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506 Chapter Ten  APPROXIMATING FUNCTIONS USING SERIES

10.1 TAYLOR POLYNOMIALS

In this section, we see how to approximate a function by polynomials.
Linear Approximations

We already know how to approximate a function using a degree 1 polynomial, namely the tangent
line approximation given in Section 3.9 :

f(@)~ f(a) + f'(a)(x — a).
The tangent line and the curve have the same slope at + = a. As Figure 10.1 suggests, the tangent
line approximation to the function is generally more accurate for values of x close to a.

F@) - a)
I f(a)

xT

f(a)

x

Figure 10.1: Tangent line approximation of f(x) for x near a

We first focus on @ = 0. The tangent line approximation at x = 0 is referred to as the first
Taylor approximation at 2 = 0, or as follows:

Taylor Polynomial of Degree 1 Approximating f(x) for « near 0

f@) = Pi(z) = f(0) + f'(0)x

Example 1

Solution

Find the Taylor Polynomial of degree 1 for g(x) = cos z, with 2 in radians, for x near 0.

The tangent line at & = 0 is just the horizontal line y = 1, as shown in Figure 10.2, so
g(z) = cosx ~ 1, forxnearO.

If we take x = 0.05, then
9(0.05) = co0s(0.05) = 0.998...,

which is quite close to the approximation cos z ~ 1. Similarly, if x = —0.1, then
g(—0.1) = cos(—0.1) = 0.995....
is close to the approximation cos  ~ 1. However, if = 0.4, then
9(0.4) = cos(0.4) = 0.921 ...,

so the approximation cosz == 1 is less accurate. The graph suggests that the farther a point x is
away from 0, the worse the approximation is likely to be.

U

<+ COS T

1 1 T
o T

—1+

Figure 10.2: Graph of cos z and its tangent line at x = 0
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The previous example shows that the Taylor polynomial of degree 1 might actually have degree
less than 1.

Quadratic Approximations

To get a more accurate approximation, we use a quadratic function instead of a linear function.

Example 2

Solution

Find the quadratic approximation to g(x) = cos z for x near 0.

To ensure that the quadratic, P2 (x), is a good approximation to g(x) = cosx at z = 0, we require
that cos z and the quadratic have the same value, the same slope, and the same second derivative at
2 = 0. That is, we require P»(0) = ¢(0), P5(0) = ¢’(0), and P§'(0) = ¢"'(0). We take the quadratic
polynomial

PQ(CL‘) =Co+ Ciz + CQ(L‘Q,

and determine Cy, Cq, and Cs. Since

Py(z) = Cy + Crz + Coz®>  and g(z) = cosx

Pi(x) = Cy +2Csx ¢ (x) = —sinz
Pyl (x) = 2Cy g (x) = — cosu,
we have
Co = P»(0) = g(0) =cos0 =1 so Cp=1
Cy = Pi(0) =¢'(0) = —sin0=0 Ci=0
20y = Py(0) = ¢"(0) = —cos0 = —1, Cy=-1.
Consequently, the quadratic approximation is
1, z?
cosz~ Py(z)=140-z— 5% = 1- - for x near 0.

Figure 10.3 suggests that the quadratic approximation cos z &~ P»(z) is better than the linear
approximation cos z &~ P (z) for x near 0. Let’s compare the accuracy of the two approximations.
Recall that P (z) = 1 for all z. At z = 0.4, we have cos(0.4) = 0.921... and P5(0.4) = 0.920,
so the quadratic approximation is a significant improvement over the linear approximation. The
magnitude of the error is about 0.001 instead of 0.08.

1 Pi(z) =1

wse N Ja ﬁ\/
_177

Figure 10.3: Graph of cos z and its linear, Py (), and quadratic, P> (), approximations for z near 0

Generalizing the computations in Example 2, we define the second Taylor approximation at
x=0.

Taylor Polynomial of Degree 2 Approximating f(x) for  near 0

£(&) & Pafa) = £(0) + £ O + LD
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Higher-Degree Polynomials

In a small interval around x = 0, the quadratic approximation to a function is usually a better
approximation than the linear (tangent line) approximation. However, Figure 10.3 shows that the
quadratic can still bend away from the original function for large x. We can attempt to fix this by
using an approximating polynomial of higher degree. Suppose that we approximate a function f(x)
for x near 0 by a polynomial of degree n:

f(z) = Py(x) = Co + Crz + Cox® + -+ Cpy_12™ 1 + Cpiz™.

We need to find the values of the constants: Cy, C7, Cs, ..., C),. To do this, we require that
the function f(x) and each of its first n derivatives agree with those of the polynomial P, (x) at the
point = = 0. In general, the more derivatives there are that agree at = = 0, the larger the interval on
which the function and the polynomial remain close to each other.

To see how to find the constants, let’s take n = 3 as an example:

f(z) = Ps(z) = Co + Crz + Cox? + Cs2°.
Substituting x = 0 gives
f(0) = P5(0) = Co.
Differentiating P3(z) yields
Pi(z) = C1 + 20z + 3C327,
so substituting 2 = 0 shows that
£1(0) = P3(0) = C1.
Differentiating and substituting again, we get
Pl(x) =210y +3-2-1C3z,

which gives
f"(0) = P5(0) =2-1Cy,

=20

so that

The third derivative, denoted by P4”, is
P'(x) =3-2-1Cs,

)
7o) = Pg’,”(O) =3-2-1C3,
and then 71(0)
G=33 7

You can imagine a similar calculation starting with Py(z), using the fourth derivative f(4),
which would give

AR ()
=9

C4-3-2-17
and so on. Using factorial notation,' we write these expressions as

1O SO0

Co="g Gi= g
Writing f() for the n*® derivative of f, we have, for any positive integer n
(o
¢, - 120,
n!

th

So we define the n*" Taylor approximation at x = 0:

IRecall that k! = k(k—1)---2-1.Inaddition, 1! = 1,and 0! = 1.
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Taylor Polynomial of Degree n Approximating f (x) for x near 0

f(x) = Pp(x)
" " (4) (n)

We call P, (x) the Taylor polynomial of degree n centered at x = 0, or the Taylor polynomial
about (or around) x = 0.

Example 3 Construct the Taylor polynomial of degree 7 approximating the function f(x) = sin 2 for = near 0.
Compare the value of the Taylor approximation with the true value of f at z = 7/3.

Solution We have

f(z)= sinz giving f(0)= 0

f'(x) = cosx o= 1

f(x)= —sinx f70)y= 0
/" (x) = —cosz 770)= -1
fO(@) = sing @0 = o
fONz) = cosx @)= 1
fO(z) = —sing o0 = o
F(z) = —cosz, @) = —1.

Using these values, we see that the Taylor polynomial approximation of degree 7 is
sinmzP7(m)=O+1-m+0-z—j—1-2—?+0-Z—?+1~§—?+0-2—?—1~i—?
:m—z—?—kz—j—%, for x near 0.

Notice that since f(®)(0) = 0, the seventh and eighth Taylor approximations to sin z are the same.
In Figure 10.4 we show the graphs of the sine function and the approximating polynomial of
degree 7 for « near 0. They are indistinguishable where x is close to 0. However, as we look at values
of « farther away from 0 in either direction, the two graphs move apart. To check the accuracy of this
approximation numerically, we see how well it approximates sin(7/3) = v/3/2 = 0.8660254 . . . .

sin x N%(m) 1JV\
\Af ’ P7(:;N sin

Figure 10.4: Graph of sin z and its seventh degree Taylor polynomial, P7(z), for = near 0

When we substitute 7/3 = 1.0471976.. . . into the polynomial approximation, we obtain Pr(7/3) =
0.8660213. .., which is extremely accurate—to about four parts in a million.

Example 4 Graph the Taylor polynomial of degree 8 approximating g(x) = cos z for x near 0.
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Solution We find the coefficients of the Taylor polynomial by the method of the preceding example, giving

1.2 11:4 ZL‘G (L’S

cosm%Pg(x)zl—g-i-Z—a—f—g.
Figure 10.5 shows that Pg(x) is close to the cosine function for a larger interval of a-values than
the quadratic approximation P(x) = 1 — 22 /2 in Example 2 on page 507.

Pg (.Z‘) Ps (33)

cos \ ﬁ\ / o
et N

Pz (.Z‘) P2 (.’JZ)

Figure 10.5: Ps(x) approximates cos x better than P> (x) for  near 0

Example 5 Construct the Taylor polynomial of degree 10 about 2z = 0 for the function f(z) = €.

Solution We have f(0) = 1. Since the derivative of e* is equal to e*, all the higher-order derivatives are equal
to e*. Consequently, for any k = 1,2,...,10, f*)(2) = ¢® and f*)(0) = €® = 1. Therefore, the
Taylor polynomial approximation of degree 10 is given by

2 3 4 10
X T €T x
e~ Pp(@)=14+a+ 5+ + 0+ +

21 31 4l o1 for x near 0.

To check the accuracy of this approximation, we use it to approximate e = ¢! = 2.718281828.. . ..
Substituting z = 1 gives P1o(1) = 2.718281801. Thus, Pj( yields the first seven decimal places
for e. For large values of x, however, the accuracy diminishes because e” grows faster than any
polynomial as & — oo. Figure 10.6 shows graphs of f(z) = e® and the Taylor polynomials of
degree n = 0, 1, 2, 3, 4. Notice that each successive approximation remains close to the exponential
curve for a larger interval of z-values.

P, e“|Py Ps Py
20 T
P
10 p
!
Po PO
2 4
Py

Figure 10.6: For x near 0, the value of e® is more closely approximated by higher-degree Taylor polynomials

1
Example 6 Construct the Taylor polynomial of degree n approximating f(x) = I for x near 0.
-
Solution Differentiating gives f(0) = 1, f'(0) = 1, f”(0) = 2, f"(0) = 3!, f*(0) = 4!, and so on. This
means 1
g ~ P,(z) = 14+a+a2+2>+2*+--+2", forznear0,
—x

Let us compare the Taylor polynomial with the formula obtained from the sum of a finite geometric
series on page 472:
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n+1

11—
=l+at+a®+2®+a*+ - +a"

1—=z
If 2 is close to 0 and z"*! is small enough to neglect, the formula for the sum of a finite geometric
series gives us the Taylor approximation of degree n:

1 .
m%1+x+x2+x3+w4+---+x”.

Taylor Polynomials Around = = a

Suppose we want to approximate f(x) = In x by a Taylor polynomial. This function has no Taylor
polynomial about «x = 0 because the function is not defined for = < 0. However, it turns out that
we can construct a polynomial centered about some other point, = = a.

First, let’s look at the equation of the tangent line at x = a:

y=fla)+ f'(a)(z —a)
This gives the first Taylor approximation
f(2) =~ f(a) + f'(a)(x —a) for x near a.

The f/(a)(x — a) term is a correction term which approximates the change in f as x moves away
from a.

Similarly, the Taylor polynomial P, (z) centered at x = a is set up as f(a) plus correction
terms which are zero for x = a. This is achieved by writing the polynomial in powers of (z — a)
instead of powers of z:

f(@) =~ Py(z) =Co+ Ci(z —a) + Co(z —a)’ + -+ + Cp(x — a)".

If we require n derivatives of the approximating polynomial P, (z) and the original function f(x)
to agree at 2 = a, we get the following result for the n'" Taylor approximations at = = a:

Taylor Polynomial of Degree . Approximating f (x) for x near a
f(x) = Po(x)

™) (g
= f(a) + f'(a)(z — a) + f(a)

n!

f"(a)
2!

(x—a)®+---+ (x —a)"

We call P, () the Taylor polynomial of degree n centered at = a, or the Taylor poly-
nomial about z = a.

You can derive the formula for these coefficients in the same way that we did for a = 0. (See
Problem 30, page 513.)

Example 7

Solution

Construct the Taylor polynomial of degree 4 approximating the function f(x) = Inz for x near 1.

We have
(x) Inx so  f(1)=In(1)=0
@)= 1)z fy=1
fla) = -1 = -1
fl//(x) — 2/173 f///(l) — 2
O (@) = ~6/a*, foa) = -6
The Taylor polynomial is therefore

(z-1* (-1 (z—1)*
5 T3 T 1

=(z—-1)— for x near 1.
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Ps(z) Pi(x)

Inx

= P(a)

Pi(z) Py(z)

Pz(’l')
Pg(l')

Inx

2 3

P4 (.I)

Figure 10.7: Taylor polynomials approximate In z closely for « near 1, but not necessarily farther away

Graphs of Inz and several of its Taylor polynomials are shown in Figure 10.7. Notice that
Py(x) stays reasonably close to Inx for x near 1, but bends away as x gets farther from 1. Also,
note that the Taylor polynomials are defined for x < 0, but In z is not.

The examples in this section suggest that the following results are true for common functions:
e Taylor polynomials centered at x = a give good approximations to f(x) for 2 near «. Farther

away, they may or may not be good.

e The higher the degree of the Taylor polynomial, the larger the interval over which it fits the

function closely.

Exercises and Problems for Section 10.1

Exercises

For Exercises 1-10, find the Taylor polynomials of degree n
approximating the functions for x near 0. (Assume p is a con-
stant.)

For Exercises 11-16, find the Taylor polynomial of degree n
for z near the given point a.

1 _ —
L , n=3571 2. , n=468 I vi-z a=0 m=3
l-= 1tz 12. €, a=1, n=4
3. Vi+z, n=23,4 4. 1—2, n=273,4 13. Vi+z, a=1 n=3
5. cosx, n=2,4,6 6. n(1+x), n=5,7,9 14. cosz, a=m/2 n=4
15. sinz, a=—-7/4, n=3
7. arctanz, n=3,4 8. tanx, n=3,4 16. In(z?), a=1, n=4
1
9. , n=23,4 10. (1+=2)’, n=23,4
1+z
Problems
17. The function f(x) is approximated near x = 0 by the 20. (a) Based on your observations in Problems 18-19,

third degree Taylor polynomial

Py(z) =2 — & — °/3 + 22°.

Give the value of
(@ £(0) M) f'(0)
() f"(0) @ f"(0)

18. Find the second-degree Taylor polynomial for f(xz) =
4x% — 7z + 2 about 2 = 0. What do you notice?

19. Find the third-degree Taylor polynomial for f(x) =
22 + 722 — 52 4 1 about = 0. What do you notice?

make a conjecture about Taylor approximations in
the case when f is itself a polynomial.
(b) Show that your conjecture is true.

For Problems 21-24, suppose Pz(x) = a + bx + ca? is the
second degree Taylor polynomial for the function f about
x = 0. What can you say about the signs of a, b, cif f has the
graph given below?

21.

22,




23.

25.

26.

27.

28.

29.

24.

Show how you can use the Taylor approximation sin x ~
3 .

inx
=1

T — %, for « near 0, to explain why 1111%) 2 -
Use the fourth-degree Taylor approximation cosx =~
2 at
Pooaty
lim 1 —cosx _ 1
e—0 22 2"
Use a fourth degree Taylor approximation for e”, for
h near 0, to evaluate the following limits. Would your
answer be different if you used a Taylor polynomial of

higher degree?

for x near 0 to explain why

e —1-h
@) ;ILLH}) h? )
e —1-h-L
®) iy~
If £(2) = g(2) = h(2) = 0,and f/(2) = K (2) = 0,
g'(2) = 22, and f'(2) = 3,¢"(2) = 5, h"(2) = T,

calculate the( f())llowing limits. Exple(iir; your reasoning.

. f(x . flx
@ lm 2 ®) lim ooy
One of the two sets of functions, fi, fa, f3, or g1, g,
g3, is graphed in Figure 10.8; the other set is graphed in
Figure 10.9. Points A and B each have x = 0. Taylor
polynomials of degree 2 approximating these functions
near x = 0 are as follows:

fi(z) ~ 2+ + 247
fg(x)z2+:c—x2
fs(x) 2 +a+a°

g1(z) ~ 1+ x + 227

g2(z) ~ 1+ +2°

gs(z) ~ 1 —x+2°.

(a) Which group of functions, the fs or the gs, is repre-
sented by each figure?

(b) What are the coordinates of the points A and B?

(¢) Match each function with the graphs (I)—(II) in the
appropriate figure.

A B

Figure 10.8 Figure 10.9

30.

31.

32.

33.

34.

35.
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Derive the formulas given in the box on page 511 for
the coefficients of the Taylor polynomial approximating
a function f for z near a.

(a) Find the Taylor polynomial approximation of degree
4 about 2z = 0 for the function f(z) = e’

(b) Compare this result to the Taylor polynomial ap-
proximation of degree 2 for the function f(x) = e*
about = 0. What do you notice?

(¢) Use your observation in part (b) to write out the Tay-
lor polynomial approximation of degree 20 for the
function in part (a).

(d) What is the Taylor polynomial approximation of de-
gree 5 for the function f(z) = e~ %*?

The integral fol (sint/t) dt is difficult to approximate
using, for example, left Riemann sums or the trapezoid
rule because the integrand (sint)/t is not defined at
t = 0. However, this integral converges; its value is
0.94608 . . .. Estimate the integral using Taylor polyno-
mials for sin ¢ about ¢ = 0 of

(a) Degree 3 (b) Degree 5

3

Consider the equations sinz = 0.2 and x — =0.2

3!

(a) How many solutions does each equation have?

(b) Which of the solutions of the two equations are ap-
proximately equal? Explain.

When we model the motion of a pendulum, we replace
the differential equation

&

o7 = —2sing by

where 6 is the angle between the pendulum and the ver-
tical. Explain why, and under what circumstances, it is
reasonable to make this replacement.

(a) Using a graph, explain why the following equation
has a solution at x = 0 and another just to the right
of z = 0:

cosr=1—0.1z

(b) Replace cos z by its second-degree Taylor polyno-
mial near 0 and solve the equation. Your answers
are approximations to the solutions to the original
equation at or near 0.
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10.2 TAYLOR SERIES

In the previous section we saw how to approximate a function near a point by Taylor polynomials.
Now we define a Taylor series, which is a power series that can be thought of as a Taylor polynomial
that goes on forever.

Taylor Series for cos x, sin x, e®

We have the following Taylor polynomials centered at x = 0 for cos x:

cosz ~ Py(z) =1

22
cosmzpz(x)zl_ﬁ
cosm%P4(m):1_z_j+z_?
cosmwpﬁ(m)zl_z_?""z_?_z_(;
cosm%PS(m):l_x_z+z_4_x_6+x8

2l 4l 6l sl
Here we have a sequence of polynomials, Py(z), Pz(z), Py(x), Ps(x), Ps(x), ..., each of which is a
better approximation to cos z than the last, for  near 0. When we go to a higher-degree polynomial
(say from Pg to Pg), we add more terms (28/8!, for example), but the terms of lower degree don’t
change. Thus, each polynomial includes the information from all the previous ones. We represent
the whole sequence of Taylor polynomials by writing the Taylor series for cos x:
1 2?2zt 2% At
_§+Z_ﬁ+§_""

Notice that the partial sums of this series are the Taylor polynomials, P, ().

We define the Taylor series for sin z and e” similarly. It turns out that, for these functions, the

Taylor series converges to the function for all -, so we can write the following:

A LA
A TR T T T

22t 2% a8
COS$:1_§+Z_E+§_“'

T _q z? 23 xt
S T T TR

These series are also called Taylor expansions of the functions sin z, cos x, and e* about z = 0. The
general term of a Taylor series is a formula which gives any term in the series. For example, 2" /n!
is the general term in the Taylor expansion for e”, and (—1)*z2* /(2k)! is the general term in the
expansion for cos . We call n or & the index.

Taylor Series in General

Any function f, all of whose derivatives exist at 0, has a Taylor series. However, the Taylor series
for f does not necessarily converge to f(z) for all values of x. For the values of x for which the
series does converge to f(x), we have the following formula:

Taylor Series for f(x) about x = 0

" 111 (n)
£@) = $@ + fO+ TP ¢ T T O
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In addition, just as we have Taylor polynomials centered at points other than 0, we can also
have a Taylor series centered at x = a (provided all the derivatives of f exist at = «). For the
values of x for which the series converges to f(x), we have the following formula:

Taylor Series for f(x) about x = a

1 (n)a
£@) = f(@) + F @)~ a) + LD —ap + Lo ap o L@ gy y

The Taylor series is a power series whose partial sums are the Taylor polynomials. As we saw in
Section 9.5, power series generally converge on an interval centered at x = a. The Taylor series
for such a function can be interpreted when z is replaced by a complex number. This extends the
domain of the function. See Problem 33.

For a given function f and a given x, even if the Taylor series converges, it might not converge
to f(x). However,the Taylor series for most commonly encountered functions, including e®, cos z,
and sin x, do converge to the original function for all . See Section 10.4.

Intervals of Convergence of Taylor Series

Let us look again at the Taylor polynomial for In z about x = 1 that we derived in Example 7 on
page 511. A similar calculation gives the Taylor Series
(x—1?° (-1 (a-1° no (@ = 1"
Inz=(z—-1) 3 + 3 1 +--4+ (-1 - +-e

Example 4 on page 493 and Example 6 on page 495 show that this power series has interval of
convergence 0 < = < 2. However, although we know that the series converges in this interval,
we do not yet know that its sum is In z. The fact that in Figure 10.10 the polynomials fit the curve
well for 0 < = < 2 suggests that the Taylor series does converge to In x for 0 < < 2. For such
z-values, a higher-degree polynomial gives, in general, a better approximation.

However, when = > 2, the polynomials move away from the curve and the approximations get
worse as the degree of the polynomial increases. Thus, the Taylor polynomials are effective only
as approximations to In x for values of = between 0 and 2; outside that interval, they should not
be used. Inside the interval, but near the ends, 0 or 2, the polynomials converge very slowly. This
means we might have to take a polynomial of very high degree to get an accurate value for In z.

«———Interval of conver ence——!
’ | Pr(x) P5(x)
} Inx
| | T
1 2] 4
|
|
|
|
P5({IJ) —_— |
Py (z) —> |
P7(ZL’ — I
Ps(lrg Inx } Ps(z) Ps(x)
Figure 10.10: Taylor polynomials Ps(x), Ps(x), Pr(z), Ps(x), ... converge to Inx for 0 < x < 2 and

diverge outmde thdt 1nterva1

To compute the interval of convergence exactly, we first compute the radius of convergence
using the method on page 493. Convergence at the endpoints, z = 0 and x = 2, has to be determined
separately. However, proving that the series converges to In x on its interval of convergence, as
Figure 10.10 suggests, requires the error term introduced in Section 10.4.
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Example 1 Find the Taylor series for In(1 + x) about = 0, and calculate its interval of convergence.
Solution Taking derivatives of In(1 + x) and substituting x = 0 leads to the Taylor series
2?2 3 2t
In(1 =gy
n(l+az)=ux 5 + 3 1 +

Notice that this is the same series that we get by substituting (1 + z) for x in the series for In z:
@-1? @-1° (@-
2 3 4

Since the series for In x about « = 1 converges for 0 < x < 2, the interval of convergence for the
Taylor series for In(1 + x) about z = 0is —1 < x < 1. Thus we write

4o for0 < x < 2.

Ine=(zr-1)—

- B
In(1 =r——+—=———+-- for —1 <1
n(l+z)=x 7 + 3 YRRl or—l<z<
Notice that the series could not possibly converge to In(1 + ) for 2 < —1 since In(1 + x) is not
defined there.
Py(z) Pr(z) Ps(z)
.
| |
| |
| |
| |
i i In(1 + )
| | z
-1 i1
j |
|
.P5(.’13‘) — }
Ps(z) — |
Pr(z) — Py () }
Py(z) Lt In(1 + z) L B P

Figure 10.11: Interval of convergence for the Taylor series for In(1 4+ z)is —1 <2 <1

The Binomial Series Expansion

We now find the Taylor series about 2 = 0 for the function f(z) = (1 + x)P, with p a constant, but
not necessarily a positive integer. Taking derivatives:

flx) =(1+a)p so f(0)=1
J'(@) =p(1+z)pt f0)=p
f(w) = plp = 1)(1 +2)P~2 f7(0) =p(p—1)
f"(x) = plp — D(p —2)(1 +x)P~2, J"(0) =p(p —1)(p—2).

Thus, the third-degree Taylor polynomial for = near 0 is

p(p—1 —1D(p—-2
(1+2)? ~ P3(z) = 1+px+p(p2' )azz—i—p(p 3)'(1) )x3.

Graphing Ps(z), Py(x), ... for various specific values of p suggests that the Taylor polynomials

converge to f(x) for —1 < x < 1. (See Problems 26-27, page 518.) This can be confirmed using

the radius of convergence test. The Taylor series for f(x) = (1 + )? about z = 0 is as follows:

The Binomial Series

(p—1) 2
o 3!

plp—D(p—2) 3

(1+x)p=1+px—|—p R for -1 < <1
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In fact the binomial series gives the same result as multiplying (1 + x)? out when p is a positive
integer. (Newton discovered that the binomial series can be used for noninteger exponents.)

Example 2 Use the binomial series with p = 3 to expand (1 + z)3.
Solution The series is
3-2 3-2-1 3-2-1-0
(1+m)3:1+3m+7m2+ 3 3+ 1 rt
The x* term and all terms beyond it turn out to be zero, because each coefficient contains a factor
of 0. Simplifying gives
(1+2)3 =1+ 3z + 322 + 23,
which is the usual expansion obtained by multiplying out (1 + x)3.
Example 3 Find the Taylor series about z = 0 for T
x
Solution Since 1 = (14 2)~!, use the binomial series with p = —1. Then
Lo 1 (=D(=2) o (=D(E2)(=3) 3
1+m—(1+x) =1+ (-lz+ TR 30 x4
=l-az+4+2>2—23+... for-1<z<l1.

This series is both a special case of the binomial series and an example of a geometric series. It

converges for —1 < x < 1.

Exercises and Problems for Section 10.2

Exercises

For Exercises 1-8, find the first four nonzero terms of the Tay-
lor series for the function about 0.

Find an expression for the general term of the series in Exer-
cises 17-24 and give the starting value of the index (n or k,

for example).
1. (1+Jc)3/2 2. Vz+1 1
17. 1—=1+$+x2+$3+m4+~-~
3. sin(—x) 4. In(1—x) -
. =l—a+4a?—a>4a*—- -
s 1 ] 1 18 T2 r+ax—ax 4o
T1-x T Vitz 22 2 !
19. ln(l—x)z—w—g—?—f—~--
7. V1+x 8 J1—y 22 23 gt P
20 m(l42)=2——=+—=——+—=——---
2 3 4 5
3 5 7
. x x T
For Exercises 9-16, find the first four terms of the Taylor se- 21. sinz =z — 30 + E +-
ries for the function about the point a. 3 5 7
x T T
22, arctanx:x—?—i-?—?—l—“
9. sinz, a=m/4 10. cos0, a=m/4 4 s s
22 2 T T T
23. e =1+=x +—'+—'+—'+’
11. cost, a=m7/6 12. sin0, a=—m/4 : : :
6 10 14
24. 2% cosz? ==z —w—+x——$—+~-
13. tanz, a=m/4 14. 1/x, a=1 . 21 4l 6!
15. 1/x, a=2 16. 1/x, a=—-1
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Problems

25.

26.

27.

28.

29.

30.

31.

32.

and several

1
By graphing the function f(z) =
y graphing f(z) Niew
of its Taylor polynomials, estimate the interval of con-
vergence of the series you found in Problem 6.

By graphing the function f(x) = /1 4+ z and several of
its Taylor polynomials, estimate the interval of conver-
gence of the series you found in Problem 7.

and several of

By graphing the function f(z) = T2
its Taylor polynomials, estimate the interval of conver-
gence of the series you found in Problem 5. Compute the

radius of convergence analytically.

Find the radius of convergence of the Taylor series
around = 0 for In(1 — x).

(a) Write the general term of the binomial series for
(1 + z)? about x = 0.
(b) Find the radius of convergence of this series.

Use the fact that the Taylor series of g(x) = sin(z?) is

r {B6 .'13‘10 x14
oty ot

to find g (0), g"”’(0), and g(*9) (0). (There is an easy way
and a hard way to do this!)

The Taylor series of f(z) = 22e*” about z = 0 is
B R Sy
"+ +E+§+T+“'-
6
Find i (m2ez2) and d— (m2ez2>
dx i dxb 0

One of the two sets of functions, fi1, fa, f3, or g1, go,
g3 is graphed in Figure 10.12; the other set is graphed in
Figure 10.13. Taylor series for the functions about a point
corresponding to either A or B are as follows:

fi@) =3+ (@ —1) = (@—1)° 4
fa2) =3 — (=1 +(z—1)" 4
fa@)=3—-2(@—1)+(x—1)>+---
gi(@) =5—(z—4) — (z—4)° +---
g2(z) =5~ (z —4) + (z —4)" +---
ga(@) =5+ (x—4) + (z —4)* +---.
(a) Which group of functions is represented in each fig-
ure?
(b) What are the coordinates of the points A and B?

(¢) Match each function with the graphs (I)—(III) in the
appropriate figure.

2Complex numbers are discussed in Appendix B.

i 1l
Figure 10.12 Figure 10.13

33. Let i = /—1. We define e*® by substituting i6 in the
Taylor series for ¢”. Use this definition’ to explain Eu-
ler’s formula

10 -
e =cosf +isinf.

By recognizing each series in Problems 34—42 as a Taylor se-
ries evaluated at a particular value of x, find the sum of each
of the following convergent series.

2 4 8 on
34'1+ﬂ+5+§+m+ﬁ+'”
11 1 (—1)™
(DI T ST G
Blogtg-at  Tazot
g (1) (e ()
) 4 \4 4 4
100 10000 (=1)" - 10>"
71— — 200 )
S T @y T
38 L _ @ @) N (=" - ()"
2 2 3 4 (n+1)
39. 1-014+01>-01% 4.
9 27 81
40.1+3+i+§+z+
11 1
R I
0.01  0.001
2. 101+ 55 — o+

In Problems 43-44 solve exactly for the variable.

B.1+z+2>+2°+... =5
15 13

44. — _ 2

T 21‘ +31’ + 0
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10.3 FINDING AND USING TAYLOR SERIES

Finding a Taylor series for a function means finding the coefficients. Assuming the function has all
its derivatives defined, finding the coefficients can always be done, in theory at least, by differentia-
tion. That is how we derived the four most important Taylor series, those for the functions e*, sin z,
cosz, and (1 + z)?.

For many functions, however, computing Taylor series coefficients by differentiation can be a
very laborious business. We now introduce easier ways of finding Taylor series, if the series we want
is closely related to a series that we already know.

New Series by Substitution

Suppose we want to find the Taylor series for e~ about z = 0. We could find the coefficients
by differentiation Differentiating e by the chain rule gives —2xe"”2, and differentiating again
gives —2e” ** | 422¢="" . Each time we differentiate we use the product rule, and the number of
terms grows. Finding the tenth or twentieth derivative of e~ and thus the series for e~ up to
the 210 or 22° terms, by this method is tiresome (at least without a computer or calculator that can
differentiate).

Fortunately, there’s a quicker way. Recall that

2 3 4
ey=1+y+y_+%+y_+ for all y.

Substituting y = —22 tells us that

(%2 | (e ()’

—z2 2
e =14 () g i T
24 g6 48
_1_$+§_§+_+ for all .

Using this method, it is easy to find the series up to the 2'% or 220 terms. It can be shown that this
is the Taylor series for e

Example 1

Solution

Find the Taylor series about z = 0 for f(z) = T
x

The binomial series tells us that

1 .
m=(1+y)—1=1_y+y2—y3+y4+m for—1<y<1.

Substituting iy = 22 gives

1
1422

4

=1-a?+2*—a84+28+... for—1l<az<l,

1
which is the Taylor series for
1+a

These examples demonstrate that we can get new series from old ones by substitution. More
advanced texts show that series obtained by substituting g(z) into a Taylor series for f(x) gives a
Taylor series for f(g(x)).

In Example 1, we made the substitution y = 2%, We can also substitute an entire series into
another one, as in the next example.



520 Chapter Ten  APPROXIMATING FUNCTIONS USING SERIES

Example 2 Find the Taylor series about § = 0 for g(#) = ¢*™?.

Solution For all 3y and #, we know that
2 3 4
e =lry+ LT
and e 5
. 6
sm0=9—§+5—“m

Let’s substitute the series for sin 6 for y:

0> 0° 1 03 0° o 0> 0° s
51119
”(9 §+a"“)+a("‘§+a"“) +§<"‘§+5"") e

To simplify, we multiply out and collect terms. The only constant term is the 1, and there’s only one
6 term. The only 6% term is the first term we get by multiplying out the square, namely 62 /2!. There
are two contributors to the 6% term: the —6° /3! from within the first parentheses, and the first term
we get from multiplying out the cube, which is 62 /3!. Thus the series starts

62 (I L
31n9
=1+0+ +<——3,+—3!)+~~

0?
—1+0+§+O 63+ - forall 6.

New Series by Differentiation and Integration

Just as we can get new series by substitution, we can also get new series by differentiation and
integration. It can be shown that term-by-term differentiation of a Taylor series for f(x) gives a
Taylor series for f’(x) and that the two series have the same radius of convergence. Integration
works similarly.

1
Example 3 Find the Taylor Series about = 0 for ————; from the series for 1

1—2x) —x
. d 1 1 . . .
Solution We know that — = 5, 80 we start with the geometric series
de \1—x (1—ux)
1 .
1—=1+a:+a:2+a:“+x4+~~ for —1<x<1.
—x

Differentiation term by term gives the binomial series

1 d 1 :
W:E<1 x):1+2x+3x2+4x3+---f0r—1<x<1.
_:L‘ -

1
Example 4 Find the Taylor series about x = 0 for arctan = from the series for Tr
x

2"
. d(arctan x 1 )
Solution We know that (arctan z) = , so we use the series from Example 1 on page 519:
dx 1+ 22
d(arct 1
(arcanx): =1-a?4a2t—af 428 - for—1l<a<l
dx 1+ 22

Antidifferentiating term by term gives

1 2 25 2T 2
t = d/:C €r — — _—— — _ .. f _1 a1 1
arctan @ /1+$2 & +x 3—l—5 7+9 or <r <l
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where C'is the constant of integration. Since arctan 0 = 0, we have C' = 0, so

£L'3 (L’5 1117 :1;9

arctanr = — — + — — — 4+ =— —...  for —1 1.
arctanx = x 3+5 7+9 or <z <

The series for arctan x was discovered by James Gregory (1638-1675).

Applications of Taylor Series

Example 5 Use the series for arctan  to estimate the numerical value of 7.

Solution Since arctan1 = 7/4, we use the series for arctanz from Example 4. We assume—as is the
case—that the series does converge to w/4 at x = 1, the endpoint of its interval of convergence.
Substituting = = 1 into the series for arctan = gives

1 1 1 1
=4darctanl =4|1—=-4+—-—=+—-—---].
s arctan ( 3+5 7+9 >

Table 10.1  Approximating 7 using the series for arctan x

n 4 5 25 100 500 1000 10,000
Sh 2.895 3.340 3.182 3.132 3.140 3.141 3.141

Table 10.1 shows the value of the n'" partial sum, S,,, obtained by summing the nonzero terms from
1 through n. The values of S,, do seem to converge to m = 3.141 . . .. However, this series converges
very slowly, meaning that we have to take a large number of terms to get an accurate estimate for
7. So this way of calculating 7 is not particularly practical. (A better one is given in Problem 2,
page 547.) However, the expression for 7 given by this series is surprising and elegant.

A basic question we can ask about two functions is which one gives larger values. Taylor series
can often be used to answer this question over a small interval. If the constant terms of the series for
two functions are the same, compare the linear terms; if the linear terms are the same, compare the
quadratic terms, and so on.

Example 6 By looking at their Taylor series, decide which of the following functions is largest, and which is
1

smallest, for  near 0. (a) 1+ siné b) e’ C) —
(a) (b) (© Ve
Solution The Taylor expansion about § = 0 for sin 6 is
, 0> 05 0
5 0> 0> 0
1+si119:1+9—§+a—ﬁ+---.
The Taylor expansion about # = 0 for ¢’ is
92 93 94
0 _
e _1+0+§+§+I+
The Taylor expansion about # = 0 for 1/4/1 + € is
! 1, CHED L CHEDED
—(14p)Y2=1_ 19 2)\"2) g2 P2ASIP ANV LY. ST
vize UtY 3" T - 31 N
1 3 5
=—1-—= 292 - 93 4.,
29+ 86 160 +
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So, substituting —26 for 6:
1

V1—20

5

1 3
=1-5(=20)+ g(—ze)2 - 1—6(—26)3 +--

3 5
=140+ +2603+---.
+0+ 3 + 5 +
For 6 near 0, we can neglect terms beyond the second degree. We are left with the approximations:

1+sinf~1+86
92
69%1—1—94—?

1
z1+0+gﬁ.

v1-—20
Since 1 3
1+0< 1+€+§02 < 1+«9+§€2,
and since the approximations are valid for 6 near 0, we conclude that, for 6 near 0,
1

1+sind <e <« ——.
1—260

Example7

Solution

Two electrical charges of equal magnitude and opposite signs located near one another are called
an electrical dipole. The charges () and —() are a distance r apart. (See Figure 10.14.) The electric
field, E, at the point P is given by

Q Q
E=— - ——.
R?2 (R+r)?
Use series to investigate the behavior of the electric field far away from the dipole. Show that when
R is large in comparison to 7, the electric field is approximately proportional to 1/ R3.
P Q -Q
[J (] (]
R T

Figure 10.14: Approximating the electric field at P due to a
dipole consisting of charges Q and —() a distance r apart

In order to use a series approximation, we need a variable whose value is small. Although we know
that r is much smaller than R, we do not know that r itself is small. The quantity /R is, however,
very small. Hence we expand 1/(R + r)? in powers of 7/ R so that we can safely use only the first
few terms of the Taylor series. First we rewrite using algebra:

1 _ 1 1 (1 L >—2
(R+7)2  R2(1+7r/R)? R2 R}
Now we use the binomial expansion for (1 + z)P withz = r/Rand p = —2:

1 r\2 1 r (=2)(=3) /r\2  (=2)(=3)(—4) /r\3
=(+%) -~ (1+<—2>(§) e () e (R) e
1 r r? r3
So, substituting the series into the expression for I, we have

Q Q 11 rooart
B i CE m R %m o imt

_Q r 72 73
= 2R 3R2+4R3 .
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Since r/ R is smaller than 1, the binomial expansion for (1+7/R)~2 converges. We are interested in
the electric field far away from the dipole. The quantity 7/ R is small there, and (r/R)? and higher
powers are smaller still. Thus, we approximate by disregarding all terms except the first, giving

Q

Exﬁ

2r

R

)

2Qr

Since ) and r are constants, this means that E is approximately proportional to 1/R23.

In the previous example, we say that F is expanded in terms of r /R, meaning that the variable

in the expansion is /R.

Exercises and Problems for Section 10.3

Exercises

Using known Taylor series, find the first four nonzero terms of ~ Find the Taylor series about O for the functions in Exer-
the Taylor series about O for the functions in Exercises 1-12.

cises 13-15, including the general term.

. . . 1
. 13. (1+a)° 14. tsin(t*)—#*  15.
1. e” 2. V1-2z (1+) sin(t”) 1—y2
3. cos(6?) 4. In(1—2y) For Exercises 16-21, expand the quantity about O in terms of
. . the variable given. Give four nonzero terms.
5. arcsinz 6. tsin(3t)
T h
. 1 g = 16. 3 in terms of 5 17. VT + h in terms of 7
T V1= 22 T oe? T
3 cos(0? Ny 18, —— in terms of _ 19. — ' in terms of .
i . in terms of — . ——— in terms of —
9. ¢” cos(¢”) 10. V1 +sind P p (@t B
11. /(1 +¢)sint 12. e'cost
1+¢) 20. /P + t in terms of %
21. in terms of z, where a > 0
a’ + x? a
Problems
22. (a) Find the first three nonzero terms of the Taylor series ~ 26. Figure 10.15 shows the graphs of the four functions be-
fore® +e ", low for values of = near 0. Use Taylor series to match
(b) Explain why the graph of ¢® + e~ looks like a graphs and formulas.
parabola near x = 0. What is the equation of this 1 1/4
parabola? @ 17— 3 b (1+x)
. . 1
23. (a) Find ;he ﬁrﬁstz three nonzero terms of the Taylor series © /1 4 z @)
fore® —e . 2 1—x
(b) Explain why the graph of e” — ¢™* near z = 0
looks like the graph of a cubic polynomial symmet- 0 (i)
ric about the origin. What is the equation for this
cubic? W)
24. Find the sum of Zpa:pfl for |z| < 1.
p=1
25. For values of y near 0, put the following functions in in- Iy

creasing order, using their Taylor expansions.

(@ In(1+¢?) () sin(y?) (¢) 1—-cosy

Figure 10.15
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27.

28.

29.

30.

31.

32.

33.

Chapter Ten  APPROXIMATING FUNCTIONS USING SERIES

kn—l
mn—1)1°

Find the sum of Z —k
n=1

The hyperbolic sine and cosine are differentiable and sat-
isfy the conditions cosh 0 = 1 and sinh 0 = 0, and

4 (coshx) = sinh x i(sinh z) = coshz

dz N dx N '
(a) Using only this information, find the Taylor approx-
imation of degree n = 8 about z = 0 for f(z) =
cosh z.
Estimate the value of cosh 1.
Use the result from part (a) to find a Taylor polyno-

mial approximation of degree n = 7 about x = 0
for g(x) = sinh z.

(b)
(c)

Use the series for e to find the Taylor series for sinh 2x
and cosh 2z.

Use Taylor series to explain the patterns in the digits in
the following expansions:

1

1 2
—— | = 1.020304050607 ...
(b) (0’99> 0304050607

Padé approximants are rational functions used to approx-
imate more complicated functions. In this problem, you
will derive the Padé approximant to the exponential func-
tion.

(a) Let f(z) = (1 + ax)/(1 + bx), where a and b are
constants. Write down the first three terms of the
Taylor series for f(z) about x = 0.

(b) By equating the first three terms of the Taylor se-
ries about x = 0 for f(z) and for e”, find a and b
so that f(z) approximates e® as closely as possible
near z = 0.

One of Einstein’s most amazing predictions was that light
traveling from distant stars would bend around the sun on
the way to earth. His calculations involved solving for ¢
in the equation

sin ¢ + b(1 + cos® ¢ + cos ¢)=0

where b is a very small positive constant.

(a) Explain why the equation could have a solution for
¢ which is near 0.

(b) Expand the left-hand side of the equation in Taylor
series about ¢ = 0, disregarding terms of order ¢2
and higher. Solve for ¢. (Your answer will involve
b.)

A hydrogen atom consists of an electron, of mass m, or-
biting a proton, of mass M, where m is much smaller
than M. The reduced mass, p, of the hydrogen atom is
defined by

mM
m+ M’

(a) Show that pu ~ m.

34.

35.

36.

(b) To get a more accurate approximation for j, express
v as m times a series in m/M.

(¢) The approximation p /= m is obtained by disregard-
ing all but the constant term in the series. The first-
order correction is obtained by including the linear
term but no higher terms. If m ~ M /1836, by what
percentage does including the first-order correction
change the estimate 1 =~ m?

Resonance in electric circuits leads to the expression

1 2
(“’L‘ w) ’

where w is the variable and L and C are constants.

(a) Find wy, the value of w making the expression zero.

(b) In practice, w fluctuates about wp, so we are inter-
ested in the behavior of this expression for values of
w near wo. Let w = wo + Aw and expand the ex-
pression in terms of Aw up to the first nonzero term.
Give your answer in terms of Aw and L but not C.

The Michelson-Morley experiment, which contributed to
the formulation of the Theory of Relativity, involved the
difference between the two times ¢; and ¢2 that light took
to travel between two points. If v is the velocity of light;
11, l2, and ¢ are constants; and v < c, then the times ¢
and ¢, are given by

P 21y B 20

LTI =02 ) ey/1—v2/c2
212 2l

to =

cy/1 —v?/c? (=)

(a) Find an expression for At = t; — t2, and give its
Taylor expansion in terms of v /¢ up to the second
nonzero term.

(b) For small v, to what power of v is At proportional?
What is the constant of proportionality?

The theory of relativity predicts that when an object
moves at speeds close to the speed of light, the object
appears heavier. The apparent, or relativistic, mass, m,
of the object when it is moving at speed v is given by the

formula
mo

1—v2/c?

where c is the speed of light and my is the mass of the
object when it is at rest.

m =

(a) Use the formula for m to decide what values of v are
possible.

(b) Sketch a rough graph of m against v, labeling inter-
cepts and asymptotes.

(¢) Write the first three nonzero terms of the Taylor se-
ries for m in terms of v.

(d) For what values of v do you expect the series to con-
verge?
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37. The potential energy, V', of two gas molecules separated (d) The force, F', between the molecules is given by
by a distance r is given by F = —dV/dr. What is F' when r = r(? For r
6 near ro, show that F' is approximately proportional
70
o)
r

(%0)12> , to (r — o).

where Vp and ro are positive constants. 38. Van der Waal’s equation relates the pressure, P, and the
(a) Show that if » = rg, then V' takes on its minimum volume, V/, of a fixed quantity of a gas at constant tem-
value, — V. perature 7":

(b) Write V' as a series in (r — 7¢) up through the
quadratic term. n2a

(¢) For r near rg, show that the difference between (P + W) (V —nb) =nRT
V' and its minimum value is approximately pro-
portional to (r — 7¢)2. In other words, show that
V —(=Vo) = V +V} is approximately proportional Find the first two nonzero terms for the Taylor series of
to (r — ro)2. Pinterms of 1/V.

where a,b,n, R

are constants.

10.4 THE ERROR IN TAYLOR POLYNOMIAL APPROXIMATIONS

In order to use an approximation with confidence, we need to be able to estimate the size of the error,
which is the difference between the exact answer (which we do not know) and the approximate
value.
When we use P, (z), the n'" degree Taylor polynomial, to approximate f(x), the error is the
difference
B, (z) = f(z) — Pu().

We are interested in finding a bound on the magnitude of the error, | E,, |; that is, we want a number
which we are sure is bigger than |E,|. In practice, we want a bound which is reasonably close to
the maximum value of | E,,|.

Finding an Error Bound

Recall that we constructed P, (), the Taylor polynomial of f about 0, so that its first n derivatives
equal the corresponding derivatives of f(z). Therefore, £,(0) = 0, E/,(0) = 0, E//(0) = 0,
E,(,,")(O) = 0. Since P,(x) is an n'" degree polynomial, its (n + 1)5* derivative is 0, so
B (2) = £+ (z). In addition, suppose that | "+ (z)| is bounded by a positive constant
M, for all positive values of x near 0, say for 0 < 2 < d, so that

—M < () <M for0 <z <d.

This means that
M <E"V(@) <M for0<z<d

Writing ¢ for the variable, we integrate this inequality from 0 to z, giving

—/’Mdtg/‘Ef,/"“)(t)dtg/”Mdt for 0 < z < d,
0 0 0

)
—Mzx < Er(l")(a:) < Mz for0<z<d.

We integrate this inequality again from 0 to z, giving

x xr x
—/ Mtdtg/ E,@(t)dtg/ Mtdt for0 <z <d,
Jo J0 J0

SO
1 1
—§Mx2 < Efln_l)(;r) < §M;r2 for0 < x <d.
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By repeated integration, we obtain the following bound:
1
(n+1)!

which means that

Mz"™ < E,(x) < Mzt for0 <z <d,

(n+1)!

1
|En(2)] = |f(z) = Pu(z)| < m]\'ffﬁnﬂ forO0 <z <d.
When z is to the left of 0, so —d < z < 0, and when the Taylor series is centered at a # 0,
similar calculations lead to the following result:

Theorem 10.1: The Lagrange Error Bound for P,,(x)
Suppose f and all its derivatives are continuous. If P, (z) is the n*® Taylor polynomial for to
f(x) about a, then

|.’L’ _ a|n+17

M
En@)] =17(@) = Pa(@)] < oy

where max |f (“'+1)| < M on the interval between a and x.

Using the Lagrange Error Bound for Taylor Polynomials

Example 1 Give a bound on the error, E4, when ¢” is approximated by its fourth-degree Taylor polynomial
about 0 for —0.5 < x < 0.5.
Solution Let f(x) = e®. We need to find a bound for the fifth derivative, f(*) (x) = e?. Since e” is increasing,
|f(5)(x)| <" =<2 for —05<z<0.5.
So we can take M = 2. Then
2
|Eal = 1F () = Pa(e)] < el
This means, for example, that on —0.5 < x < 0.5, the approximation
— e
eexl+x+ 5 + ? + I
has an error of at most %(0.5)5 < 0.0006.

The Lagrange error bound for Taylor polynomials can be used to see how the accuracy of the
approximation depends on the value of x or the value of n. Observe that the error for a Taylor
polynomial of degree n depends on the (n + 1)* power of (x — a). That means, for example, with
a Taylor polynomial of degree n centered at 0, if we decrease = by a factor of 2, the error bound
decreases by a factor of 271,

Example 2 Compare the errors in the approximations
1 5 1
Ot 1401+ 5(0.1)2 and  e”% ~ 1+ (0.05) + 5(0.05)2.
Solution We are approximating e¢” by its second-degree Taylor polynomial about 0. We evaluate the poly-

nomial first at x = 0.1, and then at x = 0.05. Since we have decreased x by a factor of 2, the
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error bound decreases by a factor of about 23 = 8. To see what actually happens to the errors, we
compute them:

1
P (1 +0.1+ 5(0.1)2> = 1.105171 — 1.105000 = 0.000171
1
005 _ <1 +0.05 + 5(0.05?) = 1.051271 — 1.051250 = 0.000021

Since (0.000171)/(0.000021) = 8.1, the error has also decreased by a factor of about 8.

Convergence of Taylor Series for cos x

We have already seen that the Taylor polynomials centered at x = 0 for cos = are good approxima-
tions for x near 0. (See Figure 10.16.) In fact, for any value of z, if we take a Taylor polynomial
centered at x = 0 of high enough degree, its graph is nearly indistinguishable from the graph of the
cosine near that point.

Pg(il‘) P8(1')

cosz \ | H\ | / cozac
W_% \\M

PQ(SC) P2 (1’)

Figure 10.16: Graph of cos = and two Taylor polynomials for = near 0

Let’s see what happens numerically. Let 2 = 7 /2. The successive Taylor polynomial approxi-
mations to cos(w/2) = 0 about z = 0 are

Py(1/2) = 1—(7/2)%/2! = —0.23370...
Py(m/2) =1—(7/2)2/2! + (z/2)* /4l = 0.01997 ...
Ps(m/2) = = —0.00089...
Py(r/2) = = 0.00002....
It appears that the approximations converge to the true value, cos(w/2) = 0, very rapidly. Now take
a value of x somewhat farther away from 0, say x = 7, then cos ™ = —1 and
Py(m)=1—(m)?/2! = —3.93480. ..
Py(m) = = 0.12391...
Ps(m) = = —1.21135...
Py(m) = . = —0.97602...
Pyo(m) = —1.00183...
Pyisy(m) = = —0.99990...
Pyy(m) = = —1.000004. ..

We see that the rate of convergence is somewhat slowers; it takes a 14*" degree polynomial to approx-
imate cos 7 as accurately as an 8" degree polynomial approximates cos(r/2). If 2 were taken still
farther away from 0, then we would need still more terms to obtain as accurate an approximation of
cos .

Using the ratio test, we can show the Taylor series for cos z converges for all values of x. In
addition, we will prove that it converges to cos x using Theorem 10.1. Thus, we are justified in
writing the equality:

2 4 6 8
T T T T
cosr=1——+ + = for all x.

2l 4 6l sl
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Proof

Showing the Taylor Series for cos = Converges to cos =

The Lagrange error bound in Theorem 10.1 allows us to see if the Taylor series for a function
converges to that function. In the series for cos x, the odd powers are missing, so we assume 7 is
even and write

x2 z"
E,(x) =cosx — Py(x) = cosz — (1 57 +-F (—1)”/2—'> ,
! n!
giving
"

T x"
cosz=1—op4-+ (—D"ﬂﬁ + En(a).

Thus, for the Taylor series to converge to cos z;, we must have E,,(z) — 0 as n — oo.
Showing E,,(z) — 0asn — oo
Since f(x) = cosx, the (n + 1) derivative f("*1)(z) is 4 cos z or & sin x, no matter what n is.

So for all n, we have | f(**1)(z)| < 1 on the interval between 0 and z.
By the Lagrange error bound with M = 1, we have

|l,|n+1
|E,(2)| = |cosz — P, ()| < 1) for every n.
To show that the errors go to zero, we must show that for a fixed =z,
o+
—0 as n — oo.
(n+1)!

To see why this is true, think about what happens when n is much larger than . Suppose, for
example, that x = 17.3. Let’s look at the value of the sequence for n more than twice as big as 17.3,
say n = 36, orn = 37, orn = 38:

1

_ 9@, 37
For n = 36: 37!(17.3)
1 . 173 1 ‘
F — . —(17. 38:__1 37
orn = 37 38!( 7.3) 23 37!( 7.3)°",
1 173 173 1
Forn =38 —(17.3)% = —=. 2. _—(17.3)%"
orn 301 173) 39 33 37T

Since 17.3/36 is less than %, each time we increase n by 1, the term is multiplied by a number less
than . No matter what the value of 3 (17.3)%" is, if we keep on dividing it by two, the result gets
closer to zero. Thus m (17.3)"+1 goes to 0 as n goes to infinity.

We can generalize this by replacing 17.3 by an arbitrary |x|. For n > 2|z|, the following
sequence converges to 0 because each term is obtained from its predecessor by multiplying by a
number less than %:

mn+1 .’IJ"+2 mn+3
)l 12l w3l
Therefore, the Taylor series 1 — 22 /2! 4+ 24 /4! — ... does converge to cos .

Problems 21 and 20 ask you to show that the Taylor series for sinx and e converge to the
original function for all x. In each case, you again need the following limit:

) "
lim — =0.
n—oo n!
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In Exercises 1-8, use Theorem 10.1 to find a bound for the 4. v/0.9, f(z) =1+
error in approximating the quantity with a third-degree Taylor
polynomial for the given function f(x) about z = 0. Com- In(1.5), f(z) = In(1 + =)
pare the bound with the actual error. 6. 1/ V3. Flx) = (14 x)_l /2
1. "L f(z) =¢” 2. sin(0.2), f(z) =sinz 7. tanl, f(z) = tanz
3. cos(—0.3), f(z) = cosx 8. 052, f(x) = (1 —a)'/?
Problems
9. Find a bound on the magnitude of the error if we approx-  15. Give a bound for the error for the n'" degree Taylor poly-
imate v/2 using the Taylor approximation of degree three nomial about x = 0 approximating cos x on the interval
for /1 + x about z = 0. [0, 1]. What is the bound for sin x?
10. Consider the error in using the approximation sin 6 = 6
on the interval [~1, 1]. 16. What degree Taylor polynomial about x = 0 do you
(a) Reasoning informally, say where the approximation need to calculate cos 1 to four decimal places? To six
is an overestimate, and where is it an underestimate. decimal places? Justify your answer using the results of
(b) Use Theorem 10.1 to bound the error. Check your Problem 15.
answer graphically on a computer or calculator. .
17. (a) Using a calculator, make a table of the values to four
11. Repeat Problem 10 for the approximation sin ~ 6 — decimal places of sin z for
0%/3!.
12. You approximate f(t) = e’ by a Taylor polynomial of r=-—05,-04,...,—-0.1,0,0.1,...,0.4,0.5.
degree 0 about ¢ = 0 on the interval [0, 0.5].
(a) Reasoning informally, say whether the approxima- (b) Add to your table the values of the error Ey =
tion is an overestimate or an underestimate. sin x — x for these x-values.
(b) Use Theorem 10.1 to bound the error. Check your (¢) Using a calculator or computer, draw a graph of the
answer graphically on a computer or calculator. quantity F1 = sinz — x showing that
13. Repc;at P'roblem 12 usintg the second-degree Taylor ap- By < 0.03 for —05<z<0.5.
proximation, P»(t), to e’.
14. (a) Use the graphs of y = cosx and its Taylor polyno-
mials, Pio(z) and Pao(x), in Figure 10.17 tobound: ~ 18. In this problem, you will investigate the error in the n'"

(i) The error in approximating cos6 by Pio(6)
and by P20(6).

(ii) The error in approximating cos x by Pso(x) for
|z < 9.

(b) If we want to approximate cos x by Pio(x) to an ac-
curacy of within 0.1, what is the largest interval of
x-values on which we can work? Give your answer
to the nearest integer.

20(f)

Figure 10.17

degree Taylor approximation to e* about 0 for various
values of n.

(a) Let B4 = e” — Pi(z) = e” — (1 4+ z). Using a cal-
culator or computer, graph F; for —0.1 <z < 0.1.
What shape is the graph of E;? Use the graph to
confirm that

|Ey| <a? for —0.1<ax<0.1.

(b) Let Eo = ¢®—P(z) = ¢®—(1+z+27/2). Choose
a suitable range and graph F» for —0.1 < z < 0.1.
What shape is the graph of E»? Use the graph to
confirm that

|Es| <

for —0.1<z<0.1.

(¢) Explain why the graphs of F; and E» have the

shapes they do.
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20.

21.

22.
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For |z| < 0.1, graph the error

Ey = cosxz — Py(x) = cosz — 1.
Explain the shape of the graph, using the Taylor expan-
sion of cos z. Find a bound for | Eq| for |z| < 0.1.
Show that the Taylor series about 0 for e” converges to e*
for every x. Do this by showing that the error E,, () — 0
as n — oo.
Show that the Taylor series about O for sin z converges
to sin z for every .
To approximate 7 using a Taylor polynomial, we could

use the series for the arctangent or the series for the arc-
sine. In this problem, we compare the two methods.

10.5 FOURIER SERIES

(a) Using the fact that d(arctanz)/dx = 1/(1 + z?)
and arctanl = =/4, approximate the value of
7 using the third-degree Taylor polynomial of i
4 arctan « about x = 0.

(b) Using the fact that d(arcsinz)/dez = 1/v/1 — x?
and arcsin 1 = 7 /2, approximate the value of 7 us-
ing the third-degree Taylor polynomial of 2 arcsin
about x = 0.

(c) Estimate the maximum error of the approximation
you found in part (a).

(d) Explain the problem in estimating the error in the
arcsine approximation.

‘We have seen how to approximate a function by a Taylor polynomial of fixed degree. Such a poly-
nomial is usually very close to the true value of the function near one point (the point at which the
Taylor polynomial is centered), but not necessarily at all close anywhere else. In other words, Tay-
lor polynomials are good approximations of a function locally, but not necessarily globally. In this
section, we take another approach: we approximate the function by trigonometric functions, called
Fourier approximations. The resulting approximation may not be as close to the original function at
some points as the Taylor polynomial. However, the Fourier approximation is, in general, close over
a larger interval. In other words, a Fourier approximation can be a better approximation globally.
In addition, Fourier approximations are useful even for functions that are not continuous. Unlike
Taylor approximations, Fourier approximations are periodic, so they are particularly useful for ap-

proximating periodic functions.

Many processes in nature are periodic or repeating, so it makes sense to approximate them by
periodic functions. For example, sound waves are made up of periodic oscillations of air molecules.
Heartbeats, the movement of the lungs, and the electrical current that powers our homes are all
periodic phenomena. Two of the simplest periodic functions are the square wave in Figure 10.18
and the triangular wave in Figure 10.19. Electrical engineers use the square wave as the model for
the flow of electricity when a switch is repeatedly flicked on and off.

Y

|

= 1
I
|

x

[SUR —
o ———
I

|
|
I
-1 0 1 2

Figure 10.18: Square wave

Fourier Polynomials

<

1 9(x)

Figure 10.19: Triangular wave

We can express the square wave and the triangular wave by the formulas

0 —1<a<0
1 0<z<1
fle)=10 1<z<?2
1 2<x<3
0 3<xr<4

—x —-1<x<0
€x 0<z<l1
gx) =< 2-2z 1<z<?2
Tz —2 2<xr<3
4—x 3<zr<4
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However, these formulas are not particularly easy to work with. Worse, the functions are not dif-
ferentiable at various points. Here we show how to approximate such functions by differentiable,
periodic functions.

Since the sine and cosine are the simplest periodic functions, they are the building blocks we
use. Because they repeat every 27, we assume that the function f we want to approximate repeats
every 2. (Later, we deal with the case where f has some other period.) We start by considering
the square wave in Figure 10.20. Because of the periodicity of all the functions concerned, we only
have to consider what happens in the course of a single period; the same behavior repeats in any
other period.

| F@)
i f(x):{o —r<x<0

1 0<z<m

T
-7 0 ™

Figure 10.20: Square wave on [—r, 7]

We will attempt to approximate f with a sum of trigonometric functions of the form

fx) = Fu(x)
= ag + a1 cos T + as cos(2z) + az cos(3z) + - - - + a,, cos(nx)
+ by sin@ + by sin(2x) + by sin(3x) + - - - + by, sin(nx)

n n
= ag + Z ay cos(kx) + Z by, sin(kx).
k=1 k=1
F,,(x) is known as a Fourier polynomial of degree n, named after the French mathematician Joseph
Fourier (1768-1830), who was one of the first to investigate it.> The coefficients ay, and by, are called
Fourier coefficients. Since each of the component functions cos(kz) and sin(kz), k = 1, 2, ..., n,
repeats every 2, F,, (z) must repeat every 27 and so is a potentially good match for f(x), which
also repeats every 27r. The problem is to determine values for the Fourier coefficients that achieve a
close match between f(x) and F, (x). We choose the following values:

The Fourier Coefficients for a Periodic Function f of Period 27

1 s
a0 = 5 . f(z)dx,
1 ™
@ = f(x)cos(kx)dx fork >0,

—T

1 f(z)sin(kx)dx  fork > 0.
™

—T

by,

Notice that g is just the average value of f over the interval [, 7].

For an informal justification for the use of these values, see page 538. In addition, the integrals over
[—7, 7] for aj and by, can be replaced by integrals over any interval of length 27.

Example 1

Construct successive Fourier polynomials for the square wave function f, with period 27, given by

0 7 <z<0
f(m)_{l 0<z<m.

3The Fourier polynomials are not polynomials in the usual sense of the word.
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Solution Since ay is the average value of f on [—m, 7], we suspect from the graph of f that ag = 5. We can
verify this analytically:
1/ﬂf‘()d L 00d+1/ﬂ1d 0+ 2 (m) = 2
apg = — xr)ar = — X - xr = —(m) = —.
O or ) or | . 21 J, 2 2
Furthermore,
1 (7 1 (7
ay = — f(at)cosrcdmz—/ lcoszdr =0
L — ™ Jo
and 1 g L )
by =— f(x)sin:cdxz—/ lsinzder = —.
L — ™ Jo ™

Therefore, the Fourier polynomial of degree 1 is given by

1 2
flz) = Fi(z) = 5t ;Sinx

and the graphs of the function and the first Fourier approximation are shown in Figure 10.21.
We next construct the Fourier polynomial of degree 2. The coefficients ag, a1, b1 are the same

as before. In addition,

L[ L ["
a9 = — f(z) cos(2x) dx = —/ 1cos(2z)dz =0
T ) _n ™ Jo

and L g L g
b = — f(z)sin(2z) dox = —/ 1sin(2z) dx = 0.
™ m™.Jo

Since a; = by = 0, the Fourier polynomial of degree 2 is identical to the Fourier polynomial of

degree 1. Let’s look at the Fourier polynomial of degree 3:

L[ f(x)cos(3x) du = 1 /.7r 1cos(3x)dz =0
T Jo

a3 = —
™ —T
and L L g
by = — f(2)sin(3z) de = —/ 1sin(3x)de = —.
) T Jo 37

So the approximation is given by

1 2 2
f(z) = F3(x) = 3 + —sing + o sin(3z).

The graph of Fj is shown in Figure 10.22. This approximation is better than Fy (z) = % + % sin z,
as comparing Figure 10.22 to Figure 10.21 shows.
1 I 1 !
1 F : F:
\ 3 1 \ 2 3
| xT | | x
T 0 T T
Figure 10.21: First Fourier approximation to Figure 10.22: Third Fourier approximation to
the square wave

the square wave
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—
(S0

8 ;1]
(S0

8 3

7 \Vj T

Figure 10.23: Fifth and seventh Fourier approximations to the square wave

Without going through the details, we calculate the coefficients for higher-degree Fourier ap-
proximations:

1 2 2 2
Fs(x) = 3 + - sina + 3 sin(3z) + B sin(bz)

1 2 2 2 2
Fr(z) = 3 + - sinx + . sin(3z) + B sin(bz) + o sin(7z).

Figure 10.23 shows that higher-degree approximations match the step-like nature of the square wave
function more and more closely.

We could have used a Taylor series to approximate the square wave, provided we did not center
the series at a point of discontinuity. Since the square wave is a constant function on each interval,
all its derivatives are zero, and so its Taylor series approximations are the constant functions: 0 or 1,
depending on where the Taylor series is centered. They approximate the square wave perfectly on
each piece, but they do not do a good job over the whole interval of length 27. That is what Fourier
polynomials succeed in doing: they approximate a curve fairly well everywhere, rather than just
near a particular point. The Fourier approximations above look a lot like square waves, so they ap-
proximate well globally. However, they may not give good values near points of discontinuity. (For
example, near x = 0, they all give values near 1/2, which are incorrect.) Thus Fourier polynomials
may not be good local approximations.

Taylor polynomials give good local approximations to a function;
Fourier polynomials give good global approximations to a function.

Fourier Series

As with Taylor polynomials, the higher the degree of the Fourier approximation, the more accurate
it is. Therefore, we carry this procedure on indefinitely by letting n — oo, and we call the resulting
infinite series a Fourier series.

The Fourier Series for f on [-m, 7]

f(x) = ap + a1 cosx + az cos 2x + az cos 3z + - - -
+ by sinx + by sin 22 + bg sin 3x + - - -

where aj, and by, are the Fourier coefficients.

Thus, the Fourier series for the square wave is

1 2 2 2 2
f(z) ==+ —sinx + —sin3z + —sinbx + —sin 7z + - - -.
2 7 3m om T
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Harmonics
Let us start with a function f(x) that is periodic with period 27, expanded in a Fourier series:

f(x) = ap + a1 cosx + az cos 2z + agcos 3z + - - -
+ by sinx + bg sin 2x + by sin 3w + - - -
The function
a cos kx + by, sin kx

is referred to as the k' harmonic of f, and it is customary to say that the Fourier series expresses f in
terms of its harmonics. The first harmonic, a; cos x + by sin x, is sometimes called the fundamental
harmonic of f.

Example 2 Find ag and the first four harmonics of a pulse train function f of period 27 shown in Figure 10.24:

1 0<z<n/2
0 7/2<z<2rm

|

|

|

. @
—3m -2 - 0 m/2 T 27 37

Figure 10.24: A train of pulses with period 27

Solution First, ag is the average value of the function, so

1
= — = — 1 —
ag ) f(z)de = / de =

Next, we compute ay and by, k = 1, 2, 3, and 4. The formulas

™

n/
ap = 1 f( ) cos(ka) da = l/ 2cos(k’w) dx
™ Jo

1 ™ 1 /2
by = — f(x)sin(kx) dr = ;/ sin (kx) dx
o o

lead to the harmonics

. 1 1.
aijcosx +bysiney = —cosx + —sinx
™ ™

1
ag cos(2x) + by sin(2x) = — sin(2x)
7

. 1 1.
as cos(3z) + by sin(3x) = ~3. cos(3zx) + 3 sin(3x)
a4 cos(4x) + by sin(4x) = 0.

Figure 10.25 shows the graph of the sum of ag and these harmonics, which is the fourth Fourier
approximation of f.

Ja M a N B
~— f(=)
€T
—3m -2 —T T/2 T 2T 3

Figure 10.25: Fourth Fourier approximation to pulse train f equals the sum of ao and the first four harmonics
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Energy and the Energy Theorem

The quantity Ay = +/a? + b2 is called the amplitude of the k'™ harmonic. The square of the
amplitude has a useful interpretation. Adopting terminology from the study of periodic waves, we
define the energy E of a periodic function f of period 27 to be the number

5= [ U@,

T J—n

Problem 17 on page 541 asks you to check that for all positive integers k,

1 T
- / (ay, cos(kx) 4 by sin(kx))? do = a? + b2 = A3.

—T

This shows that the £*"" harmonic of f has energy AZ. The energy of the constant term ag of the
Fourier series is L [ a8 du = 2a3, so we make the definition

AO = \/5(10.

It turns out that for all reasonable periodic functions f, the energy of f equals the sum of the energy
of its harmonics:

The Energy Theorem for a Periodic Function f of Period 27

1 s
E=— [f(x)]?de = AZ+ AT+ A3 +---

J—m

where Ay = v/2ag and Ay, = /a7 +b7 (for all integers k > 1).

The graph of A7 against k is called the energy spectrum of f. It shows how the energy of f is
distributed among its harmonics.

Example 3

Solution

(a) Graph the energy spectrum of the square wave of Example 1.
(b) What fraction of the energy of the square wave is contained in the constant term and first three
harmonics of its Fourier series?

(a) We know from Example 1 thatag = 1/2, a, = 0fork > 1, b, = 0 for k even, and by, = 2/ (k)
for k£ odd. Thus

1

A%:O if kiseven, k>1,
2\? 4
2 _ _ . .
A = <_k7r> =72 ifkisodd, k>1.

The energy spectrum is graphed in Figure 10.26. Notice that it is customary to represent the
energy A2 of the k' harmonic by a vertical line of length A%. The graph shows that the constant
term and first harmonic carry most of the energy of f.
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AR
Height = 4/ (%)
1/2 /

4/(97%) 4/(257?)

L

) k
o 1 2 3 4 5 6

Figure 10.26: The energy spectrum of a square
wave

(b) The energy of the square wave f(x) is

E:%/ﬂ[f(x)Pda::%/Oﬂldaz:L

—T

The energy in the constant term and the first three harmonics of the Fourier series is

1 4

2 972

4
A§+A§+A§+A§=—+F+0+—:0.950.

The fraction of energy carried by the constant term and the first three harmonics is

Musical Instruments

You may have wondered why different musical instruments sound different, even when playing the
same note. A first step might be to graph the periodic deviations from the average air pressure that
form the sound waves they produce. This has been done for clarinet and trumpet in Figure 10.27.4
However, it is more revealing to graph the energy spectra of these functions, as in Figure 10.28.
The most striking difference is the relative weakness of the second, fourth, and sixth harmonics for
the clarinet, with the second harmonic completely absent. The trumpet sounds the second harmonic

0.95/1 = 0.95, or 95%.

with as much energy as it does the fundamental.

deviations in
air pressure
from average

deviations in
air pressure
from average

M

|

|V

L
AN

Waveform of clarinet

Figure 10.27: Sound waves of a clarinet and trumpet

L

4 Adapted from C.A. Culver, Musical Acoustics (New York: McGraw-Hill, 1956) pp. 204, 220.

\’ \] time

Waveform of trumpet
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Spectrum of clarinet— Spectrum of trumpet—

o : : k
0123 456 78910

L T
0123 456 78 910

Figure 10.28: Energy spectra of a clarinet and trumpet

What Do We Do if Our Function Does Not Have Period 27?

We can adapt our previous work to find the Fourier series for a function of period b. Suppose f(x)
is given on the interval [—b/2, b/2]. In Problem 29, we see how to use a change of variable to get
the following result:

The Fourier Series for f on [—b/2,b/2]

flx)=aop +§ (ak cos <27Tbkm> + by, sin (27;]”))

b/2
where ag = — () dx and, for k > 1,
bJ v
2 (V2 2 2 (V2 2
ap =+ (z) cos ( ka) dz b = — (x) sin ( ﬂkm) dz
b v b b/ v b

The constant 27k /b is called the angular frequency of the £*"'-harmonic; b is the period of f.

Note that the integrals over [—b/2, b/2] can be replaced by integrals over any interval of length b.

Example 4

Solution

Find the fifth-degree Fourier polynomial of the square wave f(x) graphed in Figure 10.29.

i i L i i P~ f
I I I I I £
\ I I I /
I I I I I
| | | | | T
\4 N/ \v4 \J \v4 \/ \v4 \J
-3 —2 -1 1 2 3 4

Figure 10.29: Square wave f and its fifth Fourier approximation Fs

Since f(z) repeats outside the interval [—1, 1], we have b = 2. As an example of how the coefficients
are computed, we find ;. Since f(z) = 0 for —1 < 2 < 0,
1

1 1
b = 2/ f(x)sin (h—x) do = / sin(rz)dr = 1 cos(ma)| = z
2/, 2 0 T

m 0

Finding the other coefficients by a similar method, we have
1 2 2 2
f(z) = 3 + - sin(mx) + 3 sin(3mx) + B sin(bmx).

Notice that the coefficients in this series are the same as those in Example 1. This is because the
graphs in Figures 10.23 and 10.29 are the same except with different scales on the z-axes.
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Seasonal Variation in the Incidence of Measles

Example 5

Fourier approximations have been used to analyze the seasonal variation in the incidence of dis-
eases. One study5 done in Baltimore, Maryland, for the years 1901-1931, studied I(t), the average
number of cases of measles per 10,000 susceptible children in the t™® month of the year. The data
points in Figure 10.30 show f(¢) = log I(¢). The curve in Figure 10.30 shows the second Fourier
approximation of f(¢). Figure 10.31 contains the graphs of the first and second harmonics of f(t),
plotted separately as deviations about ag, the average logarithmic incidence rate. Describe what
these two harmonics tell you about incidence of measles.

f)

First harmonic Second harmonic

ag+ 1.0 | l
ao + 0.5 l

ao
20— 05 - w
| | | | | | | | | | | | | | | | t aO - 1-0 =

JFMAMJ] JASONDIJFMAM

Figure 10.30: Logarithm of incidence of measles per
month (dots) and second Fourier approximation

Solution

TR R
JFMAMIJ JASONDIFMAM

Figure 10.31: First and second harmonics of f(¢) plotted

(curve) as deviations from average log incidence rate, ag

Taking the log of I(t) has the effect of reducing the amplitude of the oscillations. However, since the
log of a function increases when the function increases, and decreases when it decreases, oscillations
in f(t) correspond to oscillations in I(t).

Figure 10.31 shows that the first harmonic in the Fourier series has a period of one year (the
same period as the original function); the second harmonic has a period of six months. The graph
in Figure 10.31 shows that the first harmonic is approximately a sine with amplitude about 0.7; the
second harmonic is approximately the negative of a sine with amplitude about 0.2. Thus, for ¢ in
months (¢t = 0 in January),

log I(t) = f(t) ~ ag + 0.7sin (%t) —0.2sin (%t) \

where 7/6 and 7/3 are introduced to make the periods 12 and 6 months, respectively. We can
estimate ag from the original graph of f: it is the average value of f, approximately 1.5. Thus

J(t) ~ 1.5+ 0.7sin (%t) ~ 0.2sin (gt) .

Figure 10.30 shows that the second Fourier approximation of f(t) is quite good. The harmonics of
f(t) beyond the second must be rather insignificant. This suggests that the variation in incidence in
measles comes from two sources, one with a yearly cycle that is reflected in the first harmonic and
one with a half-yearly cycle reflected in the second harmonic. At this point the mathematics can tell
us no more; we must turn to the epidemiologists for further explanation.

Informal Justification of the Formulas for the Fourier Coefficients

Recall that the coefficients in a Taylor series (which is a good approximation locally) are found
by differentiation. In contrast, the coefficients in a Fourier series (which is a good approximation
globally) are found by integration.

We want to find the constants ag, a1, ag, ...and by, b, ...1in the expression

f(x)=ao+ i ay, cos(kx) + i by, sin(kx).
k=1

k=1

SFrom C. I. Bliss and D. L. Blevins, The Analysis of Seasonal Variation in Measles (Am. J. Hyg. 70, 1959), reported by
Edward Batschelet, Introduction to Mathematics for the Life Sciences (Springer-Verlag, Berlin, 1979).
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Consider the integral

Splitting the integral into separate terms, and assuming we can interchange integration and summa-
tion, we get

_ﬂ flx)dz = /_7T aodaj+/_ Zak cos(kx) dx—i—/_ Zbksm(lm

T k=1 T k=1

=/ ag cLL+Z/ ay, cos(kx) (LL—i-Z/ by sin(kx) d

ap + Z ay, cos(kx) + Z by, sin(k’;v)] dx.
k=1 k=1

But for k£ > 1, thinking of the integral as an area shows that

/ sin(kx) dz =0 and / cos(kx) dx =0,

—T —T
so all terms drop out except the first, giving

sy
= 2mag

—T

flx)de = / ap dxr = apx

—T —Tr

and so we get the following result:

1

ap = o | f(l’)

Thus ag is the average value of f on the interval [—, 7].
To determine the values of any of the other aj, or by (for positive k), we use a rather clever
method which depends on the following facts. For all integers k and m,

/ sin(kx) cos(mz) dx = 0,

and, provided k # m,

/ cos(kx) cos(mz)dx =0 and / sin(kx) sin(mz) dx = 0.

(See Problems 24-28 on page 542.) In addition, provided m # 0, we have

/ cos*(mz)dr =7 and / sin?(mx) do = .

—T —T

To determine ay, we multiply the Fourier series by cos(ma), where m is any positive integer:

f(z) cos(mz) = ag cos(mz) + Z ay, cos(kx) cos(mx) + Z by, sin(kx) cos(mx).
k=1 k=1
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We integrate this between —7 and 7, term by term:

! f(z) cos(mz) de = /7r (ag cos(mz) Z ay, cos(kx) cos(mx) Z by, sin(kx) cos(ma:))

o VT k=1 k=1

=ag /_7T cos(mz) dx + Z (ak/

+I; (bk /_ ) sin(kz) cos(mz) dm) _

Provided m # 0, we have f cos(mzx) dx = 0. Since the integral f sin(kx) cos(ma) dz = 0,

T

cos(kz) cos(mz) dx)

all the terms in the second sum are zero. Since f _ coskx cosmax dr = 0 provided k # m, all the
terms in the first sum are zero except where k£ = m. Thus the right-hand side reduces to one term:

f(z) cos(mz) dz = ap, /7T cos(mz) cos(mz) de = Tay,.

—T

This leads, for each value of m = 1,2,3..., to the following formula:

Ay = % ! f(z) cos(mz) dx.

—T

To determine by, we multiply through by sin(maz) instead of cos(maz) and eventually obtain,

for each value of m = 1,2,3..., the following result:
1 s
by, = — f(z) sin(maz) dx
™ —T

Exercises and Problems for Section 10.5

Exercises
Which of the series in Exercises 1-4 are Fourier series? 6. Repeat Problem 5 with the function
1. 1+cosz + cos”x + cos® o+ cos*z + - - - f(x):{_x —m<z<0
x 0<e<m.

2. sinz +sin(z + 1) +sin(z +2) + - -

3, 5T L Ging — cos(2z) _ sin(2z) + cos(3z) 4+ 7. What fraction of the energy of the function in Problem 6
sin(32) 2 8 is contained in the constant term and first three harmonics
— of its Fourier series?

4. 1_1 sinx + L sin(2z) — 1 sin(3x) 4 - - For Exercises 8-10, find the n*™" Fourier polynomial for the
2 3 ] o given functions, assuming them to be periodic with period 27.

5. Construct the first three Fourier approximations to the Graph the first three approximations with the original func-
square wave function tion.

- - <
f(a:):{ 1 T<z<0 8. f(z) =2 —m<z<m
1 0<x <. 0 —m<z<0
9. hiw) = { =
Use a calculator or computer to draw the graph of each () r O0<z<m

approximation. 10. g(z) =2, —-w<z<m.
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11.

12.

13.

14.

15.

16.

(a) For —27m < z < 2, use a calculator to sketch:
i)y =sinz + % sin 3z
i)y =sinz + % sin 3z + % sin 5
(b) Each of the functions in part (a) is a Fourier approx-
imation to a function whose graph is a square wave.
What term would you add to the right-hand side of
the second function in part (a) to get a better approx-
imation to the square wave?
(¢) What is the equation of the square wave function? Is
this function continuous?

(a) Find and graph the third Fourier approximation of
the square wave g(z) of period 2:

0
1
0

(b) How does the result of part (a) differ from that of the
square wave in Example 1?

—rm <z < —m/2
—m/2 <z <72
m/2 <z <.

g(x) =

Suppose we have a periodic function f with period 1 de-
fined by f(x) = x for 0 < = < 1. Find the fourth de-
gree Fourier polynomial for f and graph it on the interval
0 < z < 1. [Hint: Remember that since the period is not
27, you will have to start by doing a substitution. Notice
that the terms in the sum are not sin(nx) and cos(nx),
but instead turn out to be sin(27nx) and cos(27nx).]

Suppose f has period 2 and f(z) = x for 0 < z < 2.
Find the fourth-degree Fourier polynomial and graph it
on 0 < z < 2. [Hint: See Problem 13.]

Suppose that a spacecraft near Neptune has measured a
quantity A and sent it to earth in the form of a periodic
signal A cost of amplitude A. On its way to earth, the
signal picks up periodic noise, containing only second
and higher harmonics. Suppose that the signal h(¢) actu-
ally received on earth is graphed below in Figure 10.32.
Determine the signal that the spacecraft originally sent
and hence the value A of the measurement.

r80 h(t)
|
_z jus ;
- _%Tﬁ -3 ‘4 i3 BTT m

T T T T T T T t
| | | | | | |
A A T oo
| L
[ —50—+ [

Figure 10.32

Figures 10.33 and 10.34 show the waveforms and en-
ergy spectra for notes produced by flute and bassoon.®
Describe the principal differences between the two spec-
tra.

deviations in air pressure
from average

deviations in air pressure
from average

A A
VAV

Waveform of flute

time

Waveform of bassoon

Figure 10.33

Spectrum of flute—

k
2
A
Spectrum of bassoon—
[
& T &
0123456789

Figure 10.34

17. Show that for positive integers k, the periodic function
f(x) = a cos kx + by sin kx of period 27 has energy
2 12
ay, + bi.
18. Given the graph of f in Figure 10.35, find the first two
Fourier approximations numerically.

Y

)

y = f(x)

Figure 10.35

6Adapted from C.A. Culver, Musical Acoustics (New York: McGraw-Hill, 1956), pp. 200, 213.
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19. Justify the formula b, = £ [7 f(z)sin(kz)dz for

the Fourier coefficients, by, of a periodic function of
period 27. The argument is similar to that in the text
for a. In addition to some of the formulas used there,
you will need the formulas: | _”'ﬁ sin?(kz) de = 7 and

f:r sin(kx) sin(mx) de = 0 for k # m.

In Problems 20-23, the pulse train of width c is the periodic
function f of period 27 given by

—r<z< —c/2
—c/2<x<c/2
c/2 <z <.

0
f(:r:)={1
0

20. Suppose that f is the pulse train of width 1.

(a) What fraction of the energy of f is contained in the
constant term of its Fourier series? In the constant
term and the first harmonic together?

(b) Find a formula for the energy of the k'™ harmonic of
f. Use it to sketch the energy spectrum of f.

(¢) How many terms of the Fourier series of f are
needed to capture 90% of the energy of f?

(d) Graph f and its fifth Fourier approximation on the
interval [—3m, 37].

21. Suppose that [ is the pulse train of width 0.4.

(a) What fraction of the energy of f is contained in the
constant term of its Fourier series? In the constant
term and the first harmonic together?

(b) Find a formula for the energy of the k'™ harmonic of
f. Use it to sketch the energy spectrum of f.

(¢) What fraction of the energy of f is contained in the
constant term and the first five harmonics of f? (The
constant term and the first thirteen harmonics are
needed to capture 90% of the energy of f.)

(d) Graph f and its fifth Fourier approximation on the
interval [—3, 37].

22. Suppose that f is the pulse train of width 2.

(a) What fraction of the energy of f is contained in the
constant term of its Fourier series? In the constant
term and the first harmonic together?

(b) How many terms of the Fourier series of f are
needed to capture 90% of the energy of f?

23.

(¢) Graph f and its third Fourier approximation on the
interval [—3, 37].

After working Problems 20— 22, write a paragraph about
the approximation of pulse trains by Fourier polynomi-
als. Explain how the energy spectrum of a pulse train of
width ¢ changes as ¢ gets closer and closer to 0 and how
this affects the number of terms required for an accurate
approximation.

For Problems 24-28, use the table of integrals inside the back
cover to show that the following statements are true for posi-
tive integers k£ and m.

24.

25.

26.

27.

28.

29.

/”' cos(kx) cos(max)dx =0, ifk #m.
/”' cos®(mx) dz = 7.

/" sin®(mz) de = .

/7r sin(kx) cos(max) dx = 0.

/7r sin(kz) sin(mx) de =0, if k # m.

Suppose that f(z) is a periodic function with period b.
Show that

(@) g(t) = f(bt/2m) is periodic with period 27 and
f(z) = g(2ma/b).

(b) The Fourier series for g is given by
[ee)
g(t) =ao + Z (ax cos(kt) + by, sin(kt))
k=1

where the coefficients ao, ar, by are given in the box
on page 537.
(¢) The Fourier series for f is given by

flx) = a0+§: (ak cos (%bkx) + by sin (Qkax))
k=1

where the coefficients are the same as in part (b).

CHAPTER SUMMARY (see also Ready Reference at the end of the book)

e Taylor series and polynomials

General expansion about x = 0 or z = a; specific series
for ”,sinx, cos z, (1 + x)?; using known Taylor series
to find others by substitution, integration, and differentia-

tion; interval of convergence; error in Taylor polynomial
expansion

e Fourier series

Formula for coefficients on [—, 7], [—b, b];
Energy theorem
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REVIEW EXERCISES AND PROBLEMS FOR CHAPTER TEN

Exercises

For Exercises 14, find the second-degree Taylor polynomial
about the given point.

1. &7, r=2

0=m/4

r=1 2. Inx,

3. sinz, x=—-m/4 4. tan0,

5. Find the third-degree Taylor polynomial for f(xz) =
2%+ 72 —br+late = 1.

In Exercises 613, find the first four nonzero terms of the Tay-
lor series about the origin of the given functions.

6. t2e 7. cos(3y)
8. 0% cosH? 9. sint?
1 1
10. 1. ———
4 —x 1— 422
12— B =
14t T VI= 22
Problems

For Problems 14-16, find the Taylor polynomial of degree n
for z near the given point a.

1

14. , a=2, n=4
1—=z

5. ! s =2, n=4
1+z

16. Inz, a=2, n=4

For Exercises 17-20, expand the quantity in a Taylor series
around 0 in terms of the variable given. Give four nonzero
terms.

b
17. e in terms of —
a+b a
18 ! in terms of r
" (a+1)3/2 a

19. (B + y*)*? in terms of %, where B > 0

20. /R — rin terms of %

Find the exact value of the sums in Problems 21-26.

3.3 3 3
21. 3+3+ﬁ+§+z+a+“’
(SR RS

3 9 27 &1
1 1
23. 84+44+24+14+ =4+ =4+ +

2 4 210
2, 1—2+%_3§!+%+...
25, 2—%+§_17l!8+...
26. (0.1)> - (031!)4 + (0;!)6 - (0%1!)8 L

27. Find an exact value for each of the following sums.

(@) 7(1.02)° + 7(1.02)* + 7(1.02) + 7 + T

- - (1.02)
o2 T T oo
4 6
(b) 7+7(0.1)° + %jL 7(%‘!1) 4o

28. All the derivatives of some function f exist at 0, and that
Taylor series for f about z = 0 is

ZL‘2 :233 .’L‘4 n

x

1’+7+?+I+"'+7+~--.
Find '(0), f"(0). f"(0). and £'*(0).

29. A function f has f(3) = 1, f(3) = 5and f'(3) =
—10. Find the best estimate you can for f(3.1).

30. Suppose x is positive but very small. Arrange the follow-
ing expressions in increasing order:

z ,

e’ —1,

sinz, In(l4+z), 1-—cosz,

V1 —x.

arctan x,

31. By plotting several of its Taylor polynomials and the
function f(x) = 1/(1 + x), estimate graphically the
interval of convergence of the series expansions for this
function about £ = 0. Compute the radius of conver-
gence analytically.

In(l+z+2%) -z

2

32. Use Taylor series to evaluate lim -
sm-x

z—0

33. (a) Find giné Smé%) . Explain your reasoning.

sin(26) Jooks

like a parabola near § = 0. What is the equation of
the parabola?
34. (a) Find the Taylor series for f(t) = te’ about t = 0.
(b) Using your answer to part (a), find a Taylor series
expansion about z = 0 for

/ te! dt.
0

(c) Using your answer to part (b), show that

1 1 1 B
a2y Teey Ty T

(b) Use series to explain why f(0) =

Ly
23
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35.

36.

37.

38.

39.
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(a) Find the Taylor series expansion of arcsin x.

(b) Use Taylor series to find the limit
arctan v

of

- as x — 0.
arcsin x

A particle moving along the z-axis has potential energy
at the point x given by V' (x). The potential energy has a
minimum at z = 0.

(a) Write the Taylor polynomial of degree 2 for V' about
x = 0. What can you say about the signs of the co-
efficients of each of the terms of the Taylor polyno-
mial?

The force on the particle at the point x is given by
—V'(z). For small x, show that the force on the
particle is approximately proportional to its distance
from the origin. What is the sign of the proportion-
ality constant? Describe the direction in which the
force points.

(b)

Consider the functions y = e and y=1/(1+27).

(a) Write the Taylor expansions for the two functions
about z = 0. What is similar about the two series?
What is different?

Looking at the series, which function do you predict
will be greater over the interval (—1, 1)? Graph both
and see.

Are these functions even or odd? How might you see
this by looking at the series expansions?

By looking at the coefficients, explain why it is rea-

(b)

(c)
(d)

sonable that the series for y = e converges for
all values of x, but the series for y = 1/(1 + z?)
converges only on (—1,1).

The electric potential, V, at a distance R along the axis
perpendicular to the center of a charged disc with radius
a and constant charge density o, is given by

V =2n0(\/R?+a?> — R).
Show that, for large R,

7Ta20'

V x

The gravitational field at a point in space is the gravita-
tional force that would be exerted on a unit mass placed
there. We will assume that the gravitational field strength
at a distance d away from a mass M is

GM
d2
where G is constant. In this problem you will investigate
the gravitational field strength, I, exerted by a system
consisting of a large mass M and a small mass m, with a
distance 7 between them. (See Figure 10.36.)
P M
. [ )
R r

m
[ ]

Figure 10.36

40.

41.

42.

(a) Write an expression for the gravitational field
strength, F', at the point P.

(b) Assuming 7 is small in comparison to R, expand F
in a series in 7/ R.

(¢) By discarding terms in (r/R)?* and higher powers,
explain why you can view the field as resulting from
a single particle of mass M + m, plus a correction
term. What is the position of the particle of mass
M + m? Explain the sign of the correction term.

A thin disk of radius ¢ and mass M lies horizontally; a
particle of mass m is at a height h directly above the cen-
ter of the disk. The gravitational force, F', exerted by the
disk on the mass m is given by

Fo 2GMmh (1 1
T a2 h (a®+h2)1/2 )"

Assume a < h and think of F' as a function of a, with
the other quantities constant.

(a) Expand F as a series in a/h. Give the first two
nonzero terms.

(b) Show that the approximation for F' obtained by us-
ing only the first nonzero term in the series is inde-
pendent of the radius, a.

(¢) If a = 0.02h, by what percentage does the approx-
imation in part (a) differ from the approximation in
part (b)?

When a body is near the surface of the earth, we usually
assume that the force due to gravity on it is a constant
mg, where m is the mass of the body and g is the accel-
eration due to gravity at sea level. For a body at a distance
h above the surface of the earth, a more accurate expres-
sion for the force I’ is

o Mgl
(R+h)?

where R is the radius of the earth. We will consider the

situation in which the body is close to the surface of the

earth so that A is much smaller than R.

(a) Show that F' =~ mg.

(b) Express F' as mg multiplied by a series in h/R.

(c) The first-order correction to the approximation F' =
mg is obtained by taking the linear term in the se-
ries but no higher terms. How far above the surface
of the earth can you go before the first-order correc-
tion changes the estimate F' ~ mg by more than
10%? (Assume R = 6400 km.)

Expand f(z + h) and g(z + h) in Taylor series and take
a limit to confirm the product rule:

%(f(m)g(x)) = ["(x)g(x) + f(2)g (2).



43.

44.

45.

46.

Use Taylor expansions for f(y+ k) and g(x + h) to con-
firm the chain rule:

L (Flo@) = F(g()) o (@),

Suppose all the derivatives of g exist at z = 0 and that g
has a critical point at z = 0.

(a) Write the n'" Taylor polynomial for g at & = 0.

(b) What does the Second Derivative test for local max-
ima and minima say?

(¢) Use the Taylor polynomial to explain why the Sec-
ond Derivative test works.

(Continuation of Problem 44) You may remember that
the Second Derivative test tells us nothing when the sec-
ond derivative is zero at the critical point. In this problem
you will investigate that special case.

Assume g has the same properties as in Problem 44,
and that, in addition, g’’(0) = 0. What does the Taylor
polynomial tell you about whether ¢ has a local maxi-
mum or minimum at = 0?

Use the Fourier polynomials for the square wave

-1 —7m<z<0
f(T)_{ 1 O<z<m

CAS Challenge Problems
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47.

48.

49.

545

to explain why the following sum must approach 7 /4 as
n — oo:

1

1-— _—
2n +1

+ N (_1)2n+1

W] =
(S
~l =

Suppose that f(z) is a differentiable periodic function
of period 27. Assume the Fourier series of f is differen-
tiable term by term.

(a) If the Fourier coefficients of f are ax and by, show
that the Fourier coefficients of its derivative f are
kb and —kay.

(b) How are the amplitudes of the harmonics of f and
f' related?

(¢) How are the energy spectra of f and f’ related?

If the Fourier coefficients of f are aj and by, and the
Fourier coefficients of g are ¢x and dj, and if A and B
are real, show that the Fourier coefficients of Af + Bg
are Aay, + Bcer, and Aby, + Bd;,.

Suppose that f is a periodic function of period 27 and
that g is a horizontal shift of f, say g(z) = f(x + ¢).
Show that f and g have the same energy.

50.

51.

52.

(a) Use a computer algebra system to find Pio(x) and
Q10(x), the Taylor polynomials of degree 10 about
x = 0 for sin® z and cos? .
What similarities do you observe between the two
polynomials? Explain your observation in terms of
properties of sine and cosine.

(b)

(a) Use your computer algebra system to find P7(x) and
Q7(x), the Taylor polynomials of degree 7 about
2 = 0for f(x) = sinx and g(x) = sin z cos .
Find the ratio between the coefficient of x> in the
two polynomials. Do the same for the coefficients of
x5 and 27,

Describe the pattern in the ratios that you computed
in part (b). Explain it using the identity sin(2z) =
2sinx cosx.

(b)

(c)

(a) Calculate the equation of the tangent line to the func-
tion f(x) = z* at 2 = 2. Do the same calculation
for g(z) = 2® — 42® 4 8¢ — Tatx = 1 and for
h(x) =203 4+ 4a® — 3z 4 Tatx = —1.

Use a computer algebra system to divide f(xz) by

(x — 2)?, giving your result in the form

fla) L)
woor 1@+ T4

(b)

where ¢(z) is the quotient and r(x) is the remain-
der. In addition, divide g(x) by (z — 1)* and h(z)
by (z + 1)2.

53.

54.

(¢) For each of the functions, f, g, h, compare your
answers to part (a) with the remainder, r(x). What
do you notice? Make a conjecture about the tangent
line to a polynomial p(z) at the point x = a and
the remainder, 7 (z), obtained from dividing p(z) by
(z —a)*

Use the Taylor expansion of p(x) about x
prove your conjecture.’

Let f(z) = ]
not defined at x = 0, we can make f continuous by set-
ting f(0) = 1. If we do this, f has a Taylor series about
z =0.

(d)

= ato

+ g Although the formula for f is

(a) Use a computer algebra system to find Pio(z), the
Taylor polynomial of degree 10 about x = 0 for f.

(b) What do you notice about the degrees of the terms in
the polynomial? What property of f does this sug-
gest?

(c) Prove that f has the property suggested by part (b).

Let S(x) = f; sin(t?) dt.

(a) Use a computer algebra system to find Pi1(z), the
Taylor polynomial of degree 11 about z = 0, for
S(x).

(b) What is the percentage error in the approximation of
S(1) by P11(1)? What about the approximation of

7See “Tangents without Calculus” by Jorge Aarao, in The College Mathematics Journal Vol 31, No 5, Nov 2000 (Math-

ematical Association of America).
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CHECK YOUR UNDERSTANDING

Decide if the statements in Problems 1-24 are true or false.
Assume that the Taylor series for a function converges to that
function. Give an explanation for your answer.

1.

10.

11.

If f(«) and g(2) have the same Taylor polynomial of de-
gree 2 near z = 0, then f(z) = g(x).

. Usingsin 6 ~ 0—07 /3! with @ = 1°, we have sin(1°) =

1-1%/6 =5/6.

. The Taylor polynomial of degree 2 for e” near x = 5 is

1L+ (x—5)+ (z —5)%/2.

. If the Taylor polynomial of degree 2 for f(z) near z = 0

is Po(z) = 14 = — z?, then f(x) is concave up near
x=0.

. The Taylor series for sin x about x = 7 is

_ (Jc—7r)3+ (x —m)° _

(@=m) 31 51

. If f is an even function, then the Taylor series for f near

z = 0 has only terms with even exponents.

. The Taylor series for * cos = about z = 0 has only odd

powers.
. If f has the following Taylor series about z = 0, then
F7(0) = -8:
_ 3 2 4.3
flz)=1-2z+ Tl +-.

(Assume the pattern of the coefficients continues.)

. The Taylor series for f(z)g(x) about z = 0 is

F(0)9(0) + £(0)g (0)z + Mm L

To find the Taylor series for sin -+ cos « about any point,
add the Taylor series for sin « and cos « about that point.

The quadratic approximation to f(x) for = near 0 is bet-
ter than the linear approximation for all values of x.
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

The Taylor series for f converges everywhere f is de-
fined.

The graphs of e” and its Taylor polynomial Pio(x) get
further and further apart as * — oo.

A Taylor polynomial for f near x = a touches the graph
of fonlyatz = a.

Let P, (z) be the n*™® Taylor polynomial for a function f
near x = a. Although P, () is a good approximation to
f near z = a, it is not possible to have P, (z) = f(z)
for all .

If | £ (2)| < 10 for all n > 0 and all z, then the Taylor
series for f about = 0 converges to f(x) for all .

If f is an even function, then the Fourier series for f on
[—, 7] has only cosines.

The linear approximation to f(z) near x = —1 shows
that if f(—1) = g(—1) and f'(—1) < ¢’(—1), then
f(z) < g(x) for all z sufficiently close to —1 (but not
equal to —1).

The quadratic approximation to f(z) near x = —1
shows that if f(—1) = g(—1), f'(—=1) = ¢'(—1), and
f"(=1) < ¢g"(=1), then f(x) < g(z) for all z suffi-
ciently close to —1 (but not equal to —1).

If L1 () is the linear approximation to f1(x) near x = 0
and Lo(z) is the linear approximation to f(x) near
x = 0, then L1 (z) + Lo(x) is the linear approximation
to f1(z) + fo(x) nearx =0

If L1 () is the linear approximation to f1 () near x = 0
and La(zx) is the linear approximation to f2(x) near
x = 0, then L (z)L2(x) is the quadratic approximation
to f1(z) f2(x) near x = 0.

If £(™(0) > n! for all n, then the Taylor series for f
near x = 0 diverges at z = 0.

If f(™(0) > n! for all n, then the Taylor series for f
near « = 0 diverges at x = 1.

If £(™(0) > n! for all n, then the Taylor series for f
near x = 0 diverges at x = 1/2.

Rotation causes planets to bulge at the equator. Let « be the angle between the direction down-
ward perpendicular to the surface and the direction toward the center of the planet. At a point

on the surface with latitude 6 we have

1— Acos?6

CoOS &x =

(1 —2Acos?0 + A2 cos? 0)1/2’

where A is a small positive constant that depends on the particular planet. (For earth, A =

0.0034.)

(a) Expand cos « in powers of A to show that cosa =~ 1 — %Az cos? 0 sin? .
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(b) Show that o &~ 1 A sin(26).
(c) By what percentage is the approximation in part (b) in error for the earth at latitudes § = 0°,
20°, 40°, 60°, 80°?
2. Machin’s Formula and the Value of 7

(a) In the 17" century, Machin obtained the formula: 7/4 = 4 arctan(1/5) — arctan(1/239).
Use a calculator to check this formula.

(b) Use the Taylor polynomial approximation of degree 5 to the arctangent function to approx-
imate the value of 7. (Note: In 1873 William Shanks used this approach to calculate 7 to
707 decimal places. Unfortunately, in 1946 it was found that he made an error in the 528"
place. Currently, several billion decimal places are known.)

(¢) Why do the two series for arctangent converge so rapidly here while the series used in
Example 5 on page 521 converges so slowly?

(d) Now we prove Machin’s formula using the tangent addition formula

tan A + tan B
1—tanAtan B’

(i) Let A = arctan(120/119) and B = — arctan(1/239) and show that

t 120 t ! = arctan 1
arctan 119 arctan 239 = arctan 1.

(ii) Let A = B = arctan(1/5) and show that

ertn_ —rtn_
arcta. arcta. .

Use a similar method to show that

wareton (L) — acetan (120
arctan 5 = arctan 119 )

(iii) Derive Machin’s formula.

tan(A + B) =

3. Approximating the Derivative
In applications, the values of a function f(z) are frequently known only at discrete values
Zo, o + h, o £ 2h,.... Suppose we are interested in approximating the derivative f’(xg).

The definition
[(@o +h) — f(zo)
h
suggests that for small & we can approximate f’(z) as follows:
_ fl@wo+h) — f(zo)

f(zo) = o .

Such finite-difference approximations are used frequently in programming a computer to solve
differential equations.®
Taylor series can be used to analyze the error in this approximation. Substituting

f(wo) = }%li%

i
Floo 1) = flao) + f/(ao)h+ T2
into the approximation for f’(x¢), we find

f(zo +h) = flwo)
h

f" (o)
2

— o) + L5

8From Mark Kunka
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This suggests (and it can be proved) that the error in the approximation is bounded as follows:

Rt W) ey < 21,

where
lf" ()| < M for |z — x| < |

Notice that as h — 0, the error also goes to zero, provided M is bounded.

As an example, we take f(x) = e® and xy = 0, so f'(x¢) = 1. The error for various values
of h are given in Table 10.2. We see that decreasing h by a factor of 10 decreases the error by a
factor of about 10, as predicted by the error bound Mh /2.

Table 10.2
h (f(xo+h) — f(x0))/h Error
107! 1.05171 5.171 x 1072
1072 1.00502 5.02 x 1073
1073 1.00050 5.0 x 107*
1074 1.00005 5.0x107°

(a) Using Taylor series, suggest an error bound for each of the following finite-difference ap-

proximations.
(zo) — f(zo—h)

(i) f'(wo) = ! h

(11) f/(xo) ~ f(770 + h)z—hf(mo _ h)

(i) f(0) ~ —flxo+ 2h) + 8f(xo + hl)z;L 8f(xo — h)+ f(zo — 2h)

(b) Use each of the formulas in part (a) to approximate the first derivative of e” at z = 0 for
h=10"1,1072,1073,10"*. As h is decreased by a factor of 10, how does the error de-
crease? Does this agree with the error bounds found in part (a)? Which is the most accurate
formula?

(¢) Repeat part (b) using f(x) = 1/x and 29 = 10~°. Why are these formulas not good
approximations anymore? Continue to decrease h by factors of 10. How small does h have
to be before formula (iii) is the best approximation? At these smaller values of h, what
changed to make the formulas accurate again?




