CHAPTER 1

TRIGONOMETRIC SERIES AND FOURIER SERIES.
AUXILIARY RESULTS

1. Trigonometric series
These are series of the form

{ao+§,(a,cosvx+bysinw). (1-1)
yeml

Here z is a real variable and the coefficients a,, a,,d,. ... are indopendent of z. We may
usually suppose, if we wish, that the coefficients are real; when they are complex the
real and imaginary parts of (1-1) can be taken separately. The factor } in the constant
term of (1-1) will be found to be a convenient convention.

Since the terms of (1-1) are all of period 27, it is sufficient to study trigonometric
series in an interval of length 27, for example in (0, 27) or (— 71, 7).

Consider the power series ®
12, +Z(a,- ib,) (1-2)

on the unit circle z=e'*. The series (1-1) is the real part of (1-2). The series

g‘,(a,sin vr — b, cos vx) (1-3)
vl
(with zero constant term), which is the imaginary part of (1:2), is called the series
conjugate to (1-1). If S is the series (1-1), its conjugate will be denoted by J. The con-
jugate of S is, except for the constant term, —S.
A finite trigonometric sum

T(z)=}aq+ i (a, cos vz + b, sin vx)
reml

is called a trigonometric polynomial of order n. If |a, | +|b, |+ 0, T(z) is said to be
strictly of order n. Every T'(z) is the real part of an ordinary (power) polynomial P(z)
of degree n, where z =e¢*z,
We shall often use the term ‘polynomial’ instead of ‘trigonometric polynomial’.
The fact that trigonometric series are real parts of power series often suggests a
method of summing them. For example, the series

P(r,z)=4+ X rcosvz, Q(r,z)=Yrsinve (0<r<l)
r=1

are respectively the real and imaginary parts of

1
}+z+z’+...=%§.
where z =re'z. This gives ‘
1 1—92 reinz
P(" z)=§ r:2Tcosz -;;2-’ Q(f, z)= i'——é;cosz;—r_’-‘
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2 T'rigonometric series und Fourier aeries [r

Similarly, from the formula

. 1 ;
Logi—_—z..-.~z+§z‘+. - {0gr< ),

we get = aos pa 1 © gin v rsinx
S =dlog s e e ——r =arctan ———-—. .
,‘::x . } g)~2rcosz+r’ ,?1 v nl—roosz' (1-4)

with arotan 0 =90,
Let us now consider vhe series

@ o«
2~ Y cosir, Ysinvz,
vl rml

whioh are obtainec by writing 1 for r in P(r z) and @(r, x), and let ue denoto by L), (x)
and D,(z) the nth purtial rums of these series. Arguing as before, we get

. % gin(n +4)z LI cos4x—cos(n +4)x
= by [ P == -~ — - -l - = off L PR . 4
Dz)=1} +':.1ms vr Tsinjz ' D, (x) Elsm vx Tain bz

A slightly simpler method of proving the formulu for D,(z) is to multiply D,(x)
by 2gin §z and replace the products 2sin §z cos vz by differences of sines. Then all
the terms exoept the last cancel. Similarly for D (z).

These formulae ehow that /,(z) and D,(z) sre uniformly bounded indeed are
abeolutely less than cosec e, in each interval 0 <e <z € 27 —¢.

Many trigonometric expressions have & term 28in }x or 2 tan }z {n the denominator,
and in this connoxion we often use the inequalities

2
sin« < u, einu;;'u, tanz2u (0<u<gn).

Expressing the cosines and sines in terms of exponential functions, we write the
nth partial sum a,,(7) of (1-1) in the form

n
§0r 3 3 {(@,—ib,) €95 + (g, + ib,) =)
re}
If we define a, and b, for negative v by the conditions

a_=a, b_=-b (»y=0,12..)

(thus in particular by, =9), 8, is the nth symmetric partiid sum, that is to say, the sum
of the 2n + 1 central terms, of the Laurent seriee

4o
z c, et (C,'= ‘(0, " ‘.bv))t ~(l'5)
Por—oC
where, if the a, and b, are real,
c,=¢ (v=0,1,2 ...). (1-6)

Conversely, any series (1-6) satisfying (1-8) may be written in the form (1-1) with
a, and b, real. The serins (1-5) satisfying (1-8) is a cosine series if and only if the ¢, are
real; it is & sine series if and only if the ¢, are purely imaginary. :

‘Whenever we speak of convergemoe or summability (see Chapter II1) of a seriee
(1-5), we are always conocerned with the limit, ordinary or generalized, of the symmeiric
partial sums.
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It is easily sven that the series conjugate to (1-1) ie

+®
~+ T (signv)c, e, (1-7)

Pen.- @

where the symbol ‘siguz’ i3 defired as follows:
Bign0=0, siynz=z/lz| (z40)

Each of the forms (1-1) aud (1-5) of trigonometric serics has 172 sulvautnges. Whore
we are decling with (1+1) we suppose, unless the contrary is stated, tims the a’s and o'»
are real. Where we are dealing with (1-5}, cn the other nand. ic is convenient, (o Jeave
the c¢’s unrestrioted. The result is then that if (1-1) kas comples cosficnts and i of
the form 8, +13,, where &, and S, have real coefficients, then the senes conjugute to
(1-1)is 8, +i,.

The following notation will slso be wsed:

Ayz) =42y, A, (x)=a,cosnr+b,sinnx. B,(c)=a,sinne—b,connr (8>,

80 that (1-1} and (1-3) are respectively

® @
2 11,,(.17), 2 Bu(x)'
A=G n o<

We shali sometimes write (1-1) in the form

;:op" 008 (nc +,), where p,=(a® +b2)} >0
e

If ¢, = 0 for v < 0. (1:5) will be said to be of pouer sarics fyne. ¥or suih series, i3 is
except for uhe constant term, —48. (bvioualy, Sis the powerseries gy - ¢y2 - ¢g2" -
on the unit vircle Jz| =1,

In view of the periodicity of a trigonometric series it iy often convenient to ideniily
points z cengruent mod 27 and to accept all the implioations of thi.. conveuntiyn. Thus.
generally, we shall say that {wo points are distinet if they are Lot congruent, mod 2
a point z will be said to be outside a set K if it is outside everyset ».ngraent to £ mod 77:
and so on. This convention amounts to conaidering points s as situated on the
ciroumference of the unit circle. If on occamon the convention is not tolowed the
positio:n: will be clear fromn the context.

2, Sumnmation by parts
This is the name given to the formula
” n-1
E “rvr= Z L:‘(v; - pm!—l) + LY"vv ‘2.‘)

Ve vl
where U, =u; + 4+ ... + u, for k=1,2, ..., n; it is also callod Abel’s transformation.
(2:1) can Le easily verified; it correspoencls to integration by paris it tbe theory of
integration. The following corollary is very useful.
(2-2) THEOREM. If v,,v,, ...,t, are nun-negodive cnd non-tncreasiny, then

| vy + ugvg + ...+ u, v, | <v,max | U |. (2:3)
k
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For the absolute value of the right-hand side of (2-1) does not exceed
{(y—v) +(va—v3)+ ... +(v,_, —v,) + v, max | U} | =v, max | U, |.

The case when {1,} is non-negative and non-decreasing can be reduced to the
preceding one by reversirig the sequence. The left-hand side of (2:3) then does not
exceed v,max|U,-U,_,| s-‘lv" max | U, |.

A sequence v, v,, ..., v,, ... is said to be of bounded variation if the series
[or—vo|+]eg—vr |+ + vy =v, [+

converges.”This implies the convergence of (v, —vy) + ... + (v, —v,_) + ... =lim (v, — %),
and so every sequence of bounded variation is convergent.
The following result is an immediate consequence of (2-1).

(2-4) THEOREM. Ifthe series uy(r) + u,(z) + ... converges uniformly and if the sequence
{v,} s of bounded variation, then the series uy(x) vy + u,(z) v, + ... converges uniformly.

If the partial sums of uy(x) +u,(x)+ ... are uniformly bounded, and if the sequence
{v,} 18 of bounded vanatw’n and tends to 0, 'hen the series uy(x) vy + u,(T) v, + ... converges

uniformly.

The series (1-1) converges, and indeed uniformly, if £(| a, | + |8, |) converges. Apart
from this trivial case the convergence of a trigonometric series is a delicate problem.
Some special but none the less important results follow from the theorem just stated.
Applying it to the series -

- .
ta,+ T a,cosvz, Y a,sinvz, (2-5)

rm=] ve]

and taking into account the properties of D,(z) and D,(x) we have:

(2-6) TieoreM. If {a,} tends to 0 and is of bounded variation (in particular, if {a,}
tends monotonically to 0) both series (2-5). and so also the series Ta, ™=, converge unsformly
in each interval e<a < 2m--¢ (€> ).

As regards the neighbourhond of z =0, the behaviour of the cosine and sine series
((2-5)may be totally different. The latter always converges at z = 0 (and 8o everywhere),
while the convergence of the former is cquivalent to that-of a, +a,+.... If {a,} is of
bounded. variation but does'not tend to 0. the uniform convergence in Theorem (2-6)
is replaced by uniform boundedness.

Transforming the variable z we may present (2:6) in different forms. For example.
replacing z by z + 7 we have:

(2:7) TuroreM. If {a,} 13 of bounded variation and tends to 0, the serics

[ ] @
tag+ X (- 1)a,cosve, ¥ (—1)a,sinve
vyl

ve]
converge uniformly for |z | <m—€ (€> 0).

By (2:6), the series Zv—! cos vz and Sv-'sin vz converge for z + 0 (the latter indeed
everywhere). Using the classical theorem of Abel which asserts that if Sa, converges
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to s then Za s +s as r—>1-0 (see Chapter III, §1, below), we deduce from (1-4)

the formulae © cos vz 1

2 =8 g

- (0<z< 2m). (2:8)
v§l s’—l:'_vz = *(” E z)

3. Orthogonal series

* A system of real- or complex-valued functions @o(z), ¢,(z), P4(z), ..., defined in an
interval (a, b), is said to be orthogonal over (a, b} if

» 0 for m#%n
f_¢..<x) Pa(z)dz= {

In partioular,
(1) the funotions | @,.(x) |* are all integrable over (a, b):

(i) no ¢,,(z) can vanish identically (for that would imply A, = 0).

If in addition Ag=A,; =Ay=... = 1, the system is said to be normal. A system ortho-
gonal and normal is called orthonormal. If {$,(z)} is orthogoual, {¢,(z)/Ad} is ortho-
normal.

The importanoe of orthogonal systems is based on the following fact. Suppose that

CoPo(ZT)+ () + ... + e Pa(z)+....

where ¢, ¢,, ... are coustants, converges in (a,b) to a funotion f(z). If we multiply
both sides of the equation f=c,¢,+¢, @, +... by §, and integrate term by term over
(a,b), we have, after (3-1),
(J

‘ ey [S@B0de mm0n2 ), (3:2)
The argument is purely formal, although in some oasee easily justifiable, e.g. if the
series defining f(x) converges almost everywhere, its partial sums are absolutely
dominated by an integrable function, and each ¢, is bounded. It suggests the
following problem. Suppose that a function f(z) is defined in (a,b). We compute the
numbers ¢, by means of (3-2), and we write

J(2) ~ coBo(®) + €19y (%) +- ... (3:3)

We cal the numbers’c, the Fourier coefficients of f, and the series in (3-3) the Fousier
series of f, with respect to the system {¢,}. The sign ‘--’ in (3-3) only means that the
¢, are oonnected with f by the formulae (3-2). and couvevs no implication that the
series is convergent. still less that it converges to fiz). The problemwm is: in what sense,
and uwder what conditions, does the series (3-3) ‘represent’ f(«c)t

This book 18 devoted to the study of a special But imnortant orthogonal systerc,
namely the trigonometric system (see §4), and the theorv of general orthogunat
systems will be studied only in so far s it bears on this system. It may, however, be
observed here that if an orthogonal system {@,} is to be ai all nsefu for develuping
functions it must be complele, that is to say, whenever a new function y is added to it
the new systern is no longer orthogonal. For otherwise there would exist a function

, } (m,n=0,1,2,...). (3-1)
A,>0 for m=n - -
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(namely, the functiun i), not vanishing identically, whose Fourier series with respect
to thesystem {¢,} would consist entirely of zeros.

If the functions ¢, are real-valued, we may drop the bars in (3-1) and (3-2).

The following system {¢,}, orthonormal over (0. 1), is instructive. Let ¢,(x) be the
function of period 1, equal to +1 for 0<z<4 and to —1 for }<z<]1; and let

P0(0) =o(})=0. Let - o) =¢o(2*z) (n=0,1,2,...).

The function ¢,(z) takes alternately the values + 1 inside the intervals
' (0,2-7-1), (2-7-1,2.2-n-1)  (2.2-n-1 3 2-n-1)

That {¢,} is orthogonal follows from the fact that if m > n the integral of $,,6, over any
of theee intervals is 0. The system is obviously normal. It is not complete, sincé the
fungtion Yr(z) =1 may be added to it (see also Ex. 6 on p. 34). The functions ¢, are
called Rademacher’s functions. Clearly,

- @.(z)=sgignsin 2" 17z

For certain problems the foilowing extension of the notion of orthogonality is
useful. Let w(z) be a funetion non-decreasing over (a,b), and let @,, ¢,,5,, ... be a
system of functions in (a, b) such that

0 for m#nl

r¢m(x) P ix)dw(z) = { (m,m=0,1,...), (3-4)

A, >0 for m=nJ
where the integral is taken in the Stieltjes scnse (Stieltjes-Riemann or Sti€ltjes-
Lebesgue). The system {¢,} is then called orthogonal over (a,b) with respect to dw(x).
If Ag=A;=...=1, the system is orthonormal. The Fourier coeffigients of any function
f with mspect to {¢,} are
tn= g [ SO Bule)dor), (35)

and the series ¢ g + ¢;$, + ... is the Fourier series of f. If v)(z) =z, this is the same as
the old definition. If w(z) is-absolutely continuous, dw(z) may be replaced by o'(z)dz
and the functions ¢,(z)/{w'(z)} are orthogonal in the old sense. The case when
w(z) is a step function is important for trigonometric interpolation (see Chapter X).

4. The trigonometric system

The system of functions - ent (n=0,+1,42 ...) (4-1)

is orthogonal over any interval of length 27 sinoe, for any real‘cz,

a+ 3w { 0 (m#”),
J. eimE g-inz do —

q ) 2n (m=n).
With respect to (4-1) the Fourier series of any fanction f(z) defined, say, in the
interval (—7,m)is . o
T v 42)
4 The values ¢,(x) are closely reiated to the dyadic development of z. If 0 <z <1, x is not a dyadic
Tational and has dyadic development ‘dydy...d,.... where the d, are 0 or 1, then
do=dytz) = {1 - do ()}
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where ¢, = % f' f(t) e—dt. (403)
Let us set | | v
a,j-n-’-’J’ f(t) cos vedt, b'n;J f(t)sinptdt (v=0,1,...) (4-4)

(thus b, =0), 80 that ¢,=Ha,—ib,), c_,=ha,+ib) (=0 (4'5)

Bracketing together in (4-2) the terms with + v, we write the saries in the form -~
Cot(CreF+c_je )+ ... +(c e +c_ e ")+ ..,
or, taking into consideration (4-6),
M,o+(alcosz+b,sinx)+ .+ (a,cosnz + b, sinnx) +.... (4-6)
Since the orthgnormality of a pair of functions ¢,, ¢, 1mphes the orthogonality of
the pair @, + ¢,, it is easily seen that the system
1 eiTiesr  eiT_oiz eins 4 eminz  gint_ p=tns
2’ 2 ! 2 2 ’ 21 !
or, what is the same thing, the system
§, oosz, sinz, oo82zr, 8in2zr, ..., (47)

is orthogonal over any interval of length 27.
The numbers A (see §3) for this system are §m,m, 7, ..., 8o that, in view of (4-4),
(4-6) is the Fourier series of a function f(z), — 7 < z < 7, with respect to the system (4:7).
If the function f(z) is even, that is, if f( — z) =f(z), then

=2 f "f(t)cos dt, b,=0; (4-8)
nJo
and if f(z) is odd, that is, if f( —z) = — f(z). then
a,=0, b=> f " f(¢t)sin vtd. (4:9)
mJo

The set of functions (4:7) is called the trigonometric system, and (4-1) the complex
trigonometric system. The numbers a,, b, will be called the Fourter cocfficients (the
adjective trigonometric being understood), and the numbers c, the complex Fourier
coefficients, of f. Finally, (4-6) is the Fou:ter series and (4-2) the complex Fourier serves,
of f. When no confusion can arise we shall simply speak of the cocfficients of f and the
sertes (or development) of f.

The Fourier series of f in either of the forms (4-2) and (4-6) will be denoted by

’ SU
and the series conjugate to S[f] by S[f).

The series (4-2) and (4:8) are merely variants of each other, and in particular the
partial sums of the latter are symmetric partial sums of the former. For real-valued
functions we shall in this book use the forms (4-2) and (4-0) interchangeably. For
complex-valued functions, in principle, only the form (4-2) will be used. However,
-for many problems of Fourier series (e.g. the problem of the representation of f by
S{f)) the limitation to real-valued functions is no restriction of generality.
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Since the terms of (4-2) and (4-8) have period 27, 1t is convenient to assumne (a8 we
shall always do in what follows) that the functions whose Fourier seres we consider
are definad not only in an interval of length 27 but for ail values of r, by the condition
of periodicity fl@-2m=f(z).

- (This may necessitate a change ir: the value of f at one of the end-puints of the interval,
if initialiy the function had distinct values there ) In particular, when we apeak of the
Fourier series of a continucar function e ehall alwaye mean that the function is
periodic and continuoud in (- o) Similarly if we sasert thet a periodic f ix in-

- tegrable, of bounded variation. ote., we mean that f has these propertiex over a perind.
By periodic functions we shail always mea: functions of period 2.

If y(2) is periodic, the 1otegrul of 4 (x) uver any interval of length 27 1w always the
same. In particular. sirice f(x) 1s now defined everywhere and is periodic. the interval
of integration ( — 7, 4 71in(4-3) ard {4-4) may he replaced by any interval of length 27,
for instance by (0. 2r).

(4'10) THEOREM. If (4:6) o7 (4-2) cunverges almost everywhere to f(x). ond its prrtial
sums are absolutely domirslod by an inigrable furstion. the series is S[f| in particular
the conclusion kolis if the series comverges uniformly.

That a,. b, are giveu by (4-4) folows by the same o;.rgument which lod to {3-2} and
which is now justified.

A function f(x) defined i ar interval of length 27 (and continued periodically) has
8 uniquely defined S{f]. With a function f(r) defined in an interval {n b) of lergth
less than 277 we can asaociate various Fourier series. for we may define f{z) arbitrarily
in the remaining part of an interval of iength 27 coutaining (-2, b). The case (a. b)) = (. o)
is of particular intereat. If we define Sixi i (= m, 0) by the condition f{ -~ z) = f{x), so
that the extended f is even, we get a cosine Fourier seriex. 1f the extended f is odd,
we have a sine Fourier series. These two series are respectivoly called the cosine and
sine Fourier series cf the functicn f(x) defined in (0, ).

By a linear change of variable we may transforin the trigenometric system inte a
system orthogonal over any given finite interval (0, b). For example, the functions

exp (2minz/(b-a)} (n=0, +1, +2, ..),
form an orthogonal system in (a, b), and with any f(x) defined in that interval we may
associate the Fourier series

g 2minx 1 [ 2mint
Ec,, exp—-—, where ¢, = Lf(t)exp( - ——w—) dt, w=b-a.

By a change of variable the study of such series reduces tothe study of ordinary Fourier
series. The case of functions f(x) of period 1 is particularlv important. Here

+ @ 1 ‘

f(x)~ z c, eZﬂinI. Where cn —.:f f([)p—'-"nnldt'

Ao — O 0

The notion of Fourier coefficients a,, b,. ¢, has a parallel notion, that of Fourier
transforms

1 [+ (e ' I [+ .
a(v)=;j f(z)cosvzdz, A(v)= - [ f(x)sinvzdz, y(v)= 3 _Qf(z)e"“’ dz.
- T (411)
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The function f here is defined over an infinite interval, and in general is not periodio;
v is a continubus variable ranging from —oo to +c0. Unlees f is a function absolutely
integrable over ( —c0,0), in which case the integrals (4-11) converge absolutely and
uniformly for all v, one must specify the sense in which these integrals are taken.
Fourier integrals occur sporadioally in the theory of Fourier series, but a more detailed
disoussion of them is postponed to a later chapter (see Chapter X VI).

The problems of the theory of Fourier series are closely connected with the notion
of integration. In the formulae (4-4) we tacitly assumed that the products foost,
fein vt were integrable. Thus we may consider Fourier-Riemann, Fourier-Lebeague,
Fourier-Denjoy, etc., series, according to the way in which the integrals are defined.
In this book, except when otherwise stated, the sntegrals are always Lebesgue sniegrals.
It is assumed that the reader knows the elements of the Lebeegue theory. Proofs of
results of s special character will be given in the text, or the reader will be referred to
standard text-books. :

Every integrable function f(z), 0 < £ < 27, has ite Fourier series. It is even sufficient
for f to be defined almost everywhere in (0, 27), that is to say, everywhere except in a
set of measuxe zerq. Functions f,(z) and f,(z) which are equal almost everywhere have
the same Fourier series. Following the usage of Lebesgue, we call them equivalent
(in symbols, f,(z) = fy(z)), and we do not distinguish between equivalent funotions.

Throughout this book the following notations will consistently be used:

zeAd, x¢A, AcB, B>A.

The first means that z belongs to the set 4 ; the second that z does not belong to 4;
the third and fourth that 4 is a subset of B.

The Lebesgue measure of a set (in particular, of an interval) £ will be denoted by
| £ |. The sets and funotions considered will always be measurable, even if this ie not
stated explicitly.

By a denumerable set we always mean a set which is either finite or denumerably
infinite.

We list a few Fourier series which are useful in applications. Verifications are left
to the reader.

(i) Let

d@)=§(m—z) for O<z<2m, ¢&0)=¢(2n)=0.
Continued periodically ¢(z) is odd and
2 8inpr 1 +2 b=
¢(3=)~E:l—v—=§'_Z~m> o (4-12)
(see also (2-8) above).

The function ¢(z) can be used to remove discontinuities of other functions. For it
is continuous except at z=0, where it has a jump 7. Thus, if J(z) is periodic and at
z =2, has a jump d =f(z,+ 0) — f(z, — 0), the difference

A(z) =f(z) - (@/m) §(z —2,)
is oontinuous at z,, or may be made so by changing the value of f(z,).
(ii) Let &(x)=+1for 0<z<mand s(z)= — 1 for —w <z <0. Then

syt 3Rz

Tyt 2v-1 (413)
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(iii) Given 0<h<m, let x(x)=1 in (—h,h), x(x)=0 at the remaining points of
(—n,m). The function y is even and

@ sinyh h +® ginvk vz
(x)~—[ +v§‘-——c -E,_‘?,‘Th—e , (4-14)

where the value of (sin vh)/vhk when v =0 is taken to be 1.

(iv) Let 0<k<h, k+h<m, and let u(z)=gp,,(x) be periodic, continuous, even.
equal to 1in (0,4 — k), 0 in (h + k, 7). linear in (h—k, h + k). Then

2h 2 (sin vh\ (sin vk) h *+= (sin vh\ (ein vk) .
m(x)~— : E‘,‘( )(——p—k—) cos vz] = - _Zm(\ ) )(—W_) eV, (4:15)

The vth coefficient of it does not exceed a fixed multiple of v-2, <0 that S{u] converges
absolutely and uniformly. Using Theorem (6-3) below we see that the sign ‘~' in
(4-15) can be replaced by the sign of equality.

For % = 0 the series (4:13) go into the series (4:14).

(v) The special case h =k of (4-15) deserves attention. Then

h hte h
@) =)~ 2 14 > (”“‘,f ) com]— _2(‘15’—) = (416)

The function A,(x) is even, decreases linearly from 1 to 0 over the interval 0 < x < 24,
and i8 zero in (2A, 7). It is useful to note that the coefficients of S[A] are non-negative.
Using the remark made above that S{A] converges to A and setting z =0, we have the

formula P
© (sinvR\? = ;
E (5) =5 (17
whioh will be applied later. \ ‘
The functions 4 can be expressed in terms of the A’s:
h
ma=z(5+1) Mo -(__1),\”_» (418)

Sinoe both sides here are even functione of x and represent polygonsl lines, it is enough
to check the formula for the values of z corresponding to the vertices, that is, for z=0,
h+k,mn.

A is often called the ¢rtangular or roof, function and p the trapezosdal function.

(vi) Considering the Fourier series of the function e-%*, 0 <z < 27, where a is any
real or complex number, but not a real integer, we obtain the development

1 & inz
!.“l_"_aeﬂ!—ﬂa ~ z ¢ (4.19)
-4 am-ott 2

This degeneratee to (4-12) when a — 0.

5. Fourier-Stieltjes series
Let F(z) be a function of bounded variation defined in the closed interval 0 <« < 2.

+ o
Let us consider the series ¥ ¢,¢** with coefficients given by the formula
--®

c, = l r'ﬁ""dF(f) (v=0), + i. + 2. o)y (5 l)
21!.0 .
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the integrals being Riemann-Stieltjes integrals. The numbers c¢. will be called the
Fouricr-Stieltjes coefficients of F, or the Fourser coeffizients of dF. We write

4+ ©
dF(x) . § ¢ ev7

and callthe series here the Fourser-Stielljes aeries of F or the Fourier series of dF; we
denote it by S{dF]. If F(z)is absolutely continuous, then S{dF]=S[F’]. We may also
write S(dF] in the form (4:6) with

1
%= ;'J 0
It is convenient to define F(z) for all z by the condition
F(z + 2r) - F(z) = F(2m) - F(0), (5-2)

” 1
cos vt dF(t). b= 3 f sin it dF ().
(1]

and this can be done without changing the values of F for 0 € z < 27. In the formulae
for Fourier-Stieltjes coefficients we may then integrate over any interval of length 27.

If we change F'(x) in a denumerable set, and if the new function is still of bounded
variation, the numbers (5:1) rema:n unchanged. Thus we can assume onoce for all
that the F we consider have no removable discontinuities.

The function F(z) defined for all z by (5:2) is periodic if and only if F(2n) - F(0)
vanishes, i.e. if ¢, = 0. T'A¢ difference

A(x) = F(x)~cox

18 always persodsc. For

A(z + 27) - A(z) = F(z -+ 27) — F(z) ~ 2mcy = 0.
" A function F(z) of bounded variation satisfying (5-2) may be called a mass dsstribu-
tion (of pousitive and negative masees, in general) on the circumference of the unit

oirole If (a;£) is an arc on this circumference and 0 < 8- x & 277, then F(f)~ F(a) is,
by definition, the mass situated on the semi-open arc a <z ¢ £. The series

+o
}:e‘“=2(}+oosz-j—coe2z+...)

is the Founer-Stieltjes series of 4« mass 27 conocentrated at the point. =0 of the
circumference.

6. Completeness of the trigonometric system

This theorem is & simple corollary of results we shall obtain later, but the following
elementary proof, due to Lebesgue, is of interest in itself. -
Let f(z} be an integrable function whose coefficients ag,a,,b,. .. all vanish, so that

) Hz)T(x)dz=0 (6°1)
for any tngonometric polynomial T'(2:). We have to show that f(z) = 0. Let us assume

first that f(z) is continuous and nor. identically zero. There is then a point z, and two
poeitive aumbers ¢. § such that | f(.c} | > ¢, 38y f(Z) > ¢, in the interval I = (Zo=6,2y+ 8).
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It will be enough to show that there is a sequence T, (z) of trigonometric polynomials
such that
(i) T,(x)=>0 for zel;
(ii) 7, (x) tends uniformly to + oo in every interval I’ interior to I;
(iii) the 7, are uniférmly bounded outside /.
For then the integral in (6-1), with 7'=T,, may be split into two, extended respec-
tively over I and over the rest of (—n,m). By (i), the first integral exceeds

€| 1’| min T, (),
zel

and 80, by (ii), tends to +oo with n. The second integral is bounded, in view of (iii).
Thus (6-1) is impoasible for 7' = 7, with n large.

If we set T (z)={tz)", (z)=1+c08(z o) —cosd,
then ¢(z)>1in I, ¢(x)> 1 in I', | t(z) | < 1 outside /. Conditions (i), (ii) and (iii) being
satisfied, the theorem is proved for f continuous.

Suppose now that f is merely iritegrable, and let F(x) = jdt The condition ay=0
implies that F(z+ 27)— F(z)=0, so that F(z) is penodm Let Ay A,, By, ... be the
ooefficients of F and let us integrate by parts the integrals

. F(z)cosvzdz, F(z)sin vzdx

for v=1,2,.... Owing to the periodicity of F, the integrated terms vanish, and the
hypothesis a,=b, =a,=... =0 implies that 4,=B,=A4,=...=0. Let 4, 4;, B;, ...
be the coefficients of F(z) — 4,. Obviously A¢=A4]=B]=...=0. Thus F(z) — 4,, being
oontinuous, vanishes identically and f=0. This completes the proof. As corollaries
we have:

(6-2) TrroRE™. [ 'f 1,(z) and fy(x) have the same Fourier serses, then f, = f,.

(6:3) TaEoREM. If f(z) is continuous, and S[f] converges uniformly, its sum 18 f(z).

To prove (8:2) we observe that the coefficients of f, — f, all vanish, so that f, — f, =
To prove (6-3), let ﬁx) denote the sum of S[f]. Then the ooefficients of S{f] are t.he
Fourier coefficients of g (see (4-10)). Henoe S[f]=S[g]. so that f=g and, f and g being
continuous, f=g. (For a more complete result see Chapter III, p. 89.)

7. Bessel's inequality and Parseval’s formula

Let ¢¢, ¢, ... be an orthonormal system' of functions over {a,b) and let f(z) be a
function such that | f(z) |* is integrable over (a, b). We fix an integer n > 0, set

D=7d0+ 711t ..+ VnfPn
and seek the values of the oonstants v,, v,, ..., 7, Which make the integral

1=[11-0pds (7:1)

& minimum,
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If we observe that

h |
[ropaa=[ @ erpidz=x1r1

f :f‘bd": f :f (27,8, dz=Zc7,

where ¢, c,, ... are the Fourier coefficients of f with respect to {@,}, we have
> ~t b (]
="~ 0)f-®yd= [ | stz [ @ a2 faa
a a a a

b
=f |f 2dz+ 2|7, |2 - 25,7,
Adding and subtracting 2 | ¢, |* we get

(] b n n
s=[1r-opdz=["If1rdz-Blo 4 Ea-n it (72)
a a you P
It follows that J attains its minimum if y, =¢, for v=0, 1, ..., n. Thus

(7-3) TrEORRM. If | f(x) |3 i3 sntegrable over (a,h) ond if ® =YoPo+ ¥ 1P1+ .- +Vu Py
where ¢y, By, ..., form an orthonormal system over (a,d), the sntegral (7-1) s8 @ msnsmum
when © is the n-th partial sum of the Fourier serves of f with respect to {¢,}.

On account of (7-2) this minimum, necessarily non-negative, is

(] »
|/ 17dz= T e |2 (7:4)
Hence n »
Slet<f 1

This inequality is called Bessel’s inegquality. If {¢,} is infinite we may make » tend to
infinity, when Bessel’s inequality becomes

® . b
£ lelis[ 1/ (7:5)
| 4 a
Since the system {e”=/(2m)1} is orthonormal over (0, 27), we have

+ 1 ”
= lelt<g [ 111

P — O

where the c, are defined by (4-3). If f is real-valued this gives
® 3w '
jod+ Saeans, [
r=l mJe

It follows that the Fourier coefficients a,, b,, ¢, tend to O with 1[v, provided that | f |?
18 snlegrable. .

In some cases the sign ‘<’ in (7-3) can be replaced by ‘="'. (From the preceding
argument it follows that this is certainly the case if the Fourier series of f with respect
to {¢,} converges uniformly to f and (a, b) is finite.) The equation we then get is called
Parseval’s formula. It will be shown in Chapter II, § 1, that Parseval’s formula holds
for the trigonometric system.
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Remark. If tho tunctions ¢, form on (4, b) an orthonormal system with respect to
a non-decreasing function w(z), Theorem 7¢3) remaina vaiid provided we replace the
integral (7-1) by : )
J i f - !2dw(x).

This remark will be usefui in trigonometrie interpolation (see Chapter X).

8.t Remarks on series and integrals

Let f(x) and g(z) be two functions defined fer x:>x,. and let g(z)+ 0 there. The
zymbols J@)=og@), fla)=0lg;
mean respectivoly that fix)/g(c}->¢ sk z-> -0, and thot f(z)/gir) i3 bounded for x
Iarge enough. The same notation is used when r tends (v a tinite limit or to - . or
even when z tends to its limit throagh & discrete segqnence of valuea. In particular, an
expression is ot 1) or O(1) if 1t tends o 0 or is bounded, r-spectively.

Two functions f(z) and giz) defined in the neighbourhood of & puint z, (fimw or

infinite) ure called asymptotically equal if fir)!g(x) -1 88 > >z, We write then

Jle) xg(z)  (r>z).
If the ratios f(r)/¢giz) and g(z)/f(x) are both bounded in the neighbourbood of z, .we
say thut f(x) and g(x) are of th+ sume order as 2 -~ z,. and write

fiZ)~g(z) (2->z,).
Lot ug, u;, ug, . . be a sequence of numbers and let,
U,=%4+u,+...+u, (n=0,1,..)

A similar notation will be ussd with. other letters. [et u be finite, and let f(z) be &
fonction defined in a finste or infinite mnterval a <r <6 and integrable over every
mterval (a,t’), b’ <b. We shail write
F(x) = f‘f(l)dt (agx<h).
Ja

(8-!) THEOREM. Suppose tha! f(x) and q(x) are defined tor a <z <l and integrable
over eack (a,b') (b’ < b), that gix' = 0, ard that F(z) > + o0 as 2 —b. Then, if fir)=o(g(x))
28 Z-> b, i~ have F(x)=o(7 (7).

Sugpose that | fix)'gia)i < 46 for rg<z < ¢. For such v,

-

PARYY a4 . fa, . .
2. (Filxyis :f§dt~«l ._;"dtﬁg, VL v heGir).
o4 o X, o U
Sinoe (F(x) » oc.. the last sun is Jess than <(¥«} for x close enough to b and since ¢ is
arbitrary, the result follows.
In thir theorem the roies plaved by o end b can obviously be reversed. If a=0 and
b= - C, it has the following analogne fo¥ surus.

+ The wauaindar of this chapter in nof concamod with trigonomstr.e eerries. li contawns a nonowe
preeeutation of varions poinrs from the theory of the real variabls which will be frequentis used leter.
Many of the mais arw famil:ar and we ussemble ttem primarily for «aey -eference. Wo dc not attempt
10 ba complete. - ome of tho thesrems, moreover, will he used later i, & {017 more genorai than that in
which they are prot el nere, but only when the general proof is esventully the same. (Tc give a typical
exapple, the inequalities of Hoider and Mukowsk: will be applied to Stieltjes intogrels although we
#rove them here only for ordinery Lobusgue idtegralc.: The material i not {or dotailad study, but only
for ronsultation es required
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(8:2) TreOREM. Let {u,} and {v,} be two sequences of numbers, the latter positive. [f
u,=o0(z,) and V, »+ oo, then U, = o(V,).
The proof is the same as that of (8-1).

(8-3) TEOREM. Suppose that the scries Zv, converges, that the v's are positive, and
that u,=o(v,). Then

This is obvious.

Uy + Uyt ... =0V + U+ ... )

(8:4) THEOREM. Let f(z) be a positive, finste, and monotone function defined for > 0,
and let z
p(::):j fdt, Fo=f(0) f(1)+ ... +ftn).

)
" Then (i) if f(z) decreases, F(n)— F, tends to a finite limat;
(i) of f(z) tncreases, F(n)< F, < F(n)+ f(n).
To prove (i) we note that f(k) < P(k)— F(k — 1) < f(k -- ) implies
OSF(k)-Fk—=1)—f(k)ysf(k-1)--fik) (k=1,2....) (8-3)

Since Z{f(k — 1) — f(k)} converges, so does the series ‘f_‘, {F(k)--F(k-1)--fik)}: and it is
1
enough to observe that its nth partial sum is F(n) -- F, + f(0).
Case (ii) is proved by adding the obvious inequalities
flk- VW< F(k)-Flk-- <f(k) (k=1,2...,n).

(8:6) THEOREM. Let f(x) be positive, finite and monotone for £ > 0. 1f either (i) fir)
decreases and F(x<)— . or (ii) f(x) increases and f(x) = ol F(x)), then

F,~F@n).
This follows from (8-4).

(8-7) TEROREM. Let f(z), 2 29, be positive, monotone decreasmng and integrable over
(0. +oc), and let -
F‘(z)xf flt, F&=f(n)+fin+1,4+.. ..

Then F? < F*n)< F2.
If in adilstion f(x) = o(F*(x)), then F3 ~ F*(n).

It is enough to add the inequalities f(k + i)< F*(k)- F¥k+ })<f(k) for k=n.
n+i, . ...
Exzamples. Frcm (8:6) and (8:7) 1t follows that

;‘ka nﬂfl »n 5 nl-»
~S——. Y kb~ o
ot a+1 ‘5_",, 2= ‘88

fora> -1, A>1.
Taking f(x:=1i(1+x). n=m- 1, we obtam from ¥ 4} that the diference

11 1
T+ .4 - v ~logm
Z 3 m -

tends to a finite limit C (Euler's constundyus m —» o
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A more procise formula is sometimes needed, namely’,

2

To prove this, we observe that, for f(z) = 1/(1 + z), the right-hand side of (8-5) is 1/k(k + 1). Hence
.the mth partial sum of the series with terms F(k) — F(k — 1) f(lc) differs from the sum of the whole
series by less than 1 1

m+ Bim+2) e m+ 9T T mI

1 ] 1
l+—+...+—=|ogm+0+0(~—-). (8:9)
" m

and, arguing as in the proof of (8-4) (i), we get (8:9).

9. Inequalities
Let ¢(u) be a non-negative function detined for » > 0. We say that a function f()
_defined in an interval (a,b) belongs to the class Ly(a,b), in symbols feLy(a,b), if
#(| f(z) |) is integrable over (a,b). If there is no danger of confusion, the class will be
denoted simply by Ly. In particular, if f ie periodic, fe L, will mean fe L,(0, 27). K
du)=ur, r>0, L, will be written L. More generally, we shall occasionally write #(L)
for Ly; thus, for exa.mp]e La(log* L)# will denote the class of functions f such that
| £ |+ (log* | £ |)# is integrable.t
We shall also systematically use the notation

wifa8)=([" 1 forrae)”, wisian=lets [ ran)”

If (a, ) is fixed we may simply write M,{f] and U,[f]. Uniike M,, %, is defined only if
(a, b) is finite.
Similarly, given a finite or infinite sequence a = {a,} and a finite sequence

b={by,by ... bx},
we write G,la]={Z|a, |},

Instead of L!. M,, U,, €, we write L, M, A, S.

Let @(u), >0, and yY(v), v>0, be two functions, continuous, vanishing at the
origin, strictly increasing, and inverse to each other. Then for a,b > 0 we have the
following inequality, due to W. H. Young:

ab< D(a)+¥(b), where ®(z)= f pdu, ¥(y)= f " ydv. (91)
0 0
This is obvious geometrically, i we interpret the terms as areas. It is easy to see
that we have equality in (9-1) if and only if b=¢(a). The functions ® and ¥ will be
called complementary functions (in the sense of Young). )
On setting ¢(u) =u*, Yy(v)=vV* (a>0), r=1+a, r =1+ lja, we get the inequality
b<Z+% @b>0), 92)

where the ‘complementary’ exponents r, r' both exceed 1 and are connected by the
ml&ﬁon 1/""‘/"’:1.

t By log* |/| we mean log | f| wherever |f| > 1, and 0 otherwise.
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This notation will be used systematically, so that, e.g., p’ will denote the number
such that

l/jp+1ljp'=1.

If r=r"=2, (8-2) reduces to the familiar inequality 2ab<a?+b* Clearly. either
r<2<r orr<2<r. If r>1, then ' > 00, and conversely. The connexion betweenr
r and ' may also be written ,

= ——

r—1

Integruting the inequality .
[ fol<®(fD+Y¥gh

over a < r < b, we see that fy is integrable over (a.h) if fe Lyla, b), geLlg(a.b).
In particular, fg ia integrable sf fe L7, ge L.
Let us now consider (real or complex) sequenoces 4 ={4,}, B={B,}, AB={4,8,}
and let ns assume that &,[A4]=5, [B]=1, r > |. If we sum the inequalities

! r ! i
PRI oL

r
forn=1,2,. ., we get S{ABI< 1.

Now let a={a,} and b={b,} be any two sequences such that ©,(a] and &,[b] are
positive and finite, and let us set A, =a,/S,[a), B,=b,/6,.[b] for all n. Then
S,[A]1=6,{B} =1, so that S[AB] < 1. In other words,

) , anb I < c [(2] Vn ] (9“5\;
end a fO?"l’)ﬁ I z‘anbn | < wrlai ‘-’r'l".‘f* (‘)'4)

. These inequalities are called Holder's snequalvites. They are trivially true if S, [a] =0
or 6([b] = 0.
Holder's inequality for integruls is

| [ sz < 190,101, (9:5)

and its proof is similar to that of (9-4), summation being replaced by integration.
If r=7"=2, (9-4) and (9-5) reduce to the familiar Schwarz inegnalities.

The remark concerning the sign of equality in (9-1) shows that we have equality in
(9-2) if and only if a” =b". Hence if we agsume that ©,[a] and &_{6) are distinct from
0 the proof of (9-3) shows that thesign of equality holdsthere if andonly if | 4 , |r=B,i"
for all n; or, again, if and only if |a,|"/! b, |” is independent of «, with the under
standing that a ratio 0/0 is to be disregarded. If &,[a)=0_or &, [h] = 0. we have auto
matic equality in (9-3), and at the same time |, |"/| b, |7 is ‘independent of n”. 80 that
the rule is in this case also valid. Taking into account that the leit hand sides of {0-3)
and (9-4) are equal if and only if arg{a, b,) is constant for all # fo which @,b, %0, ve
ocome to the following conclusion:

(9:6) THEOREM. A necessary and sufficicnt conditim for equality in (9-4) is that both
sequences|a, |"/| b, |” and arg(a,b,) be independent of n (disregarding forms0;0and arg0).

2 7TH
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An argument similar in principle shows that

(9:7) TaeorEM. The sign of equality holds in (9-5) if and only if (i) the ratio
[ f(x)|"/] g(x) |” t8 constant for almost all x for which it is not 0/0, (ii) arg {f(z)g(x)} 18
constant for almost all x for which fg + 0.

The inequality (9-5) (and similarly (9-4)) may be extended as follows:

(9-8) THRORRM. Ifr,, 74, ..., 17, ar2 positive numbers suchthat 1[r, + Y/rg+ ... + 1[r; == 1,
and of feLri(a,b) for i=1,2, ...k, then

!f:f:f: B AR MIAL ST AN MEAL

The proof (by induction) is left to the reader.

A number M is called the essential upper bound (sometimes the least essentsal upper
bound) of the function f(z) in the interval (a. b) if (i) the set of pointe for which f'(x) > M
is of measure 0, (ii) for every M’ < M the set of points for which f(x) > M’ is of positive
measure. Similarly we define the essential lower hound. If both bounds are finite, f(z)
is said to be essentially bounded. (An equivalent definition is that f(x) is essentially
bounded if it is bounded outeide a set of measure 0, or, again, that f=g where g is
bounded.)

(9-9) TaroreM. If M is the essentinl upper bound of | f(z)| sn a finite interval (a,b),
then . M,(f;a,0]>M as r—->+co,

We may suppose that M >0. Let 0 < M’ < M, and let E be the set of points where
| f(z)|>M'. Then | E |0, W13 M |E v,

8o that liminfM [f]> M’. Hence liminfM,[f]> M. In particular, the theorem is

>
proved if M = 4 co. This part of the proof holds even if b ~a= + 0.

Suppose then that M < +co. Since IR,[f] < M(b—a)¥", we have lim sup M,[f]1< A,
and this, with the inequality lim infIR,[f]> M above, proves the theorem.

If b—a= +co, (9-9) is still true provided we assume that IM,[f] is finite for some
r=r,> 0. (Otherwise the result is false: take, for instance,a=2,b = + o0, f(x) = 1/log z.)
We have to show that lim sup M,[f]1 < M < +20. Dividing by M, we may assume that
M =1. In order to show that lim sup I, [f1< 1, we write (a,b)=1+ R, where ] is &

finite subinterval of (a, b) so large thatj |f|redz <. Since|f |’< 1 almost everywhere,
R

J‘:lﬂ'dx=_“,,l”'dz+jn‘fl"hSII‘+fn{f|"“€|1\+l

for r > r,. Henoe limsup M, [f]< 1.

Since any sequenoce a,, a,, ... may be treated as a function f(z), where f(z) =a, for
n<z<n+1, we see that S [a] tends to max |a, | as r - co, provided that S [a] ss finite
for some r > 0.

In virtue of (9-9), it is natural to define M, [f; 4, b) as the essential upper bound of
| f(z)] in (a,b). By L® we may denote the olass of essentially bounded functions. The
inequality (9-5) then remains muningful'and true for r=c0, r' =1.

Let a={a,}, b={b,} be two sequences of numbers, and let a +b={a,+b,}. The

inequality S la+b1<B,la]+&,[b] (r>1) (9-10)
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is called Minkowsks’s inequality. To prove it for r > 1 (it is obvious for r= 1), we write
Zla,+b,|"<Z|a,+b,|"|a,|+Z|ap+b, ||| ba]
and apply Holder’s inequality, with exponents r’ and r, to the sums on the right. We
get Gifa +b}< &Y a+5] G,a] + G1-a +b] &, (b),
from which (9-10) follows, provided &,{a + ] is finite. Hence (9-10) holds when {a,}
and {b,} are finite, and 8o also in the general case by passing to the limit.
A similar argument proves Minkowsks's snequality for sntegrals
W f+91< R[]+ M,[g] (r>1), (9-11)

which implies that if f and g belong to L so does f+g.
Let A(z, y) be a function defined for a <z <6, c <y £d. An argument similar to that
which leads to (9-10) and (9-11) also gives the inequality

(I

which may be considered as a generalized form of Minkowski’s inequality since it
contains (9-10) and (9-11) as special cases. For if (¢,d) = (0, 2), A(z,y) = f(z) for 0<y < 1,
h(z,y)=g(z) for 1<y <2, (9-12) reduces to (9-11). If (c,d)=(0,2), (a,b)=(0, +c0),
and if for n<z<n+1 we set h(r,y)=a, or k(z,y)=b,, according a8 O0<y<1 or
1<Sy<2(n=0,1,...), (9:12) gives (9-10).

The inequality (9-12) can also be written alightly differently. Let

H(z)= f: h(z,y)dy.

f:h(x. y)dy

'fiz}l!'sjjtj-:}h(z, v) ]'dz}l'/'dy (r>1) (9-12)

3
Then R, (H(z)) < f We[A(z, y)] dy,

where 37 means that integration is with respect to z.
If0<r<1, (9-10) and (8:11) cease to be true, but we have then the substitutes

Slla+b]<€i{a) + E][b), WL +9)< W1+ Plg) (0<r<1). (913)
Theee are oorollaries of the inequality (z+yY <z’ +y, or, what is the same thing,
(148 <l+t7 ($20, 0<r<l).

To prove the latter we observe that (1 +¢)* — 1 — " vanishee for ¢ = 0 and has a negative
derivative for £> 0.

In this connexion we may note in passing the inequality (a consequence of the last
one) |Za,'<Z|a,|r (0<r<l).

(9:14) TrEOREM. Given-anyfundionl’(z),asxs b,and a number 1 <r < + 00, wehave
> |
M,[F; a,b]=supU FG’d:tl. (9-15)
G a

where the sup is taken over all G with 3R [G; a,b] < 1. The result holds if M, [F]= + co.

2-3
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We way suppose that M F]> 0. Let I, denote the integral ¢ the right. By Hélder's
inegualty. | Ip) <RI (0] < M, #],
a result true even if M [F]= +oc. On the other hand, if M,{ F| < + . we set
Golz) = | Fiz) |-V sign F(z)}M;~F] for r>1.

We verify that 3, [Gy) = 1. I, =M, [F]. This prover (9-15) if W,[#) i finire.

If M, [F)= + 0. we have to show that there exist functions & with IR_.[G]< 1 and
such that J; exists and is arbitranly large. Suppose first that 6--au < + 2. and let
Fr(z) denote the functior. equal to F(z) where | F(x) | < n, aud to 0 otherwise. Let
@"(z) be derived from Fn(x) in the same way as /7 was derived from F. It » is large
enough, [ F*] is positive (and finite), 8o that M_[G"] =1 but

»,

()
I = f Fordz- |
a

18 arbitrarily large with n.

If (a,}) is infinite, {9 + o) for instance. we define F(x) as previously, but only in
the interval 0 <z <=, with P*(z) =0 outside. This ersuros the finiteness of MR { £*]
for every n, and the rest of the argument is unchanged.

Theorem (9-14) also holds for r=on. The proof of | I, ! < M,{ F] remains unchanged
in this case. On the other hand, if M is the essential upper bound of ! ¥|. and if
0 M’ <M, the sot E of points where | F| > M’ is of posiuve measure. 1 wo choose
a subset E, of £ with 0< | £, | <co. then the function (7.x), equal to sign Fz)il E,.
in E, and to 0 elsewhere, has the property

»
FrOrdz =900 F,]

" .

sm,[o}=J G ldz=1, 16;.'.1.;_1' | Pidz.. M.
[ 100k,

so thatsup| ;|2 M.

We conclude with the following theorem:

(9:16) TeEOREM. Let f(z) be a non -negative function defined for x:: 0, and it v > 1,

-

s<r—1. Then if fr(x) 2* v8 integrable over (0, ) 80 48 {v~'F(x)}\ x*. wheri F(r)=: ’jriL
Jo

z |

Moreover. Jj F@V e ( _r )"‘ * friz) rdar.. (9:17)

r—-s-1 3
We may suppose that f#+ 0. Holder's inequality
z z W rr L
“ Nortrdt < U f't'd:) ( [ £ vt
Jo 0 ¢

‘v

shows that f is integrable over any finite interval and that ¥(z)=o{2"-1-9") ag x>0
The last estimate Lolds also as z-»c0. For, applying the preceding argument to the
integral defining F(z)— F(£), we have

F(x) - F(E) < exr-1
if x> £ and § = £(¢) is large enough. Henoce F(x) « 2ex -1~ for iarge r; that 1y,

F(z)=o(LV-1") a8 x>
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Now let O<a<bhvwm. Intcg‘z-ating J Fr~ “az by parts and applying Holder's
a

06 Cl'
inequality mJ Frolfzr-ridde = | (fe4m) (FY-1g8—r+1=0r;d2 wo obtain
a

.t

L T [ Fresr1t , I i
- P - . e . .. ;d .

J‘a(z) rdis '_'-"”’ lJu "‘s—l\.’ ftdx} l.’u(r’ g ‘l
Divide both sides by the wsi factor on the right. whic¢h is positive f a and }/b are
small enough. Nince mnmtcgrated term tendsto 0 asa > 0, b >, we are lod to (9-17).

The cases s - 0 and s -=~-- 2 are the most interesting in application.

10. Convex funce ions

A function ¢(z) defined in an open or closed interval (a,b) is said to be conver if
for every pair of points P,. P, on the curve y = ¢(z) the points of the arc I, F, are below.
or op. the chord A, F,. For cxumple, 7, with 7 > 1, is convex in (0, + o).

Jensen's inwquality states that for any system of positive numbers p,.p,, ... p,,,
and for any systeni of points 2,.2,. ...z, it (a, b).

-(Pxxliliz‘?a_*: =¥ Pnin ) PrP@) P, (101

PrH P2t ...+ Py pl"' -+ Pn

For » =2 thwe is just the definition of convexity, and for # > 2 it follows by mdie
tion. Zero values of the p's inay be allowed provided that Zp,+ 0. If — dix)is convex.
i) is called concave. Linear functions are the only ones which arc both contex and
concave Concave functsens satisty the inequality opposite to (161},

Let £, P,. Iy be three points on the convex curve y=¢(z), in tie orer indicated.
Sirce B, is below or on the chord £, By, the slope of £, P, dons not exceed that of F, P,
Henee. if a point P approaches P, from the right the slope of }, P s non- increasing.
Thus the right -hand side derivative D*@(x) exists for every a < x < b ard is less than - «..
Similarly, the left-hand side derivative 1)-¢(z) exists for every a < r < b and is groater
than -- o0

If . P, P, arc points on the curve, in this order, the slope of P, P does not excoed
that of PP,. Making ;- P. P, > P, we have

< D-P(x) K D*P(z) < + 00  (a<z<b). (10-°2)

In particalar, $(z} 18 continuous in the interior of (a, ). The function ¢ may, how-
ever, be discontinucus at the end-points a. b (take the exampic ¢(.c) =0 for (.« u < 1,
$(0)=p(1) = 1). -

From the proof of the existence of 1)'¢(x,) and D@d(z,). and from (13:2), wo wge
that every straight line ! gassing through the point (z,, (z,)) and having a slope &
satisfying 1)-é(z,) < k < Dv¢)(zy) has at least one point in common with the curve
y =@(x), and that the curve is above or on I. Such a straight line is called a supporting
line for the curve y = ¢(x).

Let z, < x < 2, be the abscissae of £, P, P,. The slope of P, P does rot excead that of
PF,. The former is at least D*¢(x,), the latter at most D-¢(z,) < D r¢lx,); thus

D*3(z)) < D ¢(x5), D () < D*P(xy) (2, <1x,). - (10:3)
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The second inequality shows that D+¢@(x) 18 a non-decreasing function of z. The same
holds for D-¢(z). Since D+*¢(z) is non-decreasing, it is continucus except possibly at
a denumerable set of points. Let z be a point of continuity of D+¢ and let z, <z.

Then, by (10-3) and (10-2), D*é(z,) < D-(x) < D*$(z).

Since D*¢(z,) - D+¢(z) as z, - z, we see that D¢ ‘z) = D*+@(z) and so ¢’(z) exists and
i finite. Summing up we have:

- (10-4) TEEOREM. A function ¢(z) conver in wn inferval (a,b) ss continuous for
a<z<b. The one-sided dertvatives of ¢ exist, ar: non-decreasing and satisfy (10-2).
The dertvative ¢'(z) exists except possibly at a denumerable set of posnts.

We have seen that the continuity of ¢ is a conscquence of convexity. If, however,

we assume that ¢(z) is continuous, we may modify the definition of convexity slightly.
A contsnuous function ¢(x) is convex sf and only if, given any arc P, F; of the curve,
‘there 18 a subarc P;P; lying below or on the chor] P, P,. The condition is obviously
necessary. Suppose that it is satisfied, but ¢(z) 1s 10t convex. The ourve would then
contain an arc P, P, for which a certain subarc P; P; would be everywhere above the
chord P, P,. Moving P; to the left, P to the right, we may suppose that P; and P; are
on the chord P, P, and the rest of the arc P; P; is above that chord. But tlfen no subarc
of P; P; is below the chord P; P, contrary to hypothesis.

A convex function has no proper maximumt in the interior of the snterval of definition.
For if z, were such a maximum, the arc y = ¢(z), | £ — z, | < é would, for § small enough,
be partly above the chord. '

(10-5) THEOREM. A necessary and sufficient condition that a function ¢(z), continuous
in (a.b), should be convex is that for no pair of values a, B should the sum ¢(z) +az+f
have a proper maximum in the interior of (a,d).

Asum of two convex functions being convex, the necessity of the condition is evident.
To prove its sufficiency, suppose that ¢(z) is not convex. There is then an arc P, F,
of the curve with all points above or on the chord P, F,. Let z,, z, he the abscissae of
P, P, and let y= —az — S be the equation of the chord. Then ¢(z) + az + f vanishes
at the end-points of (z,,z,) and takes some positive values inside; it has therefore a
proper maximum inside (z,, z,) and so also inside (a.b).

The following generalizations of ordinary first and second derivatives are useful.
Given an F(z) defined in the neighbourhood of z,, let us consider the ratios

F(zg+h)— F(zo—h)
2A . '
F(zy+R)+ F(zg— k) — 2F(z,)
ht )

The limits{if they exist) of these expressions, as A - 0, will be called respectively the firs
and second symmetric derivatives of F at the point z,, and will be denoted by D, F'(z,)
‘and D, F(z,). The limit superior and the limit inferior of the ratios (10-6) are called the

(10-6)

1 We say that ¢(z) has a proper maximam at z, if $(zo) >$(z) in & neighbourhood of z,, but ¢ is
not constant in any neighbourhood of z,.
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upper and the lower (first or.second) symmetric derivatives and will be denoted by
D, F(z,), D, Fiz,), Dy F(x,), D, F(x,). The second symmetric derivative is often oalled
the Schwarz (or Riemann) dersvative.

1f F'(z,) exists, 80 does D, F(z,) and both have the same value. For the first ratio (10-8)
is half the sum of the ratios {F(z, + h)—F(z,)}/b and {F(z,) — F(z,— h)}/h, which tend
to F'(z,).

If F*(z,) exists, s0 does Dy F(z,) and both have the same value. For Cauchy’s mean-
value theorem applied to the second ratio (10-6), A being the variable, shows that it
can be written as {F'(z, + k) — F'(z, — k)}/2k for some 0 < k<A, and the last ratio tends
to F"{z,) aa k—0.

These proofs actually give slightly more, namely: (i) both D, F(z,) a.nd D, F(z,)
are contained between the least and the greatest of the four Dini numbers of F at Z,;
(ii) if F'(z) exists in the neighbourhood of z,, then both D,F(zo) and D, F(x,) are con-
tained between the least and the greatest of the four Dini numbers of /" at z,.

(10-7) TaxorEM. A4 necessary and sufficient condstion for a continuous $(x) to be
convez in the inferior of (a,b) is that Dy @(z) > O there.

We may suppose thtt (a,d) is finite. Sinoe
d(x + B)+ d(z —b) — 2¢(z) = {P(z 4 h) — p(z)} — {$(z) -~ P(z-~R)} 3 0

for u oonvex ¢. the neoceesity_of the condition (even in the stronger form Dy¢ > 0)
fellows. To prove the sufficiency, let us first assume slightly more, namely, that D, ¢ > 0
in (a b). 1f ¢ were not convex, the function y(z)=@(z)+az+ £ would, for suitable
2. 8. have 4 maximum at &‘point z, inside (a, b), 80 that Y(z,+ A) + Y(z, - A) - 2y (z,)
would be non-positive for small A. Since this expreesion equals

B(Zo+h) + B(zo— b) — 20(Z,),

it. follows that D,g(z,) < 0, contrary to hypothesis.
Returning to the general case. consider the funotions D (Z) = P(x) +2%n. We have

D¢ ()= Dyp(z)+ 2in > 0,

#o that ¢, is convex. The limit of a convergent sequenoe of convex functions is convex
{spplying (10-1) with n = 2); and since ¢, +¢. ¢ is couvex.

A necessary and sufficient condition for a function ¢ twice differentiable to be
convex is that ¢° > 0 This follows from (10-7;.

Suppose that ¢/w) is convex for u 3 0, and that u, it & minimam of S(u). If P(u) 18 not
constand for U = ug, then st must tend to + o0 with u at least us rapidly as a fixed positive
mudtsple of u. For lot uy> ty, $lt)+ ¢(uy). Clearly $(uy)>(u,). If P, P, P are
Fomts of the eurve with abgoissae u,, u,, u. where u > u,, the slope of P, P is not less
toan that of £, P,. This proves the assertion.

Jf Siu) is ron-negative convex and nonm decreasing sn (0, + o), but not constant, the
reiation JeLg(a. b). b—a <. implies feL(a,b). For then there is 4 & > ¥ such that
oufix) 2 k! f(z)]. if |f‘z)| is large enough.
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Jensen’s inequalily for integrals is
[roree| [ S pia) e

f()d <0 : (10-8)
p(x)dx

- p(x) dz
the hypotheses being that ¢(u) is convex in an interval @ < u <, that a <f(z) < f in
a <z <b, that p(z) is non-negative and # 0, and that all the integrals in question exist.

et =j:fpdx/f:pdz. (10-9)

sothata <y < /. Suppose tirst that « <y < §, and let k be the slope of a supporting line
of ¢ through the point (v, ¢(y)). Then

Pu)—-P(7) 2 k(u—7) (a<usp)
Replacing here u by f(z), multiplying both sides by p(z), and integrating overa <z < b,

we get j:¢{f(z)} p(z)dz — g() f :P(z) dz> k{ J ° @) ple) dz — J' ° p(z) dx} -

¢

v

)
by (10-9). This gives (10-8). 1f y=2, (10-9) can be written_[ (f—B)pdx =0, which
shows that f(z) = £ at almost all points at which p > 0. But then both sides of (10-8)

reduce to ¢(f). Similarly if y =a.
Jensen’s inequality for Stieltjes integrals is

f 1(z) du(z) f¢{f(x)}dw(z)
P N (10-10)

f dw(:r) J dw(z) | .

where w(z) is ncu-decreasing but not constant. The proof is similar to the one above.

(10-11) THEOREM. A4 necessary and sufficient condition that ¢(z) (a <z < b) should be
convez 18 that it should be the integral of a non-decreasing function.

If ¢(z) is convex, then, as is easily seen, the ratio {¢(z+h):-¢(z)}/h is unifoginly
bounded for x,z + % belonging to any interval (a’,b’) interior to (a,b). Thus ¢(z) is
absolutely continuous, and therefore is the integral of ¢’. The latter exists outside
a denumerable set and is non-decreasing on the set where it exists. Completing
¢’ at the exceptional points so that the new function is still non-decreaging, we see
that ¢ is the integral of a-non-decreasing function. Conversely, suppose that

¢(z)=C+fx¢(t)a where a<c<b and yY(¢) is non-decmaaing in (a,d). Let (a’,b’)
be any subinterval of (a,d), and let y=I(z) be the equation of the chord through
(a’, (a’)) and (b’, $(b')). We have to show that ¢(z) — ¢(a’) <l(z) - (a’) for a’ <z <b’,
or, what is the same thing, that '

e Prae

T(x-a)+ (b -z)
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"
Since the last expression is contained between f * / (x—a’)and J / (b’ — z), of which the
Ja x

latter is not less than the former (since ¥ dces not decrease). the proof of (10-11) is
completed. '
Let now ¢(z), >0, be an arbitrary function, non-negative, non-decreasing.
vanishing at z=0 and tending to +co with z. The curve y=¢(z) may possess dis-
" continuities and stresches of constancy. If at each point z, of discontinuity of ¢ we
~ adjoin to the curve y = @(x) the vertical segment z =z, @¢(x,—0) <y < P(z,+ 0), we
obtain' a continuous curve, and we may define a function Y (y) inverse to ¢(z) by
defining y(y,) (0 < ¥, < 20) to be any z, such that the point (z,, Yo) is on the continuous
curve. The stretches of constancy of ¢ then correspond to discontinuities of . and
conversely. The fanction ¥ (y) is defined uniquely except for the y’s which correspond
to the stretches of constancy of @, but since the set of such stretches is denumerable,
our choice of Y(y) has no influence upon the integral ¥(y) of ¥ (y), and it is easy to see
that the inequality (9-1) is valid in this slightly more general case.

From (10-11) it follows that every function ®(z), x > 0, which is non-negative, convez,
and satigfies the relation ®(0)=0 and ®(z)/x >0, may be considered as a Young’s
. function (see p. 16). More precisely, to every such function corresponds another
function W(z) with similar properties, such that

ab < ®(a) + ¥ (b)

for every >0, b>0. It is sufficient to take for ¥(y) the integral over (0,y) of the
function Y(z) inverse to ¢(z) = D*®(z). Since ®(z)/z tends to +oco with z, it is easy
to see that é(z) and y(z) also tend to + oo with z. We have ub = ®(a) + Y(b) if and only
if the point'.'(a, b) is on the contiquous curve obtained from the function y = ¢().

A non-negative function Y(u) (a<u< b) will be called logarithmically convex if

Yty u, +tau,) < 'r""(‘l‘l) Yis(u,)

for u, and u, in (a, 8), ¢, and ¢, positive and of sum 1. It is immediate that then either
¥ is identically zero, or else y is strictly positive and log i is convex.

(10-12) TaeorEM. For any given function f, and for « > 0,

(1) H.[f] is a non-decreasing function of a;

(i) RI(f]) and AS(f] are logarithmically convex SJunctions of a;

(i) My, [f) and A, ,[f] are logarithmically convex Sfunctions of a.

If we substitute | f |« for fand 1 for gin (9-5), and divide both sides by b —a, we have
A[f1< 4, f) for r > 1. This proves (i). The result is not true for R,, a8 may be seen
from the example a =0, b = 2, f(z)=1.

Let now a =a,t, + a,t, with a,,¢,>0, ¢, + t;=1, and suppose that f belongs to both
L* and L*. Replacing the integrand [f|*in ME by | f|=4. | f|2sh, and applying
Hélder’s inequality with r=1/t,, r' = 1/t,, we find

M3 < MM,

which expresses the logarithmic convexity of M;(f]. Dividing both sides by b—a,
we have the result for %2. Thus (ii) is proved.
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To prove (iii) we apply Hélder’s inequality with the exponents r=ala,t, > 1,
r' =alx.ty. We get

Rotf)= ([ f1masl = {117 1n) el

{1 (s s,

Dividing bozh sides by (b—aj* we have the result for ¥,,,.

11. Convergence in L’

Let f,(x), f2(z), ... be a sequence of furctione belonging to L*(a.b), > 0. If there is
a functien fel7(a, b) such that SR,(f—f,; a,b)->0 as n—>cc, we say that {f,(z)} con-
verges in 17(a, b) (or, simply, 1n L7) to f(x).

(11-1) TArOREM. A4 necesszry and sufficiend condstion that u scquence of functions
Sa(x) € L7(a,b), r > 0, should converge in 1.7 to some f () ss that W [, — f,.] should tend to 0
asm,n—>o..

If r> 1 the necessity of tho condition follows from Minkowski’s inequality, since, if
ml‘j—.fm! —0, mr[f“’fn] - ¢, then

mr[.fm ’_fn] < "D?r[f—fm] + mrU—fr] - 0.

For 0 <r< 1, we use inetead the sccond inequality (8-13).
- The proof of sufficiency depends on the following further theorems, themselves
important.

(11-2) FaTou’s Lemma. et g,(x), g,(z), ... be non-negatsve functions. integrable over
(a.b) and satisfying
fgkdzs,k +oo (k=1,2,..). (113)

If g(z) == lim g, (x) exists almost everywhere, then g ss sntegrable and

®
‘ gdz< A. (11-4)
Ja
Let hy(z) = inf {g,(z), gg.1(%), ...}. The function A, is measurable and majorized by g,,
and so integrable. Sinoe k, < 4,,, and A, — g, (11-4) follows from (11:3) by Lebesgue’s
theorem on the integration of monctone sequences.
(11-5) TazopeM. Let {u.(z)} be a sequence of non-negatsve funciions, and write
(]
I = ( Ugdit If L+ Ii+... <00, then u,(z) +ug(x) + ... converges almost everywhere in
J G
(a,bd) to a finite sum. In particular w,(z) >0 almoat everywhere in (a, b).
Forif u; + uy+ ... divorged to + o0 in a set of positive measure, Lebesgue’s theorem
mentionad sbove would imply that I, + I, 4+ ... mc0,

(11-6) TxirorEM. If M(f, ~f.i @,b] >0 as m,n—>o, we can find a subsequencc
{fni} of (f.} which converges almost everywhere in (4, b).
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Suppose first that r>1. Let 6=sup M,[f,, —f,] for m,n>s. Since ¢, 0, we have
€p, +Ep,+ ... < +0 if n, increases sufficiently rapidly. By Hélder's inequality,

r'fng —fnkn | dz<(b- a)w'mr[fn. "'fuh,] <(b- a)WeM, (11-7)

and so, by (11:5), the series |f, |+|fa,—fa,|+|fay—Sn,| +.-- converges almost
everywhere in (g, b). The function f(z) =f, + (fs,—fa)+ ... =limf,, thus exists almost
everywhere.

To establish the existence of f(z) for 0 <r < 1, we note that

(lf"ll+|j"t—f"||+"‘)'<|fﬂn|'+lfﬂ1—f!u|'+"‘;

when we integrate the right-hand side of this inequality we obtain a finite number,
provided n, increases so fast that €, +¢}, + ... < c0.

In this proof we tacitly assumed that (a, b) was finite, but the argument holds even
if b—a=o0, since (11-7) remains valid if (a,b) is replaced by any of its finite sub-
intervals.

Returning to (11-1), let {n,} and {¢,} be the sequences of Theorem (11-6) and
f=limf,,. We have R,[f,—f,,]<€, for n,>m. By (11-2), M,[f,, —f]<¢,, and this
completes the proof.

It is important to observe that the function f satisfying SR,(f—f,] 0 is unique.
Supposa that R, [f—f,]—0, M,[g—f.]>0. If r> 1, by Minkowski’s inequality,

R -g1 SRSl + R [g~f] >0, s0that M [f-g]=0, f=g.
If 0 <r <1, we use instead the inequality

S - 9] S —S) + (g —fn).

(11-8) TrEoREM. Suppose that fel’(a,b), 0<r< + o0. Then, given any € > 0, there
18 a contsnuous function @(x) such that M,[f— P) <e.

Suppose first that r>1,b—a < +co. There is a bounded function y(z) such that
M, [f— V) < §¢;for, taking N large enough, we may define y(z) as equal to f wherever
| f|<N,and equal to O elsewhere. If we can find a continuous ¢(z) such that
M,[Y — @] < ¢, the result will follow by Minkowski’s inequality. Let us st y(z)=0
outside (a, bl, and let ¥ (z) be the indefinite integral.of y(x). The functions

Ya(@)=n[¥(z+1/n)-¥(z)]

are continuous and uniformly bounded, and, by Lebesgue’s theorem on the differentia-

tion of the indefinite integral, tend to y(z) almost everywhere in (a,b). Thus
IR, [Y — ¥s]—0, and itdis enough to set ¢ =y,,, with n large enough. The mnodifications
in the case 0 <r < 1 are obvious. '

The above argument holds if b —a = oo, provided that f(x) = 0 for | z | large enough.
The general case can be reduced to this one; for if we modify f by setting it equal to 0
outside a sufficiently large interval, we get a function f, with I, [f— /1] arbitrarily
small.

(11-9) TEEOREM. Suppose that a sequence of functions f,(zx) converges almost every-
where in a finite interval (a,b) to a limst f(z), and that M, | f,; a,b]< M < + oo for a fized
r>0and all n. Then M,[f, —f1>0asn-—>oc, for 0<s<r.
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Obviously, I,[f]1< M. Let E be a set of points on which {f,(z)} converges uniformly
to f(z), and let D={(a,b)— E; | D| can be arbitrarily small. Clearly

J:lfn—f |'d1=JE+JADso(l)+(J.D|L‘_f|rdx)'f"| p|r-o

by Holder's inequality. By Minkowski’s inequality, if r > 1, the last term is not greater
than (2M)*| D |*-*, and so is arbitrarily small with | )| Henco M,[f, —fj-»>0. The
proofis similar for 0 < r < 1 except that we use (9-13) instead of Minkowski's inequality.

12. Sets of the first and second categories

Let A be a linear point-set. By & porlion of 4 we shall mean any non-empty iuter-
section 47 of 4 with an open interval I.

Let B beasubset of A. B issaid to be dense in A if every portion of 4 conteins points
of B. K issaid to be non-dense in 4 if every portion of A contains a portion (sudp:rtion
of 4) without points in common with B. A set dense in ( —c0, +0) will be called
everyuwhere denase.

Let BcA. If B can be decomposed into a denumerable sum of subsets inot.
necessarily disjoint) non-dense in 4, B will be raid to be of the first cateyory on A.
Otherwise B will be called of the second category on A. When B= 4, we say that 4 is
of the first or seoond category (as the case may be) on itsclf.

If A=(—00, +00), we shall simply say that I3 is of the first or second category, as
the case may be.

The following fact is important:

(12-1) THroREM. A closed set A (in particular, an snterval) 8 of the second cateyery
on ttself.

For suppose that A =4, + A, + ..., where the 4, are non-dense on 4. In particular,
there is a portion [; A of .4 containing no points of 4,. In that portion we choos: a sub-
portion Iy 4 containing no pointa of A,. In J; 4 we choose a subportion /; A containing
no points of 4,, and so on. We may suppose that I, ., is strictly interior to I, enc that
I, }—0.Theintervala I, I, ... have a point z in common, and since all of them contain
points of the clused set 4, x must belong to 4. Since ze I, A, z cannot belong to any
of 4, 4, .... A,. This being true for all 2, we obtain & contradiction with the relation
A=Ad;+4,+....

If B,, B,, ... are all of the first category on 4,s0i8 B, + B, +...; thus a subset B ;f -/
ciosée ot A and the complementary set A — B carnot both be of the first category or A.

An everywhere dense set may be of tho first category (for exawmple, any de-
aumerable dense set). However, if a set £ is both dense in an interval I, and a denumeraidle
prodwci of open sets, then E is of the seronid category on I. For the complementar,’ set
1 - E is then a denumerable sum of closed sute. These closed sets cannot contain
intervals, since that would contradict the assumption that E is dense in I; sc they are
ron-dense in 1. Hence / - F is of the first category, and K is of the second category, ou /.

- (12°2) THEOREM. Let f,(x), f{Z), ... bt a sequence of functions continuousina <z <b.
If the a:t E of posnts £ at which the sepuance {f (x); is unbounded is derse in (a.b).
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E 15 of the second category on (a,b). (More precisely, the complement of K is of the first
calegory on (a,b).)

Iv is enough to show that E is a denumerable product of open sets. But if £, is the
set of pointe at which at least one of the inequalities | f,(z) | > N is satisfied, then K,
isopen, and E=E K, ...

A set 4¢(0,1) can be of measure 1 end of the first category, or of ;neasure 0 and of
the seoand category. Thus though we may think of the second category as ‘richer ir
points than the first category, the new clusiﬁc&.non caunot bo compared with the
one based on measure.

(12:3) TuroREN. Let fy(z), fyi2). ... be continuous on. a closed set E ; then
(i) of hmsup/,,\x)< +00 at coch posnt of E, then there is a portion P of K and a

number M uwh that f(z) < M for alln and all z€e P;
(ii) sf fa(x) converges on E to f(z), then for any 6> O there is ¢ portion P of K «nd a
number ny such that Vfiz)—fu(x)| <€ jor xeP,nzn, (12:4)

(iii) If E ss. in addition, non-denumerable (sn particular, if E is perfect), then the
conclusions of (i) and (ii) hold even if the hypotheses jcil to be saticfied in ¢ denumerable
subset D of K.

(i) Let E, be the set of z such that f,(z) < M for all n. Each K, is closed and
E=K,+E;+ .... By (12:1), some £ is not non-dense on % and 80, being closed, must
contain a portion P of K. This proves (i).

(ii) Foreveryk=1,2,.. ,let £, be the «et of points z¢ E such that | f.,(z) - f.(z) | <€
for m,n > k. The sets E, are olosed und E=E,+ E,+.... Asin (i), some K, contains
a portion Pof E. We have | f,,(r)—/.(z) | seforre Pa.ndm, n 2> ny; this unpl.ea (12-4).

(iii) We begin with the extension of (i). Lat z,,2,, ... be the elements of D, and l=t
E_ be the set E, in the proof of (i) augmented by tha peints z, z,, ..., z,,. £, is closed
and E=FE; +E;+.... Hence a certain E, contains s portion of E. If we take m, so
large that £, is mﬁmto (obeerve that E'cE‘ c...), B, vill also contair a portion
of K.

The extension of (ii) is proved similarly.

13. Rearrangements of functions. Maximai theorems of Hardv and
Littlewood

In this section, unless otherwise stat«d, we shall consider only functions f(.), detined
inafixed finite interval, which are non-negative and aimust everywhere tinjte. We may
suppose that the interval is of the form (0, a).

For any f(z), we shall denote Iy E(f > y) the set of joints £ such that f(z) > ». The
measure | E(f> y) | =m(y) of this set wili be called the disiribusion function oi 7. Two
functlonafa.nd g will be called equidistributed if they have the same distribution func-
tions. It is then clear that if fis mtagl able cver (0 1}, s0is g, and the ‘nitegrals arc equal.
Ifj and g are equidistributed, 80 sre )(f) and y(g) foc any non- negutive and, sav. non-
deereasing x(u).

(13-1) THEOREM. For uny f(x), there «xist functicns f¥(x) and fo(x) (6 <o 2) cqui-
distributed with [ and respectively non-increasing and aon-decreasing.
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The function m(y)=|E(f>y)| is non-increasing and continuous to éhe right.
Clearly m(y)=a for y negative, and m(~+c0)=0. If m(y) is continuous and strictly
decreasing for y >0, then its inverse function, which we shall denote by f ‘(z), is
decreasing and eqmdmtnbutod with f(z).

The definition of f* just given holds, suitably modified, in the general case. Let us
oonsider the curve z =m(y) and a point y, of discontinuity of it. We adjoin to the curve
the whole segment of points (z, y,) with m(y,+ 0) < x < m(y, — 0) (noting that the point
z=m(y,) =m(y, + 0) belongs to the initial curve) and we do this for every y,. Every
line z=2z,, 0 <z, < a, intersects the new curve in at least one point, whose ordinate we
denote by f*(z,). The function f*(z) is defined uniquely for 0 <z < a, except at those
‘points which correspond to the stretches of constancy of m(y). Such z are denumerable
and for them we take for f*(x) any value that preserves the monotonicity. Takiug
into account the discontinuities and the stretches of constancy of m(y), we may verify
geometrically that, for each y,, the set of points x such that f*(z) > y, is a segment, with
or without end-points, of length m(y,). Thus | E(f*>y,) | =|E(f>y,) |.

We define f,(z)=f*(a— z); the properties of f, then follow trivially from those
of f*.

Suppose that f(z) is integrable over (0,a). For every z, 0 <z < a, we set

0(x)=8,(z)-=sup f/(t)d: where 0<f<z. (13:2)
Clearly 6(z) is finite at every pomt at which the integral of f is differentiable. If f is
non-increasing, then 1
6,(z) a;rjdt. (13-3)
)

In particular, this formula applies to the function f*(z) introduced above.

(13-4) TerorEM Oor HARDY AND LrrTLEWOOD. For any non-decreasing and
non-negative function x(t), t > 0, we have

a a - a 1 (=
J‘o x{0,(z)}dz < J.o x{0pr(z)}dz = jo x{ o j . S ‘dt’dx . (13-5)
First of all we observe that for any g(z) > 0 we have
[(o@raz= - [" yamin)= [“m@)ay. (136)
0 0 0

where m(y)=| E(g >y)|. For, if g is bounded, the first equation follows from the fact
that the approximating Lebesgue sums for the first integral coincide with the approxi-
mating Riemann-Stieltjes sums for the second. In the general case, for u > 0.

- JW ydm(y) = f o(z) dz,

-and the result follows by making » —» co. Fmally, the second equality in (13- 6) follows
from integration by parts, if we observe that

gdz).
Ew>y)

Comparing the extreme terms of (13-6) we see that if we have another function
g:(z) >0 and the corresponding m,(y), then the inequality m,(y)>m(y) for all y

ym(y)»0 88 y->50 (sinoe ym(y)< [
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implies that the integral of g, is not less than that of g. Hence, y({) being monotone,
the inequality (13-5) will follow if we show that

| E(6;> o) | < | E(0p>y,)| for all y,. (137)
We break up the proof of this inequality into three stages.

(13-8) LEMMA. Given a continuous F(z). 0<z<a, let H denote the set of points z
Jor which there is a potnt § in 0< £ <z such that F(§) < F(z). The set H consists o}' a
denumerable system of disjosnt intervals (a,, B,) such that F(a,) < F(B,). Al these intervals
are open except posstbly one terminating at a.

Since small changes of 2-do not impair the inequality F(£) < F(z), bhe set H is open,
except possibly for the point a. Let («, #,) be any one of the disjoint intervals (open,
except when f, =a) constituting H. Assuming thet F(a,)> F(f,), denote by z, the
smallest number in (a;, g;) such that F(z,) = ${F{x,) + F(J,)}. Thus no § corresponding
to x, can belong to (a,,z,), since the points of this interval satisfv the inequality

F(z) > F(z,). Hence £ < a, and the inequalities F{§) < /'(z,) < F(ak) imply that a, € H,
which is false. It follows that F(x,) < F(/,).

Remark. We actually have F(a,) = F(B)), unless ., =a. For no f, <a belongs to H,
so that F(a,) > F(fy).

|E)
(13-9) Lusuua. If E is any set in (0,0), thznf fdz<j frdz.

)
Let g(2) be equal tof(x) in E and to 0 elsewhere. Since g < f, we also have g* < f* and

ffdx fgd:r f ‘dz= J' g-dx<ﬂ fodz,

which proves (13-9).
Let E(y,) and E*(y,) denote the sets in (13-7), and let Ef(y,)=E(fp>y,), with
equality this time included. Having fixed y, we drop it as an argument and write

E, E*, Et. If we set F(x) =fodt — Y02, the set £ becomes the set H of Lemma (13-8).
o .

We show that \E|
fo frdz>y, | E|. (13-10)

In fact, if (a;, B)) are the intervals making up E, then

Fr
f fdz > yo(Br— ),

by (13:8), and summing over all X we get the inequality

[ sa=>wl Bl (13-11)

from which (13-10) follows, by (13-9).
Return now to (13-3), with f replaced by f*. Since the right-hand side is a con-
tinuous and non-increasing function, | £¢| is the greatest nuruber z <a such that

z‘f:j‘dtzyo. Hence, by (13-10), | E| <| &2 in full,
| E(6,>y0) | €| E(6p>v,) |
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If we replace here y, by y,+ € and make € decreaes tu 0, we get (13-7). and the proof uf
(13-4) is completed.
In addition to 6,{z), we define the functions

an)—sup Ff (z<§<a)'
O/ (z) = max {§,(r), ,\z)}—supg J fdr (0<€f<a). (13:12)

The inequality in (i3-5) holds if we replace 6, by 0; aud f* by f,. Since

O =1max (¢,6'),
we have x(0) < x(0) + x(f’) and

J‘,((G,)dz <J x(&,.)dz+f x(l,.)d;z:-—=2"o x(6,) dz.
Hence: :

(13-13) THEOREM. If fe L(0,a) und O(z)=0/(z) 13 defined by (13-12), then for «
nun-negative and non-decreasing x(u),

a a x
f x{@(:c)}dxs;‘?f X(EJ. f'dt) dz. (13-14)
[ 0o \TJo
From this wo deduce. by spacifying x, the follow:rg corollaries:

(13-15) TuroreM. (i) if felr(0,a), r> i, then O(x)e]." and
J O'd:r’2 - Jf'd:c

(i) Lf feL(0,a), then O(x)e L for every 0<a <, and

al—< / (@ a

—a (.Jofdx) '

(ii) If flog* fe L(0.a), then O(x)e L and

f’@«dxsz
0 1

‘aedzs4faflog*fdx+A.
Jo 0

with A depending on a only.

We have to estiniate the right-hand side of (13-14) and we may suppose from the
start that f is non-increasing, so that we may replace f* by f there.

(‘ase (i) then follows from Theorem (9-18), with s =0; it is enougb to set f(z) = 0 for
x>a. Case (ii) follows by an application of Holder’s mequality. For, with y(u) = u*,

Y R

- i) di}“#"r’ﬂﬂfd‘)’-

In case (iii). the right-hand side of (13-14), with x(u) =, is
zfa(fff:f(t)dt= 2laf(t) logadr
0% Jo Jo t
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Let E, and E, be the sets of points at which, respectively, f< (ajt)t and f> (ajt)d.
Clearly the integral of flog (a/t) extended over E; does not exceed a finite constant
depending only on a. In E, we have 1 <(aft) < f%, so that

f flog (aft)dt <2 f flogfdt<2 f *Flog* fdt,
K E, 0

and (iii) follows by collecting the estimates.

The example f(z) = 1/(slog?z), considered in the interval (0, }), showe that if fe L
the function © need not be integrable. In this case O(z)=1/(z|lngx|).

For applications to Fourier series a slight modification of the function O(z) is
useful. Let f(z) be periodic and integrable. but not necessarily non-negative (or even
real-valued). We set

¢ x+4
M(z)=M/(z)= sup %" |f(x+u)|du= sup %J * |f(u)|duw  (13-16)
O<iti<e ¥ Jx

o<1t v J0 '

for —m <2 <m. Clearly M/(x) does not exceed the function ©,,.(z) formed for the interval

(—2m, 2m), 8o that ”
[ =<

»

. x{Oy(x)} dz.
From this and (13-15) we easily gei; the following analogues of (i), (ii), (iii):
f' Mr(z)dz < 4(;—_’—1-)'f' |flrdz (r>1).
" al-a » &
) M"(x)dx<4ij_—&(f If}d;c) (O<a<l),: (13-17)

f' M(:r)da;st%‘.' Ifllog* |f|dz+ A.

-r

The following inequalities, implicitly contained in the preceding proofs, deserve
. separate mention. First, for f integrable and non-negative in (0, ¢),

[ E6,>y)|< y“’J.J‘dx. | B, > y) i < 2?/"f"fdr- (13-18)
0 c

The first of these inequalities is contained in (13-11), and the secord follnws from

the first by (13-12). Finally. for an f periodic &nd integrable but not necessarily non-

negative, v

|E{M/(z)>y, 0 <x<2m}; < 4y "f | fix) | d=. (13:19)
R}

Remark. While in parts (ii) and (iii) of {1315} we must necassariiy assume that a is
finite, part (i) holds, for infinite intervals. Suppose, 6.g., that feL7( -0z, + o). r> 1,
and consider the analogue of (13:15) (i) for the interval ( - a,a} and the function f,,
which is f restricted to ( —a,a). The passage @ -> + 00 leads to ’

P
-

“orarea(,t V[ e

Jo-o r—1 J -
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MISCELLANEOUS THEOREMS AND EXAMPLES

1. A sequence {u,} is of bounded variation if and only if it is & difference of two non-negative
and non-increasing sequences.

2. Of the two series,

(i) §+cosx+co82x+... hcosnz+...,

(ii) sinz+8in2z4-... +sinnz+...,
the first diverges for all z, the second for all % 0 mod n.

{(i) For no 2, do we have 008 nz, —0. For otherwise,

. sintnz,=1 —cosdnzy + 1, sind nre= (1 —cos 2nzy) - §.-

a oontradiction. :

(ii) If sin nz, —» 0, then

’ sin(n+1)z,—8in (n— 1) 29 =23in z, cos nx, -0,

that is, sin z, =0 by (i).]

8. Using S[|sin z |}, prove 8 «

¢ sindnx
Mpmg 4n3—1"

4. Letc,=4§(a,—1b,) form>0,and letc_,, =c,. Showthatanecessary and sufficient condition
N

for the existence of lim X c,, e‘™* as M and N tend to +  independently of each other, is the
-
simultaneous convergence of both series

@ @
Y (G co8mag+b,8inma,) and X (a,,8in mx, — b, cos mx,).
1 1

5. Each of the two systems
(i) 1, cosz, cos 2z, ..., cosnx, ....
(ii) sinz, 8in 2z, ..., sinnx, ...

is orthogonal and complete over (0, 7).

8. Let {¢,) denote Rademacher’s systen (see §3) and let

- XQ(‘) =1, xn(t) = ¢u.(¢) ¢m(¢) cies
where 2Mm 4 2% 4 ... n;>ny>..., I8 the dyadic development of the positive integer N. Show that
the system {xn} is orthonormal over the interval (0, 1).
(The system yx, in & different form, was tirat considered by Walsh [1]. Sec also Paley 1], who
gave the above definitiqn, and Kaczmarz {1). °

7. Let an{z) be the sum of the first N' terms of the Fourier series £a,y,(z) of f(z), 0<z<].
Prove the formula

1 n-1
8yn(2) =fof(‘) kﬂo(l + Ba(o) Palt)) de,

and show that sa(z) —f(x) almost everywhere a8 n —+co. This implies, in partioular, that the
system (xn} t8 complete over (0, 1).

[If 2, i8 not a binary rational, and I,_, is the interval of constancy of ¢,_, containing z,, then
{Ia-i}|=2"", all functions ¢, ¢y,...,$._, are constant in I, ,, and the integral above is

x
|4 py {-‘j f(tyde. If, therefore, F(zx) =J‘ fdt is differentiable at z,, we havo sea(x,) » F'(2,).)
0

8. Orthogonnl systems can be defined in spaces of any dimension, intorvals of integration being
replaced by any fixed measurable sot of positive measure. Show that if (P.(z)} and {{.(y)} are
orthonormal and complete in intervals a <z b, c <y <d respectively, then the doubly infinite
system {@.(z) Va(y)} is orthonormal and complete in the rectangle

R:a<rgb, cgy<d.
(J
[If'”' J(2,y) Pulz) Faly) dzdy = 0 for all m, n, the functions fu(y)= j f(z,y) Pu(z) dx vanish for
R a
almost all y. and hence f(z, y) vanishes almost everywhere on almost all lines y = const. )



CHAPTER II
FOURIER COEFFICIENTS. ELEMENTARY THEOREMS
ON THE CONVERGENCE OF S[f] AND ${f]

1. Formal operations on S[f]
(1-1) TeROoR®EM. Let n be an snicge~, u a real number.and

4+
fl@)~ T c e (1-2)
ey
—_— 4+ e
@ Ja)~ T Gevri= ¥ &b,
Sem — yeo -
+ o
(ii) finz)~ T c, e (n#0),
" 4+ + o
(i) emef@)~ L o ebTirn 3o, et
P — o0 Y -
4+
(iv) SE+u)~. T c evvebs,
1Y (x 2nk +x
-— - ——~ N .M .
(v) ngg‘of(n+ r.) "z_wc,,‘e (n>0)

The proofs are simple:

o L[ e e [T gt et
), IO,

(ii) Suppose first that n > 0. We observe that
1 »-1 ) . 1
A % exp (mukiim) = (u=0, 51,22, ) (1-3)

k=0
acoording as 4 is or i8 not a multiple of n. Now
. -1

14 Sn 14 n
f f(nt) etmdi = l J Sit)e—tutindt =f f@ e—dﬂlﬂ‘l po e—z.u,./n} dt,
0 nJo 0 N k=0

aud this is 27rc, or 0, acoording as x/n = v is an integer or not. The case n < 0 reduces to

n > 0, since, as we easily see, f(=2)~Zc, et
s
(ii ) f ft)e'™Medt=2nc,_,.
0
3 14
(iv) f J(t+u)edt=ewy [ St +u)e~Otwdt = 2 e,
) Jo

(v) This follows from (iv) and (1-3).

If f(z)~}ao+§(a, cos vz + b, sin vz), (1-4)
1
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(iv) can be written ®
fx+u)~ 3 {4,(u)cosvx— B,(u)sin vr}.
v=0

(1-5) TueoreM. If f(z) and g(z) are integrable and periodic, so is the function

- 1 (2%~ )
h(.r):—.:-)—r—r , fiz—t)g(t)de. (1-6)
+®
If f~Xc, e=, g~ 2d, e™=, then hiz)~Yc,d, ev*. (1-7)

We show first that the integral (1-6) exists for almost all . We may assume that
f and g are real-valued, and this case may, in turn, be reduced to f, ¢y > 0. Then

b 1.4 2n S2n { 3.4 2o *2n .
j dxj f(x—t)g(t)dt=J g(t) [ f(x—t)dz} dt= | g(.')dt’ f2)dz. (1-8)
0 0 0 . v 0 J0

LMo

The operations performed here are justified since f(z —¢)g(t) is measurable in the
(z,t) plane (being a product of measurable functions) and since (the integrand being
non-negative) the order of integration is irrelevant. Thus A(z) is integrable and, in
particular, finite almost everywhere. It is clearly periodic.

The function f(z—t)g(t) is integrable over the square 0 <z <2m, 0<t<2n. Thus
for general f and g, | f(x —t)g(t)e~*=| is integrable over the square and the following
argument is also legitimate:

~

1 th ‘ d 1 2m( ] 2n _— ot g d
—27'—,0 (z)e T=5 , {—2—7-’.”0 flx—t)e g(t)e : r

1 2 ) 1 (2 . }
m o [Taw el [ -y eminr-tdaf e c,a,
Jo <M Jo

2m
and the proof of (1-5) is completed.

It is useful to observe that (1-7) is obtained by the formal process of multiplying
S[f(£—1)])=Zc,e**e and S[g(t)]) =2d,e“ termwise and integrating each product
term over 0 <! < 27. :

The function

W) =190 = 3 [ S 0a)

of (1-6) is often called the convolution, or composition, of the functions f and g.
Obviously I(f,g)=1(g.f). .
For fin (1-4) and g ~ $ag+ S(a, cos vz + b, sinvz), (1:7) can also be written

14 L -
;'J f(x—t)g(tydt ~ }agao + X {(a,a,— b, b)) cosvr + (@b, +a,b)sinrz}.  (1-9)
0 1 .
Set g(t) =f(—t)in (1-6) and replace t by —t. We obtain the special but interesting case
2n _ + @
—l—f fle+t)f(t)dt~3|c, |2e™. (1-10)
2m 0 —®

Suppose that the f and g in (1-6) are in L2 Then Z|¢, |? and ¥ |d, |* converge. If
we can show that the integral (1-8), which by Schwarz's inequality exists for
every z, is a continuous function of z, then we can replace the sign ‘~’in (1-7) by ‘' ="’
(Chapter I, (6:3)). For this purpose we need the case p =2 of the following lemma:
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(1:11) Lemma. If f is periodic and in L?, 1 < p <o, the expression

] lip

2%
: It )=M,[fz+) - f(x)]= {J‘o | flx+t) - fx)|” dr’
tends to O with L.

This is immediate for f continuous. Using Theorem (11-3) of Chapter I and its
notation, we get, applying Minkowski’s inequality twice,

Jy(t; )<, @)+ Jolt; f— B) S (L5 @)+ 29, [f — @) < o(1) + 2.

Hence .J,(t; f) < 3¢ for | t | small enough, and (1-11) follows.
Return to (1-6). If fand g are in L3, then

[ Az +u) = h(z) | <J:'|f(z+u—¢)—f(x~f)| | g(t) | dt < Jp(u; £) My{g) >0
as u-» 0, which shows that A is continuous. Hence:

(1-12) THEOREM. Supposgthat f and g are in L? and hare coefficients ¢, and d, r espec-
tively. Then 2w o :
1 )
3 [ ta-nad=Eed, e
2n Jo —a

for all z, and the series on the right converges absolutely and uniformly. In particular
. 1 L] _ 4+ .
3n |, f@+0fOdi= T |, |2,
l L + o

2—”J: fergtydt= ¥ cd_,. (1-13)

l t § + oo
s [0 ra=E o
The last equation is Parseval's formula for the ttigonometric system. The name

Parseval’s formulda is often given to the first two more general relations (1-13).
If fis real-valusd and has coefficients a,, b, we may write the last equation in the forin

Er'f'(t)dt=ia§+ ¥ (al+b2). (1-14)
mlo 1

Return to (}-5). If f and g avre integrable, so is &. The following generalization of
this result is of importance. -

(1-15) THEOREM. Let f and ¢ be periodic and in LP and L9 respectively, where
p>21,q21,1/p+1jg>1. Let L1
SR ¥ (1-16)
rp g
then the function h(z)=I(f,g) defined by (1-6) belongs to L', and

AR < AL F1 U, Lg),
where U, [h] stands for N, [h; 0, 27), and simnilarly for U, (f]. A,[g].

Since | I(f,g)! <I(] f|.|g|), wo may suppose that f>0,g > 0. Let A, u, » be positive

numbers satisfying 1/A + 1/ + 1/v =1. Writing

S(z—t)g(t) = frAgar. friip-uk, gaiia-14),
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and applying Holder’s inequality with the exponents A, #, v (Chapter I, (9-8)), wo see
that A(x) does not exceed

.lf”’fn(z—t)g'(l)d‘ IIA[L' "”'fp,«um-x;,\),z_ fydt Ve[| [2r a1 gt "
2r [} 2”.0 \ §7—T . f () .

We use this with A=y, Yp—=1A=1u, lig—=1/A=1/p, (1-17)

80 that A, u, v aro positive numbers and satisfy 1/A +1/u + 1/v=1 by (1-18). The last
two factors in the product are just H2/[f] and A*[g]. Henoe

. 1 (3= 2 1w
w08 = Wk < 0 1) s [ e[ e -0t

The expression in curly brackets is A[f7] A(g?] == A3 /] Ag), and the right-hand
side ia therefore B[ £] YN+ ] = 90, [ 1] A (g), ;
by (1-17). This completes the proof.

The theorem holds when 1/p +1/g=1. Moreover, by an argument similar to that
praceding Theorem (1-12), A(z) is then continuous.

Lot fy, fy, ...+ /i be pamodic intograble functions heving respectively Fourier coefticients
1M, ..., {c}. We define the convolution k(x), or I{(f,, fy. ... . ), of f,, . ..fx by the induction

formula Sy faooo o fo) =20 o0 D) fo)
Then A(z) is a periodic integrabie function, and obviously
h()=1tf fay oo fr) ~ EVED L ebrgina, (1-18)
1t follows that the oparaticn of convolution s comumutative ard associative. Commut.&tivit,y

is anyway an immediate consequenoe of the d-finilion of ronvolution, while associativity can also
be derived directly from the formula

» .4
"(1‘)=(2ﬂ)—'J—: J: Sz —ty— . =) folty) . falta) dby .. .

. (1'19) TueoreM. Let f,, f4 ..., fo be periodic and of thr classes L™, L™, .... L't reopectively.
Suppose that r,> | for all j and that the number
1 1 t
—=—l-+—+...+—~—(/c-l) (1:20)
r oror Ty

1 positive. Then the convolution Mz)=1I(f,,..., f) 18 of class L'. 1f the right-hand side of (1-20) &
zero, then b 18 coatinuous. Moreover
AR < U [f1]. W[ fa): (1-21)
This follows by induction from (1-185).

Let F(z) be a function satisfying the condition
F(x+2n)~F(x)=const. (—o<z< +) (1-22)

aud of bounded variation in {0, 2#). Let G(x) bo a similar function and write
H(x)=ir'mx- 0 da(). (1:23)
2m 0

the contolution of F and dG. The integral here is taken in the Riemann-Stieltjes aense,
21d so exists for every 2 such that F(x—t), qua funstion of ¢, and G(t) have no dis-
~ontinuity in common. In other words, it exiats for every 2 which does not helong to
the denurnerable set D of numbers £, + 7,, where {{,} and {7,} are the discontinuities
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of F(t) and G(¢t) respectively. Let E be the set complementary to D. The function
H satisfies on £ a oondition analogous to (1-22). If {(a,, b;)} is a finite system of non-
overlapping intervals with end-points in £, then

>:|H(b‘)-n(a‘)|gzi"f:'{x|F(§‘-c)-r(a,-¢)|}|.za(z)|, (1-24)

which shows that H is of bounded variation over any finite portion of £. It is therefore
a difference of two functions monotone on E, and so can be extended to all z, e.g. by
th diti
@ condition H(z)=limH(z") (zeD, z'€E, z'>z+0). (1-25)
Such an extension does not increase the variation of monotone functions, nor, there-
fore, the total variation of H. Let ¥V}, denote the total variation of F over (0, 27).
Since, as we see from (1-24), the total variation of H over (0, 2m) E does not exceed
V-V, /27, it follows that
ral2m i _ Vg < Ve Vyj2m. (1-26)

Summarizing, the integral (1-23) exists for all z outside a certain denumerable
set D and can, by (1-26), be cxtended to all x as a function satisfying a condition
similar to (1:22), of bounded variation over (0, 2n), and also satisfying (1-26). Clearly
if F and G are monotone eo is H. We may add that if we used the Lebesgue-Sticltjes
integral, H(z) could be defined by (1-23) for all z, and would have the same properties
a8 the H(z) above.

Iet c, and c,, be the Fourier coefficieuts of dF and d&. We shall show that

dH(z)~ Zc, c) ez, (1:27)

For let z, <z, < ... <) mzy + 27 be points of K. The nth Fourier coefficient of dH is
the limit of the sum - )

1 & 1 & - ]
37 B ) - B = g B [T{[77 emenroar) e-maony

88 p = max (z,~z,_;{)+0. Su]ipon' p o0 small that the oscillation of e~"% over every
interval of length <p is less than e. Then on replacing e=**s-0 in the last integral by
e~ we introduce an error at most '

4_‘7'7_,’§ J':'U”" ]dF(u)|}|dG(t)!=2§’—, ) U::ldl'(u)l}ldG(t)I-;,,‘—.VpVa-

-l xy -t

But f’ T e g () o dgigr) = J" " e-trv dF(u) f " e4m dG(t) m drte, e,
o Uzt f 0 ) no
'This corapletes the proof. As we see from (1-27), by interchanging the roles of F and
G in (1-23) we modify H only by an additive constant,t a result which can also be
obtained directly from (1-23) by integretion by parts.
If F (or @) is continnous, the integral (1:23) exists for all =, and since

2
2n|H(x+hk)- H(z)| <max' Fx+h—t)— F(x-t) |J |dGe) |,
¢ 0

H(z) is alse continuous.
e 1 Soe the last reraark on p. 41.
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A special case of H(z) is the function
1 (7 ~
F-(x)=%fo F(z +1)dF(). (1-28)

F*(—2) is the convolutian of F(—t¢) and dF(t). By (1-27) (if dF(z)~Zc, ¢i"%, then
—2)~ — € - 3
aAF(-x) Zc_, etn%), dF* @3 ~X |c, 12einr, (1-29)

We shall show that the absence of a jump of F*(z) at =0 is equivalent tu the
continuity of F at every point. More precisely:

(1:30) THEOREM. Let 1, z,, ... be all the discontinuities of F in the interval 0 < z < 27,

F*(+0)— F*(—0)=(2m)12|d, |

For let Si(z) be a step function having jumps d,,d,. ...,d, at the points z,,z,, ..., z,.
continuous elsewhere, and satisfying a condition analogous to (1-22). The difference
Fy(z) = F(z) — Si(x) is continuous at z,,x,....,z;. and has jumps d;,,,d;,,, ... at the
points Z; .., Z;,a, ... The function F*(x) equals

1 2~ 1 (2" ‘_
5;.[0 Fi(z+t)dF(t) + “271J‘: Si(z +t)dF(t) = Hy(x) + Hy(z).

For +8€¢E, 27 | Hy(+68)— H\(-98)| < Vepsup| Fi(t +8) - F(t-9)|,
t

L _
S Hy( +8)— Hy( )] = f " (86 + )~ 8,6 - 1 dF (), (1-31)

The first inequality shows that by taking k large enough (i.e. by removing the ‘heavier’
discontinuities from F) we can make H,( + 0)— H,(— 0) arbitrarily small. For § small
enough, S,(¢t+68)—S,(t—9) is d, in the § neighbourhood of z,, j=1,2,...,k, and is
zero elsewhere:. This shows that the integral in (l 31) tends to |d, |2+ .+|d,‘ |? as
§->0. From these facts (1-30) follows.

i Differentiation and integration of S[f]

Suppose that a periodic function f(z) is an integral, i.e. is absolutely continuous.
Integration by parts gives

c,=- ~-.r fe~w= z-.————"‘ f’e“""dx:f—; (v+0),

2mv

so that ¢, =1wc,, the c. being the coefficients of f’. Sinoe f is periodic, ¢, =0. Thus. if
S’[f] denotes the result of differentiating S[f] term by term, we have $'[f]=S[f’), or

. +w Ky ® .
[~ 3 vc,e*= 3 y(b, cosvx —a,sinvr).
V= —a vl

From this follows the general result:

(2-1) TrEOREM. If f(z) is a k-th integral (k=1,2. ...), then SW[ f] =S[ f®)].

The following result shows what happens when f has discuntinuities, for simplicity
& finite number of them:
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(2-2) TaEOREM. Suppose that f(z) has discontinuities of the first kind (jumps) at the
POINLE Ty <ZTy<...<Zy<ZTy, =1,+2m, and that f(z) 15 absoltely continuous in each
of the intervals (z;, z,,,), 3f completed by continusty at the end-points x,, z,,,. Let

d; = [f(x;+0) — f(z,— O)}/m, D(z)={+'§oos vz.

Then S'f1—SUf' =4y D(z— 2,) + dy D(@—23) + ... + dy D(z — 7). (2:3)

The series D(x) diverges everywhere (see p. 34, Ex. 2), but is summable by various
methods to 0 if x4 0 (see Chapter III, §§1, 2). The statement (2-3) is, of course, to
be interpreted formally: corresponding coefficients of the series on the two sides are
equal.

We may suppose that f(z,) = §[f(z; + 0) +f(z,— 0)] for all s. Let ¢(z) be the function
defined in Chspmr 1, (4-12). Then S'(¢] = D(x) —-} The function

O(z) =d, $(z—2,) + .. +dh¢(z—zk)

has the same pointa of discontinuity, and the same jumpe, as f. The difference g = f — ®
is therefore continuous, indeed absolutely continuous. Moreover,

O'(z) = — }(dl + .o +d.) = C,
say, except at the points z, 80 that g’ =’ — C almost everywhere. Now
SU1=S5Tg+®]=Slg] + S'[®]=S[g') + S'(®]
=S[f']1-C+ %:di{D(z—z‘)— $}=S0f"1+ }{_‘,d,D(z—x,.).

This completes the proof of (2-3).

Let F(z), 0<z < 2m, be a function of bounded variation, and Ict ¢, be the Fourier
ocoefficients of dF. The difference F(z)—c,z is periodic (Chapter I, §5), and its
Founer coefficient C,, v+ 0, is

_-J" (F- c,z)e"""dx:——r e~z d(F - c.z)=—r -"zdF-—v.

" Let us agree to write F(z)~coz+Cy+ Z e
Yo — @
instead of F(z)- cox ~Co+ Z e

where the dash signifies that the term 1 =0 is omitted in summation. Then S[dF)
is obtained by formal differentiation of the first of these series, and we have:

(2-4) THEOREM. With the convention just stated, the class of Fourser-Sticltjes series
coincides with the class of formally differentiated Fourier series of functions of bounded
variation.

If S{dF] vanishes identically, S{F] consists of a constant term C. Thus F(z)=C, and
F is equal to C at every point of continuity, that is, outside a certain denumerable

set. Hence. if tico funclions F, and F, with regular discontinuities have the same Fourier-
Stielljes coefficients, then F\(z) - Fy(z) =C.
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Let f be periodic and F the indefinite integral of f. Since F(z + 2) — F(z) is equal to
the integral of f over (z, z + 27) or, what is the same thing, over (0, 27), a necessary and
sufficient condition for the periodicity of F is thas the constant term c, of S[f] is zero.
Suppose this condition satisfied. Then by (2-1) S[f] $’[F], so that S[F] is obtained by
formal integration of S[f]. In other words,

F@)~C+ Z e"‘—C+ E (a,sinvx —b, cos vz)/v,

rm-o t y=l
where C is the oonstant of mtegrat.ion.

If ¢, + 0, we apply the result to the function f— c,, whose integral F — ¢,z is periodic.
Henoe we have:

(2:5) THEOREM. If f~ Xc, ¥, and F is the indefinite tntegral of f, then

+ @
Fx)—coz~C+ X’ c,e"*liv=C+ I (a,8invz—b,cosvr)/v.
Ve — 0 reml
Ezample. Let By(z), By(z), B,iz). ... be the periodic functions defined by the
conditions
(i) Bo(z)= -1,
(ii) Bj(xz)=B;_,(z)fork=1,2,...;
(iii) the integral of B, over (0, 27) i3 zero for k=1, 2, ....
Using Chapter I, (4-12), one verifies by induction that

+® ive

B~ I o

where the dash indicatee that the term v =0 is omitted in summation. Inside (0, 27),
B,(z) is a polynomial of degree k (Bernoulli’s polynomial, exoept for a numerical
factor). Aceording as k is even or odd,

(k=1,2,...), (2°6)

Bk(x>~2<—1)**z ., By@)~2(- 1 -y

rel

smvz

Suppose that f is & kth integral (k=1,2,...). Replacing in (1-5) f by f®, g by B,,
we have.the useful fcrmula

t 14
f(x)—co= 511_1]0 S x—t) B,(t)dt. (2:7)

3. Modulus of continuity. Smooth functions

Let f(z) be defined in a closed interval I, and let

w(8)=w(8; f)=sup | f(z,)—f(z,)| for z,€l, z,el, |z,—z,|<3.
The function w(3) is called the modulus of continusty of f. If I is finite, then f is con-
tinuous in / if and only if «(8) - 0 with 3. If for some a > 0 we have w(8) < Cd*, with C
independent of &, we shall say that f satisfies a Lipschitz condition of order a in (a,b).
We shall also say that f belongs to the class A,; in symbols,
feA,.

Only the case 0 <a < 1 is interesting: if @ > 1, then w(8)/é tends to zero with 8, f'(z)
existe and is zern everywhere, and f is a constant.
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The function f belonge to A, if and only if f is the integral of a bounded function.

It is sometimes convenient to consider the classes A, defined for 0 <a < 1 by the
condition w(8)=o0(8), so that if I is finite A, is the class of continuous functions. By
A, we mean the class of functions having a continuous derivative.

A function F(z) is said to be smooth at the point z, if

{F(zo+h) + F(zo—h) - 2F(zo)}/h=0(1) as h—0. (3-1)
This relation may also be written
‘ {F(zo+ k) — F(zo)}/h — {F(z,) — F(zo— h)}/h =0(1). (3-2)

It follows immediately that if F'(z,) exists and is finite then F is smooth at z,. The
converse is obviously false, but (as we see from (3-2)) if F is ‘smooth at z, and if a
oue-gided derivative of F at z, exists, the derivative on the other side also exists and
both are equal. The curve y = F(z) has then no angular points, and this is the reason
for the terminology.

If F is smooth at every point of an interval I, we say that F is smooth in /. (If I is
closed, this presupposes that F is defined in a larger interval containing /.) If P is
oontinuous and satisfies (3-1) uniformly in z, € / we shall say that ¥’ is uniformly smooth.
and also that F belongs to the class A, . The class A, is defined by the condition that F
is continuous and that the left-hand side of (3-1) is O(1) uniformly in z,.

If FeA,, then FeA,; similarly, if FeA,, then FeA,. Thus A, and A, are respec-
tively generalizations of A; and A,. They are sometimes important for trigonometric
series as being more natural than A; and A;. On the other hand, basic properties of
A, and A, do not hold for A, and A,. Thus there exist functions F e A, which are no-
where differentiable and functions F € A, differentiable in a set of measure zero only
(p. 48). However, we do have:

(3:3) TerOREM. If F(z) 8 real-valued, continuous and smooth in an interval I, the
et E of points where F'(z) exists and is finite 18 of the power of the continuum in every
subsnterval I' of 1.

We may suppoee that I'=I. Let L(x)=mx+n be the linear functicn coinciding
with F(z) at the end-points a, b of 1. Then @(z) = F(z) — L(z) is continuous and smooth,
and vanishes for z=a,b. If z, is a point inside / where @ attains its maximum or
minimum, the two terms on the left in

{G(zo+ h) — G(z)}h + {G(zy — h) — G(z)} /o —> O

are of the same sign for | A | small. Thus the right- and left-hand derivatives of @ at
the point z, exist and are zero, so that @'(z,) =0, F'(z,) =m = [F(b) — F(a)}/(b - a).

Hence K is dense in I. Let now a < ¢ < b. The above proof shows that there is a point
z, inside (@, c) such that F’(z,) existe and equals the slope of the chord through (a, F(a))
and (c, F(c)). Hence, if the slopes corresponding to two different c’s are different,
the corresponding points z, must also be different. But unless F(z) is a linear function,
in which case (3-3) is obvious, the set of the different alopes, and go also of the points
z,, is of the power of the continuum.

It is well known that a function f(z) may be non-measurable and yet satisfy the

condition f@+R) +f(z~h) - 2f(x) =0
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for all z and 4. This is the reason why in the definition of classes A, and A, we
assumed the continuity of f. It turns out that the functions of A, and A, have
‘a considerable degree of continuity’.

(3-4) THEOREM. Let f(x) be defined in a finite snterval {a,b). If fe A, then
w(d; f)=0(8log8)

and in particular fe A, for every a < 1. If feA,, then w(8: f)=o0(8logd).

It is enough to prove the part concerning A,. Let M =max | f(z),. The hypothesis
feA, implies [ f(a+7) = 2f(2+ 47) + f(z) | < AT
for ze(a,d) acd 7 small enough, 0 <7<, Let us fix » and set f(z+71) —f(:r) g(r).
The left-hand side of the inequahty above is | q(1) — 25/47) |. Replacing here 7 succes-
sively by 7/2,7/22, ... we get

|g(r) = 2g(7/2) | < A7, | 29(7/2) = 2%(7/2%) | < 47, ...,
i 2"_19(7/"‘" —1; - 214(](7/'2n) '| < AT.
where n will be defined in & moment. By termwise addition,

[ g(r) —27g([2") | < An7. (3-5)

Suppose now that k tends to O through positive values. Tet 0<% < }y and let »
be a positive integer such that 27/ is in the inierval (3y.v). The inequaility 2"aA<y
implies tba.c n=0(ogh). From (3-5), with 7= 2"k, we get

D 2
lg(h)| < 2—¥ +f4-n—1 = 2M A + Anh < —blh + O(klogh)=0O(hlogh),
2" 27k Y =

or f(x + k) —flz) = O(hlog k), which proves the theorem.t

A function f(x) defined on a set E will be said to hAave property D if, gn en any two
points «¢, 3 in E, the function f takes ou the product set. (2, 2) £ all values between f(x)
and f(/). Property D may be considered as a (rather weak) substitute for continuity.
A classical result of IDarboux asserts that any exact derivative has property D in an
interval where it exists.

(3-6) TurorEM. Under the hypothesis of (3-3). F'(x) has property D on K.
For let a<fl, aek, feE. F'(a)=A, F'(f)=
Let C be any number between 4 and B, say 4 < C' < B. We have to show the existence
in (a, 8, of a point y such that F'(y)=C. By subtracting Cz from F, we may suppose
that C=0. Then 4 <0< B. Consider the function G(z)={F(x+k)— F(x)}/A, where
h< B —ais fixed, positive, and 8o small that
G(@)<0, G(B—h)={F(B)—F(B-h)lh>0. (37)
Since Q(z) is continuous, there is a point z, inside (x, 7 — ) such that G(z,) =0, that is,
F(zo+ h)=F(z,). If v is a point inside (x,, z,+ ) at which F attains its maximum or
minimum, then F’(y)=0=C. Since (z, Z, + k)< (, ), the theorem follows.
Remark. The argument even shows that if 4 <C < B, and
lixix i?f{F(a +h)—F(a)}/h< A, lir:x s‘t)xp {F(B)— F(B—h)}/h> B,

then there is a point v between a and £ such that F'(y)=C.

t The same proof shows that if f(z + h) + f(z — h) — 2f(z) =O(k*),0 <a < 1,then feA, (see also Remark (d)
on p. 120).
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Let us now confine our attention to periodic functions. Given an feL?, p> 1, the
expression 1 [t p
w,8)=0,(8:)= sup (o ["| S+ b —f@) | do
0<A<el<T Jo

will be called the integral modulus of continuity (in L?) of f. Theorem (1-11) implies
that w;(8) > 0 with 8, for every fe L?. Obviously w,(8) is a non-decreasing function of
dand p. If fis continuous, then w,(8) > w(8) a8 p - c0. Unlike w(8), w,(4) is not affected
by a change of f in a set of measure 0.

If w,(8) = O(82), we write fe AZ; and if w,(8) = 0(d%), then fe AZ. Here again the case
a > 1is of no interest: if w,(8) = o(8), then f= const. Since w,(8) > w,(8), it is enough to
take p=1. Let z
F(z):-fojdt,. 0<zg—2,<2m 8>0.

= \&‘f&+‘f(u) du — &’J‘:‘“f(u) du|.

The left-hand side here is not greater than 277 8-'w,(8) =o0(1), a8 8 > 0. The right-hand
side tends to | F'(z,) — F'(z,) |, provided that F'(z,), F'(z,) exist. Henoce F'(z) is
constant outaide a set of measure 0, which means that f= const.

We may also poosider the claas A} of periodic functions FeL?, p > 1, such that

Then |8 J' "z +8)—f(z)) dx
| z

‘ f " | Pz +h) + F(z — ) — 2F(z) > dz}"’ =O(h).

Replacing O(h) by o(h) we define the class AZ; and for p =0 and F continuous we get
the classes A, and A, reépectively.

4. Order of magnitude of Fourier coefficients
The Fourser coefficients c, of a function f satisfy the inequalities
le, | <t(m/|v]), |o|<tw(m/|v]) (v+0), (41)

whére w ‘ond w, denote the moduli of continuity of f (see § 3). For, replaomgz by z+n/v
in the integral defining ¢, and taking the mean value of the new and old integrals, we
find that 2mc, is,

e ¥ S Fe ety T (% |

Henoe [c,ls—l—r'!ﬂz)—f z+7—') dx (4-2)
and the righit-hand side here exoeeds neither jw(n/| v |) nor yw,(7/| v|). If feL?, p>1,
(42) implies le,| € 4wy} v ) (43)

(see Chapter I, (10-12) (i)).
From the seoond inequality (4- l), and the fact that w,(8) > 0 with 8, we obtain the
following important theorem:

.(4°4) TEBOREM OF RIEMANN-LEBESGUS. The Fourier coefficients c, of an integrable
ftendtoOas|v|—c0.
The same result holds of course for thc ooefficients a,, b,, since ¢, = §(a, — 1b,) for »¥>O0.



46 Fourser coeffictents [t

A slightly different proof of (4-4) runs as follows. We set f=f, +f,, where f, is
k14
bounded andf | /o] dx < €. Correspondingly ¢,=c, +c,. Here f,€ L3, 8o that ¢, >0
0 .

(a consequence of Z | ¢, |2 < 0). Since
|c |<—1-J~ | f]dz <€f2m,

|e,| is les than € for | v| large enough. This concludes the proof. The reader will
notioce that it proves (4-4) for the general uniformly bounded orthonormal system.
The following corollary of (4-4) is useful:

(4'5) THEOREM. Lot K be a measurable set in (0, 2n). and let £,,£,, ... be any sequence
of real numbers. Then
J- cor?(nx+£,)dz—~¢4|E| (n—>cxc).

E

" For the integrand here is § + § 008 2% cos 2, — § sin 2nz sin 2£,, and the integrals of
oos 2nz and sin 2nz over E tend to O since they are the Fourier coefficients (with a
faotor ) of the charuoteristic function of the set .

The following is a slightly more general form of (4:4):

(4:6) TreorREM. Let fe L(a, b), where (a, b)1s finite or infinste,and let A beareal variable.
Letaga <b’<b. The integral

b’ . .
Ve=n =valfie )= [ fa)e wads

tends 40 0 as A~ '+ oc, and the convergence ss uniform in a’ and b’

Suppose first that b —a < c0. Iff:Cthamultmobvnoue sinoce then |y, | <2|C|/|A].
Hence the result holds if f is a step-funoction (that is, if (a,d) can be broken up into a
finite number of subintervals in each of which f is constant). Since a continuous f may
he uniforinly approximated by step-functions, (4-8) is valid for continuous functions.
Applying Theorem (11-8)of Chapter I with r = 1 and writing fas ¢ +(f— ¢), we find that

[YAN S 7@ |+ 7alf= @) <] vald) | +e<2¢

for | A | Jarge enough.
If b—a=c0, for example if (a,b)={—0, +00), we write f=f, + f,;, where f,=f in
the interval (— N, + N) and f, = 0 elsewhere. If N is large enough, then

R A
Llftldx<°v [PA0) | <tyalf) |+ 7alds) | €0()) +e,
and the result follows.
(47) TarorEM. (i) If feA,, 0<a<, orif only fe A2, thenc, =0(l =),

(i) If fe Ay, or if only fe A3, then c, = O(v?).

Case (i) follows from (4-1) and (4-3). Here ‘O’ cannot be replaced by ‘o’ (see helow),
except in the extreme case a =1feA,. In this latter case f is an integral, $'(f] is still
a Fourier series, and »c, - 0.
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To prove (ii) we replace z by z + 77/v in the integrals defining c,. Then

2nc,-.’:'f(z)e°"‘dx= —J:'f(zi’—:) e~ "zdx
—;J:'[f(z+’{;) +f(z—1-;)—2f(z)]e""dz,
8n|c,|sJ:'!f(z+g)+f(z—%)—2f(z),dz=0(%).

For fe A, we have ¢, =0o(1/v).
A good illustration of (4:7) is thg Weserstrass function
f@) =1 (@)= Eb— contz, (48)

where b> 1 is an integer and a is a positive number. The series here converges absolutely
and unilormly. The results which follow hold also for £f ™*sin f*z.

(4'9) TzOREM. If0<a<), then f, e A,. The function f, belonge to A, but not to A,.
Let 0<a<1, 5>0. Then

S+ R —Az)= + S.‘.b-“-nb"(w 1A) 2ein {373
= "? 2;‘”*0&

where N = N(A) is the largest mtog«uhsfymgb”h<l.soth-tb"+‘i> 1. Now

| P|< S b-m.1.b% = Ofh. (%)~} = O(h . h+-1) = O(AS),

1
|Q|< S 5-%.1.220(b-¥+0e) = O(Re).
- N4+1 -

Henoe P + Q = O(A*) uniformly in z, and feA,.

lnoukrtothmrthatf‘eA,, we write
j&(z-i- ) +h(x— h)-—!f,(:)- -}jb"‘ooob‘z(znnyb"h)'
=~ 2‘, 2: =R+T,

N+t
with the same N as before. Then *

| R| €493 b% = AO(bN) = MO(A-1) = O(h),
1
|T{< L b<b-N=O),
N+1

80 that R+ T =O(A) and f,€A,. That f,¢A, follows from the fact that otherwise
$'(f,] would be a Fourier series and the ooaﬁclenu of $’[f,] would tend to zero, which
is not the case.

Minor changes in the preceding argument give the following result:
(4:10) TamorxzM. Let ¢, 0 and
- 9(&) =g.(2) = T e 5" coabrz. (411)
1
Then g, €A for0<a<l,and g, €A,.
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Weierstrass showed that for a small enough the function f,(z) is nowhere differ-
entiable. The extension to @ <1 was first proved by Hardy. (For a > 1, f'(z) clearly
exists and is continuous, since $'( f] then converges absolutely and uniformly.)

/1 i8 an example of a function of class A, which is nowhere differentiable. On
account of (4-10) and (3-3), g,(z) is differentiable in a set of the power of the con-
tinuum in every interval. As we shall sce in Chapter V', p. 206, if T2 = oo (for example
if €,=n-1), then g, is differentiable in a set of measure zero only. Thus, smooth
Junctions may be non-differentiable almost everywhere.

If we write (4-8) in the form Za, cos kx then a, = O(k—2), and for k=b" this is the
exact estimate. This shows that the results of (4:7) (i) cannot be improved.

(4:12) TuRoBEM. Let F(x) be a function of bounded variation over 0 <z < 2m. and
let C, and c, be the coefficients of F and dF respectively. If V is the total variation of F over
IC,‘SH;‘I (v#0), 'C,ISE;’. (4-13)

The second inequality follows from the formula

14
2n|c,|= |Fe“"dF(x)| sj |dF(z)|=V.
) i Jo
Integrating by parts, we see that

F(2m)—F(0)  2mc,
-y + w

2nC, = f " ez F(z)dz=
0

for v+ 0, and the last sum is absolutely < 2V/|v]|.

Thus the coefficients of a function of bounded variation are O(1,v). The example
of the series Zv-! gin vz (see Chapter I, (4-12)) shows that we cannot replace ‘O’ by ‘o’
herg. The function in this example is, however, discontinuous; examples of contsnuous
functions of bounded variation with coefficients not o(1/v) are much lees obvious and
will be given later (see, for example, Chapter 'V, §§ 3 and 7).

Consider the Fourier sine series Z),sin vz of a function f(z) defined in (0,7). For
the existence of the coefficients

b’-_:g""fsinvxdz,
nJo

it is not necessary to suppose that f is integrable over (0, 7); it is enough to assume
the integrability of fsin z, for then fsin vz is also integrable. In this casc we shall call
our series a generalized Fourser sine series. For example, we have, in this sense,

oot §z~sinx+8in2z+ ... +sinnz+..., (4-14)
_ s relation suggested by making r— 1 in the formula for Zr*sin vz (see Chapter I, §1).
We have only to verify that the numbers
ﬁ,:gr}eotixdnvzdz
mJo

satisfy the relations 8, =1, 8, 8,,,=0forv=1,2,...,80 that §; =f,=...=1.
This example shows that the generalized Fourier sine coefficients need not tend to 0.
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They are. however, o(v). Forb,,,—b,_, is the vth cosine coefficient of the integrable

function 2f(x)sinz, and so teuds to 0. Hence if. for example, v is odd,
b,=bl+(b3—bl)+.-- +(by"‘b‘,_2)=0(v);

and the same argument holds for v even.
The following result both generalizes and illuminates the Riemann-Lebesgue
theorem.

(4-15) TEEOREM. Let a(z) be sntegrable, p(x) bound.d, both periodsc. Then

2m

1 2"az(:r),19(1::);)d:::—->iJ‘haz(:z:)(lac Lj‘znﬂ(x)dz s no>oo (4-16)
0 ' 2n 0 2n 0 )

Observe that if, for every €> 0, we have a =a, +a, with M[a,] <¢ and with the
relation (4-16) holding for @, and each bounded 3, then (4:186) is true. Now (4:16) is
certainly true if a is the characteristic function of «n interval and &0, more generally,
a step function. If a is integrable, we set & = a, +a,. whore a, is a step function and
M, ] small. )

The Riemann-Lebesgue theorem is the special cascs #=¢=i2. As the above proof
shows, (4-18) holds if we replace B(nx) by f(nx + 6,), where 0, are arbitrary numbers.
In this, moreover, » may tend to infinity by continuous values.

5. Formulae for partial sums of S[f] and S[f)
Given an integrable and periodic f, lot

a,=},j' f(t)cos v, b,=7~lrf' Ft)sin ved, (5:1)
80 that ta, + :‘E‘, (a, cosvz + b, sin vx), SE (a,sin vz —b, cos yx)
sl yeml

are S[f] and $[f) mpeo’tively. The partial sums of S(f] will be denoted by S,[f1, or
by §u(z:f), or simply by 8,(2); those of 3(f] by $.(f1, I.(z; /), or 8(). Using (5-1),

we have
1~ 1 »n »
s@=2[" s0 [+ Zevu-ala=1[" rone-aa,
Sy ==+ [ 10 | Esinve—x))at= -+| s0b.e-na,
m)_-» rel mJ—n
where D,(v)= ! + }Ecos vv=sin(n + §) v, sin v,

22

re=l

D, (v)= “2 8in vv = {cos v — cos (n + ) v}/2sin v

=]l

(cf. Chapter I, § 1). The polynomials D,(v) and D,(v) are calied Dsrichlet’s kernel and
Dirichlet’s conjugate kernel respectively. The formulae for S, and S, may also be written

S, ()= ;" J‘z f(z+u)Dy(u)du, S, (z)= - }, f ' f(z+u4) D, (u)du.

Bometimes there is a slight advantage in taking the last term in 8, or S, with a

ZTR 1



B0 Fourier coefficients (o

factor }. The new expressions will be called the modified partial sums, and will be
"dencted by S2 and 9% mpectlvely Thus

Sh(z)=4a, +‘)_ (a, cos vz + b, 5in ¥x) + §(a, cos nx + b, 8in nx) = HI,,(x) + S,_, (=)},
vl

and % is defined similarly. It we set

D}(x)=D,(») -- 4 cos nv =sinnv/2 tan v, } (52)
D) = D‘w)— }sin nv=(1 - cos nvj;2tan v,
and proowed as before. we get
S*(x) = }r [ i fx+ Diyde. Stx)= — ;" J" flx + () D%(e) de. (5-3)

By (4°4), S, — &7 tends uniformly to 0; S and S, are equivalent with regard to con--
vergence, and S is slightly the sirapler. Simiiarly for S, §%. We call D the modified
Dirichlet kernel, D% the modified conjugate Dirichlet kernel.

With a fixed f and a fixed point r we sot _

P(O)= @)= 3.t f) = H{flz ~ ) + frz - 1) - 2f(x)},
)=y () =6 ) =4{f(c+ ) - fla )},
and we shall adhere throughout the book to this notation.

Thé polynomial Di(u)=4+008%+ ... +§cosnu

is even, and integrating it term by term we see that

J.' Dat)dt=m.

Henoce Salz) - flz) = —f flx+10) D‘(‘)d‘ f=) [ D‘(l)dt
2 . ¢z(‘) )
=';J ¢ (6 D2t dt = . *tamnldt (5-4)
D2(u) being odd, we similarly get
: . Vel )
34(z) = — -J Uit Dy dt = .-”J(o.ztm 11 —connt)a. (5'5)

For future reference we also atate the following formulae:

s@=3[" fernpoa=[ e+ fe-nnod,

‘,‘(x)—ﬂ:c)=g-r¢,(t) (t)dl——f ¢z‘t)—————-{‘——-dt, »  (5°6)

008 §¢ — o0s (n + §)¢

8n(a) = "“j Yo(t) D, (tydt = - ‘j Y.l —: Tenl dt.‘

Our main task ic this chapter will he to show that, subject to suitable conditions
on f at the point z, S,(z; f), or, what amounts to the same thing, S3(z; f), tends to f(z)
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as n —» 0o0. The summation problem for the conjugate series S[f] leads us to consider the

expression V() " f(x+t) —flz~ ,) .
- zt,:.n{t nfo T Stamyr (57)
where the integral is meant as the limit (if it exists) of
2" l(t) .
Ttan e (58)

for e+» + 0. The value of the expression (6:7), wherever it exists, will be denoted by
f(z), and the function f(z) will be said to be conjugate to f(z). The expression (5-8) will
be denoted by f(z; €). We show later (see Ghapter 1V, § 3 and Chapter VII, § 1) that for
any integrable f the function f exists almost everywhere; but the proof of this is far
from simple.

The expression (5:7) can a.lao be wntten

flz+t) 1 f {0
_;f_. Snp® ¢ Tn)_ Taapi—n)®

where the integrals are taken in the ‘principal value’ sense, that is are the limits, for
€+ 0, of imtegrals taken over the complements of intervals of length 2¢ around the
point of non-integrability of the integrand (¢ = 0 in the first case and ¢ = zin the second).

From (5-6) we get formally

i ()~ f(=z) * _;(r,_(t)p cos néds. (59)

There is an analogy between this moegra.l and the last integral in {5-4), though the
latter always converges, even absolutely, whereas in (6-9) both f(z) and the right-hand
side may not exist st some points. We shall sce later that to a theorem on the con-
vergenoe (or summability) of S[f] there usually corresponds an analogous theorem
for S[f].

We recard some inequalities useful in ‘convergence theory':

| D3| <m, | DB |€1)t (O<tsm m=l,2,...). (5-10)

For | D3| €4+ 1+.. .4 §=n; and the second estimate follows from (5-2), sinoce

2tan }¢ > ¢. The first inequality (6-10) i preferabls for # not too large in comparison
with 1/n, for example for 0 ¢ € #/n, the second for larger #’s. Similarly

| Do) <m, | D) < 2. (5-11)
Analogous inequalities hold for I, and D,
With the notation of § 1 of Chapter I we have easily .
S (zo+ )+ f(za— )] ~ ?} A () connt,
Hf(Ea+ )~ fizo- ]~ - 3 B (z)sinn.

Thus S[f] at z=z, is tho same as the Fouricr series at t=0 of the even function
A J(xo + 1)+ f(zo—1)); SLS] at 2=z, is the series conjugate to the Fouricr sexies at ¢ =0
of the odd function }[f(x,+ ¢) — f(xo —t)].
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6. The Dini test and the principle of localization
(6:1) THEOREM. If the first of the integrals

0], (718 .
Joztan g ), stanp® (6:2)

18 finite, then S[f] converges at the point z to sum f(z). If the second integral is finite,
then f(z) exists and S[ f] at x converges to f(z).

The formulae (5:-4) and (5-9) display the fundamental fact that, formally at least,
S%(z) — f(z) and 8%(z) — f(x) are the sine and cosine coefficients of certain functions.
In each of the cases the function concerned is, by hypothesis, integrable, and in the
second case f(z) exists. Thus, by (4-4), we have respectively

Si(z) ~flz) >0, Sk(z)-flz)—~o.

The first part of (6:1) is called the Dins test for the convergence of S[f]. The second
part is due to Pringsheim. Sinoe 2tan ¢=¢ as t—0, the finiteness of the integrals
(6-2) is equivalent to that of

j' E_Ii{)__‘ dt, J" | 9/’:(') ld‘.
o ¢ o ¢

Both integrals are finite if, for example,
fz+t)-fx)=0(|t|*) (x>0

as { > 0, and in particular if f'(z) exists and is finite. The first integral converges even
if f is discontinuous at z, provided that ¢,(t) tends to 0 sufficiently rapidly. The second
integral diverges if f(z + 0) exist and are different, and we shall see later that S[f]
always diverges at such points.

(6'3) TaEOREM. Iff(x) vanishes in an snterval I, then S{f] and S[f) converge uniformly
in every interval I’ interior to I, and the sum of S[f] there is 0.

If the word ‘uniformly’ is omitted, (6-3) is a corollary of (6:1). For if zel’, both
#.(t) and y,(¢) vanish for small | ¢ | and the integrals (6-2) cunverge. To prove the gencral
result, we need the following lemma:

(6°4) LEvMA. Let f be integrable, g bounded, and both periodic. Then the Fourse
coefficients of the function x(t) = f(x +1)g(t) tend to O uniformly in the parameter z.

By the second inequality in (4-1) it is enough to show that w,(d; x) >0 uniformly
in x. Now

f_ Ix(t‘+h)—x(t)ld¢<J‘i | flx+t+b)—flz+t)||gt+h)|de

+f_ |flz+t)||gt+h)—g(t)|dt=P+Q,
say. Suppose that |g| < M, | k| <3. Then
P < Mw,(8; f)—0.
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In order to show that @ >0, we set f=f, + f,, where f, i8 bounded, say |f, | < B. and
J' " 1f,ldt<€/431. Then

Q=f [filz+0) | g(t+h)—g(t) | dt +f [ o2+ )} 1 g(t +R)--g(t) | dt < Buw,(8; g) + }e.
- -»
and 80 is Jess than ¢ for § small enough. This proves (6-4).
Returning to (6-3). let zeI'. Then f(z+t)=0 for |t| <7, say. Let A() be the
* periodic function equal to 0 for |¢]| <7 and to 1 elsewhere. Using (5-3) and (6-2), we
write L[ At 1 (" '
S3(z) = ;,f_ 'f(.'l: +t) 2—{&(-an sin n¢dt = ;J‘qf(z +t)g(t) sin n¢dt. (6°5)
Here g(t) = A(t)/2 tan §¢ is bounded. By (8-4), 8%(z) tends uniformiy to 0 for ze I'.

Similarly §7%(z) tends uniformly to f(z) in I’; for the difference §*(x) — f(z) is repre-
sented by (8-6) with sinn¢ replaced by cos nt.

The result may be ctated differently. Let us call two series uy+u,+... and
Yo+ 7, + ... (convergent or not) equiconvergent if the difference (uy—7,) + (u; —v,) + ...
oonverges to 0. If this difference converges, but not necessarily to 0, the two series
will be'called equiconvergens in the wider sense. It is clear what ‘uniform equicon-
vergence’ means. The theorem that follows is & consequence of (6-3) when we set

f‘fl “ft-

(6-6) THEOREM. If two functions f, and f, are equal in an inlerval {. then S[f,] and
SLfs] are uniformly equiconvergent in any interval I' snterior to I; ST S1] ard S[f;] are
unsformly equiconvergent in 1' in the wider sense.

Considering for simplicity convergence at a single poi.nt‘ we see thet the convergence
of S[f) and §[f), and the sum of SLf] (but not thut of S[f]) at a puint x, depend only on the
behaviour of f sn an arbitraridy small neighbourhood of x.

, Theorems (6-3).and (6-6) express the Riemann-Lebesgue localization principle.

(6:7) THEOREM. (i) Let f(x) be integrable, p(x) bounded, both vericdic. If at a pornt
zy the Dini numbers of p are bounded, the series S{pf] and p(xo) Si £ ure equiconvergent
Jor x =z, The serics §[pf] and p(x,) §[f] are equiconvergent at x, in the wider senge.

(i) If p(x) € A4, the equiconvergence of Sipf) and p(x,) S[f]. and thot (in the wider sense)
of S[pf) and plz) S(f]. is unyform in z,.

If p(xo) = 1, case (i) may be interpreted as follows: “slight” maodifications of f in the
neighbourhood of z, which leave f(x,) unaltered have no inflnence either upon the
convergence of S[f] and g[f] at z,, or on the sum of S[f] at that point (though they
can influence the sum of S[f]).

To prove (i), we observe that

M4

, . 1 .
NM o pf) - plag) Sia,. f) = . flxg +t) g(t) st ntdt.
- -n

where A1) =g, () =[plxg +1) - p(x,)]/2 tan }t

is 8 bounded function. Hence the integral on the right, being the Fourier coefficient.
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of an integrable function, tends to 0 with 1/n. For 8%(z,; pf) — p(zo) S5(x: f) we have
the value

1 : t)— ‘
—;f-.’%%mf(xo+t)(l —cosnt)dt

-_-—;’,[ flzo+t)g(t)dt + - ( f(xo+1t)g(e) cosntdte,

and the last integral tends to 0. This proves (i).

Lotuscet X0 = X0 =f(z +0)9:(0)
The above argument and (4-1) will give (ii), if we can prove that w,(8; x) - 0 uniformly
in z a8 3 > 0. Arguing as in the proof of (6-4), and observing that | g.(t)| < M, say. we
have only to show that the mtegrulJ | g.(t+hk)—g.(t) | dt tends to O with k. uniformly

inz. We break up the interval of i mtegratlon into two parts: the interval |¢| <¢/8M,and
the remainder of ( —m, 7). The first integral does not exceed 2M .2¢/8 M = §¢. Outside
the first interval the function g, (¢) is continuous in ¢, uniformly in z, so that the second
integral tends to 0 with A, uniformly in z. The whole is thus less than ¢ for small | 4 |,
and this completes the proof. For the conjugate series we argue similarly.

Theorem (6:-7) includes (6:3). For let p(z) denote the continuous function which is
equal to 0 in I’ is equal to 1 cutside /. and is linear elsewhere. For z,eI’ we have

#(2o) SLf1=0, and sinoe S[pf]=S[f], (6:7) implies that S[f] and $(f] converge uniformly

in I’, the sum of S[f] being 0 there.

The analogue of (6:1) for uniform convergence is as follows.

(6'8) THEOREM. Suppose that f is continuous in a closed interval I =(a,bd) and let
w(8) be sts modulus of continuity there. If w(3)/8 is integrable near 8 =0, and if the sntegrals

f' |f@)=fa=t)] 4, f L/b+8=f®)| g,
0 t 0 t

are finite, then both S[f] and S[f] converge uniformly in I, to f and f respectively.
For let £(¢) be the sum of the numbers
wt), |f@)-fla=t)|, |[fb+t)—fb)| for Ost<h=b-a.
The function £(¢)/t is integrable. Write
1
sio-f@={[ +[  NU@so-g@iDna=PQ (9
mlJiticoe . Jo<iticn
say, where 0 <o <h, and consider first the term P. Let zel. If z+¢isin /, then
|fx+t)—f(x)| <w(|t]). Ifz+tisnotin I, say z+¢>b, then
| f+t) = f(&) | < | f®)=f(@) | + | fUl +2)—f(b) | Swlt) + |t +2) = f(B) |,
and since | D¥(¢)] < |¢|~! it is easy to see that
£(t)
Pi<= dt <
pi<Zf

provided o is small enough. Since Q is the Fourier ooefficient of the function
{f(z+¢t)—f(z)} g(¢), where g(t) is 0 in (—o,0) and § oot }¢ outside, we see from (6-4)
that @ > 0 uniformly in I. Hence S%(z) - f(z) uniformly in I.
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With the hypotheses of (6-8), the integral defining f(x) converges absolutely and

uniformly in 7, since
" ¥a(t) | "—ﬁ(‘)
) I dt < 5 dt (0<o<h).

In partioular, f(z) is continuous in /. An argument similar to that above shows
that 8%(z) - f(z) »> 0 uniformly in 7.

(6:10) TaxorxM. If feL, peA,, the integrals

[ rosoiotie-aa [* p@seieotie-aa  (©11)

taken sn the ‘prinoipal value' sense, are uniformly equiconvergent in the wider sense.
This is immediate, since [p(t) — p(z)] § cot. §(¢ —z) is bounded in z, ¢.

7. Some more formulae for partial sums

Let € be a fixed positive number lees than . It is sometimes convenient to use the

formulae sin M

S.(z)- f( z+t) d¢+o(1),

1)
S -fr=2 ! mo"—“}—duom.

In the former the o(1) term tends to 0 uniformly sn z, sn tAe latter it tends to O for every x
and unsformly in every snterval where f is bounded. '

To prove the first formula we note that the difference between the integral on the
right and the integral defining S3(z) (=8,(z)+0(1)) is the sine cosficient of the
function f(z +¢) g(¢), where g(t) is the funotion equal to 1/t —jcot ¥ =O(1) for |¢| <e
and to — § oot §¢ at the remaining points of (—,#), Similarly, the difference between
the second mtegn.l and the omdaﬂnmgﬂ‘(z)—/(:) hth.m ooeflicient of

(P =),
and the seoond formula (7-1) follows.
We note also the formula
B (z)= - - f( +1) 1- °°‘"‘d:+R.(z),

where R, (z) tends uniformly to a& continuous function of z.
It is instructive to compare this and the first formula (7-1) with the exact formulae

H DT Y (72)

loocwt

di= 3’ B,(z), (7:3)

rQe

4+
S+

where v is poaxt.xve but not necessarily an integer, the integrals are defined as lim ,

T++o) -T

mdtheduhmdnateathstnfwummtegerthentbohctmmoftbesumu taken
with a factor §.
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We toke the trst formala only. the proof of the second being analogous. The
famihae equete,n !

- (u-,:]

—o !

1 ‘ T RN g
7’.

(see (245 betow ) shows that
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Hence if f(c):- e7. the left-liand side of (7-2) is
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and the: las! integnalis 277 71, 0 according as i v'! < . | j=w, !0 + 0. This proves the

formala it f ie a trigonometae polymomial. Henee we v:av - ume that ¢, =0 for
HUSI O

We now esearesalt which «il! be exteblished in Chapter IV, . i #0, and which asserts
that s Focrier serien can be integrated termwise over any finite interval after having
been :nultiplica by any fuaction of Lounded variation. Thus if Si f]= ¢, e* we have
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(ntegrating by parts twice we got
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Sinoe [ v:>n snd' o= ‘ --J , the sum in (7-6) is
vC JO T .

coaT(v--w, cos 7'(v + w) 11\
. "‘ e -— . . — - ——e—e . e
Y T -w) T(v+w) ( )_!

e s )

= q:’nT; “ Zc, c':’ sin vT + 0(1)

as 7' = c (observe that £ | ¢, | v-? <w). If F denotes the integre! of f, F is bounded and
periodic, and the penultimate term is (n7)1ainTw|F(x+ T) - F(x—T))=0(l).
Hence {7-5) tends t0 O se T —ce and this completes the peoof of (7-2).

The integral (7-4) enaverges nniformly in A outgid» an arbitrarily small neighboue-
hocd of A = 0. From the precoding proof it follows that the integrule (7-2) and (7-3)
converge antformlv over the set obtained by reraoving trom any finite interval
w}<Q acbivramiy sinail neighbourhoods of the points 0. + 1, +2, ... (The neigh-
bourvyuds muet be removed, «inoce the right-band sides of the forinulae are, 1n general,
dircontinious ot the pointa 1)

We have alao the fortula
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11 ff Some more jormulae Jor partial swns o1

vahd at every pomt nt whlch f(x) emsts (The internat lirnit always exiats.) Foo it we
subtract from f a constant, which changes nthing in (7:6), we may assume that tic
integral of f over a period is zero, and then the application of the zecoud wmeie-vitue
theorem gives the existence of each of the integrals
w i . -
- .lj. [ _t_),a' .._} ( fast, (77
nSw 1 “-nl_ . t
separdtely. Their sum i
17 17
—;}J f(rft) EI ;——‘—‘ dt = --—J‘ f(x'f")l-%(‘()t*'—']d’

=
. ke - ?Ibﬂ

where the dash * indxcr‘.t;:s the otaiseion of £ =0 in the surnmation. This is
| flz~
F { .~ = —---dtt».
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