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7.1

Chapter Seven INTEGRATION

INTEGRATION BY SUBSTITUTION

In Chapter 3, we learned rules to differentiate any function obtained by combining constants, powers
of x, sin z, cos x, e”, and In x, using addition, multiplication, division, or composition of functions.
Such functions are called elementary.

In the next few sections, we introduce two methods of antidifferentiation: substitution and in-
tegration by parts, which reverse the chain and product rules, respectively. However, there is a
great difference between looking for derivatives and looking for antiderivatives. Every elementary
function has elementary derivatives, but many elementary functions do not have elementary an-
tiderivatives. Some examples are vz3 + 1, (sinz)/x, and e~ These are not exotic functions, but
ordinary functions that arise naturally.

The Guess-and-Check Method

A good strategy for finding simple antiderivatives is to guess an answer (using knowledge of differ-
entiation rules) and then check the answer by differentiating it. If we get the expected result, then
we’re done; otherwise, we revise the guess and check again.

The method of guess-and-check is useful in reversing the chain rule. According to the chain

rule, Inside
d F TN
(@) = J (9(2))-g'(x).
xXr ~—~—~ N~
Derivative of outside”” \Derivative of inside

Thus, any function which is the result of applying the chain rule is the product of two factors:
the “derivative of the outside” and the “derivative of the inside.” If a function has this form, its
antiderivative is f(g(z)).

Example 1 Find / 322 cos(x?) d.

Solution

The function 322 cos(x?) looks like the result of applying the chain rule: there is an “inside” func-
tion 2% and its derivative 322 appears as a factor. Since the outside function is a cosine which has a
sine as an antiderivative, we guess sin(z?) for the antiderivative. Differentiating to check gives

d . f
%(sin(x‘*)) = cos(x?) - (32%).
Since this is what we began with, we know that

/3:52 cos(2?) dx = sin(z?) + C.

The basic idea of this method is to try to find an inside function whose derivative appears as a
factor. This works even when the derivative is missing a constant factor, as in the next example.

Example2  Find / te@+1) gy,

Solution

It looks like 2 + 1 is an inside function. So we guess ¢(*+1) for the antiderivative, since taking the
derivative of an exponential results in the reappearance of the exponential together with other terms
from the chain rule. Now we check:

% (e(t2+1)) = (e(tz"'l)) - 2t.
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The original guess was too large by a factor of 2. We change the guess to %e(t2+1) and check again:
d 1 2 1 2 2
2 2D ) = 2P L op — D) Ly
dt (26 ) 2° ¢

Thus, we know that
/te(tzﬂ) dt = %e(tzﬂ) +C.

Example 3

Solution

Find / 23V xt + 5da.

Here the inside function is * + 5, and its derivative appears as a factor, with the exception of a
missing 4. Thus, the integrand we have is more or less of the form

g'(x)V/g(2),
with g(z) = z* + 5. Since 2%/2/(3/2) is an antiderivative of the outside function /z, we might
guess that an antiderivative is
(gD _ (at+5)%
3/2 32

Let’s check and see:
d ((z*+5)%2\ 3 (z*+5)Y/?2
dx 3/2 2 3/2

4a% = 4a3(2* 4 5)Y/2,

(z* +5)3/2 . e
SO T is too big by a factor of 4. The correct antiderivative is

(()74 +5)3/2 1

1 _ 4 3/2
4 3/2 _6< +8)7%

1
/rc?’\/ at +5dx = 6(:1:4 +5)%2 4+ C.

Thus

As a final check:

d (1, 4 32y _ L 3, 4 12 4.3 _ 3/ 4 1/2
. <6( +5) =35 2(:1: +5) 4z’ = 2% (z* + 5)"/°.

As we have seen in the preceding examples, antidifferentiating a function often involves “cor-
recting for” constant factors: if differentiation produces an extra factor of 4, antidifferentiation will
require a factor of i.

The Method of Substitution

When the integrand is complicated, it helps to formalize this guess-and-check method as follows:

To Make a Substitution

d
Let w be the “inside function” and dw = w'(z) dx = d—wd;r.
x

Let’s redo the first example using a substitution.

Example 4

Find /3952 cos(x?) dx.
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Solution

As before, we look for an inside function whose derivative appears—in this case 3. We let w = 23.

Then dw = w'(x) dx = 322 dx. The original integrand can now be completely rewritten in terms of
the new variable w:

/ 322 cos(a®) du = / cos (23) - 32° da = / coswdw = sinw + C' = sin(23) + C.
w w
By changing the variable to w, we can simplify the integrand. We now have cosw, which can

be antidifferentiated more easily. The final step, after antidifferentiating, is to convert back to the
original variable, x.

Why Does Substitution Work?

The substitution method makes it look as if we can treat dw and dx as separate entities, even cancel-
ing them in the equation dw = (dw/dx)dx. Let’s see why this works. Suppose we have an integral
of the form [ f(g(z))g’ (x) dz, where g(z) is the inside function and f(z) is the outside function.
If F' is an antiderivative of f, then ” = f, and by the chain rule - (F(g(z))) = f(g9(z))g'(2).
Therefore,

[ #a@)g' @) dz = Fig(o) + €.
Now write w = g(x) and dw/ dx = ¢'(x) on both sides of this equation:
/f @dl_p(wnc
On the other hand, knowing that F’ = f tells us that
/ fw)dw = F(w)+ C

Thus, the following two integrals are equal:

[ w5 de= [ swya

Substituting w for the inside function and writing dw = w’(x)dz leaves the indefinite integral
unchanged.
Let’s revisit the second example that we did by guess-and-check.

Example 5

Solution

Find / te®+D) qp.

Here the inside function is ¢? + 1, with derivative 2. Since there is a factor of ¢ in the integrand, we

try
w=t+1.

Then
dw = w'(t) dt = 2t dt.

Notice, however, that the original integrand has only ¢ dt, not 2t dt. We therefore write
1
—dw = tdt
2

and then substitute:

w

~ =
/z‘e(tz"'l)dt:/e(tz"'l)- tdt =/ewldw=l/ewdw—lew—kczle(tZ"‘l)—l—C
e > 5 5 /¢ =3 5¢ .

1
sdw

This gives the same answer as we found using guess-and-check.
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Why didn’t we put 3 [ e dw = 1e* + $C in the preceding example? Since the constant C' is
arbitrary, it does not really matter whether we add C' or %C’ . The convention is always to add C' to
whatever antiderivative we have calculated.

Now let’s redo the third example that we solved previously by guess-and-check.

Example 6

Solution

Find /:c3 vVt +5dr.

The inside function is 2 + 5, with derivative 42>. The integrand has a factor of 23, and since the
only thing missing is a constant factor, we try

w=az*+5.

Then
dw = w'(z) dz = 42° dx,
giving
1
Zdw =z dx.
Thus,

1 1 1 1
/xgx/x4+5da:=/\/azdw=Z/wl/de=—~—w +C=6(x4+5)3/2+0.

Once again, we get the same result as with guess-and-check.

Warning

We saw in the preceding examples that we can apply the substitution method when a constant
factor is missing from the derivative of the inside function. However, we may not be able
to use substitution if anything other than a constant factor is missing. For example, setting

w = 2* + 5 to find
/xzx/;v4—|—5dx

does us no good because 2 dx is not a constant multiple of dw = 42> dx. Substitution works
if the integrand contains the derivative of the inside function, fo within a constant factor.

Some people prefer the substitution method over guess-and-check since it is more systematic,
but both methods achieve the same result. For simple problems, guess-and-check can be faster.

Example 7

Solution

Find / e“>%sin 0 do.

We let w = cos 6 since its derivative is —sin 6 and there is a factor of sin 6 in the integrand. This
gives
dw = w' (0) df = —sin 0 db,

SO
—dw = sin 6 df.

Thus

/ecosasin9d0 = /ew (—dw) = (—1)/ewdw = "+ 0= 4 C.
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t
e
Example 8 Find dt.
P i / 14 et

Solution Observing that the derivative of 1 + e? is e?, we see w = 1 + e? is a good choice. Then dw = €t dt,

so that

et 1 1
——dt= tdt = | Zdw=1n|w|+C
/l—i-et /1+et€ /u w = In|w| +
=Iln|l+e|+C
= 111(]. + 6t) +C. (Since (1 + e*) is always positive.)

Since the numerator is e’ dt, we might also have tried w = e!. This substitution leads to the integral

J(1/(1 + w))dw, which is better than the original integral but requires another substitution, u =

1 4 w, to finish. There are often several different ways of doing an integral by substitution.

Notice the pattern in the previous example: having a function in the denominator and its deriva-

tive in the numerator leads to a natural logarithm. The next example follows the same pattern.
Example 9 Find / tan 6 d6.
Solution Recall that tan § = (sin ) /(cos ). If w = cos @, then dw = —sin 6 df, so

inf —d
/ta119d9 = / g = [ 22— —In|w|+C = —1n|cosb| + C.
cos 6 w

Definite Integrals by Substitution

Example 10

Solution

2
2
Compute / re’ dx.
0

To evaluate this definite integral using the Fundamental Theorem of Calculus, we first need to find
an antiderivative of f(z) = ze® . The inside function is 22, so we let w = 22. Then dw = 2z da,
SO %dw = x dx. Thus,

. 1 1 1
/melz dox = /ew§ dw = 56“’ +C = §ex2 +C.

Now we find the definite integral
2
1 1
= 5(64 —e%) = ~(et 1)

/2 =y 1 e
01‘6 37—26 . )

There is another way to look at the same problem. After we established that

1
/xex2 dr = 567“” +C,

our next two steps were to replace w by 22, and then z by 2 and 0. We could have directly replaced
the original limits of integration, z = 0 and x = 2, by the corresponding w limits. Since w = 22,

the w limits are w = 02 = 0 (when 2 = 0) and w = 22 = 4 (when z = 2), so we get

x=2 w=4 4
1 1 1
/ ze® dz = —/ eV dw = -e”
=0 2 w=0 2

1
4 0 4
— - —_— - 1 .
3 (e e ) 3 (e )
As we would expect, both methods give the same answer.

0
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To Use Substitution to Find Definite Integrals

Either
e Compute the indefinite integral, expressing an antiderivative in terms of the original vari-
able, and then evaluate the result at the original limits,
or
e Convert the original limits to new limits in terms of the new variable and do not convert
the antiderivative back to the original variable.

/4 3
Example11  Evaluate / w(lﬁ.
o cos?d

Solution To use substitution, we must decide what w should be. There are two possible inside functions,
tan @ and cos 0. Now

d 1 d .
@(tan 9) = m and @(COS 0) = —sin 9,

and since the integral contains a factor of 1/ cos? 6 but not of sin, we try w = tan 6. Then
dw = (1/cos?§)df. When § = 0, w = tan0 = 0, and when 0 = 7/4, w = tan(r/4) = 1,

SO
/4 tan? ¢ /4 1 ! IR
/ %d@z/ (tan€)3-—2d0=/ w?dw = —wt| ==,
o cos?d 0 cos? 6 0 4|, 4
3
Example12  Evaluate / de .
1 b—=x
Solution Letw =5—x,s0dw = —dr. Whenz = 1, w = 4, and when x = 3, w = 2, so
3 2 2
— 4
/ do :/ Wy | :—(1n2—1n4):1n<—>=1n2z0.69.
1 5—u 4 w 4 2

Notice that we write the limit w = 4 at the bottom, even though it is larger than w = 2, because
w = 4 corresponds to the lower limit x = 1.

More Complex Substitutions

In the examples of substitution presented so far, we guessed an expression for w and hoped to find
dw (or some constant multiple of it) in the integrand. What if we are not so lucky? It turns out that it
often works to let w be some messy expression contained inside, say, a cosine or under a root, even
if we cannot see immediately how such a substitution helps.

Example 13 Find/ V1+Vzdr.

Solution This time, the derivative of the inside function is nowhere to be seen. Nevertheless, we try w = 1 + /.
Then w — 1 = /7, so (w — 1)? = x. Therefore 2(w — 1) dw = dz. We have

/\/1+\/._T,dm:/\/52(711—1)dw:2/101/2(w—1)dw

= 2/(103/2 —w'?) dw =2 <§w5/2 - §w3/2) +C

=2 (%(1 + V)% - §(1 - \/3?)3/2> +C.
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Notice that the substitution in the preceding example again converts the inside of the messiest
function into something simple. In addition, since the derivative of the inside function is not waiting
for us, we have to solve for « so that we can get dx entirely in terms of w and dw.

Example14  Find / (x+7)V3 — 2z dz.

Solution

Here, instead of the derivative of the inside function (which is —2), we have the factor (z + 7).

However, substituting w = 3—2x turns out to help anyway. Then dw = —2 dx, so (—1/2) dw = du.
Now we must convert everything to w, including x + 7. If w = 3 — 2z, then 22 = 3 — w, so
x = 3/2 — w/2, and therefore we can write = + 7 in terms of w. Thus

/(x+7)mdx

JG-50)s(3) o

1 17 w 1/3
2/<2 2)w dw

1
~1 /(17 — w)w'/? dw

i/(”wl/g’ — w3 dw

1 w4/3 ,w7/3
o - =

4 ( ’ 4/3  7/3 ) e

1

5L, a3 o \7/3
4<4(3 22)1/% — 23— 20)7/%) +-C.

Looking back over the solution, the reason this substitution works is that it converts /3 — 2z,
the messiest part of the integrand, to /w, which can be combined with the other term and then

integrated.

Exercises and Problems for Section 7.1

Exercises

1. Use substitution to express each of the following inte-

grals as a multiple of fab(l Jw) dw for some a and b.
Then evaluate the integrals.
/4
(b) /
0

1
(a) /
0

2. (a) Find the derivatives of sin(z” + 1) and sin(z® + 1).
(b) Use your answer to part (a) to find antiderivatives of:

T sin x

1+ 22 dx

dz

Ccos ™

(i) zcos(z? +1) (i) 2%cos(z® +1)
(¢) Find the general antiderivatives of:
(i) zsin(z? +1) (i) 2?sin(z® +1)

Find the integrals in Exercises 3—46. Check your answers by

differentiation.
4. / > dx

3. /tetz dt
5. /e‘fdx 6. /256_0‘2tdt

7. /tcos(tz)dt 8. /sin(2x)dac

g2
/xe dx

12. /y(y2 +5)%dy

9. / sin(3 — t) dt 10.

11. /(r +1)%dr
14.

13. /tz(t3 —3)dt /mz(l +22°)° dz

15. /m(:rz +3)% dz 16. /x(m2 — )24y
17. /y2(1+y)2dy 18. /(Qt— 7)™ dt
v [ 20 / L4
. I . — ax
y+5 Vi—x
21. / (z° +3)% dz 2. [ 22" da

/



23. /sin 6(cos b + 5)7 do
25. / sin® 6 cos 6 df

27. / sin®(56) cos(56) db

1 2
29, /(nz) dz
z
y
3. [
/y2+4 !
T

3. [ —dy
VY

ef’?
3s. dx
2+e”
t
37. dt
1+ 3t2

t+1)32
39./(+)dt
t2

41. / cosh z dz

43, / (sinh 2)e™* dz

45, / x cosh z° dx

24. / vV cos 3t sin 3t dt
26. / sin® v cos a dav

28. /tan(Q:c) dz

t
1
30. /e L
et +1

32./”5‘/5(130
x
1+ e”

34. —d

VT +er ‘

r+1
36. — dx
2 4+ 22+ 19

e’ —e ®

38. | ———dz
er +e "
"z cos(x?)

. | —=dx
\/sin(z?)

42. /sinh3t dt

40,

44, / cosh(2w + 1) dw

46. / cosh? z sinh z dz

For the functions in Exercises 47-54, find the general an-
tiderivative. Check your answers by differentiation.

47. p(t) = wt® + 4t
49. f(z) = 2z cos(z?)
51. f(z) = sin(2 — 5z)

T
2+ 1

53. f(x) =

Problems

48. f(x) =sin3z
50. r(t) = 12t* cos(t)
52, f(z)=e""cosx

1
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For Exercises 55-62, use the Fundamental Theorem to calcu-
late the definite integrals.

T 1/2
55. / cos(z + ) dx 56. / cos(mx) dx
0 0

/2 2 5
57. / e~ sinfdo 58. / 2ze” dx
0 1

8 63/7 e—2 1
59. ——dx 60. —dt
/1 Va? /4 142
4 2
cos /T x
61. d 62. ——d
/1 Jr /0 d+az22 ™

For Exercises 63—68, evaluate the definite integrals. Whenever
possible, use the Fundamental Theorem of Calculus, perhaps
after a substitution. Otherwise, use numerical methods.

o [ —a
) /4 1+y? Y
P
66. /1 —(t 7
68. / ’ MTnt dt
1
Find the integrals in Exercises 69-76.

69. /y\/y—i- 1dy

2+t

. t
Vit+1
73. /xzx/x —2dx

3
63. / («® + 5z) dz
-1

3
65. / l dx
L

2
67. / v+ 2dr
—1

70. /z(z+1)1/3 dz

71

dx
72. _—
/ 2+ 2/

74. /(z+2)\/1—zdz

t 3x —2
75. —dt 76. ——dx
/ VE+T V2r + 1

In Problems 77-80, show the two integrals are equal using a

substitution.

/3 ™
77. / 3sin®(3x) de = / sin®(y) dy
0 0

2
78. / 21n(52+1)ds=/
1 1

4
In(t+1) dt

NG

e 1
79. / (Inw)? dw = / 2e” dz
1 0

80. / (m —x)coszdr = / zcos(m — x) dz
0 0
81. Using the substitution w = z2, find a function g(w) such
that f\/f dz = f:’g(w) dw forall 0 < a < b.

82. Using the substitution w = €7, find a function g(w) such
b
that " e “dw = [, g(w)dw forall a < b.
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In Problems 83-87, explain why the two antiderivatives arere- 101.
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ally, despite their apparent dissimilarity, different expressions
of the same problem. You do not need to evaluate the integrals.

83.

84.

85.

86.

87.

88.

89.

e dx cosx dr

1+ e2e

/ /1+sin2m
/xd:c

e cosxdr and L ix
/ V1— 22

/(sin z)® coswdr and /(md +1)%2% dx
/1 m

/\/x—i-ldm and /%ﬁdm

, , z

Integrate:

1 1
/ ar® / Ao

If appropriate, evaluate the following integrals by substi-
tution. If substitution is not appropriate, say so, and do

not evaluate.
(b) /a:2 sin x dx

(a) /xsin(xQ)dx
"o ' T

© /1+x2dm @ /mdw

sinx

dx

(@) / e ® / Er—_

arcsin x

In Problems 90-96, find the exact area.

90.
91.
92.
93.
94.
95.
96.

97.

98.

99.

100.

z) = ze®” between z = 0 and z = 2.
z) =1/(z + 1) between z = 0 and = = 2.
Under f(z) = sinh(z/2) between z = 0 and = = 2.
Under f(0) = (") for0 < 0 < 2.

¢

Between e! and e**? for 0 <t <2

Under f
Under f

= = =

Between y = ¢“, y = 3, and the y-axis.

Under one arch of the curve V (¢) = Vj sin(wt), where
Vo> 0andw > 0.

Find the exact average value of f(z) = 1/(xz + 1) on
the interval x = 0 to z = 2. Sketch a graph showing the
function and the average value.

Let g(x) = f(2z). Show that the average value of f on
the interval [0, 2b] is the same as the average value of g
on the interval [0, b].

Suppose | 02 g(t) dt = 5. Calculate the following:
@ [ g(t/2)dt ®) [Fg2—t)dt
Suppose f 01 f(t) dt = 3. Calculate the following:

@ [, f2tdt ® [ ra-t)d
© [°fB-2t)dt

BN
J Vi1

102.

103.

104.

105.

106.

107.

108.

109.

(a) Calculate exactly: [*_cos® 0'sin 0 d6.
(b) Calculate the exact area under the curve
y = cos® fsin 6 between § = 0 and 0 = 7.

Find [ 4z(2” + 1) dz using two methods:

(a) Do the multiplication first, and then antidifferentiate.

(b) Use the substitution w = 22 + 1.

(¢) Explain how the expressions from parts (a) and (b)
are different. Are they both correct?

(a) Find f sin @ cos 6 d6.

(b) You probably solved part (a) by making the substi-
tution w = sin § or w = cos 6. (If not, go back and
do it that way.) Now find f sin 6 cos 6 df by making
the other substitution.

There is yet another way of finding this integral
which involves the trigonometric identities

sin(260) = 2sin 6§ cos

cos(20) = cos” § — sin 6.

Find f sin 0 cos 0 df using one of these identities
and then the substitution w = 26.

You should now have three different expressions for
the indefinite integral f sin 6 cos 6 df. Are they re-
ally different? Are they all correct? Explain.

(d)

Find the solution of the initial value problem

y =tanz+1, y(0)=1.

Let Iy,,n = fol 2™ (1 — )" dx for constant m, n. Show
that I,
Let f(t) be the velocity in meters/second of a car at time
t in seconds. Give an integral for the change of position
of the car

(a) For the time interval 0 < ¢t < 60.
(b) In terms of 7" in minutes, for the same time interval.

n — dnym.

Let f(t) be the rate of flow, in cubic meters per hour, of a
flooding river at time ¢ in hours. Give an integral for the
total flow of the river

(a) Over the 3-day period, 0 <t < 72.
(b) In terms of time 7" in days over the same 3-day pe-
riod.

With t in years since 2000, the population, P, of the
world in billions can be modeled by P = 6.1¢%-012¢,

(a) What does this model predict for the world popula-
tion in 2010? In 2020?

(b) Use the Fundamental Theorem to predict the average
population of the world between 2000 and 2010.

Oil is leaking out of a ruptured tanker at the rate of
7(t) = 50e "% thousand liters per minute.

(a) At what rate, in liters per minute, is oil leaking out
att = 0? Att = 607
(b) How many liters leak out during the first hour?



110.

111.

112.

113.

Throughout much of the 20** century, the yearly con-
sumption of electricity in the US increased exponen-
tially at a continuous rate of 7% per year. Assume this
trend continues and that the electrical energy consumed
in 1900 was 1.4 million megawatt-hours.

(a) Write an expression for yearly electricity consump-
tion as a function of time, ¢, in years since 1900.

(b) Find the average yearly electrical consumption
throughout the 20*" century.

(¢) During what year was electrical consumption closest
to the average for the century?

(d) Without doing the calculation for part (c), how could
you have predicted which half of the century the an-
swer would be in?

An electric current, I(t), flowing out of a capacitor, de-
cays according to I(t) = Ipe™", where ¢ is time. Find
the charge, Q(t), remaining in the capacitor at time ¢.
The initial charge is Qo and Q(t) is related to I(¢) by

QW = ~I(.

If we assume that wind resistance is proportional to ve-
locity, then the downward velocity, v, of a body of mass
m falling vertically is given by
mg —kt/m
=—(1-e ,
l )
where g is the acceleration due to gravity and k is a con-
stant. Find the height, h, above the surface of the earth as

a function of time. Assume the body starts at height hy.

If we assume that wind resistance is proportional to the
square of velocity, then the downward velocity, v, of a
falling body is given by

BN
U_\/—< t\/_—f—e_t g)

7.2 INTEGRATION BY PARTS

114.

115.

7.2 INTEGRATION BY PARTS 3
Use the substitution w = et\/g_k + eft\/g_k to find the
height, h, of the body above the surface of the earth as a
function of time. Assume the body starts at a height ho.

(a) Between 1995 and 2005, ACME Widgets sold at a
continuous rate of R = Roe®'°" widgets per year,
where ¢ is time in years since January 1, 1995. Sup-
pose they were selling widgets at a rate of 1000 per
year on January 1, 1995. How many widgets did they
sell between 1995 and 2005? How many did they
sell if the rate on January 1, 1995 was 150,000,000
widgets per year?

In the first case (1000 widgets per year on January
1, 1995), how long did it take for half the widgets
in the ten year period to be sold? In the second case
(150,000,000 widgets per year on January 1, 1995),
when had half the widgets in the ten year period been
sold?

In 2005, ACME advertised that half the widgets it
had sold in the previous ten years were still in use.
Based on your answer to part (b), how long must a
widget last in order to justify this claim?

(b)

(c)

The rate at which water is flowing into a tank is r(¢) gal-
lons/minute, with ¢ in minutes.

(a) Write an expression approximating the amount of
water entering the tank during the interval from time
t to time t + At, where At is small.

Write a Riemann sum approximating the total
amount of water entering the tank between ¢ = 0 and
t = 5. Write an exact expression for this amount.
By how much has the amount of water in the tank
changed between ¢ = 0 and ¢ = 5 if r(t) =
20e0-02t9

If r(t) is as in part (¢), and if the tank contains 3000
gallons initially, find a formula for Q(¢), the amount
of water in the tank at time ¢.

(b)

(c)

(d)

The method of substitution reverses the chain rule. Now we introduce integration by parts, which is

based on the product rule.

Example 1

Solution

Find / ze® dx.

‘We are looking for a function whose derivative is xe”. The product rule might lead us to guess ze”,

because we know that the derivative has two terms, one of which is ze”:

d
dx

Of course, our guess is wrong because of the extra ¢
*. Let’s check it:

(ze®

e”; this leads us to try ze” — e
d

xr xT
ret —e¥) = —
) dx

It works, so /xel’ dr = xe” — e + C.

7

L

—(ze®) = %(:1:)6’C + xi(e’”) = e + ze”.

dx
7. But we can adjust our guess by subtracting

xz xz

(%) = e® + xe® — e® = ze”.
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Example 2 Find / 0 cos 0 df.

Solution We guess the antiderivative is 0 sin 6 and use the product rule to check:

die(@sin@) = @sm9 + «9 (sin@) =sinf + 6 cosb.

de
To correct for the extra sin 6 term, we must subtract from our original guess something whose
derivative is sin 6. Since & (cos ) = — sin 6, we try:
i(95i119 + cosf) = i(GsinG’) d —(cosf) =sinf + O cosh —sinh = O cosh.
do de do

Thus,/900s9d9 =0sinf + cos6 + C.

The General Formula for Integration by Parts

We can formalize the process illustrated in the last two examples in the following way. We begin
with the product rule:

d—(uv) =u'v 4w’
x

where u and v are functions of 2 with derivatives u’ and v’, respectively. We rewrite this as:

wy’ = %(uv) —u'v

and then integrate both sides:

/uv dr = / (uv) do — /u/vdx.

Since an antiderivative of . (uv) is just uv, we get the following formula:
X

Integration by Parts

/uv'dxzuv—/u’vdm.

This formula is useful when the integrand can be viewed as a product and when the integral on
the right-hand side is simpler than that on the left. In effect, we were using integration by parts in
the previous two examples. In Example 1, we let ze” = (z) - (¢*) = wv’, and choose u = x and
v = ¢e*. Thus, v’ = 1 and v = e, so

/ (@) (¢7) dz = (x) (ew)—/ (1) (€7) da = we” — " + C.
— NN NSNS

u v’ u v u’ v

So uw represents our first guess, and [ u’v dx represents the correction to our guess.
Notice what would have happened if we took v = € + C;. Then

/:L'e””d;czz(ex—f—Cl)—/(ex—i-Cl)d/J;
=2’ +Cix — e —Crx +C
=ze” —e" 4+ C,
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as before. Thus, it is not necessary to include an arbitrary constant in the antiderivative for v; any
antiderivative will do.

What would have happened if we had picked u and v’ the other way around? If © = ¢* and
v' = 2, then v/ = e® and v = 22 /2. The formula for integration by parts then gives

2 2
/xewd:vz%ex—/%f”da:,

which is true but not helpful since the integral on the right is worse than the one on the left. To use
this method, we must choose w and v’ to make the integral on the right easier to find than the integral
on the left.

How to Choose u© and v’

e Whatever you let v’ be, you need to be able to find v.
e Tt helps if «/ is simpler than w (or at least no more complicated than w).

o It helps if v is simpler than v’ (or at least no more complicated than v”).

If we pick v" = x in Example 1, then v = 22 /2, which is certainly “worse” than v’

There are some examples which don’t look like good candidates for integration by parts because
they don’t appear to involve products, but for which the method works well. Such examples often
involve In z or the inverse trigonometric functions. Here is one:

3
Example 3 Find / Inx dx.
2
Solution This does not look like a product unless we write Inz: = (1)(Inz). Then we might say v = 1 so
u’ = 0, which certainly makes things simpler. But if v/ = Inz, what is v? If we knew, we would
not need integration by parts. Let’s try the other way: if « = Inz, v’ = 1/z and if v = 1, v = x, s0
3 3 3 1
/ (Inz) (1) do=(nzx) (z) | — / (—) c(x) dx
2 S~ —— =y J2 \T) <~
u v’ u v N~ v
u/
3 3 3
=xlnx| — / lde = (zlnz —x)
2 2 2
=3n3-3-2In2+2=3In3-2mh2-1.
Notice that when doing a definite integral by parts, we must remember to put the limits of
integration (here 2 and 3) on the o term (in this case z In z) as well as on the integral [ v/v dx.
Example 4 Find / 25 Inade.
Solution View 2% Inz as uv’ where v = Inz and v’ = 2° Then v = 127 and v/ = 1/z, so integration by

parts gives us:

/xG Inxdr = /(lnﬂc)966 dz = (Inz) (%:ﬂ) —/%:ﬂ . édx

1 1
= ?x7lnx—?/x6dx

1 1
71“7 Inz — E;L’7 +C.
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In Example 4 we did not choose v’ = In x, because it is not immediately clear what v would
be. In fact, we used integration by parts in Example 3 to find the antiderivative of In z. Also, using
u = Inz, as we have done, gives v’ = 1/x, which can be considered simpler than v = In 2. This
shows that u does not have to be the first factor in the integrand (here 29).

Example 5

Solution

Find / 2% sin 4z du.

If we let v/ = sin4x, then v = —% cos 4x, which is no worse than v’. Also letting u = 2

u' = 2x, which is simpler than v = x2. Using integration by parts:

/1‘2 sindx dr = z* (—icosélx) — /2:c <—%cos4x> dx

1 1
= —ZxQ cosdx + §/mcos4xda:.

, we get

The trouble is we still have to grapple with |  cos 4z dz. This can be done by using integration by
parts again with a new u and v, namely v =  and v’ = cos 4z:

/xcos4xdx=x<isin4x) —/1-%sin4:cdx

1 1 1
= szinél:c -1 <_Z cos4x> +C

1 1
= Z;r,sin4:r, + 6 cosdx + C.
Thus,
1 1
/;172 sin4dx dr = —112 cos 4x + 3 /xcos4xdx

1, 1/1 1
= - 4 — | —xsin4 — cos4
4x cos x+2 (4178111 a:+16cos ac—i—C’)

1 1 1
= ——2?cosde + —zsindz + — cosdx + C.

4 8 32

Notice that, in this example, each time we used integration by parts, the exponent of = went down
by 1. In addition, when the arbitrary constant C' is multiplied by %, it is still represented by C.

Example 6

Solution

Find / cos? 6 df.
Using integration by parts with u = cos 6, v’ = cos 6 gives ' = —sin 6, v = sin 6, so we get
/0082 0df = cosfsinf + /sin2 0de.
Substituting sin® § = 1 — cos? @ leads to
/cos2 0dl = cosfsin6 + /(1 — cos®0) df

:cos&sine—i—/ldb‘—/cosQHdH.
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Looking at the right side, we see that the original integral has reappeared. If we move it to the left,
we get

2/c0520d9=cos951n9+/1d9=cos931n6+0+0.

Dividing by 2 gives
1 1
/COS2 0do = 3 cosfsin @ + 59 + C.

Problem 48 asks you to do this integral by another method.

The previous example illustrates a useful technique: Use integration by parts to transform the
integral into an expression containing another copy of the same integral, possibly multiplied by a
coefficient, then solve for the original integral. It may be necessary to apply integration by parts
twice, as the next example shows.

Example 7

Solution

Use integration by parts twice to find / e** sin(3z) dz.

Using integration by parts with u = ¢*” and v' = sin(3z) gives v’ = 2¢**, v = —1 cos(3z), so we
get

1 2
/62”” sin(3z) dx = —562”” cos(3z) + 3 /62“’"’ cos(3z) dx.

On the right side we have an integral similar to the original one, with the sine replaced by a cosine.
Using integration by parts on that integral in the same way gives

1 2
/ezm cos(3x) dx = 562‘” sin(3x) — 3 / e** sin(3z) dz.
Substituting this into the expression we obtained for the original integral gives
2z ; _ _1 2x 2 1 2z 3 _ 2 2z ;
e“*sin(3z) dr = 3¢ cos(3x) + 3 3¢ sin(3x) 5 /¢ sin(3z) dx
1 2z 2 2T 4 2r -
=—3¢ cos(3x) + g€ sin(3z) — 5 /¢ sin(3z) dx.

The right side now has a copy of the original integral, multiplied by —4/9. Moving it to the left, we
get

4 1 2
(1 + 5) /ezx sin(3z) dx = —5629” cos(3zx) + 562’” sin(3z).
Dividing through by the coefficient on the left, (1 + 4/9) = 13/9, we get

1
9 (—562’” cos(3z) + geh sin(3x)>

2z x) dx
/e sin(3z) dx 13

= 1—1362”3 (2sin(3z) — 3cos(3x)) + C.




346

Chapter Seven INTEGRATION

Exercises and Problems for Section 7.2

Exercises

1

2

. Use integration by parts to express f z2e®dz in terms of

(a) fm%mdx (b) fxe“da:

. Write arctan x = 1 - arctan z to find f arctan x dx.

Find the integrals in Exercises 3-30.

3. /tsintdt 4. /.tzsintdt
5. / te dt 6. / t2e dt
7. /pe_o'lp dp 8. /(z +1)e** dz
9. /ylnydy 10. /chlnxdx
11. /q5ln5qdq 12. /92cos36d0
13. / sin® 6 d9 14. / cos®(3a + 1) da
15. / (Int)? dt 16. / y\/y +3dy
17. | (t+2)vV/2+ 3tdt 18. /(9 +1)sin(0+1) dd
19. Z dz 20. E dx

ez .172
21, / \/;’__ydy 2. %dt

23

25

24.

. / z(lnz)* do
. / arctan 7z dz

/ arcsin w dw

26. / xarctan z° dx

Problems

27.

29.

/35367”2 dx
/ xsinh x dz

28. /xs cosz’ dx

30. /(:c — 1) coshz dx

Evaluate the integrals in Exercises 31-38 both exactly [e.g.
In(37)] and numerically [e.g. In(37) ~ 2.243].

31.

33.

35.

37.

39.

40.

5
32. / xcosxdr
J3

3
34. / tintdt
1

5
36. / In(1 +t)dt
0

5
/ Intdt
J1
10
/ ze *dz
0
1
/ arctan y dy
0

-1
/ arcsin z dz
0

For each of the following integrals, indicate whether in-
tegration by substitution or integration by parts is more
appropriate. Do not evaluate the integrals.

-1
.2
38. / uarcsinu” du
0

. z?
(a) /x sin x dx (b) / T 23 dx
(c) /a:e352 dx () /x2 cos(a:s) dx
(e) / # dr (f) / 22 sin x dx
V3r+1
(g) / Inxdx

Find f 12 In & dz numerically. Find f 12 In x dz using an-
tiderivatives. Check that your answers agree.

In Problems 41-46, find the exact area.

41.
42.
43.
44.
45.

46.
47.

Undery = te ‘for0 <t < 2.

Under f(z) = arctanz for 0 < z < 2.

Under f(y) = arcsiny for 0 < y < 1.

Between y = Inz and y = In(z?) for 1 < 2 < 2.

Between f(t) = In(t* — 1) and g(t) = In(t — 1) for
2<t<3.

Under the first arch of f(x) = xsinx.

In Exercise 13, you evaluated f sin? 6 df using inte-
gration by parts. (If you did not do it by parts, do so

48.

49.

50.
51.

now!) Redo this integral using the identity sin® 6
(1 — cos26)/2. Explain any differences in the form of
the answer obtained by the two methods.

Compute f cos® 0 df in two different ways and explain
any differences in the form of your answers. (The identity
cos? 0 = (1 + cos 26) /2 may be useful.)

Use integration by parts twice to find f e’ sinx dz.
Use integration by parts twice to find f e? cos 0 do.

Use the results from Problems 49 and 50 and integration
by parts to find f ze® sin z dx.



52.

Use the results from Problems 49 and 50 and integration
by parts to find j 0e? cos 0 do.

In Problems 53-56, derive the given formulas.

53.

54.

55.

56.

57.

58.

59.

60.

61.

® . @ —1
/x"er:czsc"eT—n/:c" e’ du

n 1 n . n n—1 .
z"cosardr = —x" sinar — — [ x sin ax dx
a a

' . 1 n ' —1
/ 2" sinardr = —=x" cosax+— [ 2" cosaxrdr
a a

n—1

1 . .
/cos” rdr = —cos" " xsinx+
n

Integrating ** sin bx by parts twice yields a result of the
form

/eaz sinbx dx = e (Asinbx + Bcosba) + C.

(a) Find the constants A and B in terms of a and
b. [Hint: Don’t actually perform the integration by
parts.]

(b) Evaluate f e“? cos bz dx by modifying the method
in part (a). [Again, it is not necessary to perform the
integration, as the result has the same form as that in
part (a).]

Estimate ["° f(x)g/(«) dz if f(x) = 2* and g has the
values in the following table.

z | o246 8|10
gz) | 23|31 |41|55]|59]6.1

Let f be twice differentiable with f(0) = 6, f(1) = 5,
and f’(1) = 2. Evaluate the integral fol xf”(x)dx.

Let F'(a) be the area under the graph of y = x%e~* be-
tween x = 0 and z = a, fora > 0.

(a) Find a formula for F'(a).
(b) Is F' an increasing or decreasing function?
(¢) Is F' concave up or concave down for 0 < a < 2?

The concentration, C, in ng/ml, of a drug in the blood
as a function of the time, ¢, in hours since the drug was
administered is given by C' = 15te %!, The area under
the concentration curve is a measure of the overall effect
of the drug on the body, called the bioavailability. Find
the bioavailability of the drug between ¢t = 0 and ¢ = 3.
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62.

/ cos" *xdx
63.

64.

65.
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The voltage, V, in an electric circuit is given as a function
of time, ¢, by

V = Vy cos(wt + ).

Each of the positive constants, Vo, w, ¢ is increased
(while the other two are held constant). What is the ef-
fect of each increase on the following quantities:

(a) The maximum value of V'?
(b) The maximum value of dV/dt?
(¢) The average value of V2 over one period of V?

During a surge in the demand for electricity, the rate, r,
at which energy is used can be approximated by

—at
r=te "

where ¢ is the time in hours and a is a positive constant.

(a) Find the total energy, F, used in the first 7" hours.
Give your answer as a function of a.
(b) What happens to £ as T" — 00?

Use integration by parts on fOT () (z — t)dt with
u(t) =z —t,v'(t) = f”(t) to show that

f(x) — £(0) = £ (0)x + /T (@) (x —t) dt.

In describing the behavior of an electron, we use wave
functions W1, Wy, W3, ... of the form
v,,(x) = C, sin(nmx) forn=1,2,3,...

where x is the distance from a fixed point and C,, is a
positive constant.

(a) Find C; so that ¥, satisfies

/01 (U (x))? dz = 1.

This is called normalizing the wave function ;.
(b) For any integer n, find C,, so that ¥,, is normalized.

Since so few functions have elementary antiderivatives, they have been compiled in a list called a
table of integrals.! A short table of indefinite integrals is given inside the back cover of this book.
The key to using these tables is being able to recognize the general class of function that you are
trying to integrate, so you can know in what section of the table to look.

Warning: This section involves long division of polynomials and completing the square. You may

want to review these topics!

ISee, for example, CRC Standard Mathematical Tables (Boca Raton, Fl: CRC Press). Many computer programs and

calculators can compute antiderivatives as well.
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Using the Table of Integrals

Part I of the table inside the back cover gives the antiderivatives of the basic functions x™, a”,
In x, sin z, cos z, and tan x. (The antiderivative for In x is found using integration by parts and is a
special case of the more general formula III-13.) Most of these are already familiar.

Part II of the table contains antiderivatives of functions involving products of €%, sin 2, and
cos z. All of these antiderivatives were obtained using integration by parts.

Since the integrand is the product of two sines, we should use II-10 in the table,

1
/sin Tzsin3zdz = _EU cos 7zsin3z — 3cos3zsin7z) + C.

Part III of the table contains antiderivatives for products of a polynomial and e*, sinx, or
cos z. It also has an antiderivative for 2™ In =, which can easily be used to find the antiderivatives of
the product of a general polynomial and In x. Each reduction formula is used repeatedly to reduce
the degree of the polynomial until a zero degree polynomial is obtained.

Since p(z) = x° + 22® — 8 is a polynomial multiplied by 37, this is of the form in III-14. Now
p'(x) = 52* + 622 and p” (z) = 202 + 122, and so on, giving

1

1 1
/(x5 + 223 — 8)* du = 3 §(x5 + 223 — 8) 5 (5a* + 62%) + 2—7(20:53 + 12x)

1, 1 1

Here we have the successive derivatives of the original polynomial z° + 22® — 8, occurring with
alternating signs and multiplied by successive powers of 1/3.

Part IV of the table contains reduction formulas for the antiderivatives of cos™ x and sin™ x,
which can be obtained by integration by parts. When n is a positive integer, formulas IV-17 and
IV-18 can be used repeatedly to reduce the power n until it is O or 1.

Example 1 Find / sin 7z sin 3z dz.
Solution

Example2  Find / (2° + 22° — 8)e> du.
Solution

Example3  Find / sin® 0 de.

Solution Use IV-17 repeatedly:

1 .
/sin60d6:—Esin56c030+g/sin49d0
.4 1. 3 3 .92
sin 9d9:—zsm Hcosﬂ—i-z sin“ 6 do

. 9 1. 1
sin 9d9:—§sm9cosﬁ+§ 1d6.

Calculate [ sin® 0 df first, and use this to find [ sin® 0 d0; then calculate [ sin® ¢ d¢. Putting this all
together, we get

1 5 15 15
sin® — _—__g] 5 ) — — 3 < _ oY .
/bm 0do Gbln 0 cos 6 245111 0 cos —4851n9c056’+—489+0.
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The last item in Part IV of the table is not a formula: it is advice on how to antidifferenti-
ate products of integer powers of sina and cosz. There are various techniques to choose from,
depending on the nature (odd or even, positive or negative) of the exponents.

Example 4 Find / cos® tsin t dt.

Solution Here the exponent of cost is odd, so IV-23 recommends making the substitution w = sint. Then
dw = costdt. To make this work, we’ll have to separate off one of the cosines to be part of
dw. Also, the remaining even power of cost can be rewritten in terms of sint by using cos®t =
1 —sin®t = 1 — w2, so that

/ cos® tsint t dt = / cos? tsin® t cos ¢ dt
= /(1 —w?)w* dw = /(w4 —w%) dw
1 1 1 1
= gw5 — ?w7—|—C: gSiH5t— ?bIIl?t-f—C
Example 5 Find / cos? xsin? z dzr.
Solution In this example, both exponents are even. The advice given in IV-23 is to convert to all sines or all

cosines. We’ll convert to all sines by substituting cos? z = 1 — sin® z, and then we’ll multiply out
the integrand:

/cos2 rsin® xde = /(1 —sin? ) sin? o do = /Sin4 rdr — /Sin6 rdz.
In Example 3 we found [ sin® 2 dz and [ sin® z dz. Put them together to get

1
/cosQ;vsin4;rdx=——sin3xcosa:— §sinxcosx+§w
4 8 8
— —lsin‘r):rcosm—isin3xcosm——551nxcosm+gx +C
6 24 48 48

= 1sin‘r’l‘cosav — ising’arcosav — —sinxcosx + 31‘ +C
6 24 48 ’

48

The last two parts of the table are concerned with quadratic functions: Part V has expressions
with quadratic denominators; Part VI contains square roots of quadratics. The quadratics that ap-
pear in these formulas are of the form 2% +a? or a? — 2, or in factored form (x —a)(x —b), where a
and b are different constants. Quadratics can be converted to these forms by factoring or completing

the square.

Preparing to Use the Table: Transforming the Integrand

To use the integral table, we often need to manipulate or reshape integrands to fit entries in the
table. The manipulations that tend to be useful are factoring, long division, completing the square,
and substitution.

Using Factoring

Example 6

Solution

. 3x+7
Find | — dx.
n /.T,2—|—6.1:+8 .

In this case we factor the denominator to get it into a form in the table:

2?2 4+ 6r+8=(v+2)(x+4).
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Now in V-27 weleta = —2,b = —4, ¢ = 3, and d = 7, to obtain

w47 1
/m—2:6x+8d17=§(hl|$+2|—(—5)1n|m+4|)+0.

Long Division

2
x
Example 7 Find [ ——— du.
ample n / 24 T
Solution A good rule of thumb when integrating a rational function whose numerator has a degree greater
than or equal to that of the denominator is to start by doing long division. This results in a polynomial
plus a simpler rational function as a remainder. Performing long division here, we obtain:
x? _ 4
22 +4 2 +4°
Then, by V-24 with a = 2, we obtain:
2 1 1 T x
/mQx—Hd$:/1dx—4/z2—+4dx=x—4o §arctang+0:x—2arctang+a
Completing the Square to Rewrite the Quadratic in the Form w? + a?
Example 8 Find / ! d
——du.
P 22+ 6x+ 14
Solution By completing the square, we can get this integrand into a form in the table:
2%+ 62+ 14 = (2® + 62 +9) — 9+ 14
= (z+3)? +5.
Let w = x + 3. Then dw = dx and so the substitution gives
1 1 1 w 1 r+3
———dr= | ——dw = —=arctan —= + C = —= arctan —— + C,
/LL'2+6(L'+14 /w2+5 V5 V5 VG Vb
where the antidifferentiation uses V-24 with a? = 5.
Substitution
Example9  Find / e’ sin(5t + 7) dt.
Solution This looks similar to II-8. To make the correspondence more complete, let’s try the substitution

w = 5t + 7. Then dw = 5 dt, so dt = £ dw. Also, t = (w — 7)/5. Then the integral becomes

/et sin(bt 4+ 7) dt = /e(w_7)/5 sinw d?w

—-7/5
& . 5
= / ew/5 sin w dw. (Since e(®=7)/5 = ¢w/5¢=7/5 and ¢~ 7/5 is a constant)

5

Now we can use II-8 with @ = £ and b = 1 to write

1 sin w
w/5 i dw = w/5 _ C
/e sin w aw (%)2+126 < 5 cosw>+ s
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SO

e /5 (2 5 (sin(5t+7
/et sin(5t + 7) dt = 3 (22 (5t+7)/5 (Em(E)T-F)—cos(St—i-?))) +C

_ be! (qm(ot—i— 7)

=25 3 — cos(ht + 7)) +C.

Exercises and Problems for Section 7.3

Exercises
For Exercises 1-40, antidifferentiate using the table of inte- 29 1 da 30 1
grals. You may need to transform the integrand first. ’ z2 4+ 4z + 3 ’ x? +4x+4
_ dz d
L 3 cos 0 do 2 [ 2’ lnzd Lo = 2. Y
'/e cos /Jc nzdx 3 PP 3 1=
3. /x3 sin bz dx. 4. /(:C2 +3)Inxde. 33. / 1 dz 34 / ! dy
14 (2 +2)2 y2+4y+5
5. /(m3 +5)° da. 6. /sinw cos® wdw A 5
35. /tan zdx 36. /mn‘ zdx
7. /sin4 rdx 8. / 362 du ,
37. /51113 36 cos® 360 d¢ 38. / 2e*” cos(22%) dz
1 dx
9. / —dy 10. / —_—
2 922 + 16
J 3ty Joden 39. / sinh® z cosh®  dz 40. / sinh? z cosh® z da
1 / __dz 12 / _dr
") V25— 16a2 ") V92225
13. / sin 360 cos 50 d6 14. / sin 30 sin 56 d@ For Problems 41-50, evaluate the definite integrals. Whenever
possible, use the Fundamental Theorem of Calculus, perhaps
5 after a substitution. Otherwise, use numerical methods.
15. /xze“ dz 16. / 2e™ dx
1 K
. 41. / V3 —a?dx 42, / sin 5z cos 62 dx
17. /x4e3z dz 18. /u“‘ In(5u) du 0 -
2 /12
2 3 -
19. 20. "4+ 1 dat 43. / (x —2z")Inzde 44. / sin(3a) dov
cos3 2 -1 1 0
¥ ' 45 / Ly 46 / L
. —dz . _
21. /T sinz? da 22, /cos2ycos7ydy ) 2+ 2z +1 L T2 +2c+5
| se s /3 dg -1 dx
23. % sin 2y dy 24. e’ sin 3z dx 47. / 48. /
a4 sin®z 3 Va2 46z +10
1
25. 26. ——df
/ cos® / sin? 26 VR g (@ +2)
49. —dx 50. g dz
1 0 \/1—1'4 0 (1’-‘1‘2) +1
28. d
/ sin 39 / cositz ¥
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Problems

51. Show that for all integers m and n, with m # +n,
f:r sinm# sinnf df = 0.

52. Show that for all integers m and n, with m # =£n,
f:r cosmf cosnf df = 0.

53. The voltage, V. in an electrical outlet is given as a func-
tion of time, ¢, by the function V' = Vj cos (1207t),
where V' is in volts and ¢ is in seconds, and V} is a posi-
tive constant representing the maximum voltage.

(a) What is the average value of the voltage over 1 sec-
ond?

(b) Engineers do not use the average voltage. They
use the root mean square voltage defined by V =
\/average of (V2). Find V in terms of V;. (Take the
average over 1 second.)

(¢) The standard voltage in an American house is 110
volts, meaning that V = 110. What is V,?

54.

For some constants A and B, the rate of production,
R(t), of oil in a new oil well is modeled by:

R(t) = A4 Be™'sin(2nt)

where ¢ is the time in years, A is the equilibrium rate, and
B is the “variability” coefficient.

(a) Find the total amount of oil produced in the first N
years of operation. (Take N to be an integer.)

(b) Find the average amount of oil produced per year
over the first N years (where N is an integer).

(¢) From your answer to part (b), find the average
amount of oil produced per year as N — co.

(d) Looking at the function R(#), explain how you
might have predicted your answer to part (c) with-
out doing any calculations.

(e) Do you think it is reasonable to expect this model to
hold over a very long period? Why or why not?

7.4 ALGEBRAIC IDENTITIES AND TRIGONOMETRIC SUBSTITUTIONS

Although not all functions have elementary antiderivatives, many do. In this section we introduce
two powerful methods of integration which show that large classes of functions have elementary an-
tiderivatives. The first is the method of partial fractions, which depends on an algebraic identity, and
allows us to integrate rational functions. The second is the method of trigonometric substitutions,
which allows us to handle expressions involving the square root of a quadratic polynomial. Some of
the formulas in the table of integrals can be derived using the techniques of this section.

Method of Partial Fractions

The integral of some rational functions can be obtained by splitting the integrand into partial frac-

tions. For example, to find

[

) —5)

! dx,

the integrand is split into partial fractions with denominators (x — 2) and (z — 5). We write

1

A B

(x—2)(x —5)

_I—2+x—5’

where A and B are constants that need to be found. Multiplying by (x — 2)(x — 5) gives the identity
1=A(x—5)+ Bz —2)

SO

1=(A+DB)x—5A—2B.

Since this equation holds for all z, the constant terms on both sides must be equal. Similarly, the

coefficients of x on both sides must be equal. So

Solving these equations gives A = —1/3, B = 1/3. Thus,

—5A—-2B=1
A+ B=0.
1 13 13
(x—2)(x—5) -2 x-5
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Example 1

Solution

1
Use partial fractions to integrate / m dx.

We split the integrand into partial fractions, each of which can be integrated:

1 (=13 1/3 ! 1

You can check that using formula V-26 in the integral table gives the same result.

This method can be used to derive formulas V-26 and V-27 in the integral table. A similar
method works whenever the denominator of the integrand factors into distinct linear factors and the
numerator has degree less than the denominator.

Example 2

Solution

Find/a;idx.
T4+

‘We factor the denominator and split the integrand into partial fractions:

T +2 r+2 A B

:132+a:_:z:(a:+1):;+93+1'

Multiplying by z(x + 1) gives the identity

x+2=A(x+1)+ Bz
=(A+ B)x + A.

Equating constant terms and coefficients of = gives A = 2 and A + B = 1, so B = —1. Then we
split the integrand into two parts and integrate:

s+ 2 2 1
/Q;de:/(__ )dx:21n|3:|—ln|3:+1|+C.
x? +x r x+1

The next example illustrates what to do if there is a repeated factor in the denominator.

Example 3

Solution

10z — 22* A B C
Calculate / m dx using partial fractions of the form 1T @12 753

We are given that the squared factor, (z — 1)2, leads to partial fractions of the form:

100 —222 A N B N C
(r—1)2(x+3) x-1 (z-12 z+3

Multiplying through by (z — 1)%(z + 3) gives
10z — 222 = A(x — 1)(z +3) + B(z + 3) + C(z — 1)*
= (A+C)2*+ (2A4+ B -2C)x —3A+ 3B+ C.
Equating the coefficients of 2 and z and the constant terms, we get the simultaneous equations:
A+C=-2

2A+ B —-2C =10
—3A+3B+C=0
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Solving gives A = 1, B = 2,C' = —3. Thus, we obtain three integrals which can be evaluated:

2

For the second integral, we use the fact that [ 2/(z—1)%dz =2 [(z—1)"?de = —2(z—1) "'+ K.

=lnlz—1| -

If there is a quadratic in the denominator which cannot be factored, we must allow a numerator
of the form Az + B in the numerator, as the next example shows.

22—z -1 Az + B
Example 4 Find / m dz using partial fractions of the form ;23 —_:: 1 and - ? 5

Solution We are given that the quadratic denominator, (z? + 1), which cannot be factored further, has a
numerator of the form Az + B, so we have

22 —x—1 Az + B C

(z2 +1)(z —2) x2+1+x—2'

Multiplying by (22 + 1) (2 — 2) gives

202 —x — 1= (Az + B)(z — 2) + C(2* + 1)
= (A+C)z? + (B —24A)x + C — 2B.

Equating the coefficients of 22 and x and the constant terms gives the simultaneous equations

A+C =2
B—-2A=-1
C—-2B=-1

Solving gives A = B = C = 1, so we rewrite the integral as follows:

202 —x—1 r+1 1
— —dr = —_— dz.
/(a:2+1)(:1:—2) v /<x2+1+x—2> v
This identity is useful provided we can perform the integration on the right-hand side. The first

integral can be done if it is split into two; the second integral is similar to those in the previous
examples. We have

202 —x —1 x 1 1
———dx = | ——d —d dx.
(22 +1)(x —2) ‘ /a:2+1 I+/12+1 x+/az—2 *

To calculate [(z/(z% + 1)) dz, substitute w = z* + 1, or guess and check. The final result is

207 —x — 1 1
/mﬁz 5111|J;2—I—1|+a1'ctanl'+ln|;r—2|+K.

Finally, the next example shows what to do if the numerator has degree larger than the denom-
inator.
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2% — T2+ 10z + 1

Example 5 Calculate / dz using long division.

x? — 7z + 10
Solution The degree of the numerator is greater than the degree of the denominator, so we divide first:
22 =722 +100+1 z(z? — Tz +10)+1 n 1
= =T .
x2 = Tr+ 10 x? =Tz + 10 22 —=Tr+10

The remainder, in this case 1/(z? — 7z + 10), is a rational function on which we try to use partial

fractions. We have ] ]

22 —Tz+10 (x—2)(x—5)
so in this case we use the result of Example 1 to obtain

23— T2? + 102 + 1 1 2?1 1
do= | (o4 ——— ) de="—ZIn|z—2/+=In|z—5|+C.
/ p T x / <L+ (x—2)(x—5)) z=5 g n|x |—i—3 nlx—5[+

Many, though not all, rational functions can be integrated by the strategy suggested by the
previous examples.

Strategy for Integrating a Rational Function, %
o If degree of P(x) > degree of Q(z), try long division and the method of partial fractions
on the remainder.

o If Q(x) is the product of distinct linear factors, use partial fractions of the form

(x—c)
o If Q(z) contains a repeated linear factor, (x — ¢)™, use partial fractions of the form

A + Ao + + L
R e R

e If Q(x) contains an unfactorable quadratic ¢(x), try a partial fraction of the form

Ax + B
q(x)

To use this method, we need to be able to integrate each partial fraction. We know how to
integrate terms of the form A/(z — ¢)™ using the power rule (if n > 1) and logarithms (if n = 1).
Next we see how to integrate terms of the form (Az + B)/q(x), where ¢(z) is an unfactorable
quadratic.

Trigonometric Substitutions

Section 7.1 showed how substitutions could be used to transform complex integrands. Now we see
how substitution of sin 6 or tan § can be used for integrands involving square roots of quadratics or
unfactorable quadratics.

Sine Substitutions

Substitutions involving sin # make use of the Pythagorean identity, cos? # + sin? @ = 1, to simplify
an integrand involving v/ a2 — x2.
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dx using the substitution 2 = sin 6.

If x = sin 0, then dx = cos 0 df, and substitution gives

cosgdg = [ <Y

1 1
—da::/— —=db

Now either vcos? § = cos 6 or v cos? § = — cos § depending on the values taken by 6. If we choose
—m/2 <60 <m/2,thencosf > 0, so Vcos? § = cos@. Then

cos cos

dfd = | 1d6 =20 = in: .
\/F cosd / +C = arcsinz + C

The last step uses the fact that § = arcsinz if z = sinf and —7/2 < 0 < /2.

From now on, when we substitute sin 6, we assume that the interval —7/2 < 6 < 7/2 has been
chosen. Notice that the previous example is the case a = 1 of VI-28 in the table of integrals. The
next example illustrates how to choose the substitution when a # 1.

[ =
4 — x2
This time we choose 2 = 2sin ), with —7/2 < 6 < 7/2, so that 4 — 2> becomes a perfect square:

Vi — a2 = \/4—4sin29:2\/1—sin29=2\/c0820=20089.

1 . [T
—./WZCOSHdH—./1d9—9+0—aI’CSIH(§>+C.

The general rule for choosing a sine substitution is:

To simplify v/a? — 22, for constant a, try x = asin§, with —7/2 < 0 < /2.

Notice va? — 22 is only defined on the interval [—a,a]. Assuming that the domain of the
integrand is [—a, a], the substitution z = asin@, with —7/2 < 6 < 7/2, is valid for all z in the
domain, because its range is [—a, a] and it has an inverse § = arcsin(x/a) on [—a, a).

1
Example 6 Find / e
P V1— 22
Solution
Example 7 Use a trigonometric substitution to find
Solution
Then dx = 2 cos 6 df, so substitution gives
1
—dx
/ Vi — a2
Example8  Find the area of the ellipse 422 4 y2 = 9.
Solution

Solving for y shows that y = /9 — 422 gives the upper half of the ellipse. From Figure 7.1, we see

that
3/2

Area =4 V9 —4x2 dx.



7.4 ALGEBRAIC IDENTITIES AND TRIGONOMETRIC SUBSTITUTIONS 357

To decide which trigonometric substitution to use, we write the integrand as

Ve L G

This suggests that we should choose 2 = (3/2) sin 6, so that dz = (3/2) cos 8 df) and

m:2¢(§)2_(§>2sinze:2( ) VI = sconn

2 2

When « =0, § =0, and when z = 3/2, 0 = 7/2, so

3/2 /2

w/2 T
V9 — 4az2da:—4/ 30059(%) 0089d9:18/ cos® 6 de.
0

Using Example 6 on page 344 or table of integrals IV-18, we find

/00529d0 = %cos@sin@—l— %94—6’.

So we have
3/2 /2 9
Area :4/ V9 —4da?dx = —(cos981n9+0) :9(04—%):%
Yy
=9 — 422
X
_3 3
2 2
y=—9— 422

Figure 7.1: The ellipse 42 + y*> = 9

Tangent Substitutions

Integrals involving a2+ 2 may be simplified by a substitution involving tan § and the trigonometric
identities tan @ = sin @/ cos 0 and cos® 0 + sin? 6 = 1.

Example 9

Solution

1
Find / —5 ¢ dx using the substitution z = 3 tan 6.
x4 +9

If z = 3tand, then dx = (3/ cos® 0) d, so

1 1 3 1 1
/x2+9dx_/<9tan29+9> <c0829> da_§/(s1n9+l>coszgd9

1/ 1 1/ 1 1 T
== | —————df == [ 1d0 = =0 = —arctan ( = .
3/Sin2€+cos29 3/ 3 +C 3@10&11(3)—#0

To simplify a? + 22 or Va2 + 22, for constant a, try x = atan 6, with —7/2 < 6 < 7/2.




358 Chapter Seven INTEGRATION

Note that a? + 2% and v/a2 + 22 are defined on (—o0,c0). Assuming that the domain of the
integrand is (—oo, 00), the substitution 2 = a tan §, with —7/2 < 6 < 7/2, is valid for all z: in the
domain, because its range is (—oc, 00) and it has an inverse § = arctan(x/a) on (—o0, 00).

Example10  Use a tangent substitution to show that the following two integrals are equal:

1 /4 1
/ \/1+x2dx=/ _—
0 0

cos39

‘What area do these integrals represent?

Solution We put 2 = tan 6, with —7/2 < 6 < /2, so that dx = (1/ cos? #) df, and
a2 .2
sin” 0 cos? § + sin” 6 1
Vitaz2=4/1 = = —.
T \/ iy \/ cos? 6 cost

When o = 0,60 =0,and whenz = 1,0 = /4, so

1 5 /4 1 1 /4 1
/0 Lt dx—/o (cos@) (60829> d9—/0 cos3«9d0'

The left-hand integral represents the area under the hyperbola 32 — 2 = 1 in Figure 7.2.
Yy

g y=VviTaZ
1

/\y:_m

Figure 7.2: The hyperbola y? — 22 = 1

Completing the Square to Use a Trigonometric Substitution

To make a trigonometric substitution, we may first need to complete the square.

3
Example11  Find / —du.
P J 2z —a?
Solution To use a sine or tangent substitution, the expression under the square root sign should be in the form

2 — 22, Completing the square, we get

20 — 12 =1~ (v —1)%

a?+az%ora

This suggests we substitute + — 1 = sin 6, or x = sin # + 1. Then dx = cos 6 df, and

cos 6 df

=/ 3 cos@d9=/3d9=39+0.
cos 6

Since  — 1 = sin 6§, we have § = arcsin(x — 1), so

dx = 3arcsin(z — 1) + C.

| =
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1
E le12 Fi _—
Xample 1nd/m2+x+1d¢

Completing the square, we get

2
1\* 3 1\* (V3

2 e — - = — —_—

x+x—|—1—<x—|—2) +4 <1:—|—2) —|—<2

This suggests we substitute = + 1/2 = (v/3/2)tané, or x = —1/2 + (v/3/2) tan 6. Then dz =
(v/3/2)(1/ cos® 8) db, so

1 1 V3 o1
/2—d;r=/ - ) (£ do
224+ x+1 (r+35)%+7 2 cos?6
3 [ 1 1 2 " 1
:£/<‘3 2 3)( 2>d‘9:_/ 2 2 do

2 Stan*0+ 2 ) \cos? 0 V3. (tan? 0+ 1) cos?0

2 2

— [ 1d0 = —0+C.

7] 1=7

Since = + 1/2 = (v/3/2) tan #, we have § = arctan((2/v/3)z + 1/v/3), so

Solution

\/§/sin29—|—00829

/ L =2t
——dx = arc an
Exercises and Problems for Section 7.4
Exercises
2
Split the functions in Exercises 1-7 into partial fractions. 15. Sx —8x+1 da: A B c
Eyp e e A R R
20 z+1
1. —— 2.
25 — x? 6x + 2 16. useé—i—ﬁ—l- ¢
x3 2 x—1
3 _8 4 M 10 9 A B c
Ty — 4y T os(s243s+2 17. T+ . T+
( ) x3—5x2+x—5dx’usea:—5+x2+1
5, 2 6 %
T P2ty 1 18. x* +122° + 1522 +25x+11dm,
o3 4+ 1222 + 11
7. — ! 3 use division and — B ¢
wh—w R ST
19 m4+3x3+2x +1d’ divisi

In Exercises 8-14, find the antiderivative of the function in the : 22+ 3z 42 T; use division.

given exercise.
In Exercises 20-22, use the substitution to find the integral.

8. Exercise 1
10. Exercise 3
12. Exercise 5
14. Exercise 7

9. Exercise 2
11. Exercise 4
13. Exercise 6

In Exercises 15-19, evaluate the integral.

20.

21.

22.

xr =

/\/9 4:02 v

/m2+4x+5 “

/ —dx,
41’—3—1’2

— t
2Sm
r=tant — 2

xr =sint + 2
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23. Which of the following integrals are best done by a
trigonometric substitution, and what substitution?

(a) /\/Q—xzdx (b) /x 9 —x2dx

Problems

24. Give a substitution (not necessarily trigonometric) which
could be used to compute the following integrals:

x 1
—d b —d
o [me o [

jzx: 3(; dx by partial fractions.
(b) Show that your answer to part (a) agrees with the
answer you get by using the integral tables.

25. (a) Evaluate

26. Calculate / m dx for
@ a#b (b) a=b

Complete the square and give a substitution (not necessarily
trigonometric) which could be used to compute the integrals
in Problems 27-34.

1
27. _
/x2 4+ 22 42 dr
dy
29. _
/ y2+3y+3

4
31. —d
/ V2z — 22 :

1
28. —_-
8 /w2+6x+25dx

z+1
30- /md

z—1
2. [ ——d
/\/2,2—,22 ?
33. /(t+2)sin(t2+4t+7)dt

34. / (2 — 0) cos(0® — 40)do

Calculate the integrals in Problems 35-52.

35. /mdx 36. /md@«
37. / mdm 38. / m(lm
39. / szjz 40. /#

41. /% 42. / %dm

y+2
2y? +3y+1

43. / 44. / i+1 dx
x° +x
45. a6 [ - e
12+m4 ) Vo — 22
dt
47. 48. —_—
/ /t2v1+t2

25+y

o o

31 /x2+4x+13dm

1
o | Grmee

e’ dx

52.
/(el—l )(e* +2)

Find the exact area of the regions in Problems 53-58.
53. Bounded by y = 3z/((z — 1)(x — 4)),y = 0,z = 2,
T =3

54. Bounded by y = (32 4+ z)/((z* + 1)(z + 1)),
y=0,z=0,z=1.

55. Bounded by y = 2%/v/1 — 22,y = 0,2 = 0,2 = 1/2.

56. Bounded by y = 2%/v4 — 22, y=0,2 = 0,2 = /2.

57. Boundedby y = 1/v22 + 9,y = 0,2 =0,z = 3.

58. Bounded by y = 1/(z/x2 +9),
yzO,x:\/g,x:?).

Calculate the integrals in Problems 59-61 by partial fractions
and using the indicated substitution. Show that the results you
get are the same.

59. d_:c; substitution x = sin 6.
1— 22

2x
60. —_
/ 2 —1

2
61. / 32 +1
A

dx; substitution w = 2% — 1.

— du; substitution w = 2+ @

1 1
62. (a) Show / ey do = ~“tond +
(b) Calculate diy
Y25 —y?

Solve Problems 63—-65 without using integral tables.

63. Calculate the integral / m dx for
@ a#b (b) a=0b
64. Calculate the integral — _dxfor
(x —a)(x—0)
@ a#b b) a=b
65. Calculate the integral / 5 ! dx for
xr= —a
@ a>0 (b) a=0 () a<0



66.

A rumor is spread in a school. For 0 < a < land b > 0,
the time ¢ at which a fraction p of the school population
has heard the rumor is given by
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where a and b are initial quantities of the two ingredients
used to make the product, and k is a positive constant.
Suppose 0 < a < b.

(a) Find the time taken to make a quantity 9 = a/2 of
the product.
(b) What happens to 7" as xo — a?

t(p)z/a ﬁdm.

(a) Evaluate the integral to find an explicit formula for
t(p). Write your answer so it has only one In term.

(b) Attime t = 0 one percent of the school population 68
(p = 0.01) has heard the rumor. What is a?

(c) Attime ¢t = 1 half the school population (p = 0.5)

. The moment generating function, m(t), which gives use-
ful information about the normal distribution of statistics,

; is defined by
has heard the rumor. What is b?
(d) At what time has 90% of the school population
(p = 0.9) heard the rumor? oo v /2
_ tr
67. The Law of Mass Action tells us that the time, 7', taken m(t) = /_ - ¢ /o7 dr.

by a chemical to create a quantity xo of the product (in
molecules) is given by

0o
/
0

7.5 APPROXIMATING DEFINITE INTEGRALS

Find a formula for m(t). [Hint: Complete the square and

kdx - 5
use the fact that f_oo e 2 dr = /27

(@262

The methods of the last few sections allow us to get exact answers for definite integrals in a variety
of cases. However, many functions do not have elementary antiderivatives. To evaluate the defi-
nite integrals of such functions, we cannot use the Fundamental Theorem; we must use numerical
methods.

We already know how to approximate a definite integral numerically using left- and right-hand
Riemann sums. In the next two sections we introduce better methods for approximating definite
integrals—better in the sense that they give more accurate results with less work than that required
to find the left- and right-hand sums.

The Midpoint Rule

In the left- and right-hand Riemann sums, the heights of the rectangles are found using the left-hand
or right-hand endpoints, respectively, of the subintervals. For the midpoint rule, we use the midpoint
of each of the subintervals.

For example, in approximating ff f(z) dz by a Riemann sum with two subdivisions, we first
divide the interval 1 < x < 2 into two pieces. The midpoint of the first subinterval is 1.25 and
the midpoint of the second is 1.75. The heights of the two rectangles are f(1.25) and f(1.75),
respectively. (See Figure 7.3.) The Riemann sum is

£(1.25)0.5 4 £(1.75)0.5.

Figure 7.3 shows that evaluating f at the midpoint of each subdivision usually gives a better approx-
imation to the area under the curve than evaluating f at either end. For this particular f, it appears
that each rectangle is partly above and partly below the graph on each subinterval. Furthermore, the
area under the curve which is not under the rectangle appears to be nearly equal to the area under
the rectangle which is above the curve. In fact, this new midpoint Riemann sum is generally a bet-
ter approximation to the definite integral than the left- or right-hand sum with the same number of
subdivisions, n.
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~05+ - f(x)
0.5
F(1.25) f(1.75)
RN
1125 1.752

Figure 7.3: Midpoint rule with two subdivisions

So far, we have three ways of estimating an integral using a Riemann sum:
1. The left rule uses the left endpoint of each subinterval.
2. The right rule uses the right endpoint of each subinterval.
3. The midpoint rule uses the midpoint of each subinterval.

We write LEFT(n), RIGHT (n), and MID(n) to denote the results obtained by using these
rules with n subdivisions.

Example 1

Solution

2
1

For / — dx, compute LEFT(2), RIGHT(2) and MID(2), and compare your answers with the
x

1
exact value of the integral.

For n = 2 subdivisions of the interval [1, 2], we use Az = 0.5. Then

LEFT(2) = £(1)(0.5) + f(1.5)(0.5) = %(0.5) + %(0.5) —0.8333...
RIGHT(2) = f(1.5)(0.5) + £(2)(0.5) = %5(0.5) + %(0.5) —0.5833...

1 1
T35(05) + ==(0.5) = 0.6857 ...

All three Riemann sums in this example are approximating

) 2
1
/ —dr=Inzx
1 xr

=In2—-In1=1n2=0.6931....
1
With only two subdivisions, the left and right rules give quite poor approximations but the midpoint
rule is already fairly close to the exact answer.

Figure 7.4(a) illustrates why the left and right rules are so inaccurate. Since f(z) = 1/z is
decreasing from 1 to 2, the left rule overestimates on each subdivision while the right rule underes-
timates. However, the midpoint rule approximates with rectangles on each subdivision that are each
partly above and partly below the graph, so the errors tend to balance out. (See Figure 7.4(b).)

MID(2) = £(1.25)(0.5) + f(1.75)(0.5) =

(@) (0) ©
fa)=1 o =1
Left rule
Right rule Midpoint rule Trapezoid rule
\
x x x
1 2 1 2 1 2

Figure 7.4: Left, right, midpoint, and trapezoid approximations to f 12 % dx
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The Trapezoid Rule

We have just seen how the midpoint rule can have the effect of balancing out the errors of the left
and right rules. There is another way of balancing these errors: we average the results from the left
and right rules. This approximation is called the trapezoid rule:

_ LEFT(n) + RIGHT(n)

TRAP(n) 5

The trapezoid rule averages the values of f at the left and right endpoints of each subinterval and
multiplies by Axz. This is the same as approximating the area under the graph of f in each subinterval
by a trapezoid (see Figure 7.5).

f(z)
/ rrea — f(z());f(zl)Ax
f(wo) f(z1)
Ax
T
To 1

Figure 7.5: Area used in the trapezoid rule

Example 2

Solution

2
For / — dx, compare the trapezoid rule with two subdivisions with the left, right, and midpoint
1 X

rules.

In the previous example we got LEFT(2) = 0.8333... and RIGHT(2) = 0.5833.... The trape-
zoid rule is the average of these, so TRAP(2) = 0.7083.... (See Figure 7.4(c).) The exact value
of the integral is 0.6931 . .., so the trapezoid rule is better than the left or right rules. The midpoint
rule is still the best, however, since MID(2) = 0.6857. ...

Is the Approximation an Over- or Underestimate?

It is useful to know when a rule is producing an overestimate and when it is producing an underes-
timate. In Chapter 5 we saw that the following relationship holds.

If f is increasing on [a, b], then
b
LEFT(n) < / f(z)dz < RIGHT(n).
If f is decreasing on [a, b], then

b
RIGHT(n) < / f(x) de < LEFT(n).
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The Trapezoid Rule

If the graph of the function is concave down on [a, b], then each trapezoid lies below the graph and
the trapezoid rule underestimates. If the graph is concave up on [a, b], the trapezoid rule overesti-
mates. (See Figure 7.6.)

f concave down: f concave up:
Trapezoid underestimates Trapezoid overestimates

Figure 7.6: Error in the trapezoid rule

The Midpoint Rule

To understand the relationship between the midpoint rule and concavity, take a rectangle whose top
intersects the curve at the midpoint of a subinterval. Draw a tangent to the curve at the midpoint;
this gives a trapezoid. See Figure 7.7. (This is not the same trapezoid as in the trapezoid rule.)
The midpoint rectangle and the new trapezoid have the same area, because the shaded triangles in
Figure 7.7 are congruent. Hence, if the graph of the function is concave down, the midpoint rule
overestimates; if the graph is concave up, the midpoint rule underestimates. (See Figure 7.8.)

If the graph of f is concave down on [a, ], then
b
TRAP(n) < / f(z) dz < MID(n).
a
If the graph of f is concave up on [a, b], then

b
MID(n) < / f(z)dz < TRAP(n).

~

f concave down: f concave up:
Midpoint overestimates ~ Midpoint underestimates

Figure 7.7: Midpoint rectangle and
trapezoid with same area Figure 7.8: Error in the midpoint rule
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Exercises and Problems for Section 7.5

Exercises
In Exercises 1-6, sketch the area given by the following ap- 5. a b 6. a b
proximations to fab f(z)dz. Identify each approximation as * r
an overestimate or an underestimate.
f(x)
(a) LEFT(2) (b) RIGHT(2) (@)
(c) TRAP(2) (d) MID(2)
1 2.
f(z (z) 7. Calculate the following approximations to f 06 z2dz.
(a) LEFT(2) (b) RIGHT(2)
(c) TRAP(2) (d) MID(2)
x T
e b @ b 8. (a) Find LEFT(2) and RIGHT(2) for f04(x2 +1) dx.
(b) Tllustrate your answers to part (a) graphically. Is each
approximation an underestimate or overestimate?
3. fl2) 4. 9. (a) Find MID(2) and TRAP(2) for f04(m2 + 1) dx.
f(z) (b) Ilustrate your answers to part (a) graphically. Is each
approximation an underestimate or overestimate?
10. Calculate the following approximations to f 0—,; sin 0 d.
€T x
a b a b (a) LEFT(2) (b) RIGHT(2)
(¢c) TRAP(2) (d) MID(2)
Problems
11. (a) Estimate [} 1/(1+2?)dz by subdividing the in-
terval into eight parts using: f(@)
(i) the left Riemann sum
(ii) the right Riemann sum
(iii) the trapezoidal rule 0 3 *
(b) Since the exact value of the integral is /4, you can .
estimate the value of 7 using part(a). Explain why Figure 7.9
your first estimate is too large and your second esti-
mate too small. 14. The results from the left, right, trapezoid, and midpoint

rules used to approximate f 01 g(t) dt, with the same num-
ber of subdivisions for each rule, are as follows:
0.601, 0.632, 0.633, 0.664.

12. Using the table, estimate the total distance traveled from
time ¢ = 0 to time ¢ = 6 using LEFT, RIGHT, and
TRAP.

(a) Using Figure 7.10, match each rule with its approx-
Time.t |0|1]2]3]4]s]6 imation. - , o
- (b) Between which two consecutive approximations
Velocity, v [ 3] 4151 4] 7]8] 1 does the true value of the integral lie?

13. Using Figure 7.9, order the following approximations to ®
the integral | 05 f(z)dx and its exact value from smallest g
to largest:

LEFT(n), RIGHT(n), MID(n), TRAP(n), Exact value. ! '
1

Figure 7.10
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For the functions in Problems 15-18, pick which
approximation—Ieft, right, trapezoid, or midpoint—is guar-

. . 5 .
anteed to give an overestimate for fo f(z) dz, and which
is guaranteed to give an underestimate. (There may be more

than one.)
Mﬁ)

19. Using a fixed number of subdivisions, we approximate
the integrals of f and g on the interval in Figure 7.11.

— f(=@)
\ (@)

(a) For which function, f or g, is LEFT more accurate?

RIGHT? Explain.
(b) For which function, f or g, is TRAP more accurate?
MID? Explain.
f(x)
9(x)
T
Figure 7.11

20. (a) Values for f(z) are in the table. Which of the four
approximation methods in this section is most likely
to give the best estimate of f 012 f(z) dz? Estimate
the integral using this method.

(b) Assume f(x) is continuous with no critical points or
points of inflection on the interval 0 < x < 12. Is
the estimate found in part (a) an over- or underesti-
mate? Explain.

P 0 |3]|6]09]12
f(x) | 100 | 97 [ 90 | 78 | 55

21. (a) Find the exact value of f 02” sin 6 df.

(b) Explain, using pictures, why the MID(1) and
MID(2) approximations to this integral give the ex-
act value.

(¢) Does MID(3) give the exact value of this integral?
How about MID(n)? Explain.

22. (a) Show geometrically why jol V2 —22de =% +1.
[Hint: Break up the area under y = /2 — x2 from
z = 0 toz = 1 into two pieces: a sector of a circle
and a right triangle.]

Approximate f 01 V2 — 22 dx for n = 5 using the
left, right, trapezoid, and midpoint rules. Compute
the error in each case using the answer to part (a),
and compare the errors.

(b)

23. The width, in feet, at various points along the fairway of
a hole on a golf course is given in Figure 7.12. If one
pound of fertilizer covers 200 square feet, estimate the
amount of fertilizer needed to fertilize the fairway.

0 100 200 300 400 500 600 700 800 900 1000
Figure 7.12

Problems 24-28 involve approximating fab f(x)dx.

24. Show RIGHT(n) = LEFT(n) + f(b)Ax — f(a)Ax.

25. Show TRAP(n) = LEFT(n) + 3 (f(b) — f(a)) Az.

26. Show LEFT(2n) = 3 (LEFT(n) + MID(n)).
27. Check that the equations in Problems 24 and 25 hold for

2
J; (1/x) da: when n = 10.

28. Suppose that o = 2, b = 5, f(2) = 13, f(5) =
and that LEFT(10) = 3.156 and MID(10) = 3.242.
Use Problems 24-26 to compute RIGHT(10), TRAP(10),
LEFT(20), RIGHT(20), and TRAP(20).

7.6 APPROXIMATION ERRORS AND SIMPSON’S RULE

When we compute an approximation, we are always concerned about the error, namely the differ-
ence between the exact answer and the approximation. We usually do not know the exact error; if we
did, we would also know the exact answer. Often the best we can get is an upper bound on the error
and some idea of how much work is involved in making the error smaller. The study of numerical
approximations is really the study of errors. The errors for some methods are much smaller than
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those for others. The errors for the midpoint and trapezoid rules are related to each other in a way
that suggests an even better method, called Simpson’s rule. We work with the example || 12 (1/z)dx
because we know the exact value of this integral (In2) and we can investigate the behavior of the
errors.

Error in Left and Right Rules

For any approximation, we take
Error = Actual value — Approximate value.

Let us see what happens to the error in the left and right rules as we increase n. We increase n each
time by a factor of 5 starting at n = 2. The results are in Table 7.1. A positive error indicates that
the Riemann sum is less than the exact value, In 2. Notice that the errors for the left and right rules
have opposite signs but are approximately equal in magnitude. (See Figure 7.13.) The best way to
try to get the errors to cancel is to average the left and right rules; this average is the trapezoid rule.
If we had not already thought of the trapezoid rule, we might have been led to invent it by this
observation.

There is another pattern to the errors in Table 7.1. If we compute the ratio of the errors in
Table 7.2, we see that the error? in both the left and right rules decreases by a factor of about 5 as n
increases by a factor of 5.

Table 7.1 Errors for the left and right rule

approximation to ff Ldr =1n2 ~ 0.6931471806
Error in Error in Right rule Left rule
n left rule right rule underestimate overestimate
2 | —01402 | 0.1098 f@) =3
10 —0.0256 0.0244
50 —0.0050 0.0050
250 —0.0010 0.0010 Figure 7.13: Errors in left and right sums

There is nothing special about the number 5; the same holds for any factor. To get one extra
digit of accuracy in any calculation, we must make the error 1/10 as big, so we must increase n by
a factor of 10. In fact, for the left or right rules, each extra digit of accuracy requires about 10 times
the work. The calculator used to produce these tables took about half a second to compute the left
rule approximation for n = 50, and this yields In 2 to two digits. To get three correct digits, n would
need to be around 500 and the time would be about 5 seconds. Four digits requires n = 5000 and
50 seconds. Ten digits requires n = 5 - 10° and 5 - 107 seconds, which is more than a year! Clearly,
the errors for the left and right rules do not decrease fast enough as n increases for practical use.

. . 2
Table 7.2 Ratio of the errors as n increases for fl % dz

Ratio of errors Ratio of errors
in left rule in right rule
Error(2) /Error(10) 5.47 4.51
Error(10) / Error(50) 5.10 4.90
Error(50) / Error(250) 5.02 4.98

The values in Table 7.1 are rounded to 4 decimal places; those in Table 7.2 were computed using more decimal places
and then rounded.
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Error in Trapezoid and Midpoint Rules

Table 7.3 shows that the trapezoid and midpoint rules produce much better approximations to
ff( 1/2) dx than the left and right rules.

Again there is a pattern to the errors. For each n, the midpoint rule is noticeably better than the
trapezoid rule; the error for the midpoint rule, in absolute value, seems to be about half the error of
the trapezoid rule. To see why, compare the shaded areas in Figure 7.14. Also, notice in Table 7.3
that the errors for the two rules have opposite signs; this is due to concavity.

We are interested in how the errors behave as n increases. Table 7.4 gives the ratios of the
errors for each rule. For each rule, we see that as n increases by a factor of 5, the error decreases
by a factor of about 25 = 52. In fact, it can be shown that this squaring relationship holds for any
factor, so increasing n by a factor of 10 will decrease the error by a factor of about 100 = 102.
Reducing the error by a factor of 100 is equivalent to adding two more decimal places of accuracy
to the result.

Table 7.3 The errors for the trapezoid Midg(r)rig} |
. . 2 1 . .
and midpoint rules for |, Lz dz g{ra&ezmd
Error in Error in
" trapezoid rule midpoint rule flx) = %
2 —0.0152 0.0074
10 —0.00062 0.00031
>0 00000250 0.0000125 Figure 7.14: Errors in the midpoint and
250 | —0.0000010 0.0000005 trapezoid rules

In other words: In the trapezoid or midpoint rules, each extra 2 digits of accuracy requires about 10
times the work.

This result shows the advantage of the midpoint and trapezoid rules over the left and right rules:
less additional work needs to be done to get another decimal place of accuracy. The calculator used
to produce these tables again took about half a second to compute the midpoint rule for |, 12 % dx
with n = 50, and this gets 4 digits correct. Thus to get 6 digits would take n = 500 and 5 seconds,
to get 8 digits would take 50 seconds, and to get 10 digits would take 500 seconds, or about 10
minutes. That is still not great, but it is certainly better than the 1 year required by the left or right
rule.

. . 2
Table 7.4 Ratios of the errors as n increases for f L % dx

Ratio of errors in Ratio of errors in
trapezoid rule midpoint rule
Error(2) /Error(10) 24.33 23.84
Error(10) /Error(50) 24.97 24.95
Error(50) / Error(250) 25.00 25.00

Simpson’s Rule

Still more improvement is possible. Observing that the trapezoid error has the opposite sign and
about twice the magnitude of the midpoint error, we may guess that a weighted average of the two
rules, with the midpoint rule weighted twice the trapezoid rule, will have a much smaller error. This
approximation is called Simpson’s rule’:

~2-MID(n) + TRAP(n)
= 3 )

3Some books and computer programs use slightly different terminology for Simpson’s rule; what we call n = 50, they
call n = 100.

SIMP(n)
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Table 7.5 gives the errors for Simpson’s rule. Notice how much smaller the errors are than the
previous errors. Of course, it is a little unfair to compare Simpson’s rule at n = 50, say, with the
previous rules, because Simpson’s rule must compute the value of f at both the midpoint and the
endpoints of each subinterval and hence involves evaluating the function at twice as many points.
We know by our previous analysis, however, that even if we did compute the other rules at n = 100
to compare with Simpson’s rule at n = 50, the other errors would only decrease by a factor of 2 for
the left and right rules and by a factor of 4 for the trapezoid and midpoint rules.

We see in Table 7.5 that as n increases by a factor of 5, the errors decrease by a factor of about
600, or about 5. Again this behavior holds for any factor, so increasing n by a factor of 10 decreases
the error by a factor of about 10%. In other words: In Simpson’s rule, each extra 4 digits of accuracy
requires about 10 times the work.

Table 7.5  The errors for Simpson’s
rule and the ratios of the errors

n Error Ratio
o | Zoomooonsio | 0
0 —0.000000194 63227
50 —0.0000000003

This is a great improvement over either the midpoint or trapezoid rules, which only give two
extra digits of accuracy when n is increased by a factor of 10. Simpson’s rule is so efficient that we
get 9 digits correct with n = 50 in about 1 second on our calculator. Doubling n will decrease the
error by a factor of about 2% = 16 and hence will give the tenth digit. The total time is 2 seconds,
which is pretty good.

In general, Simpson’s rule achieves a reasonable degree of accuracy when using relatively small
values of n, and is a good choice for an all-purpose method for estimating definite integrals.

Analytical View of the Trapezoid and Simpson’s Rules

Our approach to approximating f(f f(x) dz numerically has been empirical: try a method, see how
the error behaves, and then try to improve it. We can also develop the various rules for numerical
integration by making better and better approximations to the integrand, f. The left, right, and mid-
point rules are all examples of approximating f by a constant (flat) function on each subinterval. The
trapezoid rule is obtained by approximating f by a linear function on each subinterval. Simpson’s
rule can, in the same spirit, be obtained by approximating f by quadratic functions. The details are
given in Problems 9 and 10 on page 371.

How the Error Depends on the Integrand

Other factors besides the size of n affect the size of the error in each of the rules. Instead of looking
at how the error behaves as we increase n, let’s leave n fixed and imagine trying our approximation
methods on different functions. We observe that the error in the left or right rule depends on how
steeply the graph of f rises or falls. A steep curve makes the triangular regions missed by the left
or right rectangles tall and hence large in area. This observation suggests that the error in the left or
right rules depends on the size of the derivative of f (see Figure 7.15).
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Right rule Left rule
9 error E ~ error

Right rule ___| | Leftrule
9 error " 7 error

Small £': small error Large f”: large error

Figure 7.15: The error in the left and right rules depends on the steepness of the curve

From Figure 7.16 it appears that the errors in the trapezoid and midpoint rules depend on how
much the curve is bent up or down. In other words, the concavity, and hence the size of the second
derivative of f, has an effect on the errors of these two rules. Finally, it can be shown* that the error
in Simpson’s rule depends on the size of the fourth derivative of f, written f(*).

Trapezoid error Trapezoid error

I~ ~<—— Midpoint error
Midpoint error —

Small f”’: small error Large f': large error

Figure 7.16: The error in the trapezoid and midpoint rules depends on how bent the curve is

Exercises and Problems for Section 7.6

Exercises

1. Estimate J;j 22 dx using SIMP(2). (b) Uie the Fundamental Theorem of Calculus to find
2. (a) Using the result of Problem 9 on page 365, compute fo (z* + 1) dz exactly.
SIMP(2) for f 4(1'2 +1)da (¢) What is the error in SIMP(2) for this integral?
0 .

Problems

3. In this problem you will investigate the behavior of the approximations? How do the errors change if n is
errors in the approximation of the integral doubled?

) (¢) For the values of n in part (a), compute the midpoint
1 dz ~ 0.6931471806 and trapezoid approximations and the errors in each.
Lz ' (d) What are the signs of the errors in the midpoint

and trapezoid approximations? How do the errors
change if n is doubled?

For n = 2, 4, 8, 16, 32, compute Simpson’s rule
approximation and the error in each. How do these
errors change as n doubles?

(a) Forn =2, 4, 8, 16, 32, 64, 128 subdivisions, find
the left and right approximations and the errors in (e)
each.

(b) What are the signs of the errors in the left and right

4See Kendall E. Atkinson, An Introduction to Numerical Analysis (New York: John Wiley and Sons, 1978).



. (a) What is the exact value of f 02(303 + 32%) dz?

(b) Find SIMP(n) for n = 2,4, 100. What do you no-
tice?

What is the exact value of f * e dx?

Find LEFT(2), RIGHT(2), TRAP(2), MID(2), and
SIMP(2). Compute the error for each.

Repeat part (b) with n = 4 (instead of n = 2).

For each rule in part (b), as n goes from n = 2 to
n = 4, does the error go down approximately as you
would expect? Explain.

. (a)
(b)

(c)
(d)

. The approximation to a definite integral using n = 10
is 2.346; the exact value is 4.0. If the approximation was
found using each of the following rules, use the same rule
to estimate the integral with n = 30.

(a) LEFT (b) TRAP (¢c) SIMP

. A computer takes 3 seconds to compute a particular defi-
nite integral accurate to 2 decimal places. How long does
it take the computer to get 10 decimal places of accu-
racy using each of the following rules? Give your answer
in seconds and in appropriate time units (minutes, hours,
days, or years).

(a) LEFT (by MID (¢) SIMP

. Table 7.6 gives approximations to an integral whose true
value is 7.621372.

(a) Does the integrand function appear to be increasing
or decreasing? Concave up or concave down?

(b) Fill in the errors for n = 3 in the middle column in
Table 7.6.

(¢) Estimate the errors for n = 30 and fill in the right
hand column in Table 7.6.

Table 7.6
Approximation n = 3 | Errorn = 3 | Error n = 30
LEFT 5.416101
RIGHT 9.307921
TRAP 7.362011
MID 7.742402
SIMP 7.615605

/.7 IMPROPER INTEGRALS

7.7 IMPROPER INTEGRALS 3n

Problems 9-10 show how Simpson’s rule can be obtained by
approximating the integrand, f, by quadratic functions.

9.

10.

Suppose that a < b and that 1 is the midpoint m =
(a+b)/2. Let h = b — a. The purpose of this problem
is to show that if f is a quadratic function, then

’ _h (f(a) £(b)
/(L f(ﬂf)dx—g <T+2f(m)+7>.

(a) Show that this equation holds for the functions
flx) =1, f(x) = =, and f(z) = 2°.

(b) Use part (a) and the properties of the integral on
page 284 to show that the equation holds for any
quadratic function, f(z) = Az* + Bz 4 C.

Consider the following method for approximating
f: f(z)dx. Divide the interval [a,b] into n equal
subintervals. On each subinterval approximate f by a
quadratic function that agrees with f at both endpoints
and at the midpoint of the subinterval.

(a) Explain why the integral of f on the subinterval
[xs, zi4+1] is approximately equal to the expression

h ( f(zi) f(@it1)
3 (T +2f(ms) + T+) )

where m; is the midpoint of the subinterval, m; =
(zi + xi+1)/2. (See Problem 9.)

(b) Show that if we add up these approximations for
each subinterval, we get Simpson’s rule:

b
/a Fa)ds ~ 2 MID0) ; TRAP(n)

Our original discussion of the definite integral f: f(z) dz assumed that the interval a < x < b was
of finite length and that f was continuous. Integrals that arise in applications don’t necessarily have
these nice properties. In this section we investigate a class of integrals, called improper integrals, in
which one limit of integration is infinite or the integrand is unbounded. As an example, to estimate
the mass of the earth’s atmosphere, we might calculate an integral which sums the mass of the air
up to different heights. In order to represent the fact that the atmosphere does not end at a specific
height, we let the upper limit of integration get larger and larger, or tend to infinity.

We will usually consider only improper integrals with positive integrands since they are the

most common.
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One Type of Improper Integral: When the Limit of Integration Is Infinite

Here is an example of an improper integral:

To evaluate this integral, we first compute the definite integral || f(l /x?) da:

b
1
/ —2da“, = g7}
1 x

Now take the limit as b — oc. Since

b

L2
. 1

S|

b
1 1
lim — dr = lim (_5+1> =1,

b—oo J1 T b—oo

we say that the improper integral [ (1/x%) dx converges to 1.

If we think in terms of areas, the integral [, (1/2?) dx represents the area under f(z) = 1/2?
from 2 = 1 extending infinitely far to the right. (See Figure 7.17(a).) It may seem strange that this
region has finite area. What our limit computations are saying is that

109 1 1
When b = 10: / —2dm=—— =——+1=09
1 ;! x 1 10
When b = 100: —dr=——++1=0.99
en /1 oo 0y 100 +
1000 4 1
When b = 1000: —dr=———+1=20.999
en /1 P T

and so on. In other words, as b gets larger and larger, the area between = 1 and = = b tends to 1.
See Figure 7.17(b). Thus, it does make sense to declare that [ (1/2?) dx = 1.

@ v () y

Area :fb

1
now let b — oo

1 .
pdﬂﬂ,

1 b

Figure 7.17: Area representation of improper integral

Of course, in another example, we might not get a finite limit as b gets larger and larger. In that
case we say the improper integral diverges.
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Suppose f(z) is positive for z > a.
b

It blim f(z) dx is a finite number, we say that / f(z) dz converges and define
— 00 a a

[ swrde= i [ @

o) b
Otherwise, we say that / f(z) dz diverges. We define / f(z) dz similarly.

o ¢]
Does the improper integral / —= dx converge or diverge?
1

VT

b
=2pl/2 — 2.
1

! ’ 1/2 1/2
—dxz/ Ve dr = 2x
Jme

We see that || 1b(1 /+/) dx grows without bound as b — oo. We have shown that the area under the
curve in Figure 7.18 is not finite. Thus we say the integral | 1°C (1/y/z) dz diverges. We could also

Notice that f(z) — 0 as  — oo does not guarantee convergence of faoo f(z)dz.
Y

Area representing

f1°° d—\/% not finite

1 2 3
Figure 7.18: floo % dz diverges

What is the difference between the functions 1/2% and 1//z that makes the area under the
graph of 1/2% approach 1 as x — oo, whereas the area under 1//x grows very large? Both func-
tions approach 0 as x grows, so as b grows larger, smaller bits of area are being added to the definite
integral. The difference between the functions is subtle: the values of the function 1/\/x don’t shrink
fast enough for the integral to have a finite value. Of the two functions, 1/22 drops to 0 much faster
than 1//7, and this feature keeps the area under 1/x2 from growing beyond 1.

Example 1
Solution We consider
say [7(1/y/x) dz = c.
Example2  Find / e 5 da.
0
Solution First we consider fé’ e du:

b 1
-5 —
(& oT dr = —=e¢ o@
0 bl
5b

1 -00
. — _ . . . _5
Since e " = Pt this term tends to 0 as b approaches infinity, so | o € °%dx converges. Its value

) b
1 1 1 1
[ = g [t g (et 2] c0e g

is
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Since €7* grows very rapidly, we expect that e =% will approach 0 rapidly. The fact that the area
approaches 1/5 instead of growing without bound is a consequence of the speed with which the
integrand ¢ ~>* approaches 0.

oo
Determine for which values of the exponent, p, the improper integral / - dx diverges.
1 a;

b
:< 1 b—p+1_;>'
1 —-p+1 -p+1

The important question is whether the exponent of b is positive or negative. If it is negative, then
as b approaches infinity, b"P*! approaches 0. If the exponent is positive, then b=P+! grows without
bound as b approaches infinity. What happens if p = 1? In this case we get

00 1 b
/ —dr = lim Inx
1 b

X — 00

b 1
/ r Pdr = xPFL
J1 -p+1

= lim Inb—1In1.
1 b—oo

Since In b becomes arbitrarily large as b approaches infinity, the integral grows without bound. We
conclude that | fc (1/2P) dx diverges precisely when p < 1. For p > 1 the integral has the value

[e) b
1 1 1 1 1
/ —dz = lim —dr = lim ( pP L —) = — < ) = .
1 xP b—oo J; P b—oo \ —p+ 1 —-p+1 —-p+1 p—1

The energy, F, required to separate two charged particles, originally a distance a apart, to a distance

r2

b
E:/ kagz o

a
where ¢; and ¢, are the magnitudes of the charges and k is a constant. If ¢; and ¢» are in coulombs,
a and b are in meters, and F is in joules, the value of the constant k is 9 - 109,

A hydrogen atom consists of a proton and an electron, with opposite charges of magnitude 1.6-10~'°
coulombs. Find the energy required to take a hydrogen atom apart (that is, to move the electron from
its orbit to an infinite distance from the proton). Assume that the initial distance between the electron
and the proton is the Bohr radius, Rz = 5.3 - 10~ ! meter.

Example 3

Solution Forp # 1,
Application of Improper Integrals to Energy
b, is given by the integral

Example 4

Solution

Since we are moving from an initial distance of Rp to a final distance of oo, the energy is repre-
sented by the improper integral

oo b
1
E= / k% dr = kq1qe lim — dr
Rp T b—oo Rp T

b
LY _ kaige

— kgygy li L
e AT T Ry Rp

1
= kqq2 lim ——
b—oo T

Rp

Substituting numerical values, we get

(9-10%)(1.6 - 10719)2
5.3-10—1

This is about the amount of energy needed to lift a speck of dust 0.000000025 inch off the ground.

(In other words, not much!)

E =

~ 4.35- 10718 joules.
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What happens if the limits of integration are —oo and co? In this case, we break the integral at
any point and write the original integral as a sum of two new improper integrals.

We can use any (finite) number c to define

/:) flz)dz = /m f(z)dz + /COO f(z) dz.

If either of the two new improper integrals diverges, we say the original integral diverges.
Only if both of the new integrals have a finite value do we add the values to get a finite value
for the original integral.

It is not hard to show that the preceding definition does not depend on the choice for c.

Another Type of Improper Integral: When the Integrand Becomes Infinite

There is another way for an integral to be improper. The interval may be finite but the function
may be unbounded near some points in the interval. For example, consider |; 01 (1/y/x) dx. Since the
graph of y = 1/,/7 has a vertical asymptote at z = 0, the region between the graph, the z-axis, and
the lines + = 0 and x = 1 is unbounded. Instead of extending to infinity in the horizontal direction
as in the previous improper integrals, this region extends to infinity in the vertical direction. See Fig-
ure 7.19(a). We handle this improper integral in a similar way as before: we compute fal (1/\/z) dx
for values of a slightly larger than 0 and look at what happens as a approaches 0 from the positive
side. (This is written as a — 07F.)

(@) (b)
Area = f: % :
nowleta — 0
1
vz
T
1 a 1

Figure 7.19: Area representation of improper integral

First we compute the integral:

1
=2 —2q'/2

! 1/2
—dx = 2x

-1
1
li —=dz = lim (2—2a'/?) =2
Ji [ 7o Jim (22

Since the limit is finite, we say the improper integral converges, and that

|
—dz = 2.
|

Geometrically, what we have done is to calculate the finite area between x = @ and = 1 and
take the limit as @ tends to O from the right. See Figure 7.19(b). Since the limit exists, the integral
converges to 2. If the limit did not exist, we would say the improper integral diverges.

a

Now we take the limit:
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Example5

Solution

2
1
Investigate the convergence of / g dT.
o (z—-2)

This is an improper integral since the integrand tends to infinity as x approaches 2, and is undefined
at z = 2. Since the trouble is at the right endpoint, we replace the upper limit by b, and let b tend to
2 from the left. This is written b — 27, with the “—” signifying that 2 is approached from below.

See Figure 7.20.
b i 1 1
=lm (-———-=].
0 b—2— (b — 2) 2

1
Therefore, since lim <—m> does not exist, the integral diverges.

2 b
1 1
. dr= i . dr= lim (=) (z—2)"
/0 o de=tm | g de = im (1 =2)

b—2—

;
|
|
|
|
|
|
|
|
|
|
|
|
|
2 -1 2
Figure 7.21: Shaded area

2
represents | - L dx

Figure 7.20: Shaded area represents 102 ﬁ dx

Suppose f(z) is positive and continuous on a < z < b and tends to infinity as z — b.

c—b—

c b
If lim / f(z) dz is a finite number, we say that / f(x) dz converges and define

/abf(:c)d:c = cl_i)rl?_ /:f(:v)d:v.

b
Otherwise, we say that / f(z) dz diverges.

When f(x) tends to infinity as = approaches a, we define convergence in a similar way. In
addition, an integral can be improper because the integrand tends to infinity inside the interval of
integration rather than at an endpoint. In this case, we break the given integral into two (or more)
improper integrals so that the integrand tends to infinity only at endpoints.

Suppose that f(z) is positive and continuous on [a, b] except at the point c¢. If f(x) tends to
infinity as x — ¢, then we define

/abf(f)dxz/:f(a;)d;r-i—/cbf(x)dm

If either of the two new improper integrals diverges, we say the original integral diverges.
Only if both of the new integrals have a finite value do we add the values to get a finite value
for the original integral.
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2
Example 6 Investigate the convergence of / — dx.
1T

Solution See the graph in Figure 7.21. The trouble spot is © = 0, rather than x = —1 or x = 2. To handle

this situation, we break the given improper integral into two other improper integrals each of which

have z = 0 as one of the endpoints:

2 0 2
1 1 1
—dzx = —dx —dx.
/—1 rt /_1 z* +/0 zt
We can now use the previous technique to evaluate the new integrals, if they converge. Since
2 2
1 . 1 5 . 1 1 1
[ =g = (5) (5 )
the integral foz (1/x*) dz diverges. Thus, the original integral diverges. A similar computation shows
that [ 81 (1/z*) dz also diverges.
It is easy to miss an improper integral when the integrand tends to infinity inside the interval. For
2
example, it is fundamentally incorrect to say that | _21(1 Jz*)dr = —%x_'““ = —ﬁ — % = —%.
|
Example 7 Find | ——— dx.
P | e

Solution Figure 7.22 shows that the trouble spot is at x = 4, so we break the integral at x = 4 and consider

the separate parts.

Y
x
Figure 7.22: Shaded area represents f 06 m dx

‘We have

4 1 b | |
/0 g = i 3w ) = lim (30— 4% = 3(-4)/) = 3(4)"*.

Similarly,

6 1 6

/4 m dr = al_i% 3z —4)Y3| = ali% (3 213 _ 3(a — 4)1/3) — 3(2)1/3.

Since both of these integrals converge, the original integral converges:

6
1
/O (x—4)23 dr = 3(4)"/% +3(2)"/% ~ 8.54.

Finally, there is a question of what to do when an integral is improper at both endpoints. In this
case, we just break the integral at any interior point of the interval. The original integral diverges if
either or both of the new integrals diverge.
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o
Example 8 Investigate the convergence of / — dux.

0 X
Solution This integral is improper both because the upper limit is co and because the function is undefined at

x = 0. We break the integral into two parts at, say, z = 1. We know by Example 3 that || 1°° (1/22) dz
has a finite value. However, the other part, fol(l /x?) dz, diverges since:

1
1
= lim (— - 1) .
a a—0t \ a

B
/ —2de lim —z~ !
Jo T

a—0t

oo
1 .
Therefore / — dx diverges as well.
Jo *

Exercises and Problems for Section 7.7

Exercises
. 1 1 4
1. Shade the area represented by: ) 17. / 1 dv 18. / - +1 du
[eS] v
@ [T (/2% dx b [ (1/Vz)dx 0 0
2. Evaluate_ the improper integral f OOC e 9% dg and sketch 19 / = _ 1 da 20. / ~ 1 de
the area it represents. ;. x?+1 1 Var+1
3. (a) Use a calculator or computer to estimate j;)b ze Tdr Ty o
for b = 5, 10, 20. 2L / e ~ / 2y
(b) Use your answers to part (a) to estimate the value of o W T
oo _z e . .. .
fo xe “dx, assuming it is finite. S 1 na
4. (a) Sketch the the area represented by the improper in-  23. 24. —dz
o g2 5 wlnx 0
tegral f_oo e " dx.
(b) Use a ) calculator or computer to estimate 200 2 dr
[ e ™ da fora =12345. ) e T R s
(¢) Use the answers to part (b) to estimate the value of
2 - .
fjooc e” " dx, assuming it is finite. o1, / ie_ﬁdx - /oo (ld:!: E
xX r(nxr
Calculate the integrals in Exercises 5-35, if they converge. 0 3
You may calculate the limits by appealing to the dominance 2 /2 1 g 2 /oo dr
of one function over another, or by L'Hopital’s rule. )y Vi ], @12
| 1 o .
o & "
31. 32.
J, ST +2 Ji (@+2) L 21 : 5
1 e}
7. / Inzde 8. / e Veda 33 ’ ydy o /6 do
0 0 Ny , (4-0)2
oo 2 oo
9. / ze 7 dx 10. / e % da oo
Jo h 3s. / a (1“—“3) da
J, dz\ z
e , g
7o ot 36. Use the fact that %bn;x = :ccoaa;izbmsc to evalu-
13 /0 e” iz 14 /oo dz ate, if it exists:
Jo oo 1+e” Joo #2425 /”mcosx—sinm
72 diU.
o T

4 d /2 .
15. / = 16. / ST g
0o V16 —a? xja VCOST
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37. In statistics we encounter P(x), a function defined by

P(z) = % /Ox e dt.

Use a calculator or computer to evaluate
(@ P(1) (b) P(c0)
38. Find the area under the curve y = xe™* for x > 0.

39. Find the area under the curve y = 1/cos” ¢ between
t=0andt=m/2.

For what values of p do the integrals in Problems 40—41 con-
verge or diverge? What is the value of the integral when it

converges?
41. / z¥ Inx dz
0

40. / 2P Inz dx
42. For o > 0, calculate
> e v/a
(b) / Yy
o «

o y/a
(a) /0 P
o 2 —y/a
© / Ldy
o «

43. Given that ff; e dy =
value of

\/7, calculate the exact

/ e~ @)/t gy

44. Assuming g(x) is a differentiable function whose values
are bounded for all z, derive Stein’s identity, which is
used in statistics:

/ g/(:c)e_””2/2 dx = / :rg(:v)e_zz/2 dz.

o0 — 00

The k'™ moment, my, of the normal distribution is defined by

mp = L /OC wke_zz/Zdw.
V2 J_ o

In Problems 45-48, use the fact that szo e~ 2dy = /21
to calculate the moments. Assume all the integrals converge.

45. mq 46. mo 47. ms 48. my

49. The gamma function is defined for all z > 0 by the rule

F(w)z/ t" e dt.
0

(a) FindI'(1) and I"(2).
(b) Integrate by parts with respect to ¢ to show that, for
positive n,

T'(n+1) =nl'(n).

(¢) Find a simple expression for I'(n) for positive inte-
gersn .

50. The rate, r, at which people get sick during an epidemic
of the flu can be approximated by r» = 1000te -,
where r is measured in people/day and ¢ is measured in
days since the start of the epidemic.

(a) Sketch a graph of r as a function of ¢.
(b) When are people getting sick fastest?
(¢) How many people get sick altogether?

51. Find the energy required to separate opposite electric
charges of magnitude 1 coulomb. The charges are ini-
tially 1 meter apart and one is moved infinitely far from
the other. (The definition of energy is on page 374.)

7.8 COMPARISON OF IMPROPER INTEGRALS

Making Comparisons

Sometimes it is difficult to find the exact value of an improper integral by antidifferentiation, but it
may be possible to determine whether an integral converges or diverges. The key is to compare the
given integral to one whose behavior we already know. Let’s look at an example.

Example 1 Determine whether

> 1
/1 Vad +5
Solution

with the 23, so
1

B +5

dx converges.

First, let’s see what this integrand does as x — oo. For large z, the 5 becomes insignificant compared

1 1
23/2°
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Since

i lim (2 - 2b—1/2) —9

1 b—oo

o 1 00 b L
y—— - el =1 —_— = |3 _ - /2
/1 T dx o dx blggo T dx bli>nolo 2x

the integral | 100(1 /x3/2) da converges. So we expect our integral to converge as well.
In order to confirm this, we observe that for 0 < 3 < 23 + 5, we have

1 1
I S
Vad +5 7 Va3

and so forb > 1,

b b
[
J1 3 +5 N a3
(See Figure 7.23.) Since flb(l /v a® 4+ 5) dx increases as b approaches infinity but is always smaller

than flb(l/x?’/z) do < [7°(1/23/%) dx = 2, we know [°(1//2% 4 5) dz must have a finite value
less than 2. Thus,

converges to a value less than 2.

/°° dx
1 Vi35

Total shaded area = | 1°C 55_3

Dark shaded area = ffc \/13_+ dx

A little more work is required to estimate the value of a convergent improper integral.

oo
Example 2 Estimate the value of / dx with an error of less than 0.01 using the approximation
1

1

50 1 b 1
/ 76]7’%/ ——dx.
1 Va3 +5 1 Vat+5

Solution ‘We must figure out how large a value of b to take. Since
| b |
—daz:/ —da:—i—/ —duz,
/1 Vs +5 1 Vat+5 b V&3 +5
we find b such that the tail of the integral satisfies the inequality

dx| < 0.01.

> 1
/b Va3 +5
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From the solution of Example 1, we have

o</°° ! d</°°1d 2
—dx —dr = —.
by Va2 45 b Va3 Vb
We choose b such that 2/ Vb < 0.01, which means that b > 40,000. Then, picking b = 50,000, we
have

00 1 50,000 1
——dr =~ ———— dx = 1.699,
/1 Vasd +5 /1 Vs +5

with an error of less than 0.01.

Notice that we first looked at the behavior of the integrand as © — oc. This is useful because
the convergence or divergence of the integral is determined by what happens as x — oo.

The Comparison Test for / f (x) dx

Assume [ () is positive. Making a comparison involves two stages:
1. Guess, by looking at the behavior of the integrand for large x, whether the integral con-
verges or not. (This is the “behaves like” principle.)

2. Confirm the guess by comparison:
o If0 < f(x) < g(x) and [ g(x) dx converges, then [ f(x) dx converges.
o If0 < g(z) < f(x) and [ g(z) dz diverges, then [~ f(z) dx diverges.

Example 3

Solution

Jeel

Decide whether /

_— di .
; (ln t) 1 converges or diverges

Since In ¢ grows without bound as t — oo, the —1 is eventually going to be insignificant in compar-
ison to In ¢. Thus, as far as convergence is concerned,

o 1 * 1
/ ————dt behaves like / — dt.

Does [, (1/Int)dt converge or diverge? Since Int grows very slowly, 1/1Int goes to zero very
slowly, and so the integral probably does not converge. We know that (In¢) — 1 < Int < ¢ for all
positive ¢. So, provided ¢t > e, we take reciprocals:

1 - 1 . 1
(Int) =17 Int = ¢
Since [, (1/t) dt diverges, we conclude that

o 1
—dt di .
/4 mf) =1 iverges

How Do We Know What To Compare With?

In Examples 1 and 3, we investigated the convergence of an integral by comparing it with an easier
integral. How did we pick the easier integral? This is a matter of trial and error, guided by any infor-
mation we get by looking at the original integrand as * — oo. We want the comparison integrand
to be easy and, in particular, to have a simple antiderivative.
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Useful Integrals for Comparison

(o)
1
° / —pdx converges for p > 1 and diverges for p < 1.
J1 T
1
° / —pdw converges for p < 1 and diverges for p > 1.
Jo T

o0
° / e~ ""dx converges for a > 0.
0

Of course, we can use any function for comparison, provided we can determine its behavior.

Example 4

Solution

) *° (sinx) +3
Investigate the convergence of —_—
1 Ve

Since it looks difficult to find an antiderivative of this function, we try comparison. What happens
to this integrand as @ — oo? Since sin x oscillates between —1 and 1,

dx.

2 —143 _(sinz)+3 143 4
Ve Ve T Ve T Ve Ve

the integrand oscillates between 2/+/z and 4/+/x. (See Figure 7.24.)

What do [ (2/\/x) dx and [°(4//7) dz do? As far as convergence is concerned, they cer-
tainly do the same thing, and whatever that is, the original integral does it too. It is important to
notice that /z grows very slowly. This means that 1/,/2 gets small slowly, which means that con-
vergence is unlikely. Since /= = 2!/2, the result in the preceding box (with p = %) tells us that

floo(l /+/7) dz diverges. So the comparison test tells us that the original integral diverges.

Y
Total shaded area = |’ 1” (SIL\/T;& da
Dark shaded area = flb % dx
— 4
! Ve __ (sinz)+43
. yo g
w T
: x
! b

Figure 7.24: Graph showing flb % dx <

b (sinxz)+3
fl Tdm,forbz 1

Notice that there are two possible comparisons we could have made in Example 4:

i< (sinz) + 3 or (51n90)+3<i'
Ve oo Ve Ve T
Since both [(2/y/z) dz and [, (4/+/z) dz diverge, only the first comparison is useful. Knowing
that an integral is smaller than a divergent integral is of no help whatsoever!
The next example shows what to do if the comparison does not hold throughout the interval of
integration.
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ge'e}
Example 5 Show / e 2 dy converges to a finite value.
1

Solution We know that e=="/2 goes very rapidly to zero as x — oo, so we expect this integral to con-
verge. Hence we look for some larger integrand which has a convergent integral. One possibility is
J;T e7® da, because e~ has an elementary antiderivative and [ e~ da: converges. What is the

relationship between e=*°/2 and ¢=*? We know that for > 2,

z? x?

Té? SO —?

S -,

and so, for z > 2 )
e T2 < e

Since this inequality holds only for x > 2, we split the interval of integration into two pieces:

[es} 2 0
/ e /2y = / e 2 4y + / e /2 4y,
1 1 2

Now ff e=**/2 4z is finite (it is not improper) and f;o e=*/2 4z is finite by comparison with
[ e dx. Therefore, [ e~*"/2 dz is the sum of two finite picces and therefore must be finite.

The previous example illustrates the following general principle:

If f is continuous on [a, ],

/:C f(z)dz and /boo f(x)dz

either both converge or both diverge.

In particular, when the comparison test is applied to [ f(z) dx, the inequalities for f(z) and
g(x) do not need to hold for all z > a but only for = greater than some value, say c.

Exercises and Problems for Section 7.8

Exercises
In Exercises 1-9, use the box on page 382 and the behavior 5 / = 5z +2 da / <1 dt
of rational and exponential functions as z — oo to predict 1 48z +4 ;e 42
whether the integrals converge or diverge.
e 2 e 3 o 224+ 4
T x
1. —dx 2. dx 9. / —“Taa
[ 4+ 1 /2 7t —1 h x* + 322 + 11
/00 2241 i 1 In Exercises 10-25 decide if the improper integral converges
3 = o / ST or diverges. Explain your reasoning.
L, w3 +3z+2 , w245z +1 g plamy g

oo © 22 _ > dz < dx
50— a6 [ T2l g / = 11. /
, ¥+ 2x+4 1 2+ 4 50 2 1 I+=z
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12 / R 13 / L
’ , w3 +1 ) 5 Vt—25
14 / L d 15 e
‘ o 219/20 z : . (t+1)2
< du < du
16. —_ 17.
oo L4 u? . u+tu?
< do < do
18. e — 19. —_—
1 V2 +1 5 VO3 +1

20

/1 9 ’” /°° dy
"), VPt i R

Problems

2 4 cos < d
2. / 2050 23, / -
J1 ¢2 Jo ez + 2z
T2 —sin > 3+sina
2. / —;(bm 25, / 2T e
0 ¢ 4 @
Estimate the values of the integrals in Exercises 26-27 to two

decimal places by integrating the functions on your calculator
or computer for large values of the upper limit of integration.

o "2 < 2 2
26. / e “dx 27. / e * cos®xdx
1 0

28. The graphs of y = 1/x,y = 1/z* and the functions
f(z), g(x), h(z), and k(x) are shown in Figure 7.25.

(a) Is the area between y = 1/2 and y = 1/2% on the
interval from x = 1 to oo finite or infinite? Explain.

(b) Using the graph, decide whether the integral of each
of the functions f(z), g(x), h(z) and k(z) on the
interval from = 1 to oo converges, diverges, or
whether it is impossible to tell.

Figure 7.25

29. Suppose f:o f(x) dx converges. What does Figure 7.26
suggest about the convergence of f:o g(x) dx?

Figure 7.26

For what values of p do the integrals in Problems 30-31 con-

verge or diverge?

oo 2

30. / _dz 31. / _dz
, (lnz)P . z(nz)?

32. (a) Find an upper bound for

> 2
/ e " du.
3

[Hint: e~%” < =3 for z > 3.]
(b) For any positive n, generalize the result of part (a) to
find an upper bound for

h 2
/ e " dx
n

by noting that nz < z? for z > n.

33. In Planck’s Radiation Law, we encounter the integral

o dx
h z8(el/r — 1)

(a) Explain why a graph of the tangent line to e’ at¢ = 0
tells us that for all ¢

1+t < e’
(b) Substituting ¢ = 1/z, show that for all  # 0

1
1> =,
T

(c) Use the comparison test to show that the original in-
tegral converges.
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CHAPTER SUMMARY (see also Ready Reference at the end of the book)

e Integration techniques Riemann sums (left, right, midpoint), trapezoid rule,
Substitution, parts, partial fractions, trigonometric sub- Simpson’s rule, approximation errors.

stitution, using tables. e Improper integrals

e Numerical approximations Convergence/divergence, comparison test for integrals.

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER SEVEN

Exercises
. e (u+1)°
For Exercises 1-4, find an antiderivative. 29, /4 — 22 de 30. du
w2
1 q(t) = (t+1)° 2. p(f) = 2sin(26) cos /7 1
. 5 31. dy 32. / 5 dz
3. f(z)=5" 4. r(t) =e" + 5e”" VY cos< z
33. / cos” 0.df 34. / t*0(t — 10) dt

For Exercises 5-113, evaluate the following integrals. Assume

a, b, ¢, and k are constants. Exercises 7— 72 can be done with- 3 0 d 36 (Inz)? d
out an integral table, as can some of the later problems. 5. tan(2x - b) z ° T z

t+2)? 1

5. /(3w+ 7) dw 6. /ezT dr 37. /—( _;_3 ) dt 38. /(xz + 22 + ;) dx
t+1 2

7. /sintdt 8. /cos2tdt 39. / 5 dt 40. /tet at

9. / e dz 10. / cos(z + 1) dz 41. / tan 6 do 42. /
11. [ sin20d0 12 [ (@ —1)'%d 43, . w [ &
o B - @7 1) 2 de 2+ 1 1+ 22

sin(50) cos(56) do

" dz ' .
13. / (:c3/2 4 x2/3) da 14. /(ez +3%) de 45. / Tr a2 46. cos® 20 sin 20 d
15 idz 16 /(i _ i) da 47. /sin59 cos” 50 d 48. /sin3zcos3zdz
' e? ) R
24+ r+1 "(1+1Inz)? 49. /t(t —10)"dt 50. /cos 01 + sin 0 df
17. Tdm 18. — dx
) 51. / ze” dx 52. / t3e dt
19. /tet dt 20. /xcosxd:r
3
2 70 3
a1 /xzezz i . /x T 53. /1 z(z®4+1)" dx 54. /(32 +5)"dz
' . . 55 du 56 cosw i
23. /xlnxdw 24. /ysinydy ) J 9+ wu? ’ J 1+4sin?w v
1 1
25, /(lnw)z du 26. /ln(xz)dx 57. ;tan(ln x) dx 58. ;sm(lnm) dx
27. [ 2P0 gy 28. [ sin®0cos0db 59. / L 60. _wdw
: : V1 —4z2 V16 — w?
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e +1 sinw dw z (1 +tanz)” x)
- 101. —_— 102.
o1. / o W @ | T il %) e
d d " (2e — De” ‘ >
63. v 64. u 103. / = e 104. / (22 + 1)e* €® dz
rInz 3u+ 8 e
xcosva?+1 t3
65. ———dx 66. —dt
w2 +1 VIt 105. /\/y2—2y+1(y—1)dy
67. /uek" du 68. /(w + 5)*w dw 106. / sinz(v/2 + 3cos z)dx
' 2 —4x
69. /eﬂz+3 dx 70. /r(ln r)? dr 107. /(x —3z+2)e Vdz
‘ ‘ 108. / sin®(26) cos®(26) dO
71. /(em + x)*dx 72. /uz Inudu .
109. / cos(2sinz) cos x dz
5r 46 1
73. > 1 dx 74. T dx
S el 110. /(x +sinz)®(1 4 cos x) dz
75 ar 76. [ ysin(cy) d
") r2-100 T y”sin(ey) dy 111. / (2:1:3 + 3z + 4) cos(2x) dx
77. / e sin kt dt 78. / ™ cos(3x) da 112. / sinh? 2 cosh 2 da

T H 2
79. /(;;/EJM/E )dz 0. / 5+ 122de. 113 /(JC“)Smh(w + 2¢) dx

1 23 For Exercises 114-127, evaluate the definite integrals using
81. Ny de 82 / P P dx the Fundamental Theorem of Calculus and check your an-
swers numerically.
2
83. / %dm 84. / zd—mb : ,
2% — 9T+ ax= + bx 114. / z(1 + z)* dz 115. / x\/ 22 + 4dx
0 4
' i+ b : 2
85./%(137 86./(§+§) dx . L
ars 4 2br + ¢ v 116. / sin0(cos 0+5)7 do  117. / — dz
ot o 0 1+5z
87. / dt 88. / 10" dz
2t 4 1 2 g2 3
118. / z ;1 dr 119. / In(2?) da
. . 1 1
89. /(mz +5)% dx 90. /varcsinvdv . .
120. / (Inz)’ dz 121. / €% sin 2z dx
. d 23 1 —7
. V4 —22dx . [
91 / r? d 92 / po— dz o i
122. / ze dz 123. / sin® 0 cos 0 d¢
sin w cos w 1 —n/3
. —_— 94. ——df
93 /1+c052w dw /tan(39) d 1y
evV? i
124. / da 125, / .
95. [ % dx 96. [ Z11y L Ve o @1
cos? x \/_
6. [ coosmos . [ 2Ly
. \/m 6. ) cos” Osin” O d 127. 3 m iy
97. ﬁ dx 98. T dx /4 2
x €T

2y
e z . . 1 . 1
99. / mdy 100. / mdz 128. Use partial fractions on o to find / i 1d:r.



129. (a) Use partial fractions to find

1
dzx.
T

{L’Z —
(b) Show that your answer to part (a) agrees with the
answer you get by using the integral tables.

. . . 1 .
130. Use partial fractions to find / :r(Li dx, where L is

x)

constant.

Evaluate the integrals in Exercises 131-142 using partial frac-
tions or a trigonometric substitution (a and b are positive con-
stants).

1

1

1
132. —dz,
/ V25 — x2

1
134. —d
/ V1 —9x2 *

2x + 3 3z +1
135 [ — 220 g o136 [ 2T g
/w<w+2><x—1> ’ /x(aﬂ—l) ’
. [ LT, s, [— L 4
’ x(l+z)2 ) 22422 +2

1 1
139. —d 140. ——d
./$2+4a:+5 i ./\/ag—(bm)2 ’
. [ —2r g 142 dw
sin®z 4+ sinz e?r —1
Problems
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For Exercises 143-156 decide if the integral converges or di-
verges. If the integral converges, find its value or give a bound

on its value.
< dt > dx
143. — 144.
S, 32 Jio zlnz

oo 1
1
145. / we™ " dw 146. / —dz
0 ot
/4 =3 1
147. / tan 6 df 148. / S dz
J—m/4 J2 4 +z
149, /OC ! d 150 /10 dt
X z .
0 22 —4 —5 VE+5
/2 1 /4
151. / —— d¢ 152. / tan 20 df
0 sin ¢ 0
Rl < sin%6
153. dx 154.
, 41 0 0241
™ 1 .
155. / tan? 6dg 156. / (sinz) "% *dx
0 0

In Problems 157-159, find the exact area.

157.
158.
159.
160.

Under y = (e”)? for0 < = < 1.
Between iy = (e%)® and y = (%)% for 0 < z < 3.

Between y = e” and y = 5e” * and the y-axis.

The curves y = sinx and y = cosx cross each other

infinitely often. What is the area of the region bounded
by these two curves between two consecutive crossings?

161. Evaluate f 02 V4 — 22 dx using its geometric interpreta-

tion.

In Problems 162—-165 explain why the following pairs of an-
tiderivatives are really, despite their apparent dissimilarity,
different expressions of the same problem. You do not need
to evaluate the integrals.

1 rdzx
162. ———dx and e
/\/1—332( V1—a*
dx
163.
63 /x2—|—4:r+4 /(mz—l-l
164. 7 dr and dx
1- lna:
165.

i dr and ;d
z+1 x+1

In Problems 166-167, show the two integrals are equal using
a substitution.

2 1
—w? — 422
166. / e dw = / 2e dx
0
167. / /

sint sin 3t

—d = dt

168. A function is defined by f(t) = t* for 0 < ¢t < 1 and
f(t) =2 —tfor1 <t < 2. Compute f02 f(t) dt.
169. (a) Find [(x + 5)* dx in two ways:
(i) By multiplying out
(ii) By substitutingw = x + 5
(b) Are the results the same? Explain.
170. Suppose f_ll h(z)dz = 7, and that h(z) is even. Calcu-
late the following:
@ [, h(z)dz ) [ 5h(z+3)dz
171. Find the average (vertical) height of the shaded area in

Figure 7.27.
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172.

173.

174.

175.

176.

177.

Chapter Seven INTEGRATION

Figure 7.27

Find the average (horizontal) width of the shaded area in
Figure 7.27.

(a) Find the average value of the following functions

over one cycle:
(i) f(t) = cost

(ii) g(t) = | cost|
(iii) k(t) = (cost)?

(b) Write the averages you have just found in ascend-
ing order. Using words and graphs, explain why the
averages come out in the order they do.

What, if anything, is wrong with the following calcula-
tion?

2
/ izdx:—l
L, z

Let E(z) = [ w:% drand F(z) = [

(a) Calculate E(z) + F(z).

(b) Calculate E(z) — F(x).

(¢) Use your results from parts (a) and (b) to calculate
E(x) and F(x).

—2

-z

€
eTte T

dx.

Using Figure 7.28, put the following approximations
to the integral fab f(x)dr and its exact value in order
from smallest to largest: LEFT(5), LEFT(10), RIGHT(5),
RIGHT(10), MID(10), TRAP(10), Exact value

Figure 7.28

You estimate f 00'5 f (x)dx by the trapezoid and midpoint
rules with 100 steps. Which of the two estimates is an
overestimate, and which is an underestimate, of the true
value of the integral if

@ fz)=1+c”
(¢©) f(x)isaline

b fl@)=e*

178.

179.

180.

181.

182.

183.

184.

(a) Using the left rectangle rule, a computer takes two
seconds to compute a particular definite integral ac-
curate to 4 digits to the right of the decimal point.
How long (in years) does it take to get 8 digits cor-
rect using the left rectangle rule? How about 12 dig-
its? 20 digits?

Repeat part (a) but this time assume that the trape-
zoidal rule is being used throughout.

ﬁ, ﬁnd/ 3026_“'2 dz.
2 0

A population, P, is said to be growing logistically if the
time, 7", taken for it to increase from P; to P- is given by

Py
T=/
Py

where k and L are positive constants and P < P» < L.

(b)

oo
. a2
Given that / e ¥ dr=
0

kdP
P(L—P)

(a) Calculate the time taken for the population to grow
from P, = L/4to P, = L/2.
(b) What happens to 7" as P, — L?

In 2005, the average per capita income in the US
was $34,586 and increasing at a rate of r(t) =
1556.37€%-94%¢ dollars per year, where ¢ is the number
of years since 2005.

(a) Estimate the average per capita income in 2015.
(b) Find a formula for the average per capita income as
a function of time after 2005.

A patient is given an injection of Imitrex, a migraine
medicine, at a rate of r(t) = 2te™>" ml/sec, where t is
the number of seconds since the injection started.

(a) By letting t — oo, estimate the total quantity of Im-
itrex injected.

(b) What fraction of this dose has the patient received at
the end of 5 seconds?

In 1990 humans generated 1.4 - 10%° joules of energy
from petroleum. At the time, it was estimated that all
of the earth’s petroleum would generate approximately
10?2 joules. Assuming the use of energy generated by
petroleum increases by 2% each year, how long will it be
before all of our petroleum resources are used up?

An organism has a development time of 1" days at a tem-
perature H = f(t)°C. The total the number of degree-
days S required for development to maturity is a constant
defined by

T
5=/(ﬂﬂ—ﬂmwt

(a) Evaluate this integral for T = 18, f(¢) = 30°C, and
Hpin = 10°C. What are the units of S?

(b) Illustrate this definite integral on a graph. Label the
features corresponding to T', f(t), Hpin, and S.

(c) Now suppose H = g(t) = 20 + 10 cos(27t/6)°C.
Assuming that S remains constant, write a defi-
nite integral which determines the new development



time, 75. Sketch a graph illustrating this new inte-
gral. Judging from the graph, how does 7> compare
to T'? Find T5.
185. For a positive integer n, let ¥,,(z) = C, sin(nwz) be
the wave function used in describing the behavior of an

CAS Challenge Problems
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electron. If n and m are different positive integers, find

/01 U, (2) - U () da.

nx

1
186. (a) Use a computer algebra system to find | — dz,
x

. 5 . 3
/ % dx, and/ @ dx.

1 n
(b) Guess a formula for / % dz that works for

any positive integer n.
Use a substitution to check your formula.

(c)

187. (a) Using a computer algebra system, find f(ln x)" dx

forn =1,2,3,4.

(b) There is a formula relating f (Inz)"dz to
J(Inz)"~" da for any positive integer n. Guess this
formula using your answer to part (a). Check your

guess using integration by parts.

CHECK YOUR UNDERSTANDING

In Problems 1-16, decide whether the statements are true or
false. Give an explanation for your answer.

L [ f'(z)cos(f(x)) dx = sin(f(z)) + C

2. [(1/f(x))dz =In|f(x)| +C

3. f tsin(5 — %) dt can be evaluated using substitution.
4

. j sin” 0 cos® 6 df can be written as a polynomial with
cos 6 as the variable.

wn

. [1/(z® + 42 + 5) dx involves a natural logarithm.
6. f 1/(x? 4 4x — 5) dx involves an arctangent.

7. [ a7 ((Inz)*+ (Inx)*) da is a polynomial with In «: as
the variable.

8. [ tsin(5 — t) dt can be evaluated by parts.

9. The midpoint rule approximation to f 01 (y* = 1)dy is
always smaller than the exact value of the integral.

10.
11.

The trapezoid rule approximation is never exact.

If f is continuous for all x and fooo f(x)dz converges,
then so does f:o f(x)dx for all positive a.

12. If f(x) is a positive periodic function, then | OOC f(x)dx

diverges.

13. If f(z) is continuous and positive for z > 0 and if

lim, oo f(x) = 0, then [ f(x)da converges.

14. If f(z) is continuous and positive for > 0 and if

limgz—oc f(2) = 00, then fooo (1/f(x))dx converges.

In Problems 188-190:

(a) Use a computer algebra system to find the indefinite in-
tegral of the given function.

(b) Use the computer algebra system again to differentiate
the result of part (a). Do not simplify.

(¢) Use algebra to show that the result of part (b) is the same
as the original function. Show all the steps in your calcu-
lation.

188. sin® 189. sinx cos x cos(2x)

4
€T

9. —
O Ty

15. If fooo f(z)dx and fooo g(z)dx both converge, then
fo (f(x) + g(x))dz converges.

16. If fooc f(z)dz and fooo g(x)dz both diverge, then
fooo (f(x) + g(z))dz diverges.

Suppose that f is continuous for all real numbers and that
f Ooo f(x) dz converges. Let a be any positive number. Decide
which of the statements in Problems 17-20 are true and which
are false. Give an explanation for your answer.

17. f OOO af(z) dx converges.

18. fooo f(az) dz converges.
19. f o [f(a+z)dz converges.

oo
20. fo (a + f(z)) dz converges.
The left and right Riemann sums of a function f on the in-
terval [2, 6] are denoted by LEFT(n) and RIGHT(n), respec-
tively, when the interval is divided into n equal parts. In Prob-
lems 21-31, decide whether the statements are true for all con-
tinuous functions, f. Give an explanation for your answer.
21. If n = 10, then the subdivision size is Az = 1/10.
22.
23.
24.
25.

If we double the value of n, we make Az half as large.
LEFT(10) <RIGHT(10)

As n approaches infinity, LEFT(n) approaches 0.
LEFT(n) — RIGHT(n) = (f(2) — f(6))Axz.
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26. Doubling n decreases the difference LEFT(n) — 29. f; f(x)dx lies between LEFT(n) and RIGHT(n).
RIGHT (n) by exactly the factor 1/2.

30. If LEFT(2) < [’ f(z)de, then LEFT(4) <
27. If LEFT(n) = RIGHT(n) for all n, then f is a constant o

b
function. fa f(z) dz.
!/ / . .
28. The trapezoid estimate TRAP(n) = (LEFT(n) + 31 If 0‘ < fb < g’ everywhere, ther‘l the error in approx.l-
RIGHT(n))/2 is always closer to ./‘26 f(z)dz than mating fa f(x) dbm by LEFT(n) is less than the error in
LEFT(n) or RIGHT(n). approximating fa g(x) dz by LEFT(n).

PROJECTS FOR CHAPTER SEVEN

1. Taylor Polynomial Inequalities

(a) Use the fact that € > 1 + x for all values of x and the formula

x
e$=1+/ et dt
0

2
ewzl—i—x—l—%

to show that

for all positive values of x. Generalize this idea to get inequalities involving higher-degree
polynomials.
(b) Use the fact that cos z < 1 for all # and repeated integration to show that

2 174

coswgl—ﬁ—i-z.



