bicyclist is pedaling along a straight road for one hour
with a velocity v shown in Figure 5.78. She starts out five
kilometers from the lake and positive velocities take her
toward the lake. [Note: The vertical lines on the graph are
at 10 minute (1/6 hour) intervals.]

v (km/hr)

10

5

0 t(minutes)
_5 -30-40-50-60

~10
15 \ /
—20
—25

Figure 5.78

(a) Does the cyclist ever turn around? If so, at what
time(s)?

(b) When is she going the fastest? How fast is she going
then? Toward the lake or away?

(c) When is she closest to the lake? Approximately how
close to the lake does she get?

(d) When is she farthest from the lake? Approximately
how far from the lake is she then?

Figure 5.79 shows the rate, f(z), in thousands of al-
gae per hour, at which a population of algae is growing,
where x is in hours.

(a) Estimate the average value of the rate over the inter-

valez = —1tox = 3.
(b) Estimate the total change in the population over the
interval z = —3tox = 3.
3
\ f(=)
\ .
-3 3
-3
Figure 5.79



35. A bar of metal is cooling from 1000°C to room temper-
ature, 20°C. The temperature, H, of the bar ¢ minutes
after it starts cooling is given, in °C, by

H =20 + 980",

(a) Find the temperature of the bar at the end of one
hour.

(b) Find the average value of the temperature over the
first hour.

(¢) Is your answer to part (b) greater or smaller than the
average of the temperatures at the beginning and the
end of the hour? Explain this in terms of the concav-
ity of the graph of H.

36. Water is pumped out of a holding tank at a rate of
5 — 57912 liters/minute, where ¢ is in minutes since
the pump is started. If the holding tank contains 1000
liters of water when the pump is started, how much water
does it hold one hour later?

37. The graph of a continuous function f is given in Fig-
ure 5.80. Rank the following integrals in ascending nu-
merical order. Explain your reasons.

W fy fz)de Q) [, flx)de
Qi) [P(f@)2de @) [P(f(@)? da

100
f(z)

0 1 2
Figure 5.80

38. Using Figure 5.81, list the following integrals in increas-
ing order (from smallest to largest). Which integrals are
negative, which are positive? Give reasons.

L f:f(a:)da: 1L f:f(x)dx II. f:f(:c)dx
Iv. f:f(x)dx V. fbcf(x)dac

f(x)

AN

Figure 5.81

39. For the even function f graphed in Figure 5.82:

(a) Suppose you know f02 f(x)dx. What is
f_22 f(x)dz?
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(b) Suppose you know JOS f(z)dx and 125 f(x)dx.
Whatis [ f(x) da?

(¢) Suppose you know ffz f(x)dx and sz f(x)dx.
What is f05 f(x)dz?

f(x)

AN

~ 1
-2 2 \ 5

Figure 5.82

40. For the even function f graphed in Figure 5.82:

(a) Suppose you know f_22 f(z)dz and fos f(x)dx.
Whatis [ f () da?

(b) Suppose you know f; f(z)dx and fi)Q f(z)de.
What is 125 f(x)dz?

(¢) Suppose you know f; f(x)dx and ff’z f(x) d.
Whatis [ f(x) da?

41. The graphs in Figure 5.83 represent the velocity, v, of a
particle moving along the x-axis for time 0 < t < 5.
The vertical scales of all graphs are the same. Identify
the graph showing which particle:

(a) Has a constant acceleration.

(b) Ends up farthest to the left of where it started.
(c) Ends up the farthest from its starting point.
(d) Experiences the greatest initial acceleration.
(e) Has the greatest average velocity.

(f) Has the greatest average acceleration.

m v m v
i E 5
t t
5
am v vy v
: 5
t t
5
v

V)

ot

Figure 5.83
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42,

43.

44.

45.
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Assume w, by, and by are positive constants, with by >
b1. Compute the following integral using its geometric

interpretation.
w
/ (b1 + Mx) dx
o w

Water is run into a large tank through a hose at a constant
rate. After 5 minutes a hole is opened in the bottom of
the tank, and water starts to flow out. Initially the flow
rate through the hole is twice as great as the rate through
the hose, but as the water level in the tank goes down,
the flow rate through the hole decreases; after another 10
minutes the water level in the tank appears to be constant.
Plot graphs of the flow rates through the hose and through
the hole against time on the same pair of axes. Show how
the volume of water in the tank at any time can be inter-
preted as an area (or the difference between two areas) on
the graph. In particular, interpret the steady-state volume
of water in the tank.°

Figure 5.84 shows thrust-time curves for two model rock-
ets. The thrust or force, F, of the engine (in newtons) is
plotted against time, ¢, (in seconds). The total impulse of
the rocket’s engine is defined as the definite integral of F'
with respect to ¢. The total impulse is a measure of the
strength of the engine.

(a) For approximately how many seconds is the thrust
of rocket B greater than 10 newtons?

(b) Estimate the total impulse for model rocket A.

(¢) What are the units for the total impulse calculated in
part (b)?

(d) Which rocket has the largest total impulse?

(e) Which rocket has the largest maximum thrust?

F'(newtons)
NN
20 il
, D
16 I
12 i
AN
[T\ A
[T AN
/ \
{ t(seconds)
4 8 12 16
Figure 5.84

The Glen Canyon Dam at the top of the Grand Canyon
prevents natural flooding. In 1996, scientists decided an
artificial flood was necessary to restore the environmen-
tal balance. Water was released through the dam at a con-
trolled rate’ shown in Figure 5.85. The figure also shows
the rate of flow of the last natural flood in 1957.

(a) At what rate was water passing through the dam in
1996 before the artificial flood?

46.

(b) At what rate was water passing down the river in the
pre-flood season in 19577

(c) Estimate the maximum rates of discharge for the
1996 and 1957 floods.

(d) Approximately how long did the 1996 flood last?
How long did the 1957 flood last?

(e) Estimate how much additional water passed down
the river in 1996 as a result of the artificial flood.

(f) Estimate how much additional water passed down
the river in 1957 as a result of the flood.

rate of
discharge (m3 /s)
4000 I \

. Natural flood (1957)

3500 /\
3000 / v‘\A
2500 \/\
2000

Controlled flood /
—  (1996) A

1500
o (N [V
1000 I \ J\_,\\
500 vl [[J ¥ A% AN
March  April May  June July  August
Figure 5.85

The Montgolfier brothers (Joseph and Etienne) were
eighteenth-century pioneers in the field of hot-air bal-
looning. Had they had the appropriate instruments, they
might have left us a record, like that shown in Fig-
ure 5.86, of one of their early experiments. The graph
shows their vertical velocity, v, with upward as positive.

(a) Over what intervals was the acceleration positive?
Negative?

(b) What was the greatest altitude achieved, and at what
time?

(c) At what time was the upward acceleration greatest?

(d) At what time was the deceleration greatest?

(e) What might have happened during this flight to ex-
plain the answer to part (d)?

(f) This particular flight ended on top of a hill. How do
you know that it did, and what was the height of the
hill above the starting point?

SFrom Calculus: The Analysis of Functions, by Peter D. Taylor (Toronto: Wall & Emerson, Inc., 1992)
7Adapted from M. Collier, R. Webb, E. Andrews, “Experimental Flooding in Grand Canyon” in Scientific American

(January 1997).



 (ft/min)
20

10

t (min)

901 20 30| 40 &0 60

—10

—20

Figure 5.86

47. A mouse moves back and forth in a straight tunnel, at-

tracted to bits of cheddar cheese alternately introduced to
and removed from the ends (right and left) of the tun-
nel. The graph of the mouse’s velocity, v, is given in
Figure 5.87, with positive velocity corresponding to mo-
tion toward the right end. Assuming that the mouse starts
(t = 0) at the center of the tunnel, use the graph to esti-
mate the time(s) at which:

(a) The mouse changes direction.

(b) The mouse is moving most rapidly to the right; to
the left.

(¢) The mouse is farthest to the right of center; farthest
to the left.

(d) The mouse’s speed (i.e., the magnitude of its veloc-
ity) is decreasing.

(e) The mouse is at the center of the tunnel.

v (cm/sec)
30

20

10

t (sec)

o
(S

O 5 10 15 \go 35| 40

—10

-20

-30

Figure 5.87

48. Pollution is being dumped into a lake at a rate which is in-

creasing at a constant rate from 10 kg/year to 50 kg/year

CAS Challenge Problems
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49.

50.

295

until a total of 270 kg has been dumped. Sketch a graph
of the rate at which pollution is being dumped in the lake
against time. How long does it take until 270 kg has been
dumped?

Using Figure 5.88, list from least to greatest,

@ f'(1).

(b) The average value of f(z) on0 < z < a.

(c) The average value of the rate of change of f(x), for
0<z<a.

@ [ f(x)de.

f(@)

} — &
1 a 2

Figure 5.88

The number of days a cold-blooded organism, such as
an insect, takes to mature depends on the surrounding
temperature, /1. Each organism has a minimum temper-
ature Hp,i, below which no development takes place.®
For an interval of time, At, on which the temperature is
constant, the increase in maturity of the organism can be
measured by the number of degree-days, AS, where ¢ is
in days and
AS = (H — Hyjn)At.

(a) If H varies with time, so H = f(t), write an inte-
gral that represents the total number of degree-days,
S, required if development to maturity takes 7" days.

(b) An organism, which has Hy,;, = 15°C, requires 125
degree-days to develop to maturity. Estimate the de-
velopment time if the temperature, H°C, at time ¢
days is in Table 5.9.

Table 5.9

~+

1 21314567819 |10]11]I12

20 | 22 | 27 | 28 | 27 | 31 | 29|30 |28 | 25| 24|26

51. Consider the definite integral | 01 a*da.

(a) Write an expression for a right-hand Riemann sum
approximation for this integral using n subdivisions.
Express each x;, ¢ = 1,2,...,n, in terms of <.

(b) Use a computer algebra system to obtain a formula

for the sum you wrote in part (a) in terms of n.

(c) Take the limit of this expression for the sum as
n — o0, thereby finding the exact value of this inte-
gral.

52. Repeat Problem 51, using the definite integral jol zda.

8Information from http://www.ento.vt.edu/"sharov/PopEcol/popecol.html (Accessed Nov. 18, 2003).
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For Problems 53-55, you will write a Riemann sum approxi-
mating a definite integral and use a computer algebra system
to find a formula for the Riemann sum. By evaluating the limit
of this sum as the number of subdivisions approaches infinity,
you will obtain the definite integral.

53. (a) Using summation notation, write the left-hand Rie-
mann sum with n subdivisions for f 12 tdt.

Use a computer algebra system to find a formula for
the Riemann sum.

(c) Evaluate the limit of the sum as n approaches infin-
ity.

Calculate directly the area under the graph of y = ¢
between ¢ = 1 and ¢ = 2, and compare it with your
answer to part (c).

(b)

(d)

54. (a) Using summation notation, write the left-hand Rie-
mann sum with n subdivisions for f 12 2 dt.

Use a computer algebra system to find a formula for
the Riemann sum.

(¢) Evaluate the limit of the sum as n approaches infin-

(b)

ity.
(d) What is the area under the graph of iy = ¢ between
t=1landt =27

55. (a) Using summation notation, write the right-hand Rie-

CHECK YOUR UNDERSTANDING

Are the statements in Problems 1-5 true or false? Give an ex-
planation for your answer.

1. The units for an integral of a function f(x) are the same
as the units for f(z).

2. For an increasing function, the left-hand sum on a given
interval with a given number of subdivisions is always
less than the right-hand sum.

3. For a decreasing function, the difference between the
left-hand sum and right-hand sum is halved when the
number of subdivisions is doubled.

4. For a given function on a given interval, the differ-
ence between the left-hand sum and right-hand sum gets
smaller as the number of subdivisions gets larger.

5. On the interval a < t < b, the integral of the velocity is

the total distance traveled fromt = a to t = b.

In Problems 622, are the statements true for all continuous
functions f(z) and g(«)? Give an explanation for your an-
swer.

6. 1 [7 (f(x) + g(x))dx
f02 g(x)dz =T1.

7. 1If f02 (f(z) + g(z))dz
f02 g(z)dr =1.

8. If [7 f(x)dx = 6. then [} f(x)dx = 12.

10 and [7 f(z)dz = 3. then

10, then f02 f(z)dz = 3 and

mann sum with n subdivisions for f 077 sin x dz.

(b) Use a computer algebra system to find a formula for
the Riemann sum. [Note: Not all computer algebra
systems can evaluate this sum.]

(¢) Use a computer algebra system to evaluate the limit
of the sum as n approaches infinity.

(d) Confirm your answer to part (c) by calculating the
definite integral with the computer algebra system.

In Problems 56-57:

(a) Use acomputer algebra system to compute the given def-
inite integral.

(b) From your answer to part (a) and the Fundamental Theo-
rem of Calculus, guess a function whose derivative is the
integrand. Check your guess using the computer algebra
system.

[Hint: Make sure that the constants a, b, and ¢ do not have
previously assigned values in your computer algebra system.]

b
56. / sin(cx) dx

¢ €T
57. ———dx, b
/a T+ ba2 X >0

9. If f02 f(z)dz = 6 and g(z) = 2f(x),
then f02 g(z)dx = 12.

10. If [ f(x)dz = 6 and h(z) = f(5z),
then [ h(x)da = 30.
11. Ifa = b, then [’ f(x)dz = 0.
12. Tt a # b then [” f(x) dz # 0.
3. [ f(x)de + [} g(x) de = [ (f(2) + g(x)) d.
4. [1 fx)de =2 [ f(x)da.
15. [7 f(x)dz < [ f(x)da.
16. [ f(x)de = [ f(t)dt.

17. If f; f(z)dx < f;g(x) dx, then f(x) < g(z) for
2<ax<6.

18. If f(z) < g(x) on the interval [a, b], then the average
value of f is less than or equal to the average value of g
on the interval [a, b].

19. The average value of f on the interval [0, 10] is the av-
erage of the average value of f on [0, 5] and the average
value of f on [5, 10].

20. If a < ¢ < d < b, then the average value of f on the
interval [c, d] is less than the average value of f on the
interval [a, b].



21. Suppose that A is the average value of f on the inter-
val [1,4] and B is the average value of f on the inter-
val [4,9]. Then the average value of f on [1,9] is the
weighted average (3/8)A + (5/8) B.

22. On the interval [a, b], the average value of f(x) +g(z) is

the average value of f(z) plus the average value of g(z).

In Problems 23-25 decide whether the statement is true or
false. Justify your answer.

23. The average value of the product, f(z)g(z), of two func-
tions on an interval equals the product of the average val-
ues of f(z) and g(x) on the interval.

24. A 4-term left-hand Riemann sum approximation cannot
give the exact value of a definite integral.

25. If f(x) is decreasing and g(z) is increasing, then

I f@)de # [ g(x) da.

In Problems 2627, graph a continuous function f(x) > 0 on
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[0, 10] with the given properties.

26. The maximum value taken on by f(z) for 0 < x < 10

is 1. In addition [ f(x) dz = 5.
27. The maximum value taken on by f(z) for 0 < x
is 5. In addition fow f(x)dx = 1.

28. Which of the following statements follow directly from
the rule

IN

10

IN

b b b
/ (F(&) + g(e)) do = / F(&) do + / o() de?

(a) If fab(f(x) +g(x))dx =5+7, then f: f(z)dx =
5 and f; g(x)de = 1.

M) If [ f(z)dz = [ g(x)dz =7, then [(f(z) +
g(z)) dx = 14.

(© Ifh(z) = [(2)+g(2), then [ (h(z) —g(x)) dz =
fab h(z)dz — f: g(z) dx.

A car starts at noon and travels along a straight road with the velocity shown in Figure 5.89. A
truck starts at 1 pm from the same place and travels along the same road at a constant velocity

of 50 mph.

(a) How far away is the car when the truck starts?

(b) How fast is the distance between the car and the truck increasing or decreasing at 3 pm?
What is the practical significance (in terms of the distance between the car and the truck)
of the fact that the car’s velocity is maximized at about 2 pm?

(c) During the period when the car is ahead of the truck, when is the distance between them
greatest, and what is that greatest distance?

(d) When does the truck overtake the car, and how far have both traveled then?

(e) Suppose the truck starts at noon. (Everything else remains the same.) Sketch a new graph
showing the velocities of both car and truck against time.

(f) How many times do the two graphs in part (e) intersect? What does each intersection mean
in terms of the distance between the two?

velocity (mph)

80

60

40

[
20/

~

time since

1 2 3 4 5 6 7 8 9 10 noon(hours)

Figure 5.89: Velocity of car starting at noon
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2. An Orbiting Satellite

A NASA satellite orbits the earth every 90 minutes. During an orbit, the satellite’s electric power
comes either from solar array wings, when these are illuminated by the sun, or from batteries.
The batteries discharge whenever the satellite uses more electricity than the solar array can
provide or whenever the satellite is in the shadow of the earth (where the solar array cannot be
used). If the batteries are overused, however, they can be damaged. 9

You are to determine whether the batteries could be damaged in either of the following op-
erations. You are told that the battery capacity is 50 ampere-hours. If the total battery discharge
does not exceed 40% of battery capacity, the batteries will not be damaged.

(a) Operation 1 is performed by the satellite while orbiting the earth. At the beginning of a
given 90-minute orbit, the satellite performs a 15-minute maneuver which requires more
current than the solar array can deliver, causing the batteries to discharge. The maneuver
causes a sinusoidally varying battery discharge of period 30 minutes with a maximum dis-
charge of ten amperes at 7.5 minutes. For the next 45 minutes the solar array meets the total
satellite current demand, and the batteries do not discharge. During the last 30 minutes, the
satellite is in the shadow of the earth and the batteries supply the total current demand of
30 amperes.

(i) The battery current in amperes is a function of time. Plot the function, showing the
current in amperes as a function of time for the 90-minute orbit. Write a formula (or
formulas) for the battery current function.

(ii) Calculate the total battery discharge (in units of ampere-hours) for the 90-minute orbit
for Operation 1.

(iii) What is your recommendation regarding the advisability of Operation 1?

(b) Operation 2 is simulated at NASA’s laboratory in Houston. The following graph was pro-
duced by the laboratory simulation of the current demands on the battery during the 90-
minute orbit required for Operation 2.

battery current (amperes)

30 -

10

! ! ‘ : — ¢, time (minutes)
15 30 45 60 75 90

Figure 5.90: Battery discharge simulation graph for Operation 2

(i) Calculate the total battery discharge (in units of ampere-hours) for the 90-minute orbit
for Operation 2.

(ii)) What is your recommendation regarding the advisability of Operation 2?7

9 Adapted from Amy C. R. Gerson, “Electrical Engineering: Space Systems.” in She Does Math! Real Life Problems from
Women on the Job, ed. Marla Parker, p. 61 (Washington, DC: Mathematical Association of America, 1995).



