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392 Chapter Eight USING THE DEFINITE INTEGRAL
8.1 AREAS AND VOLUMES

In Chapter 5, we calculated areas using definite integrals. We obtained the integral by slicing up the
region, constructing a Riemann sum, and then taking a limit.

In this section, we calculate volumes using definite integrals. To obtain the integral, we again
slice up the region and construct a Riemann sum. The first two examples show how slicing can be
used to find both areas and volumes.

Example 1 Use horizontal slices to set up a definite integral to calculate the area of the isosceles triangle in
Figure 8.1.
[ (5= hi)
5/cm 5 tAn *
——— Wi ——
10cm ! [ 10 |
Figure 8.1: Tsosceles triangle Figure 8.2: Horizontal slicing of isosceles triangle
Solution Notice that we can find the area of a triangle without using an integral; we will use this to check the

result from integration:
Area = % Base - Height = 25 cm?.
To calculate the area using horizontal slices, see Figure 8.2. A typical strip is approximately a
rectangle of length w; and width Ah, so
Area of strip ~ w; Ah cm?.
To get w; in terms of h;, the height above the base, use the similar triangles in Figure 8.2:

w; 5 —hy
0 5

Summing the areas of the strips gives the Riemann sum approximation:

Area of triangle ~ Z w;Ah = 2(10 — 2h;)Ah cm?.
i=1 i=1
Taking the limit as n — oo and Al — 0 gives the integral:

n 5
Area of triangle = lim Z(IO —2h;)Ah = / (10 — 2h) dh cm?.
n—o00 o 0
Evaluating the integral gives”
5
=25 cm?.

5
Area of triangle = / (10 — 2h) dh = (10h — h?)
0

0

Notice that the limits in the definite integral are the limits for the variable h. Once we decided
to slice the triangle horizontally, we knew that a typical slice has thickness Ah, so & is the variable
in our definite integral, and the limits must be values of h.

Finding Volumes by Slicing

To calculate the volume of a solid using Riemann sums, we chop the solid into slices whose volumes
we can estimate.
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Figure 8.3: Cone cut into Figure 8.4: Cone cut into
vertical slices horizontal slices

Let’s see how we might slice a cone standing with the vertex uppermost. We could divide the
cone vertically into arch-shaped slices; see Figure 8.3. We could also divide the cone horizontally,
giving coin-shaped slices; see Figure 8.4.

To calculate the volume of the cone, we choose the circular slices because it is easier to estimate
the volumes of the coin-shaped slices.

Example 2 Use horizontal slicing to find the volume of the cone in Figure 8.5.

T y /\ ' I5 ~ho)

¢

10
10.em Figure 8.6: Vertical cross-section of cone in
Figure 8.5: Cone Figure 8.5
Solution Each slice is a circular disk of thickness Ah. See Figure 8.5. The disk at height h; above the base

has radius r; = %wi. From Figure 8.6 and the previous example, we have
w; =10—2h; so r; =5—h,.
Each slice is approximately a cylinder of radius r; and thickness Ah, so
Volume of slice ~ mrZAh = 7(5 — h;)>Ah cm?.

Summing over all slices, we have
Volume of cone ~ Z 7(5 — hi)>Ah cm?®,
=1

Taking the limit as n — oo, so Ah — 0, gives

n

5
Volume of cone = lim Z 7(5 — hi)?Ah = / 7(5 — h)?* dh cm?®.

n—o0
i=1 0

The integral can be evaluated using the substitution u = 5 — h or by multiplying out (5 — h)2. Using
the substitution, we have

5
125 .
= " xcm®.

5
Volume of cone = / 7(5 — h)2dh = —Z (5 — h)?
A 3 .3
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Note that the sum represented by the > sign is over all the strips. In the future, we will not
write down the points, hg, i1, .. . hy,, that are needed to express the Riemann sum precisely. This is
unnecessary if all we want is the final expression for the definite integral. We now calculate the area
of a semicircle and the volume of a hemisphere by slicing.

Example 3 Use horizontal slices to set up a definite integral representing the area of the semicircle of radius
7 cm in Figure 8.7.

w ¥
V4 A\ Ah
T
h 7
fe——T7 cm—— — 7 ——
Figure 8.7: Semicircle Figure 8.8: Horizontal slices of semicircle
Solution As in Example 1, to calculate the area using horizontal slices, we divide the region into strips; see

Figure 8.8. A typical strip at height & above the base has width w and thickness Ah, so
Area of strip ~ wAh cm?.
To get w in terms of h, we use the Pythagorean Theorem in Figure 8.8, giving
wA 2
O
U 5 )

SO

w = \/4(72 — h2) = 21/49 — h2.

Summing the areas of the strips gives the Riemann sum approximation

Area of semicircle ~ Z wAh = Z 24/49 — h2Ah cm?.

Taking the limit as Ah — 0 gives the integral:

7
im Z 24/49 — h2Ah = 2/ \/49 — h2 dh cm?.
0

Area of semicircle = 1
Ah—0

Using the table of integrals VI-28 and VI-30, or a calculator or computer, gives

1 R\ |
Area of semicircle = 2-5 <h\/ 49 — h2? + 49 arcsin <?))
2

As a check, notice that the area of the whole circle of radius 7 is 7 - 72 = 497 cm?.

4
=49arcsinl = ?971' = 76.97 cm?>.

0

Example 4 Set up and evaluate an integral giving the volume of the hemisphere of radius 7 cm in Figure 8.9.
Volume of slice
~ 7’ Ah
¥ r
! VN _Ah |

i T '

h / \ h 7

| |

e———7—
Figure 8.9: Slicing to find the volume Figure 8.10: Vertical cut through center of hemisphere

of a hemisphere showing relation between r; and h;
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Solution We will not use the formula %777'3 for the volume of a sphere. However our approach can be used to
derive that formula.
Divide the hemisphere into horizontal slices of thickness Al cm. (See Figure 8.9.) Each slice
is a circular slab. Let r be the radius of the slice at height h, so

Volume of slice ~ w2 Ah cm?®.
We want to express 7 in terms of h. From Figure 8.10, we have 2 = 72 — h2, so
Volume of slice =~ 77 Ah = 7(7? — h?) Ah cm®.
Summing the volumes of all slices gives:
Volume ~ Z 7r? Ah = ZT((72 — h?) Ah cm?.

As the thickness of each slab tends to zero, the sum becomes a definite integral. Since the radius of
the hemisphere is 7, we know that h varies from 0 to 7, so these are the limits of integration:
7

7
1 2
Volume = / n(7? —h?)dh =m (72h - §h3> = §7T73 =718.4cm?.
0

0

Notice that the volume of the hemisphere is half of %7773 cm?, as we expected.

We now use slicing to find the volume of a pyramid. You may already know the formula V' =
%bz - h for the volume V' of a pyramid with height / and a square base of length b. We will not use
the formula, but our approach can be used to derive it.

Example 5 Compute the volume, in cubic feet, of the Great Pyramid of Egypt, whose base is a square 755 feet
by 755 feet and whose height is 410 feet.

Solution We slice the pyramid horizontally. Each slice is a square slab with thickness Ah. The bottom layer
is a square slab 755 feet by 755 feet and volume about (755)2Ah ft®. As we move up the pyramid,
the layers have shorter side lengths. We divide the height into n subintervals of length Ah. See
Figure 8.11. Let s be the side length of the slice at height A, then

Volume of slice =~ s> Ah ft>.

Volume of slice

Iy AN AL

¥ 4101t
h T
1 N h
A4
755 ft [ 755 ft 1
Figure 8.11: The Great Pyramid Figure 8.12: Cross-section relating s and h

We express s as a function of h using the vertical cross-section in Figure 8.12. By similar

triangles, we get
s (410 — h)

755 410

755
s = (m) (410 — }L),

Thus,
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and the total volume, V/, is approximated by adding the volumes of the n layers:

Vady s"Ah=> Kﬁg) (410 — h)}2 Ah ft?,

As the thickness of each slice tends to zero, the sum becomes a definite integral. Finally, since A
varies from 0 to 410, the height of the pyramid, we have

410 2 2 410
755 755
= (22 410 — h)?
(410) 410 — h)} dh (410) /0 (410 — h)2 dh

/]
) [

Note that V' = 1(755)2(410) = £b* - h, as expected.

OU\

;_\

410 2 3
41 1
0 (%) ( 30) = 5(755)°(410) ~ 78 million .

Exercises and Problems for Section 8.1

Exercises

In Exercises 1-8, write a Riemann sum and then a definite 4.

integral representing the area of the region, using the strip /Q
shown. Evaluate the integral exactly. Ah %
1. : 5 | h
2
| ;
T
—z——
Az
5. y
2. : 6 1
T 22 +y%2 =10
|
> — T —
Ax
3. N -
6. g4 Y .
' 5 o
Ah
T T I Ay
h x
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7 Yy 11 4cm
y=x
y=Vz
Ay
T
T
8. y
3xr+y=26
Az 12
>
T
y=a2—4
13.

In Exercises 9-14, write a Riemann sum and then a definite
integral representing the volume of the region, using the slice

shown. Evaluate the integral exactly. (Regions are parts of 5 mm
cones, cylinders, spheres, and pyramids.)
9.
10 mm
14.
10. 2m
Ay
\ 2m
2 m\

Problems

The integrals in Problems 15-18 represent the area of eithera ~ The integrals in Problems 19-22 represent the volume of ei-
triangle or part of a circle, and the variable of integration mea-  ther a hemisphere or a cone, and the variable of integration
sures a distance. In each case, say which shape is represented, measures a length. In each case, say which shape is repre-
and give the radius of the circle or the base and height of the ~sented, and give the radius of the hemisphere or the radius
triangle. Make a sketch to support your answer showing the —and height of the cone. Make a sketch to support your answer
variable and all other relevant quantities. showing the variable and all other relevant quantities.

1 9 12 12
15. /0 3w dz 16. /9 81 —a?dx 19./ 7(144 — h?) dh 20./ w(x/3)2dx
- 0 0

V15 7 h 6 2
17. / V15— h2dh 18 / 5 (1 - —) dh 21. / (3 — y/2)%dy 2. / (22— (2—y)%) dy
0 0 0 0

7
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23.

24.
25.

26.

27.

Chapter Eight USING THE DEFINITE INTEGRAL

Find, by slicing, the volume of a cone whose height is
3 cm and whose base radius is 1 cm. Slice the cone as
shown in Figure 8.4 on page 393.

Find the volume of a sphere of radius r by slicing.

Find, by slicing, a formula for the volume of a cone of
height h and base radius r.

Figure 8.13 shows a solid with both rectangular and tri-
angular cross sections.

(a) Slice the solid parallel to the triangular faces. Sketch
one slice and calculate its volume in terms of x, the
distance of the slice from one end. Then write and
evaluate an integral giving the volume of the solid.

(b) Repeat part (a) for horizontal slices. Instead of x, use
h, the distance of a slice from the top.

2cm

4cm \

3cm

Figure 8.13

A rectangular lake is 150 km long and 3 km wide. The
vertical cross-section through the lake in Figure 8.14
shows that the lake is 0.2 km deep at the center. (These
are the approximate dimensions of Lake Mead, the

8.2 APPLICATIONS TO GEOMETRY

largest reservoir in the US, which provides water to Cal-
ifornia, Nevada, and Arizona.) Set up and evaluate a def-
inite integral giving the total volume of the lake.

e——3 km——~

T

0.2km

J

Figure 8.14: Not to scale

28. A dam has a rectangular base 1400 meters long and 160

meters wide. Its cross-section is shown in Figure 8.15.
(The Grand Coulee Dam in Washington state is roughly
this size.) By slicing horizontally, set up and evaluate a
definite integral giving the volume of material used to
build this dam.

150m

10m

e——160m——

Figure 8.15: Not to scale

In Section 8.1, we calculated volumes using slicing and definite integrals. In this section, we use the
same method to calculate the volumes of more complicated regions as well as the length of a curve.
The method is summarized in the following steps:

approximate;

total volume (or length);

To Compute a Volume or Length Using an Integral

e Divide the solid (or curve) into small pieces whose volume (or length) we can easily
o Add the contributions of all the pieces, obtaining a Riemann sum that approximates the

o Take the limit as the number of terms in the sum tends to infinity, giving a definite integral
for the total volume (or total length).

In the previous section, all the slices we created were disks or squares. We now look at different
ways of generating volumes whose cross-sections include circles, rings, and squares.
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Volumes of Revolution

One way to create a solid having circular cross-sections is to revolve a region in the plane around a
line, giving a solid of revolution, as in the following examples.

Example 1 The region bounded by the curve y = e~" and the z-axis between o = 0 and x = 1 is revolved
around the z-axis. Find the volume of this solid of revolution.
Y
y=e
i Radius = y
— - X
\ > b
ey Az
i
Figure 8.16: A thin strip rotated around the z-axis to form a circular slice
Solution We slice the region perpendicular to the x-axis, giving circular disks of thickness Az. See Fig-
ure 8.16. The radius of the disk is ¥y = ™%, so:
Volume of the slice ~ my? Az = w(e™")? Az,
Total volume ~ Z my? Az = Z ™ (e‘”)2 Ax.
As the thickness of each slice tends to zero, we get:
1 1 1 1
Total volume :/ m(e %) dax = 77/ e Bdr=n(—=)e >
0 0 2 0
1 -2 _ 0 4l —2
= —= — =—(1- ~ 1.36.
w(-3) - =Fa-e?
Example 2 A table leg in Figure 8.17 has a circular cross section with radius 7 cm at a height of y cm above the

ground given by r = 3 + cos(7y/25). Find the volume of the table leg.

f— T —

Figure 8.17
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Solution The table leg is formed by rotating the curve » = 3 + cos(my/25) around the y-axis. Slicing the
table leg horizontally gives circular disks of thickness Ay and radius r» = 3 4 cos(7wy/25).
To set up a definite integral for the volume, we find the volume of a typical slice:

2
Volume of slice ~ ﬂrQAy =7 (3 + cos (%y)) Ay.

Summing over all slices gives the Riemann sum approximation:

T 2
Total volume — (3 (— )) Ay.
otal volume Zw -+ cos 25y Y

Taking the limit as Ay — 0 gives the definite integral:
-100

2
Total volume = Algi/IEO Z ™ (3 + cos (%y)) Ay = /

| 7T (3+cos (%J))Qdy.

Evaluating the integral numerically gives:
T

2
% y)) dy = 2984.5 cm?®.

100
Total volume = / s (3 + cos (
0

Example 3 The region bounded by the curves y = z and y = 22

volume of the resulting solid.

is rotated about the line y = 3. Compute the

Y Y Tout = 3 — :L'z
y=3
Il
Tin=3-1x I
Tout = 3 — fl;2 —
.
Figure 8.18: Cutaway view of volume showing Figure 8.19: One slice (a
inner and outer radii disk-with-a-hole)
Solution The solid is shaped like a bowl with the base removed. See Figure 8.18. To compute the volume, we
divide the area in the xy-plane into thin vertical strips of thickness Az, as in Figure 8.20.
Y Axis of rotation y=3
3 “
Tin = - Tout = 3 - 1'2
1 —
y = 2° N
t X
y=x e 1
Ax

Figure 8.20: The region for Example 3

As each strip is rotated around the line y = 3, it sweeps out a slice shaped like a circular disk with
a hole in it. See Figure 8.19. This disk-with-a-hole has an inner radius of r;, = 3 — x and an outer
radius of 7oy = 3 — 2. Think of the slice as a circular disk of radius 7, from which has been
removed a smaller disk of radius r;,. Then:

Volume of slice ~ 712 . Ax — mr, Az = n(3 — 2%)? Az — (3 — z)? Aw.

out

Adding the volumes of all the slices, we have:
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Total volume = V ~ Z (mr2y — i) Az = Z (7(3 —2°)* = 7(3 — x)?) Az.

out
We let Az, the thickness of each slice, tend to zero to obtain a definite integral. Since the curves
y = xand y = 22 intersect at x = 0 and 2 = 1, these are the limits of integration:
1

Vz/0 (7T(3—5€2)2—7T(3—58)2)d1‘:71'/0 ((9—6x2+x4)—(9—6x+x2))d5¢

1 23 5
=7r/(6x—7x2+x4)dx=7r<3x2—7i+L—)
o 3 5

1

~ 2.72.
0

Volumes of Regions of Known Cross-Section

We now calculate the volume of a solid constructed by a different method. Starting with a region in
the zy-plane as a base, the solid is built by standing squares, semicircles, or triangles vertically on
edge in this region.

Example 4 Find the volume of the solid whose base is the region in the zy-plane bounded by the curves y = 2

and y = 8 — 22 and whose cross-sections perpendicular to the z-axis are squares with one side in
the xy-plane. (See Figure 8.21.)

Side = s
y =2 x y = z* T
y=8— 22 y=8— z?
Figure 8.21: The solid for Example 4 Figure 8.22: A slice of the solid for Example 4
Solution We view the solid as a loaf of bread sitting on the xy-plane and made up of square slices. A typical

slice of thickness Az is shown in Figure 8.22. The side length, s, of the square is the distance (in
the y direction) between the two curves, so s = (8 — 22) — 22 = 8 — 222 giving

Volume of slice ~ s% Az = (8 — 22%)% Az.

Thus
Total volume = V &~ Y s* Az =Y (8 —227)% Az.

As the thickness Az of each slice tends to zero, the sum becomes a definite integral. Since the
curves y = z2 and y = 8 — 22 intersect at x = —2 and = = 2, these are the limits of integration.
We have

2 2

V= / (8 —222)%dx = / (64 — 3222 + 4a*) dx
-2 -2

2 4 7

= 64z — %x?’ —+ 3335

204
= 2018 1365,
., 15
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Arc Length

A definite integral can be used to compute the arc length, or length, of a curve. To compute the
length of the curve y = f(x) from z = a to x = b, where a < b, we divide the curve into small
pieces, each one approximately straight.

y = f(x)

Length =~ /1 + (f'(z))2Ax

Figure 8.23: Length of a small piece of curve approximated using Pythagoras’ theorem

Figure 8.23 shows that a small change Ax corresponds to a small change Ay ~ f/(z) Az. The
length of the piece of the curve is approximated by

Length ~ /(A2)” + Ay ~ \/(A2)? + (f/(z) Ax)* = I+ (J'(2)) Ax.

Thus, the arc length of the entire curve is approximated by a Riemann sum:

Arc length ~ Z V1 + (f(2))? Ax.

Since x varies between a and b, as we let Az tend to zero, the sum becomes the definite integral:

For a < b, the arc length of the curve y = f(z) from 2 = a to x = b is given by

Arc length = /b V14 (f(x))?de.

Example 5 Set up and evaluate an integral to compute the length of the curve y = 23 from z = 0 to x = 5.

Solution If f(x) = 2%, then f/(x) = 322, so

5
Arc length = / V14 (322)2 da.
0

Although the formula for the arc length of a curve is easy to apply, the integrands it generates
often do not have elementary antiderivatives. Evaluating the integral numerically, we find the arc
length to be 125.68. To check that the answer is reasonable, notice that the curve starts at (0,0) and
goes to (5,125), so its length must be at least the length of a straight line between these points, or
V52 + 1252 = 125.10. (See Figure 8.24.)
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125

Length ~ 125.68

! x

5

Figure 8.24: Arc length of y = z® (Note: The picture is distorted because the
scales on the two axes are quite different.)

Arc Length of a Parametric Curve

A particle moving along a curve in the plane given by the parametric equations x = f(t), y = g(t),
where t is time, has speed given by:

o-(5) "+ ()"

We can find the distance traveled by a particle along a curve between ¢ = a and t = b by integrating
its speed. Thus,

b
Distance traveled = / v(t) dt.
Ja

If the particle never stops or reverses its direction as it moves along the curve, the distance it travels
is the same as the length of the curve. This suggests the following formula:

If a curve is given parametrically for a < t < b by differentiable functions and if the velocity
v(t) isnot 0 for a < ¢ < b, then

b b 2 2
dx dy
Arc length of = t)dt = — — | dt.
rc length of curve /(lv() /a \/(df) +<dt)

Example 6

Solution

Find the circumference of the ellipse given by the parametric equations

r=2cost, y=sint, 0t <27
The circumference of this curve is given by an integral which must be calculated numerically:

27 dx 2 d 2 27T
Circumference = / Y () a= V/(—2sint)2 + (cost)? dt
) dt dt )

27
= Vasin?t + cos?t dt = 9.69.
Jo

Since the ellipse is inscribed in a circle of radius 2 and circumscribes a circle of radius 1, we expect
the length of the ellipse to be between 27(2) ~ 12.57 and 27(1) ~ 6.28, so the value of 9.69 is
reasonable.
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Exercises and Problems for Section 8.2

Exercises

In Exercises 1-10, the region is rotated around the z-axis.
Find the volume.

. Boundedbyy = 2%,y =0,z =0,z = L.

. Boundedbyy = (z 4+ 1)%,y = 0,2 = 1,2 = 2.
. Boundedbyy =4 — 2%,y =0,2 = -2,z = 0.
. Boundedbyy = vz + 1L,y =0,2=—1,2 = 1.
. Boundedbyy =¢*,y =0,z = -1,z = 1.

. Bounded by y = cosz,y = 0,2 = 0,z = 7/2.

. Boundedbyy =1/(x + 1),y =0,2 =0,z = 1.
. Bounded by y = Veosh2z,y = 0,2 =0,z = 1.
. Boundedbyy = 2%,y = 2,2 =0,z = 1.

o N AW N

o
=3

. Bounded by y = e3*,y = e®, 2 = 0,2 = 1.

Problems

For Exercises 11-16, find the arc length of the graph of the
function fromx = 0toz = 2.

11. f(z) = 2?/2
13. f(z) =ln(z+1)
15. f(z)=v4 —2?

12. f(z) =coszx
14. f(z) = Va?
16. f(z) = coshx

Find the length of the parametric curves in Exercises 17-20.

17. = 3+5t,y = 144t for 1 <t < 2. Explain why your
answer is reasonable.

18. & = cos(e’), y = sin(e) for 0 < ¢ < 1. Explain why
your answer is reasonable.

19. x = cos(3t), y = sin(5t) for 0 < ¢ < 2.

20. x =cos’t,y =sin®t, for0 <t < 2.

In Problems 21-24 set up, but do not evaluate, an integral
that represents the volume obtained when the region is rotated
about the given axis.

21. Bounded by y = ¥/, z = 4y. Axisz = 9.
22. Bounded by y = ¥z, z = 4y. Axis y = 3.
23. Boundedby y =0,z =9,y = 1z. Axisy = —2.
24. Boundedbyy =0,z =9,y = %:c Axis x = —1.

25. Find the length of one arch of y = cos x.

26. Find the perimeter of the region bounded by y = = and
y = 2.

27. Consider the hyperbola 22 — y? = 1 in Figure 8.25.

(a) The shaded region 2 < = < 3 is rotated around the
z-axis. What is the volume generated?

(b) What is the arc length with y > 0 from =z = 2 to
z =37

Figure 8.25

28. Rotating the ellipse z°/a* 4 y*/b* = 1 about the z-axis
generates an ellipsoid. Compute its volume.

For Problems 29-31, sketch the solid obtained by rotating
each region around the indicated axis. Using the sketch, show
how to approximate the volume of the solid by a Riemann
sum, and hence find the volume.

29. Bounded by y = 2%, 2 = 1,y = —1. Axis: y = —1.
30. Bounded by y = vz, 2 = 1,y = 0. Axis: z = 1.
31. Bounded by the first arch of y = sinx, y = 0. Axis: x

axis.

Problems 32-37 concern the region bounded by y = 22,
y = 1, and the y-axis. Find the volume of the following solids.

32. The solid obtained by rotating the region around the y-
axis.

33. The solid obtained by rotating the region about the x-
axis.

34. The solid obtained by rotating the region about the line
y=—2.
35. The solid whose base is the region and whose cross-

sections perpendicular to the z-axis are squares.

36. The solid whose base is the region and whose cross-
sections perpendicular to the x-axis are semicircles.

37. The solid whose base is the region and whose cross-
sections perpendicular to the y-axis are equilateral trian-
gles.



For Problems 38-42 consider the region bounded by y = e”,
the x-axis, and the lines = 0 and x = 1. Find the volume of
the following solids.

38.

39.

40.

41.

42.

43.

4.

The solid obtained by rotating the region about the x-
axis.

The solid obtained by rotating the region about the hori-
zontal line y = —3.

The solid obtained by rotating the region about the hori-
zontal liney = 7.

The solid whose base is the given region and whose
cross-sections perpendicular to the x-axis are squares.

The solid whose base is the given region and whose
cross-sections perpendicular to the x-axis are semicir-
cles.

A particle starts at the origin and moves along the curve
y = 27°/2 /3 in the positive z-direction at a speed of
3 cm/sec, where x, y are in cm. Find the position of the
particle at t = 6.

A tree trunk has a circular cross section at every height;
its circumference is given in the following table. Estimate
the volume of the tree trunk using the trapezoid rule.

Height (feet) 0

20 | 40 | 60 | 80 | 100 | 120

Circumference (feet)

26 (22119 14| 6 3 1

45.

46.

Rotate the bell-shaped curve y = e=""/? shown in Fig-
ure 8.26 around the y-axis, forming a hill-shaped solid
of revolution. By slicing horizontally, find the volume of
this hill.

Figure 8.26

(a) A pie dish is 9 inches across the top, 7 inches across
the bottom, and 3 inches deep. See Figure 8.27.
Compute the volume of this dish.

(b) Make a rough estimate of the volume in cubic inches
of a single cut-up apple, and estimate the number of
apples that is needed to make an apple pie that fills

this dish.
4
3//
i

9//
V<— 7 —

Figure 8.27

47.

48.

49.
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A 100 cm long gutter is made of three strips of metal,
each 5 cm wide; Figure 8.28 shows a cross-section.

(a) Find the volume of water in the gutter when the
depth is A cm.

(b) What is the maximum value of h?

(¢) What is the maximum volume of water that the gut-
ter can hold?

(d) If the gutter is filled with half the maximum volume
of water, is the depth larger or smaller than half of
the answer to part (b)? Explain how you can answer
without any calculation.

(e) Find the depth of the water when the gutter contains
half the maximum possible volume.

Figure 8.28

The design of boats is based on Archimedes’ Principle,
which states that the buoyant force on an object in wa-
ter is equal to the weight of the water displaced. Suppose
you want to build a sailboat whose hull is parabolic with
cross section y = az?, where a is a constant. Your boat
will have length L and its maximum draft (the maximum
vertical depth of any point of the boat beneath the wa-
ter line) will be H. See Figure 8.29. Every cubic meter
of water weighs 10,000 newtons. What is the maximum
possible weight for your boat and cargo?

Figure 8.29

The circumference of a tree at different heights above the
ground is given in the table below. Assume that all hori-
zontal cross-sections of the tree are circles. Estimate the
volume of the tree.

Height (inches) 0

20 | 40 | 60 | 80 | 100 | 120

Circumference (inches)

31|28 )21 |17 | 12 8 2
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50.

51.

52.

53.

54.
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A bowl has the shape of the graph of y = z between the
points (1, 1) and (—1, 1) rotated about the y-axis. When
the bowl contains water to a depth of h units, it flows
out through a hole in the bottom at a rate (volume/time)
proportional to v/, with constant of proportionality 6.

(a) Show that the water level falls at a constant rate.
(b) Find how long it takes to empty the bowl if it is orig-
inally full to the brim.

The hull of a boat has widths given by the following ta-
ble. Reading across a row of the table gives widths at
points 0, 10, ..., 60 feet from the front to the back at
a certain level below waterline. Reading down a column
of the table gives widths at levels 0, 2, 4, 6, 8 feet be-
low waterline at a certain distance from the front. Use the
trapezoidal rule to estimate the volume of the hull below
waterline.

Front of boat — Back of boat

0 10 20 30 40 350 60
0}p2 8 13 16 17 16 10
Depth 2|1 4 8 10 11 10 8
below 4|0 3 4 6 7 6 4
waterline 6 {0 1 2 3 4 3 2
(infeety 80 O 1 1 1 1 1

(a) Write an integral which represents the circumfer-
ence of a circle of radius 7.

(b) Evaluate the integral, and show that you get the an-
sSwer you expect.

Compute the perimeter of the region used for the base of
the solids in Problems 38—42.

With z and b in meters, a chain hangs in the shape of the
catenary coshz = 1(¢® + ¢ ®) for —b < & < b. If the
chain is 10 meters long, how far apart are its ends?

55.

56.

57.

There are very few elementary functions y = f(x) for
which arc length can be computed in elementary terms
using the formula

/a”,/H(%)de.

You have seen some such functions f in Prob-
lems 14, 15, and 43, namely, f(z) = V4 — 22, f(z) =
Va3, and f(z) = 2(e” 4 e~"). Try to find some other
function that “works,” that is, a function whose arc length
you can find using this formula and antidifferentiation.

After doing Problem 55, you may wonder what sort of
functions can represent arc length. If g(0) = 0 and g is
differentiable and increasing, then can g(x), > 0, rep-
resent arc length? That is, can we find a function f(¢)
such that

/ T dt = glay?

(a) Show that f(z) = [+/(g'(t))? — 1 dt works as
long as g’(x) > 1. In other words, show that the arc
length of the graph of f from 0 to z is g(x).

(b) Show that if ¢(z) < 1 for some z, then g(z) cannot
represent the arc length of the graph of any function.

(c) Find a function f whose arc length from 0 to x is
2z.

Consider the graph of the equation

lz[¥ +|y|* =1, k constant.

For k an even integer, the absolute values are unneces-
sary. For example, for k& = 2, the equation gives the cir-
cle
22 + y2 =1.
(a) Sketch the graph of the equation for k = 1,2, 4.
(b) Find the arc length of the three graphs in part (a).
[Note: k = 4 may require a computer.]

8.3 AREA AND ARC LENGTH IN POLAR COORDINATES

Many curves and regions in the plane are easier to describe in polar coordinates than in Cartesian
coordinates. Thus their areas and arc lengths are best found using integrals in polar coordinates.

A point, P, in the plane is often identified by its Cartesian coordinates (x,y), where x is the
horizontal distance to the point from the origin and ¥ is the vertical distance.! Alternatively, we
can identify the point, P, by specifying its distance, 7, from the origin and the angle, 6, shown in
Figure 8.30. The angle 6 is measured counterclockwise from the positive z-axis to the line joining
P to the origin. The labels r and 6 are called the polar coordinates of point P.

I Cartesian coordinates can also be called rectangular coordinates.
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Y
Y
P
(z,y) - P
T U
r €
y R + Q
B s s B e s s e el
0 -5 T 3
z €
x 51y
Figure 8.30: Cartesian and polar coordinates for
the point P Figure 8.31

Relation Between Cartesian and Polar Coordinates

From the right triangle in Figure 8.30, we see that
e x=rcosf) and y=rsind

o r:x/x2+y2andtan«9:£, x#0
xr

The angle 6 is determined by the equations cos @ = z/+/x? + y2 and sin§ = y/\/x2 + y>.
Warning: In general § # tan~—!(y/x). It is not possible to determine which quadrant ¢ is in
from the value of tan # alone.

Example 1

Solution

(a) Give Cartesian coordinates for the points with polar coordinates (r, ) given by P = (7,7/3),
Q= (5,0),R=(5m).

(b) Give polar coordinates for the points with Cartesian coordinates (z, y) given by U = (3,4) and
V =(0,-5).

(a) See Figure 8.31. Point P is a distance of 7 from the origin. The angle 6 is 7/3 radians (60°).
The Cartesian coordinates of P are

T 7 . . V3
I—TC089—7COS§—§ and y—7sm9—7sm§—7.

Point @ is located a distance of 5 units along the positive z-axis with Cartesian coordinates
x=rcosf =5cos0) =5 and y=rsinf =5sin0 = 0.
For point R, which is on the negative z-axis,
x =rcosh =5cosm = —5H and y =rsinf = 5sint = 0.

(b) For U = (3,4), we have r = /32442 = 5 and tanf = 4/3. A possible value for 6 is
0 = arctan4/3 = 0.927 radians, or about 53°. The polar coordinates of U are (5,0.927). The
point V falls on the negative y-axis, so we can choose r = 5, § = 3x /2 for its polar coordinates.
In this case, we cannot use tan 6 = y/x to find 0, because tan 6 = y/ax = —5/0 is undefined.

Because the angle 6 can be allowed to wrap around the origin more than once, there are many
possibilities for the polar coordinates of a point. For the point V' in Example 1, we can also choose
0 = —m/2o0r 0 = Tr/2, so that (5,—m/2), (5,77/2), and (5, 37/2) are all polar coordinates for
V. However, we often choose 0 between 0 and 2.
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Example 2

Solution

Give three possible sets of polar coordinates for the point P in Figure 8.32.

/2
3r/4 w/4
™ 40
5m/4 /4
™/ 3m/2 ™/
Figure 8.32

Because 7 = 3 and @ = /4, one set of polar coordinates for P is (3,7/4). We can also use
0=m/4+ 27 =9r/4dand 0 = w/4 — 2m = —Tw /4, to get (3,97 /4) and (3, =77 /4).

Graphing Equations in Polar Coordinates

The equations for certain graphs are much simpler when expressed in polar coordinates than in
Cartesian coordinates. On the other hand, some graphs that have simple equations in Cartesian

coordinates have complicated equations in polar coordinates.

Example 3

Solution

Figure 8.33: The graph of the equation 7 = 1 is the unit circle because
r = 1 for every point regardless of the value of 6. The graph of y = 1
is a horizontal line since y = 1 for any = Archimedean spiral r = 0

(b) Sincer = \/x? + y2, we rewrite the equation r = 1 using Cartesian coordinates as \/x? + y2 =
1, or, squaring both sides, as 2 4 y? = 1. We see that the equation for the unit circle is simpler

(a) Describe in words the graphs of the equation y = 1 (in Cartesian coordinates) and the equation

r = 1 (in polar coordinates).

(b) Write the equation » = 1 using Cartesian coordinates. Write the equation y = 1 using polar

coordinates.

(a) The equation y = 1 describes a horizontal line. Since the equation y = 1 places no restrictions
on the value of z, it describes every point having a y-value of 1, no matter what the value of
its z-coordinate. Similarly, the equation » = 1 places no restrictions on the value of . Thus, it
describes every point having an r-value of 1, that is, having a distance of 1 from the origin. This

set of points is the unit circle. See Figure 8.33.

Yy
y=1

r=1

in polar coordinates than it is in Cartesian coordinates.

On the other hand, since y = 7 sin 6, we can rewrite the equation y = 1 in polar coordinates
as rsin@ = 1, or, dividing both sides by sin §, as r = 1/ sin 0. We see that the equation for this
horizontal line is simpler in Cartesian coordinates than in polar coordinates.

Figure 8.34: A graph of the
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Example 4

Solution

Graph the equation = 6. The graph is called an Archimedean spiral after the Greek mathematician
Archimedes who described its properties (although not by using polar coordinates).

To construct this graph, use the values in Table 8.1. To help us visualize the shape of the spiral, we
convert the angles in Table 8.1 to degrees and the r-values to decimals. See Table 8.2.

Table 8.1  Points on the Archimedean spiral v = 0, with 0 in radians

0 0

T

NENCYE
w|a
SERVE]

V]

3

o ot
o5 2|3

~

3

'y

3

w

3

Table 8.2 Points on the Archimedean spiral v = 0, with 0 in degrees

0 0 30° 60° 90° 120° 150° 180° 210° 240° 270°
r 0.00 0.52 1.05 1.57 2.09 2.62 3.14 3.67 4.19 4.71

Notice that as the angle # increases, points on the curve move farther from the origin. At 0°,
the point is at the origin. At 30°, it is 0.52 units away from the origin, at 60° it is 1.05 units away,
and at 90° it is 1.57 units away. As the angle winds around, the point traces out a curve that moves
away from the origin, giving a spiral. (See Figure 8.34.)

In our definition, 7 is positive. However, graphs of curves in polar coordinates are traditionally
drawn using negative values of r as well, because this makes the graphs symmetric. If an equation
r = f(0) gives a negative r-value, it is plotted in the opposite direction to . See Examples 5 and 6
and Figures 8.35 and 8.37.

Example 5

Solution

For a > 0 and n a positive integer, curves of the form r = asinnd or r = a cosnf are called roses.
Graph the roses

(a) r=3sin20 (b) r =4cos36

(a) Using a calculator or making a table of values, we see that the graph is a rose with four petals,
each of length 3. See Figure 8.35. Negative values of r for 7/2 < § < 7 and 37/2 < 6 < 27
give the petals in Quadrants II and I'V. For example, 8 = 37 /4 gives r = —3, which is plotted
3 units from the origin in the direction opposite to § = 37 /4, namely in Quadrant IV.

(b) The graph is a rose with three petals, each of length 4. See Figure 8.36.

Y Y

7 = 3sin 26
r = 4cos 36

Figure 8.35: Graph of r = 3sin 20

X Figure 8.36: Graph of r = 4 cos 30
(Petals in Quadrants II and IV have » < 0)
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Example 6 Curves of the form r = a + bsinf or r = a + bcos § are called limacons. Graph = 1 + 2cos 6
and 7 = 3 + 2cos 0.

Solution See Figures 8.37 and 8.38. The equation » = 1+ 2 cos f leads to negative r values for some 6 values
between 7/2 and 37 /2; these values give the inner loop in Figure 8.37. For example, § = 7 gives
7 = —1, which is plotted 1 unit from the origin in the direction opposite to # = 7, namely on the
positive x-axis. The equation = 3 + 2 cos ¢ does not lead to negative r-values.

Y
Y
r=142cosl r=23+2cosf
x
x
Figure 8.37: Graphof r = 1 4 2 cos 6
(Inner loop has r < 0) Figure 8.38: Graph of r = 3 4+ 2 cos 6

Polar coordinates can be used with inequalities to describe regions that are obtained from cir-
cles. Such regions are often much harder to represent in Cartesian coordinates.

Example7 Using inequalities, describe a compact disc with outer diameter 120 mm and inner diameter 15 mm.

Solution The compact disc lies between two circles of radius 7.5 mm and 60 mm. See Figure 8.39. Thus, if
the origin is at the center, the disc is represented by

75<r<60 and 0<60<2m.

Y Y
9//
60 mm
C)\ - /6 .
7.5 mm
Figure 8.39: Compact disc Figure 8.40: Pizza slice

Example 8 An 18 inch pizza is cut into 12 slices. Use inequalities to describe one of the slices.

Solution The pizza has radius 9 inches; the angle at the center is 2/12 = 7/6. See Figure 8.40. Thus, if the
origin is at center of the original pizza, the slice is represented by

0<r<9  and ogegg.
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Area in Polar Coordinates

We can use a definite integral to find the area of a region described in polar coordinates. As previ-
ously, we slice the region into small pieces, construct a Riemann sum, and take a limit to obtain the
definite integral. In this case, the slices are approximately circular sectors.

To calculate the area of the sector in Figure 8.41, we think of the area of the sector as a fraction
0/27 of the area of the entire circle (for 6 in radians). Then

0 1
Area of sector = — - 712 = —124.
27 2
Y
Af
A 0 "
Figure 8.41: Area of shaded sector Figure 8.42: Finding the area of
= 2776 (for 6 in radians) the limagon r = 3 + 2 cos 0

Example 9

Solution

Use circular sectors to set up a definite integral to calculate the area of the region bounded by the
limagon 7 = 3 4+ 2 cos 6, for 0 < 0 < 27. See Figure 8.42.

The slices are not exactly circular sectors because the radius r depends on §. However,
I, 1 2
Area of sector = 3" A = 5(3 +2cos ) A6.

Thus, for the whole area,

n
1
Area of region ~ Z 5(3 +2cos0)? A6.

i=1

Taking the limit as n — oo and Af — 0 gives the integral

27 1
Area :/ 5(3+2cos 0)? do.
0

To compute this integral, we expand the integrand and use integration by parts or formula I'V-18
from the table of integrals:

1 2
Area = 5/ (9 +12cosf + 4cos® ) d
0

27

1 4
=3 (99 + 12sin6 + §(cos<’-)sin9 + 9))

0

1
= 5(1877 +0+4m) =117
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The reasoning in Example 9 suggests a general area formula.

For a curve r = f(0), with f(0) > 0, the area in Figure 8.43 is given by

1 [P
Area of region enclosed = 3 / f(6)2 de.

Yy Yy
r=f(0) r = 3sin 20
€T
a |8 -
Figure 8.43: Area in polar Figure 8.44: One petal of the rose
coordinates r=3sin20 with0 <0 < 7/2

Example10  Find the area of one petal of the four-petal rose r = 3 sin 26 in Figure 8.44.

Solution The petal in the first quadrant is described by r = 3sin 260 for 0 < 6 < 7/2, so
1 /2 9 w/2
Area of shaded region = 3 / (3sin20) dO = 3 / sin? 20 df.
0 0

Using the substitution w = 26, we rewrite the integral and use integration by parts or formula IV-17
from the table of integrals:

9 /2 9 [T
Area = —/ sin® 20 df = —/ sin? w dw
2 Jo 1 Jo
9 L cos w si + L ’
=— | —= wsinw + —w
4 2 2

0

Slope in Polar Coordinates
For a curve r = f(6), we can express x and y in terms of € as a parameter, giving
x=rcosf = f(f)cosf® and y=rsinf= f(f)sinb.

To find the slope of the curve, we use the formula for the slope of a parametric curve

dy  dy/do

de  dz/do

Example11  Find the slope of the curve r = 3sin 26 at § = /3.

Solution Expressing = and y in terms of 0, we have
x = 3sin(20)cosf® and y = 3sin(26)sinb.

The slope is given by
dy  6cos(20)sin 0 + 3sin(26) cos 6

dr  6cos(20) cosf — 3sin(20)sin 0’
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At 6 = /3, we have

dy _ 6(=1/2)(v3/2) +3(v3/2)(1/2) _ V3

drlo_ry 6(-1/2)(1/2) = 3(V3/2)(V3/2) 5

Arc Length in Polar Coordinates

We can calculate the arc length of the curve » = f(6) by expressing = and y in terms of 6 as a
parameter
x = f(0)cosb y = f(0)sind

and using the formula for the arc length of a parametric curve:

A dz\ > dy ?
Arc length =/a \/(%> +(@) de.

The calculations may be simplified by using the alternate form of the arc length integral in Prob-
lem41.

Example 12

Solution

Find the arc length of one petal of the rose » = 3 sin 260 for 0 < § < 7/2. See Figure 8.44.
The curve is given parametrically by
x = 3sin(20)cos® and y = 3sin(20)sind.

Thus, calculating dx/df and dy/df and evaluating the integral on a calculator, we have:

/2
Arc length = / /(6 cos(20) cos @ — 3sin(26) sin )2 + (6 cos(26) sin 0 + 3sin(26) cos 0)2 df
0
= 7.266.

Exercises and Problems for Section 8.3

Exercises

Convert the polar coordinates in Exercises 1-4 to Cartesian 9. (a) Make a table of values for the equation r = 1—sin 6.

coordinates. Give exact answers. Include 0 = 0, /3, /2,27 /3, m, - - -.
(b) Use the table to graph the equation 7 = 1 — sin 6 in
L (1,27/3) 2. (V3,-3m/4) the zy-plane. This curve is called a cardioid.
3 (2\/37 —7/6) 4. (2,57/6) (c) At what poi.nt(s) does.the cardioid r = 1 — .Sifle
intersect a circle of radius 1/2 centered at the origin?
(d) Graph the curve » = 1 — sin 26 in the xy-plane.
Convert the Cartesian coordinates in Exercises 5-8 to polar Compare this graph to the cardioid r = 1 — sin 6.
coordinates.
5.(1,1) 6. (—1,0) 10. Graph the equation r = 1 — sin(nf), forn = 1, 2, 3, 4.
7. (V6,—V2) 8. (—3,1) What is the relationship between the value of n and the

shape of the graph?
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11

12.

13.

14.

15.

16.
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. Graph the equation 7 = 1 — sin 0, with 0 < 0 < nr, for
n = 2, 3, 4. What is the relationship between the value
of n and the shape of the graph?

Graph the equation r = 1 — nsin@, forn = 2, 3, 4.
What is the relationship between the value of n and the
shape of the graph?

Graph the equation » = 1 — cos 6. Describe its relation-
shiptor =1 —sin 6.

Give inequalities that describe the flat surface of a washer
that is one inch in diameter and has an inner hole with a
diameter of 3/8 inch.

Graph the equation » = 1 — sin(20) for 0 < 6 < 2.
There are two loops. For each loop, give a restriction on
0 that shows all of that loop and none of the other loop.

A slice of pizza is one eighth of a circle of radius 1 foot.
The slice is in the first quadrant, with one edge along the
x-axis, and the center of the pizza at the origin. Give in-
equalities describing this region using:

Polar coordinates

(a)

(b) Rectangular coordinates

18.

19.

Y (V3,1)
- grlécular
xT
(\/37 - 1)
Y
1
Circular
arc
T
1 2

Note: Region extends indefinitely
in the y-direction.

In Exercises 20-22, say which of the points A, B, C' and D
in Figure 8.45 has polar coordinate 6 given by the formula.

In Exercises 17-19, give inequalities for r and ¢ which de-
scribe the following regions in polar coordinates.
17. y v
y==x
Circurlar<
e (3,3)
(2,2) Figure 8.45
z 20. 0 = tan *(y/x)
21. 0 = cos™(x/\/x2 4+ y2)
22. 0 =sin"*(y/\/22 + y?)
Problems
23. Sketch the polar region described by the following inte- (b) Write an integral in polar coordinates representing
gral expression for area: the area of the region to the right of z = 1 and in-
/3 side the circle.
1 /™ - i .
y / sin? (36) do. (¢) Evaluate the integral.
0 28. Find the area inside the circle r = 1 and outside the car-
. L . dioid = 1 4 sin 6.
24. Find the area inside the spiral r = 6 for 0 < 6 < 2.
25. Find the area between the two spirals 7 = 6 and r = 26 2. F1(111d Lhe a}re? 111s1_del th; cardioid r =1 —sin § and out-
for 0 < 0 < 2r. side the circle r = 1/2.
26. Find the area inside the cardioid 7 = 1 + cos@ for 30. Find the area lying outside 7 = 2cos 0 and inside 7 =
0<60<2rm. 1+ cosé.
27. (a) In polar coordinates, write equations for the line 31. (a) Graphr = 2cosf and r = 2sin # on the same axes.

z = 1 and the circle of radius 2 centered at the ori-
gin.

(b) Using polar coordinates, find the area of the region
shared by both curves.



32.

33.

34.

35.

36.

37.

For what value of a is the area enclosed by r = 6, 0 = 0,

and 0 = a equal to 1?

(a) Sketch the bounded region inside the lemniscate
r? = 4 cos 20 and outside the circle » = /2.

(b) Compute the area of the region described in part (a).

Using Example 11 on page 412, find the equation of the
tangent line to the curve r = 3sin 260 at § = 7/3.

Using Example 11 on page 412 and Figure 8.35, find the
points where the curve » = 3sin 26 has horizontal and
vertical tangents.

For what values of 6 on the polar curve » = 6, with
0 < 6 < 2, are the tangent lines horizontal? Vertical?

(a) In Cartesian coordinates, write an equation for the
tangent line tor = 1/0 at 0 = /2.

(b) The graph of » = 1/6 has a horizontal asymptote as
0 approaches 0. Find the equation of this asymptote.

8.4 DENSITY AND CENTER OF MASS

Density and How to Slice a Region

38.
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Find the maximum value of the y-coordinate of points on
the limagon r» = 1 + 2 cos 0.

Find the arc length of the curves in Problems 39-40.

39.
40.
41.

42,
43.

r=0,0<60<2mw
r=1/0,7 <6 <2r

For the curve r = f(0) from § = « to § = 3, show that

B
Arc length = / (f7(0))2 + (f(0))2do.

Find the arclength of the spiral 7 = 6§ where 0 < § < 7.

Find the arclength of part of the cardioid » = 1 + cos 6
where 0 < 6§ < 7/2.

The examples in this section involve the idea of density. For example,
e A population density is measured in, say, people per mile (along the edge of a road), or people
per unit area (in a city), or bacteria per cubic centimeter (in a test tube).

e The density of a substance (e.g. air, wood, or metal), is the mass of a unit volume of the sub-
stance and is measured in, say, grams per cubic centimeter.
Suppose we want to calculate the total mass or total population, but the density is not constant over

a region.

To find total quantity from density: Divide the region into small pieces in such a way that
the density is approximately constant on each piece, and add the contributions of the pieces.

Example 1 The Massachusetts Turnpike (“the Pike™) starts in the middle of Boston and heads west. The number
of people living next to it varies as it gets farther from the city. Suppose that, x miles out of town,
the population density adjacent to the Pike is P = f(2) people/mile. Express the total population
living next to the Pike within 5 miles of Boston as a definite integral.

Solution

Divide the Pike up into segments of length Ax. The population density at the center of Boston is

J(0); let’s use that density for the first segment. This gives an estimate of

People living in first segment ~ f(0) people/ mile - Az mile = f(0)Ax people.

Population ~ f(z)Ax

1 0

5
Points west

1 { Boston

Az

Figure 8.46: Population along the Massachusetts Turnpike

Similarly, the population in a typical segment = miles from the center of Boston is the population
density times the length of the interval, or roughly f(x) Axz. (See Figure 8.46.) The sum of all these

estimates gives the estimate

Total population = Z f(z) Ax.
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Letting Az — 0 gives

5
Total population = Aligo Z fz) Az = /0 f(x)dz.

The 5 and O in the limits of the integral are the upper and lower limits of the interval over which we
are integrating.

Example 2 The air density & meters above the earth’s surface is f(h) kg/m>. Find the mass of a cylindrical
column of air 2 meters in diameter and 25 kilometers high, with base on the surface of the earth.

Solution The column of air is a circular cylinder 2 meters in diameter and 25 kilometers, or 25,000 meters,
high. First we must decide how we are going to slice this column. Since the air density varies with
altitude but remains constant horizontally, we take horizontal slices of air. That way, the density will
be more or less constant over the whole slice, being close to its value at the bottom of the slice. (See
Figure 8.47.)

' Volume = 7 - 12 - Ah
fe——2—

Figure 8.47: Slicing a column of air horizontally

A slice is a cylinder of height Ak and diameter 2 m, so its radius is 1 m. We find the approximate
mass of the slice by multiplying its volume by its density. If the thickness of the slice is Ah, then
its volume is 712 - Ah = w12 - Ah = m Ah m3. The density of the slice is given by f(h). Thus,

Mass of slice ~ Volume - Density = (rAh m*)(f(h) kg/m®) = 7 Ah - f(h) ke.
Adding these slices up yields a Riemann sum:

Total mass ~ Z 7w f(h) Ah kg.

As Ah — 0, this sum approximates the definite integral:

.25,000

Total mass = / wf(h)dh kg.
0

In order to get a numerical value for the mass of air, we need an explicit formula for the density
as a function of height, as in the next example.

Example 3 Find the mass of the column of air in Example 2 if the density of air at height & is given by
P = f(h) = 1.28¢ 0-000124h 1o/m3,
25,000
0 )

Solution Using the result of the previous example, we have

25000
’ —1.287
M = 1.98¢0-000124h gy T 22O —0.000124h
> /o 28 0.000124 |\ ©

1.287 0 _—0.000124(25 000))
_ - . ) ~ 31 kg.
0.000124 (e c L0k
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It requires some thought to figure out how to slice a region. The key point is that you want the
density to be nearly constant within each piece.

Example 4

Solution

The population density in Ringsburg is a function of the distance from the city center. At r miles
from the center, the density is P = f(r) people per square mile. Ringsburg is circular with radius 5
miles. Write a definite integral that expresses the total population of Ringsburg.

We want to slice Ringsburg up and estimate the population of each slice. If we were to take straight-
line slices, the population density would vary on each slice, since it depends on the distance from the
city center. We want the population density to be pretty close to constant on each slice. We therefore
take slices that are thin rings around the center. (See Figure 8.48.) Since the ring is very thin, we can
approximate its area by straightening it into a thin rectangle. (See Figure 8.49.) The width of the
rectangle is Ar miles, and its length is approximately equal to the circumference of the ring, 27r
miles, so its area is about 27t A7 mi®. Since

Population on ring ~ Density - Area,
we get
Population on ring ~ (f(r) people/mi®)(27rAr mi®) = f(r) - 27 Ar people.
Adding the contributions from each ring, we get
Total population ~ Z 27r f(r) Ar people.

So

Total population = / 27r f () dr people.
Jo

| | Width = Ar

2rr

Figure 8.48: Ringsburg Figure 8.49: Ring from Ringsburg (straightened out)
Note: You may wonder what happens if we calculate the area of the ring by subtracting the area of
the inner circle (772) from the area of the outer circle [m(r + Ar)Q], giving
Area = 7(r 4+ Ar)? — w2,
Multiplying out and subtracting, we get

Area = 7[r® + 2r Ar + (Ar)?] — 7r?
= 27r Ar + 7(Ar)2
This expression differs from the one we used before by the 7(Ar)? term. However, as Ar

becomes very small, m(Ar)? becomes much, much smaller. We say its smallness is of second order,
since the power of the small factor, Ar, is 2. In the limit as Ar — 0, we can ignore 7(Ar)2.
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Center of Mass

The center of mass of a mechanical system is important for studying its behavior when in motion.
For example, some sport utility vehicles and light trucks tend to tip over in accidents, because of
their high centers of mass.

In this section, we first define the center of mass for a system of point masses on a line. Then
we use the definite integral to extend this definition.

Point Masses

Two children on a seesaw, one twice the weight of the other, will balance if the lighter child is twice
as far from the pivot as the heavier child. Thus, the balance point is 2/3 of the way from the lighter
child and 1/3 of the way from the heavier child. This balance point is the center of mass of the
mechanical system consisting of the masses of the two children (we ignore the mass of the seesaw
itself). See Figure 8.50.

To find the balance point, we use the displacement (signed distance) of each child from the
pivot to calculate the moment, where

Moment of mass about pivot = Mass x Displacement from pivot.

A moment represents the tendency of a child to turn the system about the pivot point; the seesaw
balances if the total moment is zero. Thus, the center of mass is the point about which the total
moment is zero.

Seesaw

Heavy child Light child m "
mass 2m | l AW | ass 1m
F—(1/3)]— (2/3)1 | —Z —> l—Z
Balance Center
point of mass
Figure 8.50: Children on seesaw Figure 8.51: Center of mass of point masses

Example 5

Solution

Calculate the position of the center of mass of the children in Figure 8.50 using moments.

Suppose the center of mass in Figure 8.51 is at a distance of Z from the left end. The moment of
the left mass about the center of mass is —2mZ (it is negative since it is to the left of the center of
mass); the moment of the right mass about the center of mass is m (! — Z). The system balances if

1
—2mz+m(l—z)=0 or mi—3mz=0 so z=-=L

3
Thus, the center of mass is {/3 from the left end.

We use the same method to calculate the center of mass, z, of the system in Figure 8.52. The
sum of the moments of the three masses about T is 0, so

ml(azl — ,’f’) —+ mg(.’ljg — ,’f’) + m3($3 — .’f’) = 0
Solving for z, we get
mi1T + Mo + Mm3T = mixr1 + Moo + M3rs

3
mixy + Moy +MaT3 Do _q MiT;

1_: = == .
3
mi + mo + ms E:i=1mi
mi ma ms
1 1 1 1
T 0 T2 T3

Figure 8.52: Discrete masses, m1, mz, ms
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Generalizing leads to the following formula:

The center of mass of a system of n point masses mq,mao, ..., m, located at positions
T1,Ta,...,T, along the r-axis is given by

Z LM
2o mi

E:

The numerator is the sum of the moments of the masses about the origin; the denominator is
the total mass of the system.

Example 6

Solution

Show that the definition of = gives the same answer as we found in Example 5.

Suppose the origin is at the left end of the seesaw in Figure 8.50. The total mass of the system is
2m + m = 3m. We compute

Soaimy

>omy

- 1 _ _
T = —3m(2m 0+m-1)= — =3

Continuous Mass Density

Instead of discrete masses arranged along the x-axis, suppose we have an object lying on the z-axis
between x = a and = = b. At point x, suppose the object has mass density (mass per unit length)
of 0(x). To calculate the center of mass of such an object, divide it into n pieces, each of length
Ax. On each piece, the density is nearly constant, so the mass of the piece is given by density times
length. See Figure 8.53. Thus, if z; is a point in the i*" piece,

Mass of the i'" piece, m; ~ §(x;)Aw.

Then the formula for the center of mass, z = > x;m;/ > m,;, applied to the n pieces of the
object gives
Said(xi)Ax
ST 6(w) A

In the limit as » — oo we have the following formula:

T =

The center of mass T of an object lying along the z-axis between x = a and x = b is

f; z0(x) dz
fab §(z)dz

f:

where §(x) is the density (mass per unit length) of the object.

As in the discrete case, the denominator is the total mass of the object.

Az Mass m; ~ §(z;) Az

<

a xX; b

Figure 8.53: Calculating the center of mass of an object of
variable density, §(z)



420 Chapter Eight USING THE DEFINITE INTEGRAL

Example 7 Find the center of mass of a 2-meter rod lying on the x-axis with its left end at the origin if:
(a) The density is constant and the total mass is 5 kg. (b) The density is d(z) = 1522 kg/m.

Solution (a) Since the density is constant along the rod, we expect the balance point to be in the middle, that
is, ¢ = 1. To check this, we compute z. The density is the total mass divided by the length, so
0(x) = 5/2 kg/m. Then

Moment  [iw-3dr 1 5 22|

T = = = —.—.—| =1 meter.
v Mass 5 5 2 2, meter
(b) Since more of the mass of the rod is closer to its right end (the density is greatest there), we

expect the center of mass to be in the right half of the rod, that is, between z = 1 and z = 2.

We have )
Total mass = / 1522 de = 5x3|§ =40 kg.
0
Thus,
2 2
Moment [y @ -152%dz 15 z*
T = = = — . — =1. ter.
‘ Mass 40 40 4|, 5 meter

Two- and Three-Dimensional Regions

For a system of masses that lies in the plane, the center of mass is a point with coordinates (zZ, 7).
In three dimensions, the center of mass is a point with coordinates (Z, , z). To compute the center
of mass in three dimensions, we use the following formulas in which A, (z) is the area of a slice
perpendicular to the z-axis at =, and A, (y) and A.(z) are defined similarly. In two dimensions,
we use the same formulas for Z and 7, but we interpret A, (x) and A,(y) as the lengths of strips
perpendicular to the x- and y-axes, respectively.

For a region of constant density ¢, the center of mass is given by

JydAy(y) dy L [ 26A.(2)d=
Mass Mass '

o JadAy(x)de
v Mass y=

The expression § A, () Az is the moment of a slice perpendicular to the x-axis. Thus, these for-
mulas are extensions of that on page 419. In the two- and three-dimensional case, we are assuming
that the density  is constant. If the density is not constant, finding the center of mass may require a
double or triple integral from multivariable calculus.

Example 8 Find the coordinates of the center of mass of the isosceles triangle in Figure 8.54. The triangle has
constant density and mass m.

y y
1 1
2 2
T
1
5(1—x)
X i z X
1 1
1 1 \
-3 -3 Az

Figure 8.54: Find center of mass of this triangle Figure 8.55: Sliced triangle
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Solution Because the mass of the triangle is symmetrically distributed with respect to the z-axis, y = 0. We
expect z to be closer to x = 0 than to z = 1, since the triangle is wider near the origin.
The area of the triangle is % 1.1 = % Thus, Density = Mass/Area = 2m. If we slice the
triangle into strips of width Az, then the strip at position z has length A, (z) = 2- % (1—-z) = (1—x).
(See Figure 8.55.) So

Area of strip = A, (z)Az ~ (1 — z)Ax.
Since the density is 2m, the center of mass is given by

 [a6A(x)de [ 2ma(l —2)dz N 1
Xr = = = —_ = —,
Mass m 2 3 )1y 3
So the center of mass of this triangle is at the point (Z,7) = (1/3,0).
Example9 Find the center of mass of a hemisphere of radius 7 cm and constant density .
Solution Stand the hemisphere with its base horizontal in the zy-plane, with the center at the origin. Symme-

try tells us that its center of mass lies directly above the center of the base, so z = y = 0. Since the
hemisphere is wider near its base, we expect the center of mass to be nearer to the base than the top.

To calculate the center of mass, slice the hemisphere into horizontal disks, as in Figure 8.9 on
page 399. A disk of thickness Az at height z above the base has

Volume of disk = A, (2)Az ~ (7% — 2%)Azcm?.
So, since the density is 9,
J20A.(z)dz f07 267(7? — 2?) dz
Mass N Mass ‘
Since the total mass of the hemisphere is (%777 3) 8, we get

Z =

_ 677.[07(72,2 —2%)dz  om (72z2/2—z4/4)|; B 74—457T 21 5 695

°= Mass N Mass B 2736 Ty oveam
The center of mass of the hemisphere is 2.625 cm above the center of its base. As expected, it is
closer to the base of the hemisphere than its top.

Volum% of slice
~art Az

e— N —
——
/

(DRSS S—

Figure 8.56: Slicing to find the center of mass of a hemisphere

Exercises and Problems for Section 8.4

Exercises

1. Find the mass of a rod of length 10 cm with density 2. A plate occupying the region 0 < = < 2,0 <y < 3
d(xz) = e * gm/cm at a distance of z cm from the left has density § = 5 gm/cm?. Set up two integrals giv-
end. ing the mass of the plate, one corresponding to strips in

the z-direction and one corresponding to strips in the y-
direction.
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3. A rod has length 2 meters. At a distance x meters from (b) Write a Riemann sum that approximates the total
its left end, the density of the rod is given by number of cars on this 20-mile stretch.
(c) Find the total number of cars on the 20-mile stretch.
0(z) = 2+ 6z gm/m.
6. (a) Find a Riemann sum which approximates the total
(a) Write a Riemann sum approximating the total mass mass of a 3 X 5 rectangular sheet, whose density per
of the rod. unit area at a distance = from one of the sides of
(b) Find the exact mass by converting the sum into an length 5is 1/(1 + 354)-
integral. (b) Calculate the mass.
4. If a rod lies along the x-axis between a and b, the mo- 7. A point mass of 2 grams located 3 centimeters to the left
RS o ) of the origin and a point mass of 5 grams located 4 cen-
p]ent of the rod is f a xﬁ(m) dz, where (5(30) is its density timeters to the right of the origin are connected by a thin,
in grams/meter at a position z meters. Find the moment light rod. Find the center of mass of the system.
and center of mass of the rod in Problem 3.
8. Find the center of mass of a system containing three point
5. The density of cars (in cars per mile) down a 20-mile masses of 5 gm, 3 gm, and | gm located respectively at
stretch of the Pennsylvania Turnpike is approximated by r=—10,z=1,and z = 2.
5(z) = 300 (2 +sin (4\/m)) : 9. Find the mass of the bllock 0’ g_x <10,0 <y <3,
0 < z < 1, whose density 4, is given by
at a distance  miles from the Breezewood toll plaza.
0=2—2z for0<z<1.
(a) Sketch a graph of this function for 0 < z < 20.
Problems
10. Find the total mass of the triangular region in Figure 8.57, the soot deposited each month at a distance r kilometers
which has density §(x) = 1 4 z grams/cm?. from the incinerator is given by H (1) = 0.115¢ 2",
y (cm) (a) Write a definite integral giving the total volume of
1 soot deposited within 5 kilometers of the incinerator
each month.
(b) Evaluate the integral you found in part (a), giving
your answer in cubic meters.
= (cm) 14. A cardboard figure has the shape shown in Figure 8.58.
-1 1 The region is bounded on the left by the line = a, on
Figure 8.57 the right by the line 2 = b, above by f(x), and below by
: g(x). If the density § () gm/cm? varies only with z, find
11. Circle City, a typical metropolis, is densely populated an expression for the total mass of the figure, in terms of
near its center, and its population gradually thins out f(z), g(x), and §(x).
toward the city limits. In fact, its population density is
10,000(3 — r) people/square mile at distance r miles A
from the center. } } f(z)
(a) Assuming that the population density at the city lim- v g(z)
its is zero, find the radius of the city. | |
(b) What is the total population of the city? (‘l I; z
12. The density of oil in a circular oil slick on the surface of .
the ocean at a distance r meters from the center of the Figure 8.58
slick is given by &(r) = 50/(1 +r) kg/m®.
@) gthe SI.ICk extends from » . 0 to r = 10,000 m, 15. The storage shed in Figure 8.59 is the shape of a half-
nd a Riemann sum approximating the total mass of ) .
o . cylinder of radius r and length [.
oil in the slick.
(b) Find the exact value of the mass of oil in the slick by (a) What is the volume of the shed?
turning your sum into an integral and evaluating it. (b) The shed is filled with sawdust whose density
(¢) Within what distance r is half the oil of the slick (mass/unit volume) at any point is proportional to
contained? the distance of that point from the floor. The con-
13. The soot produced by a garbage incinerator spreads out stant of proportionality is k. Calculate the total mass

in a circular pattern. The depth, H (), in millimeters, of

of sawdust in the shed.
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Figure 8.59

The following table gives the density D (in gm/cm?®)
of the earth at a depth = km below the earth’s surface.
The radius of the earth is about 6370 km. Find an up-
per and a lower bound for the earth’s mass such that the
upper bound is less than twice the lower bound. Explain
your reasoning; in particular, what assumptions have you
made about the density?

23

24.

25.
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. A rod of length 2 meters and density 6(z) = 3 —e™ "
kilograms per meter is placed on the x-axis with its ends
atx = £1.

(a) Will the center of mass of the rod be on the left or
right of the origin? Explain.
(b) Find the coordinate of the center of mass.

One half of a uniform circular disk of radius 1 meter lies
in the zy-plane with its diameter along the y-axis, its cen-
ter at the origin, and > 0. The mass of the half-disk is
3 kg. Find (7, 7).

A metal plate, with constant density 2 gm/cm?, has a
shape bounded by the curve y = x and the x-axis, with
0<z<landz,yincm.

(a) Find the total mass of the plate.
(b) Sketch the plate, and decide, on the basis of the

shape, whether 7 is less than or greater than 1/2.

x | 0 | 1000 | 2000 | 2900 | 3000 | 4000 | 5000 | 6000 | 6370 L
(¢) Find 7.
D |33 45 5.1 5.6 10.1 | 114 | 12.6 | 13.0 | 13.0
26. A metal plate, with constant density 5 gm/cm?, has a
17. Water leaks out of a tank through a square hole with 1- Sh.?g% b<ound<ed1 bi dt he ct.lgvemy = Vo and the z-axis,
inch sides. At time ¢ (in seconds) the velocity of water wi S 2% landx, yancm.
flowing through the hole is v = g(¢) ft/sec. Write a defi- (a) Find the total mass of the plate.
nite integral that represents the total amount of water lost (b) Find Z and 3.
in the first minute. ' ) ) ) ) .
18. An exponential model for the density of the earth’s at- 27. An 1soscele_s trlangle.wnh uniform denslty, .altltude a,
. and base b is placed in the zy-plane as in Figure 8.60.
mosphere says that if the temperature of the atmosphere . ~ _

K Show that the center of mass is at £ = a/3, y = 0.
were constant, then the density of the atmosphere as a H h hat th £ mass is ind i ¢ th
function of height, h (in meters), above the surface of the _ence s’ ow that the center of mass 1s independent of the

. triangle’s base.
earth would be given by
5(h) = 1.28¢ 7000124 ko/m?,
Y
(a) Write (but do not evaluate) a sum that approximates %
the mass of the portion of the atmosphere from h =
0to h = 100 m (i.e., the first 100 meters above sea
level). Assume the radius of the earth is 6400 km. w x
(b) Find the exact answer by turning your sum in part (a)
into an integral. Evaluate the integral. b
2
19. Three point masses of 4 gm each are placed at x = —6, 1 )
and 3. Where should a point fourth mass of 4 gm be Figure 8.60
placed to make the center of mass at the origin?
20. A rod of length 3 meters with density §(z) = 1 4 2
grams/meter is positioned along the positive x-axis, with 28, Find the center of mass of a cone of height 5 cm and base
its left end at the origin. Find the total mass and the center diameter 10 cm with constant density § gm/cm®.
of mass of the rod. 29, A solid i f b _— o1 bounded by th
. tat t t
21. A rod with density () = 2 + sin z lies on the z-axis soucs omiez y foiating tie reglon bounded by the
. curve y = e * and the z-axis between z = 0 and
between x = 0 and x = =. Find the center of mass of . .
the rod z = 1, around the x-axis. It was shown in Example 1 on
¢ rod. page 399 that the volume of this solid is 7(1 — e™2)/2.
22. A rod of length 1 meter has density §(x) = 1 4 k>

grams/meter, where k is a positive constant. The rod is
lying on the positive x-axis with one end at the origin.

(a) Find the center of mass as a function of k.
(b) Show that the center of mass of the rod satisfies
0.5 <z <0.75.

30.

Assuming the solid has constant density ¢, find z and 3.

(a) Find the mass of a pyramid of constant density
5 gm/cm® with a square base of side 40 cm and
height 10 cm. [That is, the vertex is 10 cm above
the center of the base.]

(b) Find the center of mass of the pyramid.
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8.5 APPLICATIONS TO PHYSICS

Work

Although geometric problems were a driving force for the development of the calculus in the seven-
teenth century, it was Newton’s spectacularly successful applications of the calculus to physics that
most clearly demonstrated the power of this new mathematics.

In physics the word “work™ has a technical meaning which is different from its everyday meaning.
Physicists say that if a constant force, F', is applied to some object to move it a distance, d, then
the force has done work on the object. The force must be parallel to the motion (in the same or the
opposite direction). We make the following definition:

Work done = Force - Distance or W =F-d.

Notice that if we walk across a room holding a book, we do no work on the book, since the
force we exert on the book is vertical, but the motion of the book is horizontal. On the other hand,
if we lift the book from the floor to a table, we accomplish work.

There are several sets of units in common use. To measure work, we will generally use the two
sets of units, International (SI) and British, in the following table.

Force Distance ‘Work Conversions

International (SI) units newton (nt) meter (m) joule (j) 11b=4.45nt

British units pound (Ib) foot (ft) foot-pound (ft-1b) 1ft=0.305m

1 ft-1b = 1.36 joules

One joule of work is done when a force of 1 newton moves an object through 1 meter, so
1 joule = 1 newton-meter.

Example 1

Solution

Calculate the work done on an object when
(a) A force of 2 newtons moves it 12 meters. (b) A 3-1b force moves it 4 feet.

(a) Workdone = 2nt - 12m = 24 joules. (b) Workdone = 31b - 4ft = 12 ft-1b.

In the previous example, the force was constant and we calculated the work by multiplication.
In the next example, the force varies, so we need an integral. We divide up the distance moved and
sum to get a definite integral representing the work.

Example 2

Wall

Hooke’s Law says that the force, I, required to compress the spring in Figure 8.61 by a distance z,
in meters, is given by F' = kx, for some constant k. Find the work done in compressing the spring
by 0.1 mif £ = 8 nt/m.

Equilibrium position Wall

| PN

Tr—> T

0.1 ——— T ——>
Az

Figure 8.61: Compression of spring: Force Figure 8.62: Work done in compressing

is kx spring a small distance Az is kzAx



Solution

8.5 APPLICATIONS TO PHYSICS 425

Since £ is in newtons/meter and « is in meters, we have I' = 8 newtons. Since the force varies
with 2, we divide the distance moved into small increments, Az, as in Figure 8.62. Then

Work done in moving through an increment ~ FAx = 8zAx joules.

So, summing over all increments gives the Riemann sum approximation
Total work done =~ Z 8rAwx.

Taking the limit as Ax — 0 gives

0.1

= 0.04 joules.

0.1
Total work done = / 8z dx = 422
0 0

In general, if force is a function F'(x) of position x, then in moving from 2z = atox = b,

b
Work done z/ F(z)dz.

a

The Force Due to Gravity: Mass versus Weight

When an object is lifted, work is done against the force exerted by gravity on the object. By New-
ton’s Second Law, the downward gravitational force acting on a mass m is mg, where ¢ is the
acceleration due to gravity. To lift the object, we need to exert a force equal to the gravitational
force but in the opposite direction.

In International units, g = 9.8 m/sec2, and we usually measure mass, m, in kilograms. In
British units, mass is seldom used. Instead, we usually talk about the weight of an object, which is
the force exerted by gravity on the object. Roughly speaking, the mass represents the quantity of
matter in an object, whereas the weight represents the force of gravity on it. The mass of an object
is the same everywhere, whereas the weight can vary if, for example, the object is moved to outer
space where gravitational forces are smaller.

When we are given the weight of an object, we do not multiply by ¢ to find the gravitational
force as it has already been done. In British units, a pound is a unit of weight. In International units,
a kilogram is a unit of mass, and the unit of weight is a newton, where 1 newton = 1 kg - m/sec’.

Example 3

Solution

How much work is done in lifting
(a) A 5-pound book 3 feet off the floor? (b) A 1.5-kilogram book 2 meters off the floor?

(a) The force due to gravity is 5 1b,so W = F - d = (5 1b)(3 ft) = 15 foot-pounds.
(b) The force due to gravity is mg = (1.5 kg)(g m/sec?), so

W =F-d=[(1.5kg)(9.8 m/sec?)] - (2 m) = 29.4 joules.

In the previous example, work is found by multiplication. In the next example, different parts
of the object move different distances, so an integral is needed.
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Example 4 A 28-meter uniform chain with a mass 2 kilograms per meter is dangling from the roof of a building.
How much work is needed to pull the chain up onto the top of the building?

Solution Since 1 meter of the chain has mass density 2 kg, the gravitational force per meter of chain is
(2kg) (9.8 m/sec’) = 19.6 newtons. Let’s divide the chain into small sections of length Ay, each
requiring a force of 19.6 Ay newtons to move it against gravity. See Figure 8.63. If Ay is small, all
of this piece is hauled up approximately the same distance, namely y, so

Work done on the small piece ~ (19.6 Ay newtons)(y meters) = 19.6y Ay joules.

The work done on the entire chain is given by the total of the work done on each piece:
Work done ~ Z 19.6y Ay joules.

As Ay — 0, we obtain a definite integral. Since y varies from 0 to 28 meters, the total work is

28 28
Work done = [ (19.6y) dy = 9.8y*| = 7683.2 joules.
0 0

Top of building

Ay‘::

Figure 8.63: Chain for Example 4

Example 5 Calculate the work done in pumping oil from the cone-shaped tank in Figure 8.64 to the rim. The
oil has density 800 kg/m® and its vertical depth is 10 m.

25m i
25m
20m T 20m T
10m 10m YAh
h
¥
Figure 8.64: Cone-shaped tank Figure 8.65: Slicing the oil horizontally to
containing oil compute work
Solution We slice the oil horizontally because each part of such a slice moves the same vertical distance.

Each slice is approximately a circular disk with radius w/2 m, so

N 2 .
Volume of slice ~ m (%) Ah = EwQAh m>.

Force of gravity on slice = Density - g - Volume = SOOgngAh = 200mgw? Ah nt.
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Since each part of the slice has to move a vertical distance of (20 — i) m, we have

Work done on slice ~ Force - Distance = 200mgw>Ah nt - (20 — h) m
= 200mgw?(20 — h)Ah joules.
To find w in terms of /, we use the similar triangles in Figure 8.65:
w25 5
— == = —h = 1.25h.
h =% o w 4h 5h
Thus,

Work done on strip = 200mg(1.25h)%(20 — h)Ah = 312.5mgh*(20 — h)Ah joules.

Summing and taking the limit as Ah — 0 gives an integral with upper limit & = 10, the depth of
the oil.

10
. H 5 2 _ _ r 2 — Rk dhi .
Total work = Al}goz:m.mgh (20 — h)Ah /0 312.5mgh?(20 — h) dh joules

Evaluating the integral using g = 9.8 m/sec’ gives
10

h®  ht
Total work = 312.57¢g (20? — —> =1,302,0837mg ~ 4.0 - 107 joules.

4

0

In the following example, information is given in British units about the weight of the pyramid,
so we do not need to multiply by ¢ to find the gravitational force.

Example 6

Solution

It is reported that the Great Pyramid of Egypt was built in 20 years. If the stone making up the
pyramid has a density of 200 pounds per cubic foot, find the total amount of work done in building
the pyramid. The pyramid is 410 feet high and has a square base 755 feet by 755 feet. Estimate how
many workers were needed to build the pyramid.

Volume of slice ~ s2Ah

755 ft

[

Figure 8.66: Pyramid for Example 6

‘We assume that the stones were originally located at the approximate height of the construction site.
Imagine the pyramid built in layers as we did in Example 5 on page 395.

By similar triangles, the layer at height A has a side length s = %(410 — h) ft. (See Fig-
ure 8.66.) The layer at height h has a volume of s Ah ft?, so its weight is 200s> Ah Ib. This layer

is lifted through a height of &, so
Work to lift layer = (20052 Ah 1b)(h ft) = 200s*h Ahft — Ib.

Summing over all layers gives

755\ 2
Total work ~ Y 200s>hAh =Y 200 — | (410 — h)2h Ah ft-Ib.
otal wor ZOOS ) 200(410> (410 — h)*h
Since h varies from 0 to 410, as Al — 0, we obtain
410 755 2
Total work = / 200 (4—10> (410 — h)*h dh =~ 1.6 - 102 foot-pounds.
0

We have calculated the total work done in building the pyramid; now we want to estimate the total
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number of workers needed. Let’s assume every laborer worked 10 hours a day, 300 days a year,
for 20 years. Assume that a typical worker lifted ten 50 pound blocks a distance of 4 feet every
hour, thus performing 2000 foot-pounds of work per hour (this is a very rough estimate). Then each
laborer performed (10)(300)(20)(2000) = 1.2-10® foot-pounds of work over a twenty year period.
Thus, the number of workers needed was about (1.6 - 1012) /(1.2 - 108), or about 13,000.

Force and Pressure

‘We can use the definite integral to compute the force exerted by a liquid on a surface, for example,
the force of water on a dam. The idea is to get the force from the pressure. The pressure in a liquid
is the force per unit area exerted by the liquid. Two things you need to know about pressure are:

e At any point, pressure is exerted equally in all directions—up, down, sideways.

e Pressure increases with depth. (That is one of the reasons why deep sea divers have to take
much greater precautions than scuba divers.)

At a depth of h meters, the pressure, p, exerted by the liquid, measured in newtons per square
meter, is given by computing the total weight of a column of liquid h meters high with a base of 1
square meter. The volume of such a column of liquid is just & cubic meters. If the liquid has density
& (mass per unit volume), then its weight per unit volume is dg, where g is the acceleration due to
gravity. The weight of the column of liquid is dgh, so

Pressure = Mass density - g - Depth  or p = dgh.

Provided the pressure is constant over a given area, we also have the following relation:

Force = Pressure - Area.

The units and data we will generally use are given in the following table:

Density of water Force Area Pressure Conversions
ST units 1000 kg/m® (mass) newton (nt) meter? pascal (nt/m?) 11b=4.45nt
British units 62.4 Ib/ft* (weight) pound (Ib) foot? 1b/ft? 1ft* = 0.093 m*

11b/ft? = 47.9 pa

In International units, the mass density of water is 1000 kg/m?>, so the pressure at a depth of h
meters is §gh = 1000 - 9.8h = 9800h nt/m2. See Figure 8.67.

In British units, the density of the liquid is usually given as a weight per unit volume, rather
than a mass per unit volume. In that case, we do not need to multiply by ¢ because it has already
been done. For example, water weighs 62.4 Ib/ft?, so the pressure at depth A feet is 62.4h 1b/ft”. See
Figure 8.68.

Surface Surface
of water 1 square meter of water 1 square foot

hft

Pressure here

Pressure here
= 9800A nt/m>

= 62.4h Ib/sq ft

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

Figure 8.67: Pressure exerted by column Figure 8.68: Pressure exerted by a
of water (International units) column of water (British units)
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If the pressure is constant over a surface, we calculate the force on the surface by multiplying
the pressure by the area of the surface. If the pressure is not constant, we divide the surface into
small pieces in such a way that the pressure is nearly constant on each one to obtain a definite
integral for the force on the surface. Since the pressure varies with depth, we divide the surface into
horizontal strips, each of which is at an approximately constant depth.

Example 7 In 1912, the ocean liner Titanic sank to the bottom of the Atlantic, 12,500 feet (nearly 2.5 miles)
below the surface. Find the force on one side of a 100-foot square plate at the depth of the Titanic if
the plate is: (a) Lying horizontally (b) Standing vertically.

Solution (a) When the plate is horizontal, the pressure is the same at every point on the plate, so
Pressure = 62.4 1b/ft® - 12,500 ft = 780,000 Ib/ft%.

To imagine this pressure, convert to pounds per square inch, giving 780,000/144 = 5400 1b/in®.
For the horizontal plate

Force = 780,000 Ib/ft* - 1002 ft> = 7.8 - 10° pounds.

(b) When the plate is vertical, only the bottom is at 12,500 feet; the top is at 12,400 feet. Dividing
into horizontal strips of width Ah, as in Figure 8.69, we have

Area of strip = 100AA ft?.
Since the pressure on a strip at a depth of & feet is 62.4h Ib/ft2,
Force on strip ~ 62.4h - 100Ah = 6240hAh pounds.

Summing over all strips and taking the limit as Ah — 0 gives a definite integral. The strips vary
in depth from 12,400 to 12,500 feet, so

12,500
Total force = lim > 6240hAh = / 6240h dh pounds.
Ah—0 J12400
Evaluating the integral gives
9112500
Total force = 6240— = 3120(12,500% — 12,400%) = 7.77 - 10 pounds.
12400

Notice that the answer to part (b) is smaller than the answer to part (a). This is because part
of the plate is at a smaller depth in part (b) than in part (a).

100 ft

Depth = 12,400 ft —» |

4
Ah
¥ 100 ft

Depth = 12,500 ft

N

Figure 8.69: Square plate at bottom of ocean; h measured from the surface of water

Bottom
of ocean

Example 8 Figure 8.70 shows a dam approximately the size of Hoover Dam, which stores water for California,
Nevada, and Arizona. Calculate:

(a) The water pressure at the base of the dam. (b) The total force of the water on the dam.
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400 m

220m

——200m——+

Figure 8.70: Trapezoid-shaped dam

Solution

D

400 m

T
/1,

\ /

|/

——200m——

Figure 8.71: Dividing dam into horizontal strips

(a) Since the density of water is § = 1000 kg/m3 , at the base of the dam,

Water pressure = dgh = 1000 - 9.8 - 220 = 2.156 - 10° nt/m?.

(b) To calculate the force on the dam, we divide the dam into horizontal strips because the pressure
along each strip is approximately constant. See Figure 8.71. Since each strip is approximately

rectangular,

Area of strip ~ wAh m?.
The pressure at a depth of & meters is 5gh = 9800A nt/m?. Thus,

Force on strip ~

Pressure - Area = 9800hwAh nt.

To find w in terms of h, we use the fact that w decreases linearly from w = 400 when h = 0
to w = 200 when h = 220. Thus w is a linear function of h, with slope (200 — 400)/220 =

—10/11, so

Thus

10
=400 — —h.
w 00 11h

10
Force on strip = 9800h (400 — ﬁh) Ah nt.

Summing over all strips and taking the limit as AL — 0 gives

Total force on dam

Evaluating the integral gives

1
Total force = 9800 (200h2 - %hﬁ‘)

10
. 400~ 10
A1}120 E 9800h ( 00 11h> Ah

.220 10
/ 9800h (40() — ﬁh) dh newtons.
0

220
= 6.32 - 10'° newtons.

0

In fact, Hoover Dam is not flat, as the problem assumed, but arched, to better withstand the

pressure.

Exercises and Problems for Section 8.5

Exercises

In Exercises 1-3, the force, F', required to compress a spring
by a distance = meters is given by ' = 3z newtons.

1. Find the work done in compressing the spring from z =
ltox = 2.

2. Find the work done to compress the spring to z = 3,
starting at the equilibrium position, = 0.

3. (a) Find the work done in compressing the spring from
z = 0 to x = 1 and in compressing the spring from
r=4tox =5.

(b) Which of the two answers is larger? Why?



4.

5.

The gravitational force on a 1 kg object at a distance
r meters from the center of the earth is ' = 4 - 10 /r?
newtons. Find the work done in moving the object from
the surface of the earth to a height of 10° meters above
the surface. The radius of the earth is 6.4 - 10° meters.

How much work is required to lift a 1000-kg satellite

Problems
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from the surface of the earth to an altitude of 2 - 10° m?
The gravitational force is ' = GMm/r?, where M is
the mass of the earth, m is the mass of the satellite, and
r is the distance between them. The radius of the earth is
6.4 - 10% m, its mass is 6 - 10?4 kg, and in these units the
gravitational constant, G, is 6.67 - 107!,

6.

10.

11.

12.

13.

14.

15.

A worker on a scaffolding 75 ft above the ground needs to
lift a 500 1b bucket of cement from the ground to a point
30 ft above the ground by pulling on a rope weighing 0.5
Ib/ft. How much work is required?

. An anchor weighing 100 Ib in water is attached to a chain

weighing 3 1b/ft in water. Find the work done to haul the
anchor and chain to the surface of the water from a depth
of 25 ft.

. A 1000-1b weight is being lifted to a height 10 feet off

the ground. It is lifted using a rope which weighs 4 1b per
foot and which is being pulled up by construction work-
ers standing on a roof 30 feet off the ground. Find the
work done to lift the weight.

. A bucket of water of mass 20 kg is pulled at constant ve-

locity up to a platform 40 meters above the ground. This
takes 10 minutes, during which time 5 kg of water drips
out at a steady rate through a hole in the bottom. Find the
work needed to raise the bucket to the platform.

A 2000-1b cube of ice must be lifted 100 ft, and it is melt-
ing at a rate of 4 1b per minute. If it can be lifted at a rate
of one foot every minute, find the work needed to get the
block of ice to the desired height.

A rectangular water tank has length 20 ft, width 10 ft,
and depth 15 ft. If the tank is full, how much work does
it take to pump all the water out?

A rectangular swimming pool 50 ft long, 20 ft wide, and
10 ft deep is filled with water to a depth of 9 ft. Use an
integral to find the work required to pump all the water
out over the top.

A water tank is in the form of a right circular cylinder
with height 20 ft and radius 6 ft. If the tank is half full
of water, find the work required to pump all of it over the
top rim.

Suppose the tank in Problem 13 is full of water. Find the
work required to pump all of it to a point 10 ft above the
top of the tank.

Water in a cylinder of height 10 ft and radius 4 ft is to be
pumped out. Find the work required if

(a) The tank is full of water and the water is to pumped
over the top of the tank.

(b) The tank is full of water and the water must be
pumped to a height 5 ft above the top of the tank.

(¢) The depth of water in the tank is 8 ft and the water
must be pumped over the top of the tank.

16.

17.

18.

19.

20.

21.

A fuel oil tank is an upright cylinder, buried so that its
circular top is 10 feet beneath ground level. The tank has
aradius of 5 feet and is 15 feet high, although the current
oil level is only 6 feet deep. Calculate the work required
to pump all of the oil to the surface. Oil weighs 50 Ib/ft>.

A cone with height 12 ft and radius 4 ft, pointing down-
ward, is filled with water to a depth of 9 ft. Find the work
required to pump all the water out over the top.

A gas station stores its gasoline in a tank under the
ground. The tank is a cylinder lying horizontally on its
side. (In other words, the tank is not standing vertically
on one of its flat ends.) If the radius of the cylinder is 4
feet, its length is 12 feet, and its top is 10 feet under the
ground, find the total amount of work needed to pump
the gasoline out of the tank. (Gasoline weighs 42 b/ft3.)

A cylindrical barrel, standing upright on its circular end,
contains muddy water. The top of the barrel, which has
diameter 1 meter, is open. The height of the barrel is 1.8
meter and it is filled to a depth of 1.5 meter. The density
of the water at a depth of h meters below the surface is
given by §(h) = 1 4 khkg/m®, where k is a positive
constant. Find the total work done to pump the muddy
water to the top rim of the barrel. (You can leave m, k,
and g in your answer.)

(a) The trough in Figure 8.72 is full of water. Find the
force of the water on a triangular end.
(b) Find the work to pump all the water over the top.

Fe—2 ft—>

/v\

15 ft

Figure 8.72

(a) A reservoir has a dam at one end. The dam is a rect-
angular wall, 1000 feet long and 50 feet high. Ap-
proximate the total force of the water on the dam by
a Riemann sum.

(b) Write an integral which represents the force, and
evaluate it.
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22

23

24

25

26.

27.

28.

29.
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. Before any water was pumped out, what was the total
force on the bottom and each side of the tank in Prob-
lem 11?

. Arectangular dam is 100 ft long and 50 ft high. If the wa-
ter is 40 ft deep, find the force of the water on the dam.

. A lobster tank in a restaurant is 4 ft long by 3 ft wide by
2 ft deep. Find the water force on the bottom and on each
of the four sides.

. The Three Gorges Dam is currently being built in China.
When it is finished in 2009, it will be the largest dam in
the world: about 2000 m long and 180 m high, creating
a lake the length of Lake Superior. Assume the dam is
rectangular in shape.

(a) Estimate the water pressure at the base of the dam.
(b) Setup and evaluate a definite integral giving the total
force of the water on the dam.

On August 12, 2000, the Russian submarine Kursk sank
to the bottom of the sea, 350 feet below the surface. Find
the following at the depth of the Kursk.

(a) The water pressure in pounds per square foot and
pounds per square inch.
(b) The force on a 5-foot square metal sheet held
(i) Horizontally.
(i1) Vertically.

The ocean liner Titanic lies under 12,500 feet of water at
the bottom of the Atlantic Ocean.

(a) What is the water pressure at the Titanic? Give your
answer in pounds per square foot and pounds per
square inch.

(b) Setup and calculate an integral giving the total force
on a circular porthole (window) of diameter 6 feet
standing vertically with its center at the depth of the
Titanic.

Set up and calculate a definite integral giving the total
force on the dam shown in Figure 8.73, which is about
the size of the Aswan Dam in Egypt.

100 m

3600 m

F——3000 m—

Figure 8.73

We define the electric potential at a distance r from
an electric charge ¢ by ¢/r. The electric potential of a
charge distribution is obtained by adding up the potential
from each point. Electric charge is sprayed (with constant

density o in units of charge/unit area) on to a circular
disk of radius a. Consider the axis perpendicular to the
disk and through its center. Find the electric potential at
the point P on this axis at a distance R from the center.
(See Figure 8.74.)

Radius = a

P

Figure 8.74

For Problems 30-31, find the kinetic energy of the rotating
body. Use the fact that the kinetic energy of a particle of mass
m moving at a speed v is %muz. Slice the object into pieces
in such a way that the velocity is approximately constant on
each piece.

30. Find the kinetic energy of a rod of mass 10 kg and length
6 m rotating about an axis perpendicular to the rod at its
midpoint, with an angular velocity of 2 radians per sec-
ond. (Imagine a helicopter blade of uniform thickness.)

31. Find the kinetic energy of a phonograph record of uni-
form density, mass 50 gm and radius 10 cm rotating at

33% revolutions per minute.

For Problems 32-34, find the gravitational force between
two objects. Use the fact that the gravitational attraction be-
tween particles of mass m; and mo at a distance r apart is
Gmima/ r2. Slice the objects into pieces, use this formula
for the pieces, and sum using a definite integral.

32. What is the force of gravitational attraction between a
thin uniform rod of mass M and length [ and a particle
of mass m lying in the same line as the rod at a distance
a from one end?

33. Two long, thin, uniform rods of lengths [, and [> lie on
a straight line with a gap between them of length a. Sup-
pose their masses are M, and M, respectively, and the
constant of the gravitation is G. What is the force of at-

traction between the rods? (Use the result of Problem 32.)

34. Find the gravitational force exerted by a thin uniform ring
of mass M and radius @ on a particle of mass m lying on
a line perpendicular to the ring through its center. As-

sume m is at a distance y from the center of the ring.
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35. A uniform, thin, circular disk of radius a and mass M P
lies on a horizontal plane. The point P lies a distance

y directly above O, the center of the disk. Calculate the

gravitational force on a mass m at the point P. (See Fig-
ure 8.75.) Use the fact that the gravitational force exerted
on the mass m by a thin horizontal ring of radius 7, mass
1, and center O is toward O and given by

Gumy

F = —————— where G is constant.

GEPEE Figure 8.75

8.6 APPLICATIONS TO ECONOMICS

Present and Future Value

Many business deals involve payments in the future. If you buy a car or furniture, for example, you
may buy it on credit and pay over a period of time. If you are going to accept payment in the future
under such a deal, you obviously need to know how much you should be paid. Being paid $100 in
the future is clearly worse than being paid $100 today for many reasons. If you are given the money
today, you can do something else with it—for example, put it in the bank, invest it somewhere, or
spend it. Thus, even without considering inflation, if you are to accept payment in the future, you
would expect to be paid more to compensate for this loss of potential earnings. The question we will
consider now is, how much more?

To simplify matters, we consider only what we would lose by not earning interest; we will not
consider the effect of inflation. Let’s look at some specific numbers. Suppose you deposit $100 in
an account which earns 7% interest compounded annually, so that in a year’s time you will have
$107. Thus, $100 today will be worth $107 a year from now. We say that the $107 is the furure
value of the $100, and that the $100 is the present value of the $107. Observe that the present value
is smaller than the future value. In general, we say the following:

o The future value, $3, of a payment, $P, is the amount to which the $P would have
grown if deposited in an interest bearing bank account.

o The present value, $ P, of a future payment, $13, is the amount which would have to be
deposited in a bank account today to produce exactly $B in the account at the relevant
time in the future.

With an interest rate of r, compounded annually, and a time period of ¢ years, a deposit of $P
grows to a future balance of $B, where

B

B =P(1+7r)", orequivalently, P = T

Note that for a 7% interest rate, » = 0.07. If instead of annual compounding, we have continuous
compounding, we get the following result:

B
B = Pe™, orequivalently, P = — = Be "

ert

Example 1

You win the lottery and are offered the choice between $1 million in four yearly installments of
$250,000 each, starting now, and a lump-sum payment of $920,000 now. Assuming a 6% interest
rate, compounded continuously, and ignoring taxes, which should you choose?
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We will do the problem in two ways. First, we assume that you pick the option with the largest
present value. The first of the four $250,000 payments is made now, so

Present value of first payment = $250,000.
The second payment is made one year from now, so
Present value of second payment = $250,000e ~-06(1).
Calculating the present value of the third and fourth payments similarly, we find:

Total present value = $250,000 + $250,000e ~%-%6(1) 4 $250,000¢~%-%6() 4+ $250,000¢~0-06()
~ $250,000 + $235,441 + $221,730 + $208.818
= $915,989.

Since the present value of the four payments is less than $920,000, you are better off taking the
$920,000 right now.

Alternatively, we can compare the future values of the two pay schemes. The scheme with the
highest future value is the best from a purely financial point of view. We calculate the future value
of both schemes three years from now, on the date of the last $250,000 payment. At that time,

Future value of the lump sum payment = $920,000¢%°%®) ~ $1,101,440.
Now we calculate the future value of the first $250,000 payment:
Future value of the first payment = $250,000¢%-06C).
Calculating the future value of the other payments similarly, we find:

Total future value = $250,000¢’-°6®) 4+ $250,000¢%-°5() + $250,000¢-°6H) + $250,000
~ $299,304 + $281,874 + $265.459 + $250,000
= $1,096,637.

The future value of the $920,000 payment is greater, so you are better off taking the $920,000 right
now. Of course, since the present value of the $920,000 payment is greater than the present value
of the four separate payments, you would expect the future value of the $920,000 payment to be
greater than the future value of the four separate payments.

(Note: If you read the fine print, you will find that many lotteries do not make their payments right
away, but often spread them out, sometimes far into the future. This is to reduce the present value
of the payments made, so that the value of the prizes is much less than it might first appear!)

Income Stream

When we consider payments made to or by an individual, we usually think of discrete payments,
that is, payments made at specific moments in time. However, we may think of payments made by
a company as being continuous. The revenues earned by a huge corporation, for example, come in
essentially all the time and can be represented by a continuous income stream, written

P(t) dollars/year.

Notice that P(t) is the rate at which deposits are made (its units are dollars per year, for example)
and that this rate may vary with time, ¢.
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Present and Future Values of an Income Stream

Just as we can find the present and future values of a single payment, so we can find the present and
future values of a stream of payments. We will assume that interest is compounded continuously.

Suppose that we want to calculate the present value of the income stream described by a rate of
P(t) dollars per year, and that we are interested in the period from now until M years in the future.
We divide the stream into many small deposits, each of which is made at approximately one instant.
We divide the interval 0 < ¢ < M into subintervals, each of length At:

t : (M —t)—

0 t ot AL M

Assuming At is small, the rate, P(¢), at which deposits are being made will not vary much
within one subinterval. Thus, between ¢ and ¢ + At:

Amount deposited ~ Rate of deposits x Time
~ (P(t) dollars/year)(At years)
= P(t)At dollars.

Measured from the present, the deposit of P(¢)At is made ¢ years in the future. Thus,

Present value of money deposited

~ P(t)Ate™"".
in interval ¢ to ¢ + At

Summing over all subintervals gives
Total present value ~ Z P(t)e”"" At dollars.

In the limit as At — 0, we get the following integral:

M
Present value = / P(t)e~"tdt dollars.
0

In computing future value, the deposit of P(t)At has a period of (M — t) years to earn interest, and
therefore
Future value of money deposited

~ [P(t)At] e M),
in interval ¢ to ¢ + At

Summing over all subintervals, we get:

Total future value ~ Z P(t)Ate"™ =1 dollars.

As the length of the subdivisions tends toward zero, the sum becomes an integral:

M
Future value = / P(t)e" ™=t dt dollars.
0

In addition, by writing (M~ = ™M . ¢=7t and factoring out e, we see that

Future value = ¢™ . Present value.
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Example 2 Find the present and future values of a constant income stream of $1000 per year over a period of
20 years, assuming an interest rate of 10% compounded continuously.

Solution Using P(t) = 1000 and = 0.1, we have

20

= 10,000(1—e %) ~ 8646.65 dollars.
0

20 o—0-1t
Present value =/ 1000e % dt = 1000 (— 01 >
0 .

There are two ways to compute the future value. Using the present value of $8646.65, we have
Future value = 8646.65¢%1(2) = 63,890.58 dollars.

Alternatively, we can use the integral formula:

20 20
Future value :/ 1000@0'1(20_“)(115:/ 1000e2e0-1t ¢

JO Jo
20

—1000¢2 [~
o1 /|,

Notice that the total amount deposited is $1000 per year for 20 years, or $20,000. The additional
$43,895.58 of the future value comes from interest earned.

= 10,000¢2(1 — e %) ~ 63890.58 dollars.

Supply and Demand Curves

In a free market, the quantity of a certain item produced and sold can be described by the supply
and demand curves of the item. The supply curve shows the quantity of the item the producers will
supply at different price levels. It is usually assumed that as the price increases, the quantity supplied
will increase. The consumers’ behavior is reflected in the demand curve, which shows what quantity
of goods are bought at various prices. An increase in price is usually assumed to cause a decrease
in the quantity purchased. See Figure 8.76.

P (price/unit)
P1

Supply

Demand

q (quantity)
7 @

Figure 8.76: Supply and demand curves

It is assumed that the market settles to the equilibrium price and quantity, p* and ¢*, where the
graphs cross. At equilibrium, a quantity ¢* of an item is produced and sold for a price of p* each.

Consumer and Producer Surplus

Notice that at equilibrium, a number of consumers have bought the item at a lower price than they
would have been willing to pay. (For example, there are some consumers who would have been
willing to pay prices up to p;.) Similarly, there are some suppliers who would have been willing to
produce the item at a lower price (down to po, in fact). We define the following terms:



8.6 APPLICATIONS TO ECONOMICS 437

e The consumer surplus measures the consumers’ gain from trade. It is the total amount
gained by consumers by buying the item at the current price rather than at the price they
would have been willing to pay.

e The producer surplus measures the suppliers’ gain from trade. It is the total amount
gained by producers by selling at the current price, rather than at the price they would
have been willing to accept.

In the absence of price controls, the current price is assumed to be the equilibrium price.

Both consumers and producers are richer for having traded. The consumer and producer surplus
measure how much richer they are.

Suppose that all consumers buy the good at the maximum price they are willing to pay. Divide
the interval from 0 to ¢* into subintervals of length Ag. Figure 8.77 shows that a quantity Aq of
items are sold at a price of about p;, another Agq are sold for a slightly lower price of about ps, the
next Aq for a price of about p3, and so on. Thus,

Consumers’ total expenditure ~ p1Aq + p2Aq + p3sAqg+ -+ = sz-Aq.

If D is the demand function given by p = D(q), and if all consumers who were willing to pay more
than p* paid as much as they were willing, then as Ag — 0, we would have

Area under demand

-
Consumer expenditure = D(q)dq =
P ./0 (@)da curve from 0 to ¢*.

Now if all goods are sold at the equilibrium price, the consumers’ actual expenditure is p*¢*, the
area of the rectangle between the axes and the lines ¢ = ¢* and p = p*. Thus, if p* and ¢* are
equilibrium price and quantity, the consumer surplus is calculated as follows:

*

q _ Area under demand

Consumer surplus = D(q)dq | —p*q¢*
P ( (9) q) P curve above p = p*.

0

P (price/unit)
gl N P {price/untt) Consumer surplus
o B
bs ”Xi Producer surplus
N Supply: p = S(q)
o Supply: p = S(q)
] *
| 1+ p
] Demand: p = D(q)
Demand: p = D(q)
uantit .
Agi = 7 @ ) : q (quantity)
q
Figure 8.77: Calculation of consumer surplus Figure 8.78: Consumer and producer surplus

See Figure 8.78. Similarly, if the supply curve is given by the function p = S(g) and p* and ¢* are
equilibrium price and quantity, the producer surplus is calculated as follows:

@ Area between supply
Prod lus = p*q* — S(q)dq | =
roducer surplus = p“q (/0 (q) ‘1> curve and line p = p*.
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Exercises and Problems for Section 8.6

Exercises

1.

Find the future value of an income stream of $1000 per
year, deposited into an account paying 8% interest, com-
pounded continuously, over a 10-year period.

. Find the present and future values of an income stream

of $3000 per year over a 15-year period, assuming a 6%
annual interest rate compounded continuously.

. Find the present and future values of an income stream

of $2000 a year, for a period of 5 years, if the continuous
interest rate is 8%.

Problems

4.

A person deposits money into a retirement account,
which pays 7% interest compounded continuously, at a
rate of $1000 per year for 20 years. Calculate:

(a) The balance in the account at the end of the 20 years.

(b) The amount of money actually deposited into the ac-
count.

(¢) The interest earned during the 20 years.

5.

10.

. (@

. (a)

Draw a graph, with time in years on the horizontal axis,
of what an income stream might look like for a company
that sells sunscreen in the northeast United States.

. On March 6, 2007, the Associated Press reported that

Ed Nabors had won half of a $390 million jackpot, the
largest lottery prize in US History. Suppose he was given
the choice of receiving his $195 million share paid out
continuously over 20 years or one lump sum of $120 mil-
lion paid immediately.

(a) Which option is better if the interest rate is 6%, com-
pounded continuously? An interest rate of 3%?

If Mr. Nabors chose the lump sum option, what as-
sumption was he making about interest rates?

(b)

A bank account earns 10% interest compounded
continuously. At what (constant, continuous) rate
must a parent deposit money into such an account
in order to save $100,000 in 10 years for a child’s
college expenses?

If the parent decides instead to deposit a lump sum
now in order to attain the goal of $100,000 in 10
years, how much must be deposited now?

(b)

If you deposit money continuously at a constant rate
of $1000 per year into a bank account that earns 5%
interest, how many years will it take for the balance
to reach $10,000?

How many years would it take if the account had
$2000 in it initially?

(b)

. A business associate who owes you $3000 offers to pay

you $2800 now, or else pay you three yearly installments
of $1000 each, with the first installment paid now. If you
use only financial reasons to make your decision, which
option should you choose? Justify your answer, assuming
a 6% interest rate per year, compounded continuously.

Big Tree McGee is negotiating his rookie contract with
a professional basketball team. They have agreed to a
three-year deal which will pay Big Tree a fixed amount
at the end of each of the three years, plus a signing bonus
at the beginning of his first year. They are still haggling
about the amounts and Big Tree must decide between
a big signing bonus and fixed payments per year, or a

11.

12.

13.

smaller bonus with payments increasing each year. The
two options are summarized in the table. All values are
payments in millions of dollars.

Signing bonus | Year | | Year2 | Year3
Option #1 6.0 2.0 2.0 2.0
Option #2 1.0 2.0 4.0 6.0

(a) Big Tree decides to invest all income in stock funds
which he expects to grow at a rate of 10% per year,
compounded continuously. He would like to choose
the contract option which gives him the greater fu-
ture value at the end of the three years when the last
payment is made. Which option should he choose?

(b) Calculate the present value of each contract offer.

Sales of Version 6.0 of a computer software package start
out high and decrease exponentially. At time ¢, in years,
the sales are s(t) = 50e” thousands of dollars per
year. After two years, Version 7.0 of the software is re-
leased and replaces Version 6.0. Assume that all income
from software sales is immediately invested in govern-
ment bonds which pay interest at a 6% rate compounded
continuously, calculate the total value of sales of Version
6.0 over the two year period.

The value of good wine increases with age. Thus, if you
are a wine dealer, you have the problem of deciding
whether to sell your wine now, at a price of $P a bottle,
or to sell it later at a higher price. Suppose you know that
the amount a wine-drinker is willing to pay for a bottle of
this wine ¢ years from now is $P(1 + 20+/%). Assuming
continuous compounding and a prevailing interest rate of
5% per year, when is the best time to sell your wine?

An oil company discovered an oil reserve of 100 million
barrels. For time ¢t > 0, in years, the company’s extrac-
tion plan is a linear declining function of time as follows:

q(t) = a — bt,

where ¢(t) is the rate of extraction of oil in millions of
barrels per year at time ¢ and b = 0.1 and a = 10.

(a) How long does it take to exhaust the entire reserve?



14.

15.

16.

17.

(b) The oil price is a constant $20 per barrel, the extrac-
tion cost per barrel is a constant $10, and the market
interest rate is 10% per year, compounded contin-
uously. What is the present value of the company’s
profit?

In 1980 West Germany made a loan of 20 billion
Deutsche Marks to the Soviet Union, to be used for the
construction of a natural gas pipeline connecting Siberia
to Western Russia, and continuing to West Germany
(Urengoi—-Uschgorod-Berlin). Assume that the deal was
as follows: In 1985, upon completion of the pipeline, the
Soviet Union would deliver natural gas to West Germany,
at a constant rate, for all future times. Assuming a con-
stant price of natural gas of 0.10 Deutsche Mark per cubic
meter, and assuming West Germany expects 10% annual
interest on its investment (compounded continuously), at
what rate does the Soviet Union have to deliver the gas, in
billions of cubic meters per year? Keep in mind that de-
livery of gas could not begin until the pipeline was com-
pleted. Thus, West Germany received no return on its in-
vestment until after five years had passed. (Note: A more
complex deal of this type was actually made between the
two countries.)

In May 1991, Car and Driver described a Jaguar that sold
for $980,000. At that price only 50 have been sold. Tt
is estimated that 350 could have been sold if the price
had been $560.000. Assuming that the demand curve is a
straight line, and that $560,000 and 350 are the equilib-
rium price and quantity, find the consumer surplus at the
equilibrium price.

Using Riemann sums, explain the economic significance

of f Oq* S(gq) dq to the producers.

Using Riemann sums, give an interpretation of producer

surplus, | Oq* (p™ — S(q)) dq analogous to the interpreta-
tion of consumer surplus.

8.7 DISTRIBUTION FUNCTIONS

18.

19.

20.
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In Figure 8.78, page 437, mark the regions represent-
ing the following quantities and explain their economic
meaning:

@ p'q

q
(b)/ D(q)dq
Oq*
(C)/ S(q) dq

0

q
(d)/ D(q)dq —p"q"
0

5

q
(e) p*q” —/ S(q)dq
0

® / " (D) - 5(0)) da

The dairy industry is an example of cartel pricing: the
government has set milk prices artificially high. On a
supply and demand graph, label p™, a price above the
equilibrium price. Using the graph, describe the effect of
forcing the price up to p™ on:

(a) The consumer surplus.

(b) The producer surplus.

(c) The total gains from trade (Consumer surplus + Pro-
ducer surplus).

Rent controls on apartments are an example of price con-
trols on a commodity. They keep the price artificially low
(below the equilibrium price). Sketch a graph of supply
and demand curves, and label on it a price p~ below
the equilibrium price. What effect does forcing the price
down to p~ have on:

(a) The producer surplus?

(b) The consumer surplus?

(c) The total gains from trade (Consumer surplus + Pro-
ducer surplus)?

Understanding the distribution of various quantities through the population is important to decision
makers. For example, the income distribution gives useful information about the economic structure
of a society. In this section we will look at the distribution of ages in the US. To allocate funding for
education, health care, and social security, the government needs to know how many people are in
each age group. We will see how to represent such information by a density function.
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US Age Distribution
Table 8.3  Distribution of ages in ~ fraction of population
the US in 1995 peryear ot age
Fraction of 0.015
Age group total population
0-20 29% = 0.29
0.01 |
2040 31% = 0.31 20% | L6
0.29 0.31 2/0
40-60 24% = 0.24 0.24
60-80 13% = 0.13 0.005 F 13%
80-100 3% = 0.03 0.13 |3% =0.03
age
20 40 60 80 100 Wears)

Figure 8.79: How ages were distributed in the US in 1995

The data in Table 8.3 shows how the ages of the US population were distributed in 1995. To
represent this information graphically we use a type? of histogram, putting a vertical bar above each
age group in such a way that the area of each bar represents the fraction of the population in that
age group. The total area of all the rectangles is 100% = 1. We only consider people who are less
than 100 years old.? For the 0-20 age group, the base of the rectangle is 20, and we want the area to
be 0.29, so the height must be 0.29/20 = 0.0145. We treat ages as though they were continuously
distributed. The category 0-20, for example, contains people who are just one day short of their
twentieth birthday. (See Figure 8.79.)

Example 1

Solution

In 1995, estimate what fraction of the US population was:

(a) Between 20 and 60 years old. (b) Less than 10 years old.
(c) Between 75 and 80 years old. (d) Between 80 and 85 years old.

(a) We add the fractions, so 0.31 + 0.24 = 0.55; that is, 55% of the US population was in this age
group.

(b) To find the fraction less than 10 years old, we could assume, for example, that the population
was distributed evenly over the 0-20 group. (This means we are assuming that babies were born
at a fairly constant rate over the last 20 years, which is probably reasonable.) If we make this
assumption, then we can say that the population less than 10 years old was about half that in
the 0-20 group, that is, 0.145 of the total population. Notice that we get the same result by
computing the area of the rectangle from 0 to 10. (See Figure 8.80.)

(c) To find the population between 75 and 80 years old, since 0.13 of Americans in 1990 were
in the 60-80 group, we might apply the same reasoning and say that i(0.13) = 0.0325 of
the population was in this age group. This result is represented as an area in Figure 8.80. The
assumption that the population was evenly distributed is not a good one here; certainly there
were more people between the ages of 60 and 65 than between 75 and 80. Thus, the estimate of
0.0325 is certainly too high.

(d) Again using the (faulty) assumption that ages in each group were distributed uniformly, we
would find that the fraction between 80 and 85 was %(0.03) = 0.0075. (See Figure 8.80.)
This estimate is also poor—there were certainly more people in the 80-85 group than, say, the
95-100 group, and so the 0.0075 estimate is too low.

There are other types of histogram which have frequency on the vertical axis.
3In fact, 0.02% of the population is over 100, but this is too small to be visible on the histogram.
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fraction of f)opulation

per year of age
0.015 L
0.01
031 0.24 0.0325
0.145 —
0.0075
0.005 A
age (years)
10 20 40 60 75 80 85 100

Figure 8.80: Ages in the US in 1995 — various subgroups (for Example 1)

Smoothing Out the Histogram

We could get better estimates if we had smaller age groups (each age group in Figure 8.79 is 20
years, which is quite large). The more detailed data in Table 8.4 leads to the new histogram in
Figure 8.81. As we get more detailed information, the upper silhouette of the histogram becomes
smoother, but the area of any of the bars still represents the percentage of the population in that age
group. Imagine, in the limit, replacing the upper silhouette of the histogram by a smooth curve in
such a way that area under the curve above one age group is the same as the area in the corresponding
rectangle. The total area under the whole curve is again 100% = 1. (See Figure 8.81.)

The Age Density Function

If ¢ is age in years, we define p(t), the age density function, to be a function which “smooths out”
the age histogram. This function has the property that

Fraction of population ~_ Area under graphof p / b p(t)dt
between ages a and b between ¢ and b a .

If @ and b are the smallest and largest possible ages (say, a = 0 and b = 100), so that the ages

Table 8.4 Agesinthe US in

1995 (more detailed)
Shaded areas equal,
Fraction Of fraction of population g?e%rg?rtéré?aer:gclgrve ~
Age group total population per year or age
0-10 15% = 0.15 A~

1020 14% = 0.14 0.015 !
20-30 14% = 0.14
30-40 17% = 0.17 001 - 10.14|0-14/0.17 0.05
40-50 14% = 0.14 0.15 0.14 0.10 //70 80
50-60 10% = 0.10 0.005 - 008/ (ﬁ/ /f)/.oz -
60-70 8% = 0.08 % 7/
70-80 5% = 0.05 L age
80-90 9% — 0.02 20 40 60 80 100 Vears)
90-100

1% = 0.01 Figure 8.81: Smoothing out the age histogram
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of all of the population are between a and b, then

/abp(t)dt = /0100 p(t)dt = 1.

What does the age density function p tell us? Notice that we have not talked about the mean-
ing of p(¢) itself, but only of the integral f; p(t) dt. Let’s look at this in a bit more detail. Suppose,
for example, that p(10) = 0.015 per year. This is nor telling us that 0.015 of the population is pre-
cisely 10 years old (where 10 years old means exactly 10, not 10%, not 10%, not 10.1). However,
p(10) = 0.015 does tell us that for some small interval At around 10, the fraction of the population
with ages in this interval is approximately p(10) At = 0.015 At.

The Density Function

Suppose we are interested in how a certain characteristic, z, is distributed through a population. For
example, x might be height or age if the population is people, or might be wattage for a population
of light bulbs. Then we define a general density function with the following properties:

The function, p(z), is a density function if

. . . b
Fraction of population for which ~ Area under graph of p _ / )i,
a

x is between « and b between a and b

/ px)de =1 and  p(z) >0 forallz.

— 00

The density function must be nonnegative because its integral always gives a fraction of the
population. Also, the fraction of the population with x between —oo and oo is 1 because the entire
population has the characteristic x between —oc and co. The function p that was used to smooth
out the age histogram satisfies this definition of a density function. We do not assign a meaning
to the value p(x) directly, but rather interpret p(z) Az as the fraction of the population with the
characteristic in a short interval of length Az around «.

The density function is often approximated by formulas, as in the next example.

Example 2

Solution

Find formulas to approximate the density function, p, for the US age distribution. To reflect Fig-
ure 8.81, use a continuous function, constant at 0.015 up to age 40 and then dropping linearly.

We have p(t) = 0.015 for 0 < ¢ < 40. For t > 40, we need a linear function sloping down-
ward. Because p is continuous, we have p(40) = 0.015. Because p is a density function we have
fomo p(t)dt = 1. Suppose b is as in Figure 8.82 then

100 40 100 1
/ p(t)dt = / p(t)dt + / p(t)dt = 40(0.015) + (0.015)b = 1,
J0 J0 J 40

100
where [ 0

p(t)dt is given by the area of the triangle. This gives
0.015

Tb =04, andso b~ 53.3.
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Thus the slope of the line is —0.015/53.3 &~ —0.00028, so for 40 < ¢ < 40+ 53.3 = 93.3, we have

p(t) — 0.015 = —0.00028( — 40),
p(t) = 0.0262 — 0.00028t.

According to this way of smoothing the data, there is no one over 93.3 years old, so p(t) = 0 for
t>93.3.

fraction of population p(t) = 0.015 here
per year of age L

0.015

t (age in years)

Figure 8.82: Age density function

Cumulative Distribution Function for Ages

Another way of showing how ages are distributed in the US is by using the cumulative distribution
function P(t), defined by

P(t) = Fraction of population _ / tp (2)dz.
of age less than ¢ 0

Thus, P is the antiderivative of p with P(0) = 0, and P(t) gives the area under the density curve
between 0 and ¢.

Notice that the cumulative distribution function is nonnegative and increasing (or at least non-
decreasing), since the number of people younger than age ¢ increases as ¢ increases. Another way
of seeing this is to notice that P’ = p, and p is positive (or nonnegative). Thus the cumulative age
distribution is a function which starts with P(0) = 0 and increases as ¢ increases. P(t) = 0 for
t < 0 because, when t < 0, there is no one whose age is less than ¢. The limiting value of P, as
t — 00, is 1 since as ¢ becomes very large (100 say), everyone is younger than age ¢, so the fraction
of people with age less than ¢ tends toward 1. (See Figure 8.83.) For ¢ less than 40, the graph of P
is a straight line, because p is constant there. For ¢ > 40, the graph of P levels off as p tends to 0.

fraction of population fraction of
per year of age . population
0.015 Area= P(t) = fo pz)de
p(x) P()
x (age in years) : — t (age in years)
40 ¢t 100 40 100

Figure 8.83: P(t), the cumulative age distribution function, and its relation to p(z). the age density function
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Cumulative Distribution Function

A cumulative distribution function, P(¢), of a density function p, is defined by

t ) . .
P(t) = / p(z) dz = Fraction of population having
- values of x below t.

Thus, P is an antiderivative of p, that is, P’ = p.
Any cumulative distribution has the following properties:
e P isincreasing (or nondecreasing).

° tlim P(t)=1 and . lim P(t) = 0.
Fraction of population having

b
= / p(z) dz = P(b) — P(a).

values of x between a and b

Exercises and Problems for Section 8.7

Exercises

1. Match the graphs of the density functions (a), (b), and (c)  (cdf). Give reasons. Find the value of c. Sketch and label the
with the graphs of the cumulative distribution functions other function. (That is, sketch and label the cdf if the problem
I, II, and III. shows a pdf, and the pdf if the problem shows a cdf.)

(a) ) 5.4 —: 6.
|
M I
I I T
0] ¢ 4
(b) /
() (I 7. ¢ 8. 2¢c ——
|
|
z e
5 05 1

In Exercises 2—4, graph a density function and a cumulative
distribution function which could represent the distribution of

. . . . . 9. 3¢ 10. ¢
income through a population with the given characteristics.
2. A large middle class. c
x €T
2 4 1

3. Small middle and upper classes and many poor people.

4. Small middle class, many poor and many rich people.

Decide if the function graphed in Exercises 510 is a probabil-
ity density function (pdf) or a cumulative distribution function



Problems
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11.

12.

13.

14.

15.

A large number of people take a standardized test, receiv-
ing scores described by the density function p graphed in
Figure 8.84. Does the density function imply that most
people receive a score near 50?7 Explain why or why not.

fraction of students
per test score

 test scores
10 20 30 40 50 60 70

Figure 8.84

An experiment is done to determine the effect of two new
fertilizers A and B on the growth of a species of peas.
The cumulative distribution functions of the heights of
the mature peas without treatment and treated with each
of A and B are graphed in Figure 8.85.

(a) About what height are most of the unfertilized
plants?

(b) Explain in words the effect of the fertilizers A and B
on the mature height of the plants.

fraction of
plants Unfertilized

1

x height (meters)

Figure 8.85

Suppose F'(x) is the cumulative distribution function for
heights (in meters) of trees in a forest.

(a) Explain in terms of trees the meaning of the state-
ment F'(7) = 0.6.

(b) Which is greater, F'(6) or F'(7)? Justify your answer
in terms of trees.

Suppose that p(x) is the density function for heights of
American men, in inches. What is the meaning of the
statement p(68) = 0.2?

Suppose P(t) is the fraction of the US population of age
less than ¢. Using Table 8.4 on page 441, make a table of
values for P(t).

16. Figure 8.86 shows a density function and the correspond-

ing cumulative distribution function.*

(a) Which curve represents the density function and
which represents the cumulative distribution func-
tion? Give a reason for your choice.

(b) Put reasonable values on the tick marks on each of
the axes.

—

Figure 8.86

17. The density function and cumulative distribution func-

tion of heights of grass plants in a meadow are in Fig-
ures 8.87 and 8.88, respectively.

(a) There are two species of grass in the meadow, a short
grass and a tall grass. Explain how the graph of the
density function reflects this fact.

(b) Explain how the graph of the cumulative distribution
functions reflects the fact that there are two species
of grass in the meadow.

(¢) About what percentage of the grasses in the meadow
belong to the short grass species?

fraction of plants
per meter of height

: : — height
0.5 1 1.5 2 (meter)
Figure 8.87
fraction of plants

1
0.75
0.5
0.25

: ‘ : — height

0.5 1 1.5 2 (meter)

Figure 8.88

4 Adapted from Calculus, by David A. Smith and Lawerence C. Moore (Lexington: D.C. Heath, 1994).
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18. After measuring the duration of many telephone calls, above sea level; negative elevation shows land below sea
the telephone company found their data was well- level (i.e., the ocean floor).
: . . _ 0.4z
approxm_lated by the: density funcF ron p (z) = 0.de ’ (a) Describe in words the elevation of most of the earth’s
where x is the duration of a call, in minutes.
surface.
(a) What percentage of calls last between 1 and 2 min- (b) Approximately what fraction of the earth’s surface
utes? is below sea level?

(b) What percentage of calls last 1 minute or less?

(¢) What percentage of calls last 3 minutes or more?

(d) Find
19. Students

. e . fraction of earth’s surface
the cumulative distribution function. per mile of elevation

at the University of California were surveyed

and asked their grade point average . (The GPA ranges
from O to 4, where 2 is just passing.) The distribution of

GPAs is shown in Figure 8.89.

elevation (miles)

(a) Roughly what fraction of students are passing? -4 -2 0 2

(b) Roughly what fraction of the students have honor
grades (GPAs above 3)?

Figure 8.90

(¢) Why do you think there is a peak around 2?
(d) Sketch the cumulative distribution function.

20. Figure 8.90°shows the distribution of elevation, in miles,
across the earth’s surface. Positive elevation denotes land

21. Consider a population of individuals with a disease. Sup-
pose that ¢ is the number of years since the onset of the
ggfﬁ&’,‘/f’f students disease. The death density function, f(t) = cte ", ap-
proximates the fraction of the sick individuals who die in
the time interval [¢, ¢ + At] as follows:

Fraction who die ~ f(t)At = cte” " At

: : : GPA where ¢ and k are positive constants whose values de-
o 1 2 3 4 pend on the particular disease.
Figure 8.89 (a) Find the value of ¢ in terms of .
(b) If 40% of the population dies within 5 years, find ¢
and k.

(c¢) Find the cumulative death distribution function,
C(t). Give your answer in terms of .

8.8 PROBABILITY, MEAN, AND MEDIAN

Probability

Suppose we pick a member of the US population at random and ask what is the probability that the
person is between, say, the ages of 70 and 80. We saw in Table 8.4 on page 441 that 5% = 0.05 of
the population is in this age group. We say that the probability, or chance, that the person is between
70 and 80 is 0.05. Using any age density function p(t), we can define probabilities as follows:

g M 1 i b
Probability that a person is _ Fraction of population _ / p(t) dt.
a

between ages a and b between ages a and b

Since the cumulative distribution function gives the fraction of the population younger than age
t, the cumulative distribution can also be used to calculate the probability that a randomly selected
person is in a given age group.

5 Adapted from Statistics, by Freedman, Pisani, Purves, and Adikhari (New York: Norton, 1991).
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. . . . +
Probability that a person is _ Fraction of population — P(t) = / p(x) da.
0

younger than age ¢ younger than age ¢

In the next example, both a density function and a cumulative distribution function are used to
describe the same situation.

Example 1 Suppose you want to analyze the fishing industry in a small town. Each day, the boats bring back at
least 2 tons of fish, and never more than 8 tons.

(a) Using the density function describing the daily catch in Figure 8.91, find and graph the corre-
sponding cumulative distribution function and explain its meaning.
(b) What is the probability that the catch will be between 5 and 7 tons?

fraction of days ﬁer
ton of caught fis

024

0.12
0.08

— x (tons of fish)
2 5678
Figure 8.91: Density function of daily catch

Solution (a) The cumulative distribution function P(t) is equal to the fraction of days on which the catch is
less than ¢ tons of fish. Since the catch is never less than 2 tons, we have P(t) = 0 for ¢ < 2.
Since the catch is always less than 8 tons, we have P(t) = 1 for ¢ > 8. For ¢ in the range
2 <t < 8, we must evaluate the integral

t t
P(t) = / p(x)dr = / p(x)dz.
—00 2
This integral equals the area under the graph of p(x) between x = 2 and x = ¢. It can be
calculated by noting that p(x) is given by the formula

() = 0.04z for2 <z <6
P —0.06z +0.6 for6<z<8

and p(z) = 0 forz < 2 orz > 8. Thus, for 2 < ¢ < 6,

t

= 0.02t> — 0.08.

t 1‘2
P(t) = / 0.04z dz = 0.04—
2 2 2

And for 6 < ¢ <8,

P(t):/;p(x)da:z/:p(x)dx—i-/ejtp(x)dx

t 2
=0.64 + / (—0.06z 4 0.6) dz = 0.64 + (—0.06% + 0.6:13)
6

6
= —0.03t% + 0.6t — 1.88.
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Thus
P(t) = 0.02t* — 0.08 for2 <t <6
—0.03t> + 0.6t — 1.88 for6 < t < 8.
In addition P(¢t) = 0 for t < 2 and P(t) = 1 for 8 < ¢. (See Figure 8.92.)
fraction of days fraction of days per
ton of caught fis!
0.24
N~ p(@)
0.8 P(t)
0.6 1 0.12 F-—-==-yf- ===t ‘
0.4 - 0.08 |
0.2 !
|

x (tons of fish)

——————— ¢ (tons of fish)
2 5 6 7 8 2 5 6 7

Figure 8.93: Shaded area represents the probability the

Figure 8.92: Cumulative distribution of daily catch .
catch is between 5 and 7 tons

(b) The probability that the catch is between 5 and 7 tons can be found using either the density func-
tion, p, or the cumulative distribution function, P. If we use the density function, this probability
can be represented by the shaded area in Figure 8.93, which is about 0.43.

.. . 7
Probability catchis ~ _ / p(z) dz = 0.43.
between 5 and 7 tons 5

The probability can be found from the cumulative distribution as follows:

Probability catchis P(7) — P(5) = 0.85 — 0.42 = 0.43.

between 5 and 7 tons

The Median and Mean

It is often useful to be able to give an “average” value for a distribution. Two measures that are in
common use are the median and the mean.

The Median

A median of a quantity 2 distributed through a population is a value 7" such that half the
population has values of x less than (or equal to) 7', and half the population has values of x
greater than (or equal to) 7. Thus, a median 7" satisfies

-T
/ p(z) dz = 0.5,

where p is the density function. In other words, half the area under the graph of p lies to the
left of 7.

Example 2 Find the median age in the US in 1995, using the age density function given by

(1) = [0015 for 0 < ¢ < 40
PU=190.0262 — 0.00028t  for 40 < ¢ < 93.3.
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We want to find the value of 7" such that

/_TOO p(t) dt = /OT p(t)dt = 0.5.

Since p(t) = 0.015 up to age 40, we have

Median = T’ 05 33 years
=T = ~ IS.
0.015 Y
(See Figure 8.94.)
fraction of population )
per y%a‘r)of age Median
0.015 Y
0.5 p(t)
‘ t (age in years
3340 (age in years)
Figure 8.94: Median of age distribution
The Mean

Another commonly used average value is the mean. To find the mean of N numbers, you add
the numbers and divide the sum by N. For example, the mean of the numbers 1, 2, 7, and 10 is
(14+2+ 7+ 10)/4 = 5. The mean age of the entire US population is therefore defined as

>~ Ages of all people in the US

M = .
can age Total number of people in the US

Calculating the sum of all the ages directly would be an enormous task; we will approximate
the sum by an integral. The idea is to “slice up” the age axis and consider the people whose age is
between ¢ and ¢t + A¢. How many are there?

The fraction of the population between ¢ and ¢ + At is the area under the graph of p between
these points, which is well approximated by the area of the rectangle, p(¢)At. (See Figure 8.95.)

If the total number of people in the population is IV, then

Number of people with age

~ p(t)AtN.
between t and ¢ + At

\

p(t)]  <+— Area= p(t)At

t (age)
t t+ At

Figure 8.95: Shaded area is percentage of population with
age between t and t + At
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The age of all of these people is approximately ¢:

Sum of ages of people

~ tp(t)ALN.
between age ¢t and t + At

Therefore, adding and factoring out an IV gives us
Sum of ages of all people ~ (Z tp(t)At) N.

In the limit, as we allow At to shrink to 0, the sum becomes an integral, so

100
Sum of ages of all people = < / tp(t)dt) N.
0

Therefore, with N equal to the total number of people in the US, and assuming no person is over
100 years old,

Mean age =

Sum of ages of ]311 people in US / 100 tp(t)dt.
0

We can give the same argument for any® density function p(z).

If a quantity has density function p(z),

o0

Mean value of the quantity = / ap(x) da.

— 00

It can be shown that the mean is the point on the horizontal axis where the region under the
graph of the density function, if it were made out of cardboard, would balance.

Example 3

Solution

Find the mean age of the US population, using the density function of Example 2.

The formula for p is

0 fort <0

p(t) = 0.015 for0 <t <40
0.0262 — 0.00028t for40 < t < 93.3
0 fort > 93.3.

Using these formulas, we compute

100 40 93.3
Mean age = / tp(t)dt = / t(0.015)dt + / t(0.0262 — 0.00028t)dt
0 0 40
93.3 3

—0.00028—
3

93.3
~ 35 years.

40 2
+ 0.()2625

2
=0.015—
2

0 40 40

The mean is shown is Figure 8.96.

SProvided all the relevant improper integrals converge.
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fraction of population
per year of age

p(t)

}
|
}
|
|
|
|
|
35

Mean = Balance point

Figure 8.96: Mean of age distribution

Normal Distributions

How much rain do you expect to fall in your home town this year? If you live in Anchorage, Alaska,
the answer is something close to 15 inches (including the snow). Of course, you don’t expect exactly
15 inches. Some years there are more than 15 inches, and some years there is less. Most years,
however, the amount of rainfall is close to 15 inches; only rarely is it well above or well below 15
inches. What does the density function for the rainfall look like? To answer this question, we look
at rainfall data over many years. Records show that the distribution of rainfall is well-approximated
by a normal distribution. The graph of its density function is a bell-shaped curve which peaks at 15
inches and slopes downward approximately symmetrically on either side.

Normal distributions are frequently used to model real phenomena, from grades on an exam
to the number of airline passengers on a particular flight. A normal distribution is characterized by
its mean, u, and its standard deviation, o. The mean tells us the location of the central peak. The
standard deviation tells us how closely the data is clustered around the mean. A small value of o
tells us that the data is close to the mean; a large o tells us the data is spread out. In the following
formula for a normal distribution, the factor of 1/(0\/27) makes the area under the graph equal
to 1.

A normal distribution has a density function of the form

1

e—(w—u)2/(202)’
oV 2w

p(z) =

where 4 is the mean of the distribution and o is the standard deviation, with o > 0.

To model the rainfall in Anchorage, we use a normal distribution with ;x = 15 and 0 = 1. (See
Figure 8.97.)

(15

;)
» Vo

pe) = e (e197/2

13 15 17

Figure 8.97: Normal distribution with . = 15and 0 = 1
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(¢) 12 and 18 inches.

Example 4 For Anchorage’s rainfall, use the normal distribution with the density function with ;¢ = 15 and
o = 1 to compute the fraction of the years with rainfall between
(a) 14 and 16 inches, (b) 13 and 17 inches,

Solution

Since there is no elementary antiderivative for e~

value is about 0.68.

Fraction of years with rainfall

between 14 and 16 inches

(b) Finding the integral numerically again:

Fraction of years with rainfall

between 13 and 17 inches

(©)

Fraction of years with rainfall

between 12 and 18 inches

(a) The fraction of the years with annual rainfall between 14 and 16 inches is | 1146 #e—(z—wf/ 2 dx.

(¢=15)"/2 we find the integral numerically. Its

RS STy
= ——e VT dz ~ 0.68.
/14 V2T

L e
= ——e VT dr ~ 0.95.
/13 V2T

Bl e
= ——e dzr ~ 0.997.
/12 V2T

Since 0.95 is so close to 1, we expect that most of the time the rainfall will be between 13 and 17

inches a year.

Among the normal distributions, the one having ;4 = 0, ¢ = 1 is called the standard normal
distribution. Values of the corresponding cumulative distribution function are published in tables.

Exercises and Problems for Section 8.8

Exercises

1. Show that the area under the fishing density function
in Figure 8.91 on page 447 is 1. Why is this to be ex-
pected?

2. Find the mean daily catch for the fishing data in Fig-
ure 8.91, page 447.

3. (a) Using a calculator or computer, sketch graphs of the

density function of the normal distribution

1 —(z—p o
p(z) = e ( w)?/(2 2).
o

Problems

(1) For fixed p (say, # = 5) and varying o (say,
oc=1,2,3).
(ii) For varying p (say, 0 = 4,5,6) and fixed o
(say, o =1).
(b) Explain how the graphs confirm that y is the mean
of the distribution and that o is a measure of how
closely the data is clustered around the mean.

4. The probability of a transistor failing between ¢ = a

S b
months and ¢ = b months is given by ¢ fa e~°tdt, for
some constant c.

(a) If the probability of failure within the first six
months is 10%, what is ¢?

(b) Given the value of ¢ in part (a), what is the probabil-
ity the transistor fails within the second six months?

5. Suppose that x measures the time (in hours) it takes for
a student to complete an exam. All students are done

within two hours and the density function for z is

3 .
p(x):{fﬂ/ll 1f0<{17<2
0 otherwise.

(a) What proportion of students take between 1.5 and
2.0 hours to finish the exam?

(b) What is the mean time for students to complete the
exam?

(c) Compute the median of this distribution.



6.

10.

11.

In 1950 an experiment was done observing the time gaps
between successive cars on the Arroyo Seco Freeway.’
The data show that the density function of these time gaps
was given approximately by

p(ZL’) _ a€70.122x

where z is the time in seconds and a is a constant.

(a) Find a.

(b) Find P, the cumulative distribution function.
(¢) Find the median and mean time gap.

(d) Sketch rough graphs of p and P.

. Consider a group of people who have received treatment

for a disease such as cancer. Let ¢ be the survival time,
the number of years a person lives after receiving treat-
ment. The density function giving the distribution of ¢ is
p(t) = Ce™C" for some positive constant C'.

(a) Whatis the practical meanin% for the cumulative dis-
tribution function P(t) = | p(x) da?

(b) The survival function, S(¢), is the probability that
a randomly selected person survives for at least ¢
years. Find S(t).

(¢) Suppose a patient has a 70% probability of surviving
at least two years. Find C'.

. While taking a walk along the road where you live,

you accidentally drop your glove, but you don’t know
where. The probability density p(x) for having dropped
the glove x kilometers from home (along the road) is

p(x) =277 forz > 0.

(a) What is the probability that you dropped it within 1
kilometer of home?

(b) At what distance y from home is the probability that
you dropped it within y km of home equal to 0.95?

. The distribution of IQ scores can be modeled by a normal

distribution with mean 100 and standard deviation 15.

(a) Write the formula for the density function of 1Q
scores.

(b) Estimate the fraction of the population with IQ be-
tween 115 and 120.

The speeds of cars on a road are approximately normally
distributed with a mean p = 58 km/hr and standard de-
viation o = 4 km/hr.

(a) What is the probability that a randomly selected car
is going between 60 and 65 km/hr?

(b) What fraction of all cars are going slower than 52
km/hr?

Consider the normal distribution, p(z).

(a) Show that p(x) is a maximum when 2 = p. What is
that maximum value?

"Reported by Daniel Furlough and Frank Barnes.

12.

13.

14.
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(b) Show that p(x) has points of inflection where x =
pw+oandzx = p—o.

(¢) Describe in your own words what x4 and o tell you
about the distribution.

For a normal population of mean 0, show that the frac-
tion of the population within one standard deviation of
the mean does not depend on the standard deviation.

[Hint: Use the substitution w = z/c.]

Which of the following functions makes the most sense
as a model for the probability density representing the
time (in minutes, starting from ¢ = 0) that the next cus-
tomer walks into a store?

cost 0<t<27m
@ o) = {2 )25
(b) p(t) =3e 3 fort >0
(c) p(t)=e 3 fort>0
d) p(t)=1/4for0<t <4

Let P(x) be the cumulative distribution function for the
household income distribution in the US in 2006. Values
of P(z) are in the following table:

Income x (thousand $) | 20 40 60 80

100 | 150

P(z) (%)

21.7 | 45.4 | 63.0 | 75.8 | 84.0 | 94.0

15.

(a) What percent of the households made between
$40,000 and $60,000? More than $150,000?

(b) Approximately what was the median income?

(c) Is the statement “More than one-third of households
made between $40,000 and $80,000” true or false?

If we think of an electron as a particle, the function
Pr)y=1—(2r" +2r+1)e "

is the cumulative distribution function of the distance, r,
of the electron in a hydrogen atom from the center of the
atom. The distance is measured in Bohr radii. (1 Bohr ra-
dius = 5.29 x 10~ ** m. Niels Bohr (1885-1962) was a
Danish physicist.)

For example, P(1) = 1 — 5¢~2 ~ (.32 means that
the electron is within 1 Bohr radius from the center of the
atom 32% of the time.

(a) Find a formula for the density function of this distri-
bution. Sketch the density function and the cumula-
tive distribution function.

(b) Find the median distance and the mean distance.
Near what value of r is an electron most likely to
be found?

(¢) The Bohr radius is sometimes called the “radius of
the hydrogen atom.” Why?
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CHAPTER SUMMARY (see also Ready Reference at the end of the book)

o Geometry
Area, volume, arc length.

e Density
Finding total quantity from density, center of mass.

e Physics
Work, force and pressure.

e Economics

Present and future value of income stream, consumer and
producer surplus.

e Probability
Density function, cumulative distribution function, mean,

median, normal distribution.

e Polar coordinates

Area, slope, arc length.

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER EIGHT

Exercises

1. Imagine a hard-boiled egg lying on its side cut into thin
slices. First think about vertical slices and then horizon-
tal ones. What would these slices look like? Sketch them.

For each region in Exercises 2—4, write a definite integral
which represents its area. Evaluate the integral to derive a for-
mula for the area.

2. A rectangle with base b 3. A circle of radius 7:

and height h:
10.
f ¢ 11
h
| . 12.
b 13

4. A right triangle of base b and height h:

In Exercises 5-9, the region is rotated about the z-axis. Find
the volume.

. Bounded by y = 2 + 1, the z-axis, = 0, z = 4.
. Bounded by y = \/z, z-axis,z = 1,z = 2.
. Bounded by y = e~ 2%, the z-axis, z = 0, z = 1.

. Bounded by y = 4 — 2 and the z-axis.

e e X W

. Boundedbyy =2z, y=2,2 =0, = 3.

Exercises 10-15 refer to the regions marked in Figure 8.98.
Set up, but do not evaluate, an integral that represents the vol-
ume obtained when the region is rotated about the given axis.

17.

18.

y  y=a'/3
2 ' (8,2)
Ry
Ro
R3
+ x
r =4y 8
Figure 8.98

Rs about the z-axis

. Ry about the y-axis

R about the line y = —2

. R3 about the line z = 10
14.
15.
16.

R3 about the line y = 3
Rs about the line x = —3

Find the volume of the region in Figure 8.99, given that
the radius, r of the circular slice at h is r = v/h.

y N /*” //’
S AR

Figure 8.99

Set up and evaluate an integral to find the volume of a
cone of height 12 m and radius 3 m at the open end.

(a) Set up and evaluate an integral giving the volume of
a pyramid of height 10 m and square base 8 m by 8
m.

(b) The pyramid in part (a) is cut off at a height of 6 m.
See Figure 8.100. Find the volume.
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Sm\

Figure 8.100

19. The exterior of a holding tank is a cylinder with radius
3 m and height 6 m; the interior is cone-shaped; Fig-
ure 8.101 shows its cross-section. Using an integral, find
the volume of material needed to make the tank.

Fe—3m—

Figure 8.101

For the curves described in Exercises 20-21, write the integral
that gives the exact length of the curve; do not evaluate it.
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20. One arch of the sine curve, from z = 0 to x = 7.

21. The ellipse with equation (:r2/a2) + (y2/b2) =1.

In Exercises 22-23, find the arclength of the function from
x = 0tox = 3. Use a graph to explain why your answer is
reasonable.

22. f(z) =sinz 23. f(z) = bz?

For Problems 24-26, find the arc lengths.

24. f(z) =+vV1—22fromz=0tozx =1
25. f(z) =c® fromz=1tox =2

1

1
26. f(z) = §x3 + py

fromx =1tox = 2.

In Exercises 27-28, find the length of the parametric curves.
Give exact answers if possible.

27. x =3cost,y = 2sint, for0 <t < 2.

28. © =1+ cos(2t), y =3 +sin(2t), for0 <t < .

Problems
29. (a) Find the area of the region between y = a2 and For Problems 34-36, set up and compute an integral giving
y = 2x. the volume of the solid of revolution.

(b) Find the volume of the solid of revolution if this re-
gion is rotated about the z-axis.
(c¢) Find the length of the perimeter of this region.

30. (a) Sketch the solid obtained by rotating the region
bounded by y = v/z, z = 1, and y = 0 around
the line y = 0.

(b) Approximate its volume by Riemann sums, showing
the volume represented by each term in your sum on
the sketch.

(¢) Now find the volume of this solid using an integral.

31. Using the region of Problem 30, find the volume when it
is rotated around
(a) Theliney = 1. (b) The y-axis.

32. (a) Find (in terms of a) the area of the region bounded

by y = ax?, the z-axis, and = 2. Assume a > 0.

(b) If this region is rotated about the z-axis, find the vol-
ume of the solid of revolution in terms of a.

33. (a) Find (in terms of b) the area of the region between
y = e and the z-axis, between = O and z = 1.
Assume b > 0.

(b) If this region is rotated about the z-axis, find the vol-

ume of the solid of revolution in terms of b.

34. Bounded by y = sinz, y = 0.5z, x = 0, z = 1.9;

(a) Rotated about the z-axis.
(b) Rotated about y = 5.

35. Bounded by y = 2z, the z-axis, v = 0, x = 4. Axis:
y = —5.

36. Bounded by y = 22, the z-axis,z = 0,z = 3;

(a) Rotated about y = —2.
(b) Rotated about y = 10.

Problems 37-42 concern the region bounded by the quarter
circle 22 + 3* = 1, with > 0, y > 0. Find the volume of
the following solids.

37. The solid obtained by rotating the region about the z-

axis.

38. The solid obtained by rotating the region about the line

T = -2

39. The solid obtained by rotating the region about the line

=1

40. The solid whose base is the region and whose cross-

sections perpendicular to the z-axis are squares.

41. The solid whose base is the region and whose cross-
sections perpendicular to the y-axis are semicircles.
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42,

43.

44.

45.

46.
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The solid whose base is the region and whose cross-
section perpendicular to the y-axis is an isosceles right
triangle with one leg in the region.

The catenary cosh # = 3(e¢” +e™ ") represents the shape
of a hanging cable. Find the exact length of this catenary
between z = —1 and z = 1.

The reflector behind a car headlight is made in the shape
of the parabola, x = %y2, with a circular cross-section,
as shown in Figure 8.102.

(a) Find a Riemann sum approximating the volume con-

tained by this headlight.
(b) Find the volume exactly.

Y

x:%y%

Figure 8.102

In this problem, you will derive the formula for the vol-
ume of a right circular cone with height [ and base radius
b by rotating the line y = ax from x = 0 to x = [ around
the z-axis. See Figure 8.103.

(a) What value should you choose for a such that the
cone will have height / and base radius b?
(b) Given this value of a, find the volume of the cone.

Figure 8.103

Figure 8.104 shows a cross section through an apple.
(Scale: One division = 1/2 inch.)

(a) Give a rough estimate for the volume of this apple
(in cubic inches).

(b) The density of these apples is about 0.03 1b/in® (a
little less than the density of water—as you might
expect, since apples float). Estimate how much this
apple would cost. (They go for 80 cents a pound.)

47.

48.

Problems 49-53 concern, C, the circle r =

M~ N LA

Figure 8.104

The circle z2 + 32 = 1 is rotated about the line y = 3
forming a torus (a doughnut-shaped figure). Find the vol-
ume of this torus.

Water is flowing in a cylindrical pipe of radius 1 inch. Be-
cause water is viscous and sticks to the pipe, the rate of
flow varies with the distance from the center. The speed
of the water at a distance r inches from the center is
10(1 — 72) inches per second. What is the rate (in cu-
bic inches per second) at which water is flowing through
the pipe?

2a cos 0, for

—7/2 < 0 < /2, of radius a > 0 centered at the point
(x,y) = (a,0) on the x-axis.

49.

50.

51.

52.

53.
54.

SS.

56.

By converting to Cartesian coordinates, show that r =
2a cos 6 gives the circle described.

Find the area of the circle C' by integrating in polar coor-
dinates.

Find the area of the region enclosed by C' and outside the
circle of radius a centered at the origin. What percent is
this of the area of C?

(a) Find the slope of C' at the angle 6.
(b) At what value of 6 does the maximum y-value oc-
cur?

Calculate the arc length of C' using polar coordinates.

Find the center of mass of a system containing four iden-
tical point masses of 3 gm, located at x = —5, —3,2, 7.

A metal plate, with constant density 2 gm/cm?, has a
shape bounded by the two curves y = z2 and y = /7,
with0 <z <1, and z,y in cm.

(a) Find the total mass of the plate.

(b) Because of the symmetry of the plate about the line
y = x, we have T = . Sketch the plate, and decide,
on the basis of the shape, whether Z is less than or
greater than 1/2.

(¢) Find z and 3.

A 200-1b weight is attached to a 20-foot rope and dan-
gling from the roof of a building. The rope weighs 2 1b/ft.
Find the work done in lifting the weight to the roof.
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58.

59.

60.

61.

62.

63.

64.

Water is raised from a well 40 ft deep by a bucket at-
tached to a rope. When the bucket is full, it weighs 30 Ib.
However, a leak in the bucket causes it to lose water at
a rate of 1/4 1b for each foot that the bucket is raised.
Neglecting the weight of the rope, find the work done in
raising the bucket to the top.

A cylindrical garbage can of depth 3 ft and radius 1 ft
fills with rainwater up to a depth of 2 ft. How much work
would be done in pumping the water up to the top edge
of the can? (Water weighs 62.4 1b/ft®.)

A water tank is in the shape of a right circular cone with
height 18 ft and radius 12 ft at the top. If it is filled with
water to a depth of 15 ft, find the work done in pumping
all of the water over the top of the tank. (The density of
water is & = 62.4 1b/ft®.)

An underground tank filled with gasoline of density 42
Ib/ft3 is a hemisphere of radius 5 ft, as in Figure 8.105.
Use an integral to find the work to pump the gasoline over
the top of the tank.

—5 fi—=i

\

<

Figure 8.105

The dam in Hannawa Falls, NY, on the Raquette River is
approximately 60 feet across and 25 feet high. Find the
water force on the dam.

A crane lifts a 1000 1b object to a height of 20 ft using
chain that weighs 2 Ib/ft. If the crane arm is at a height of
50 ft, find the work required.

(a) Find the present and future values of a constant in-
come stream of $100 per year over a period of 20
years, assuming a 10% annual interest rate com-
pounded continuously.

(b) How many years will it take for the balance to reach
$5000?

You are manufacturing a particular item. After ¢ years,
the rate at which you earn a profit on the item is (2—0.1¢)
thousand dollars per year. (A negative profit represents a
loss.) Interest is 10%, compounded continuously,

(a) Write a Riemann sum approximating the present
value of the total profit earned up to a time M years
in the future.

(b) Write an integral representing the present value in
part (a). (You need not evaluate this integral.)

(¢) For what M is the present value of the stream of
profits on this item maximized? What is the present
value of the total profit earned up to that time?

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER EIGHT

65.

66.

67.

68.
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A nuclear power plant produces strontium-90 at a rate of
3 kg/yr. How much of the strontium produced since 1971
(when the plant opened) was still around in 19927 (The
half-life of strontium-90 is 28 years.)

Mt. Shasta is a cone-like volcano whose radius at an
elevation of h feet above sea level is approximately
(3.5 -10%)/v/h + 600 feet. Its bottom is 400 feet above
sea level, and its top is 14,400 feet above sea level. See
Figure 8.106. (Note: Mt. Shasta is in northern California,
and for some time was thought to be the highest point in
the US outside Alaska.)

(a) Give a Riemann sum approximating the volume of
Mt. Shasta.
(b) Find the volume in cubic feet.

n
| (2860, 14400)

/ Radius = 35 10°
J "~ VR + 600
4 \

(11070, 400)

—r

Figure 8.106: Mt. Shasta

Figure 8.107 shows an ancient Greek water clock called
a clepsydra, which is designed so that the depth of the
water decreases at a constant rate as the water runs out
a hole in the bottom. This design allows the hours to be
marked by a uniform scale. The tank of the clepsydra
is a volume of revolution about a vertical axis. Accord-
ing to Torricelli’s law, the exit speed of the water flowing
through the hole is proportional to the square root of the
depth of the water. Use this to find the formula y = f(x)
for this profile, assuming that f(1) = 1.

(-1,1) (1,1)

y = f(z)

Hole

\ =, -

Figure 8.107

Figure 8.108 shows the distribution of kinetic energy of
molecules in a gas at temperatures 300 kelvins and 500
kelvins. At higher temperatures, more of the molecules
in a gas have higher kinetic energies. Which graph corre-
sponds to which temperature?
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A

energy

Figure 8.108

69. Figure 8.109 shows the distribution of the velocity of

molecules in two gases. In which gas is the average ve-
locity larger?

velocity

Figure 8.109

70. A radiation detector is a circular disk which registers

photons which hit it. The probability that a photon hit-
ting the disk at a distance r from the center is actually
detected is given by S(r). A radiation detector of radius
R is bombarded by constant radiation of N photons per
second per unit area. Write an integral representing the
number of photons per second registered by the detector.

71. A blood vessel is cylindrical with radius R and length [.

The blood near the boundary moves slowly; blood at the
center moves the fastest. The velocity, v, of the blood at
a distance r from the center of the artery is given by

P

U:4_7]l

(R* —r?)

where P is the pressure difference between the ends of
the blood vessel and 7 is the viscosity of blood.

(a) Find the rate at which the blood is flowing down the
blood vessel. (Give your answer as a volume per unit
time.)

(b) Show that your result agrees with Poiseuille’s Law
which says that the rate at which blood is flowing
down the blood vessel is proportional to the radius
of the blood vessel to the fourth power.

72.

73.

74.

A car moving at a speed of v mph achieves 25 + 0.1v
mpg (miles per gallon) for v between 20 and 60 mph.
Your speed as a function of time, ¢, in hours, is given by

¢
v = 50— — mph.
CEN TP

How many gallons of gas do you consume between ¢ = 2
and t = 37

A bowl is made by rotating the curve y = ax? around
the y-axis (a is a constant).

(a) The bowl is filled with water to depth h. What is
the volume of water in the bowl? (Your answer will
contain a and h.)

(b) What is the area of the surface of the water if the

bowl is filled to depth A? (Your answer will contain

a and h.)

Water is evaporating from the surface of the bowl

at a rate proportional to the surface area, with pro-

portionality constant k. Find a differential equation
satisfied by h as a function of time, ¢. (That is, find
an equation for dh/dt.)

If the water starts at depth ho, find the time taken for

all the water to evaporate.

(c)

(d)

A cylindrical centrifuge of radius 1 m and height 2 m
is filled with water to a depth of 1 meter (see Fig-
ure 8.110(I)). As the centrifuge accelerates, the water
level rises along the wall and drops in the center; the
cross-section will be a parabola. (See Figure 8.110(11).)

(a) Find the equation of the parabola in Figure 8.110(1I)
in terms of h, the depth of the water at its lowest
point.

(b) As the centrifuge rotates faster and faster, either wa-
ter will be spilled out the top, as in Figure 8.110(III),
or the bottom of the centrifuge will be exposed, as in
Figure 8.110(IV). Which happens first?

() Y (I

(V) y

x x

Figure 8.110



In Problems 75-76, you are given two objects which have the
same mass M, the same radius R, and the same angular veloc-
ity about the indicated axes (say, one revolution per minute).
For each problem, determine which of the two objects has
the greater kinetic energy. (The kinetic energy of a particle
of mass m with speed v is $mv?.) Don’t compute the kinetic
energy of the objects to do this; just use reasoning.

75. Axis Axis

Thin spherical shell
about any diameter

Solid sphere about
any diameter

CAS Challenge Problems
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76. )
Axis

/ |

Hoop about Hoop about
any diameter cylindrical axis

77. For a positive constant a, consider the curve

3

y = 0< .

Y . <z<a

(a) Using a computer algebra system, show that for
0 <t < m/2, the point with coordinates (z, y) lies
on the curve if:

asin®t

.2
r=asin"t, y= .
cost

(b) A solid is obtained by rotating the curve about its
asymptote at x = a. Use horizontal slicing to write
an integral in terms of x and y that represents the
volume of this solid.

(¢) Use part (a) to substitute in the integral for both x
and y in terms of ¢. Use a computer algebra system
or trigonometric identities to calculate the volume of
the solid.

For Problems 78-79, define A(t) to be the arc length of the
graph of y = f(z) fromax =0tox = ¢, fort > 0.
(a) Use the integral expression for arc length and a computer
algebra system to obtain a formula for A(t).

CHECK YOUR UNDERSTANDING

In Problems 1-21, are the statements true or false? Give an
explanation for your answer.

1. The integral | 33 7(9 — 2?) da represents the volume of
a sphere of radius 3.

2. The integral [ Oh m(r — y) dy gives the volume of a cone
of radius r and height h.

3. The integral f 0T7T\/7"2 — y2dy gives the volume of a
hemisphere of radius .

(b) Graph A(t) for 0 < ¢t < 10. What simple function does
A(t) look like? What does this tell you about the approx-
imate value of A(t) for large ¢?

(¢) In order to estimate arc length visually, you need the
same scales on both axes, so that the lengths are not dis-
torted in one direction. Draw a graph of f(z) with view-
ing window 0 < z < 100, 0 < y < 100. Explain what
you noticed in part (b) in terms of this graph.

78. f(z) =z

79. f(2) = V7

80. A bead is formed by drilling a cylindrical hole of circu-
lar cross section and radius  through a sphere of radius
r > a, the axis of the hole passing through the center of
the sphere.

(a) Write a definite integral expressing the volume of
the bead.

(b) Find a formula for the bead by evaluating the definite
integral in part (a).

4. A cylinder of radius r and length [ is lying on its side.
Horizontal slicing tells us that the volume is given by
f:T 20\/1% — y? dy.

5. If a region in the xy-plane lies below the z-axis, then
revolving that region around the x-axis gives a solid of
negative volume.

6. To find the total population in a circular city, we always
slice it into concentric rings, no matter what the popula-
tion density function.
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10.

11.

12.

13.

14.
15.

16.

17.
18.
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. A city occupies a region in the zy-plane, with population
density 6(y) = 1 4 y. To set up an integral representing
the total population in the city, we should slice the region
parallel to the y-axis.

. The population density in a circular city of radius 2 de-
pends on the distance r from the center by f(r)
10 — 3r, so that the density is greatest at the center. Then
the population of the inner city, 0 < r < 1, is greater
than the population of the suburbs, 1 < r < 2.

. The location of the center of mass of a system of three
masses on the z-axis does not change if all the three
masses are doubled.

The center of mass of a region in the plane cannot be
outside the region.

Particles are shot at a circular target. The density of par-
ticles hitting the target decreases with the distance from
the center. To set up a definite integral to calculate the to-
tal number of particles hitting the target, we should slice
the region into concentric rings.

A metal rod of density f(z) lying along the z-axis from
x = 0to x = 4 has its center of mass at x = 2. Then the
two halves of the rod on either side of « = 2 have equal
mass.

It takes more work to lift a 20 1b weight 10 ft slowly than
to lift it the same distance quickly.

Work can be negative or positive.

The force on a rectangular dam is doubled if its length
stays the same and its depth is doubled.

To find the force of water on a vertical wall, we always
slice the wall horizontally, no matter what the shape of
the wall.

The force of a liquid on a wall can be negative or positive.

If the average value of the force F'(x) is 7 on the interval
1 < x < 4, then the work done by the force in moving
fromz =1tox =4is 21.

PROJECTS FOR CHAPTER EIGHT

1. Volume Enclosed by Two Cylinders

19.

20.

21.

The present value of an income stream is always less than
its future value.

If p(z) = ze*” for all z, then p(z) is a probability
density function.

If p(z) = ze*” forall z > 0 and p(x) =0forz <0,
then p(x) is a probability density function.

Are the statements in Problems 22-25 true or false? If a state-
ment is true, explain how you know. If a statement is false,
give a counterexample.

22.

23.

24.

25.

Of two solids of revolution, the one with the greater vol-
ume is obtained by revolving the region in the plane with
the greater area.

If f is differentiable on the interval [0, 10], then the arc
length of the graph of f on the interval [0, 1] is less than
the arc length of the graph of f on the interval [1, 10].

If f is concave up for all z and f/(0) = 3/4, then the arc
length of the graph of f on the interval [0, 4] is at least 5.

If f is concave down for all = and f'(0) = 3/4, then
the arc length of the graph of f on the interval [0, 4] is at
most 5.

In Problems 26-30, a quantity x is distributed through a pop-
ulation with probability density function p(z) and cumulative
distribution function P(x). Decide if the statements in Prob-
lems 26-30 are true or false. Give an explanation for your
answer.

26.
27.
28.

29.

30.

If p(10) = 1/2, then half the population has = < 10.
If P(10) = 1/2, then half the population has z < 10.

If p(10) = 1/2, then the fraction of the population lying
between z = 9.98 and x = 10.04 is about 0.03.

If p(10) = p(20), then none of the population has x val-
ues lying between 10 and 20.

If P(10) = P(20), then none of the population has =
values lying between 10 and 20.

Two cylinders are inscribed in a cube of side length 2, as shown in Figure 8.111. What is
the volume of the solid that the two cylinders enclose? [Hint: Use horizontal slices.] Note: The
solution was known to Archimedes. The Chinese mathematician Liu Hui (third century A.D.)
tried to find this volume, but he failed; he wrote a poem about his efforts calling the enclosed

volume a “box-lid:”
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Look inside the cube

And outside the box-lid;

Though the dimension increases,

It doesn’t quite fit.

The marriage preparations are complete;
But square and circle wrangle,

Thick and thin are treacherous plots,
They are incompatible.

I wish to give my humble reflections,
But fear that I will miss the correct principle;
I dare to let the doubtful points stand,
Waiting

For one who can expound them.

Figure 8.111

2. Length of a Hanging Cable
The distance between the towers of the main span of the Golden Gate Bridge is about
1280 m; the sag of the cable halfway between the towers on a cold winter day is about 143 m.
See Figure 8.112.

Figure 8.112

(a) How long is the cable, assuming it has an approximately parabolic shape? (Represent the
cable as a parabola of the form y = k22 and determine k to at least 1 decimal place.)

(b) On a hot summer day the cable is about 0.05% longer, due to thermal expansion. By how
much does the sag increase? Assume no movement of the towers.

3. Surface Area of an Unpaintable Can of Paint
This project introduces the formula for the surface area of a volume of revolution and shows
that it is possible to have a solid with finite volume but infinite surface area.
We know that the arclength of the curve y = f(z) from a to b can be found using the
integral

Arc length = /b V14 (f(x))?de.

Figure 8.113 shows the corresponding arc length of a small piece of the curve. Similarly, it can
be shown that the surface area from a to b of the solid obtained by revolving y = f(x) around
the x-axis is given by

Surface area = 27 /b f@)V14+ (f(x))?de.

We can see this why this might be true by looking at Figure 8.114. We approximate the small
piece of the surface by a slanted cylinder of radius y and “height” equal to the arclength of the
curve, so that

Surface area of edge of slice =~ 2my~/1 + (f'(x))? Ax.

Integrating this expression from = a to x = b gives the surface area of the solid.
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y = f(x)

Radius = y

f(z)
Length ~ /1 + (f'(z))2Ax

Changeiny =~ Ay
= f'(z)Ax

—Ag— \

Figure 8.113 Figure 8.114

(a) Calculate the surface area of a sphere of radius r.
(b) Calculate the surface area of a cone of radius  and height h.
(c¢) Rotate the curve y = 1/x for z > 1 around the z-axis. Find the volume of this solid.

(d) Show that the surface area of the solid in part (c) is infinite. [Hint: You might not be able
to find an antiderivative of the integrand in the surface area formula; can you get a lower

bound on the integral?]

(e) (Optional. Requires Chapter 11.) Find a curve such that when the portion of the curve from
x = atox = b is rotated around the z-axis (for any a and b), the volume of the solid of

revolution is equal to its surface area. You may assume dy/dx > 0.

4. Maxwell’s Distribution of Molecular Velocities

Let v be the speed, in meters/second, of an oxygen molecule, and let p(v) be the density
function of the speed distribution of oxygen molecules at room temperature. Maxwell showed

that

p(U) _ a’l)2€_mv2/(2kT),

where k = 1.4 x 10723 is the Boltzmann constant, 7" is the temperature in Kelvin (at room
temperature, 7' = 293), and m = 5 x 10726 is the mass of the oxygen molecule in kilograms.

(a) Find the value of a.
(b) Estimate the median and the mean speed. Find the maximum of p(v).

(¢) How do your answers in part (b) for the mean and the maximum of p(v) change as T'

changes?



