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The Geometry of 
Euclidean Space 

Quaternions came from Hamilton ... and have been an unmixed evil to 
those who have touched them in any way. Vector is a useless survival... 
and has never been of the slightest use to any creature. 

Xord JCelrnn 

In this chapter we consider the basic operations on vectors in two- and three-
dimensional space: vector addition, scalar multiplication, and the dot and cross 

products. In Section 1.5 we generalize some of these notions to «-space and review 
properties of matrices that will be needed in Chapters 2 and 3. 

1.1 Vectors in Two- and Three-Dimensional Space 
Points P in the plane are represented by ordered pairs of real numbers (a\, ¿z2); the 
numbers a\ and ¿?2 are called the Cartesian coordinates of P. We draw two perpen-
dicular lines, label them as the x and y axes, and then drop perpendiculars from P to 
these axes, as in Figure 1.1.1. After designating the intersection of the x and y axes 
as the origin and choosing units on these axes, we produce two signed distances a\ 
and «2 as shown in the figure; a\ is called the x component of P, and «2 is called the 
y component. 

Points in space may be similarly represented as ordered triples of real numbers. 
To construct such a representation, we choose three mutually perpendicular lines 
that meet at a point in space. These lines are called x axis, y axis, and z axis, and the 
point at which they meet is called the origin (this is our reference point). We choose 
a scale on these axes, as shown in Figure 1.1.2. 
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J? = (al, a2) 

Figure 1.1.1 Cartesian coordinates in the plane. 

Figure 1.1.2 Cartesian coordinates in space. 

The triple (0, 0, 0) corresponds to the origin of the coordinate system, and the 
arrows on the axes indicate the positive directions. For example, the triple (2, 4, 4) 
represents a point 2 units from the origin in the positive direction along the x axis, 
4 units in the positive direction along the y axis, and 4 units in the positive direction 
along the z axis (Figure 1.1.3). 

Figure 1.1.3 Geometric representation of the point (2, 4, 4) 
in Cartesian coordinates. 

Because we can associate points in space with ordered triples in this way, we often 
use the expression "the point (a\, ^3)" instead of the longer phrase "the point P 
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that corresponds to the triple (a\, a2, <23)." We say that a\ is the x coordinate (or first 
coordinate), a2 is the y coordinate (or second coordinate), and a3 is the z coordinate 
(or third coordinate) of P. It is also common to denote points in space with the letters 
x , y, and z in place of a\, «2, and a3. Thus, the triple (x, y, z) represents a point whose 
first coordinate is x, second coordinate is y, and third coordinate is z. 

We employ the following notation for the line, the plane, and three-dimensional 
space: 

(i) The real number line is denoted R1 or simply R. 

(ii) The set of all ordered pairs (x, y) of real numbers is denoted R2. 

(iii) The set of all ordered triples (x, y, z) of real numbers is denoted R3. 

When speaking of R1, R2, and R3 simultaneously, we write Rw, where « = 1,2, 
or 3; or Rw , where m = 1, 2, 3. Starting in Section 1.5 we will also study Rw for 
n = 4 , 5 , 6 , . . . , but the cases n = 1, 2, 3 are closest to our geometric intuition and 
will be stressed throughout the book. 

Vector Addition and Scalar Multiplication 
The operation of addition can be extended from R to R2 and R3. For R3, this is done 
as follows. Given the two triples («1, «2, ^3) and (b\, 62, b3), we define their sum to be 

(ai, a2, 03) + (bu b2, b3) = (ax + b\, a2 + b2, 03 + b3). 

EXAMPLE 1 

( 1 , 1 , 1 ) + (2, - 3 , 4) = ( 3 , - 2 , 5), 

(x,y, z) + (0, 0, 0) = (x, y, z), 

(1, 7, 3) + (<a, b, c) = (1 + a, 1 + b, 3 + c). A 

The element (0, 0, 0) is called the zero element (or just zero) of R3. The element 
{—a\, —a2, —a^) is the additive inverse (or negative) of(a\,a2, «3), and we will write 
(¿zi, a2, a3) - (bu b2, b3) for (aua2, a3) + (-¿>1, -b2, -b3). 

The additive inverse, when added to the vector itself, of course produces zero: 

(tfi, ^2,03) + ( - 0 1 , -02, -03) = (0,0, 0). 

There are several important product operations that we will define on R3. One 
of these, called the inner product, assigns a real number to each pair of elements of 
R3. We shall discuss it in detail in Section 1.2. Another product operation for R3 is 
called scalar multiplication (the word "scalar" is a synonym for "real number"). This 
product combines scalars (real numbers) and elements of R3 (ordered triples) to yield 
elements of R3 as follows: Given a scalar a and a triple (a\, a2, a3), we define the 
scalar multiple by 

a(au 02, 03) = (^01, ^02, oia3). 
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EXAMPLE 2 

2(4, e, 1) = (2 • 4, 2 • e, 2 • 1) = (8, 2e, 2), 

6(1, 1,1) = (6, 6, 6), 
1 (W, V, W) = (W, V, W), 

0(p,q,r) = (0,0,0). A 

Addition and scalar multiplication of triples satisfy the following properties: 

(i) (aj8)(ai, a2, «3) = «[jBfai, «3)] (associativity) 

(ii) (a + j8)(ai, a2, a3) = a(ax, ¿z2, «3) + ^(«1, «2, «3) (distributivity) 

(iii) of[(«i, a2, 03) + (¿1. ¿2, ¿3)] = «(«1. «2, «3) + , 62, ¿3) (distributivity) 

(iv) or(0, 0, 0) = (0, 0, 0) (property of zero) 

(v) 0(<zi, a2, «3) = (0, 0, 0) (property of zero) 

(vi) 1 (a 1, a2, «3) = (a 1, a2, «3) (property of the 
unit element) 

The identities are proven directly from the definitions of addition and scalar 
multiplication. For instance, 

(a + P)(ai, a3) = ((a + P)ax, (a + P)a2, (a + P)a3) 

= (aai + Pauaa2 + + fia3) 

= a(aua2, a3) + P(ai,a2, a3). 

For R2, addition and scalar multiplication are defined just as in R3, with the third 
component of each vector dropped off. All the properties (i) to (vi) still hold. 

Interpret the chemical equation 2NH2 + H2 = 2NH3 as a relation 
in the algebra of ordered pairs. 
EXAMPLE 3 

S O L U T I O N We think of the molecule N^H^ (x atoms of nitrogen, y atoms of 
hydrogen) as represented by the ordered pair (x, y). Then the chemical equation given 
is equivalent to 2(1, 2) + (0, 2) = 2(1, 3). Indeed, both sides are equal to (2, 6). A 

Geometry of Vector Operations 
Let us turn to the geometry of these operations in R2 and R3. For the moment, we define 
a vector to be a directed line segment beginning at the origin, that is, a line segment 
with specified magnitude and direction, and initial point at the origin. Figure 1.1.4 
shows several vectors, drawn as arrows beginning at the origin. In print, vectors are 
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usually denoted by boldface letters such as a. By hand, we usually write them as a or 
simply as a, possibly with a line or wavy line under it. 

Figure 1.1.4 Geometrically, vectors are thought of as 
arrows emanating from the origin. 

y 

Using this definition of a vector, we associate with each vector a the point 
(a 1,^2, 03) where a terminates, and conversely, we can associate a vector a with 
each point (a\, a2, 03) in space. Thus, we shall identify a with {a\, a2, 03) and write 
a = («i, ¿72, 03). For this reason, the elements of R3 not only are ordered triples of 
real numbers, but are also regarded as vectors. The triple (0, 0, 0) is denoted 0. 
We call a\, a2, and the components of a, or when we think of a as a point, its 
coordinates. 

Two vectors a = (a\, a2, a3) and b = (b\, b2, 63) are equal if and only if a\ = b\, 
a2 = b2, and = ¿>3. Geometrically this means that a and b have the same direction 
and the same length (or "magnitude"). 

Geometrically, we define vector addition as follows. In the plane containing the 
vectors a = (a\,a2, <23) and b = (b\, b2, £3) (see Figure 1.1.5), form the parallelogram 
having a as one side and b as its adjacent side. The sum a 4- b is the directed line 
segment along the diagonal of the parallelogram. 

Figure 1.1.5 The geometry of vector addition. 

This geometric view of vector addition is useful in many physical situations, as 
we shall see in the next section. For an easily visualized example, consider a bird or 
an airplane flying through the air with velocity vi, but in the presence of a wind with 
velocity \ 2 . The resultant velocity, vi + \ 2 , is what one sees; see Figure 1.1.6. 
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To show that our geometric definition of addition is consistent with our alge-
braic definition, we demonstrate that a + b = (a\ + b\, 02 + b2, 03 + ¿73). We shall 
prove this result in the plane and leave the proof in three-dimensional space to the 
reader. Thus, we wish to show that if a = (01, a2) and b = (b\, b2), then a + b = 
(01 +b\,a2 + b2). 

In Figure 1.1.7 let a = (a\, a2) be the vector ending at the point A, and let 
b = (b\, b2) be the vector ending at point B. By definition, the vector a + b ends 
at the vertex C of parallelogram OBCA. To verify that a + b = (a\ + b\, a2 4- b2), 
it suffices to show that the coordinates of C are (a\ + b\, a2 + b2). The sides of 
the triangles OAD and BCG are parallel, and the sides OA and BC have equal 
lengths, which we write as OA = BC. These triangles are congruent, so BG = OD; 
since BGFE is a rectangle, EF = BG. Furthermore, OD = a\ and OE = b\. Hence, 
EF = BG = OD = 01. Since OF = EF + OE, it follows that OF = 0! + b\. This 
shows that the x coordinate of a + b is a\ + b\. The proof that the y coordinate 
is 02 + b2 is analogous. This argument assumes A and B to be in the first quadrant, 
but similar arguments hold for the other quadrants. 

Figure 1.1.8(a) illustrates another way of looking at vector addition: in terms 
of triangles rather than parallelograms. That is, we translate (without rotation) the 
directed line segment representing the vector b so that it begins at the end of the 
vector a. The endpoint of the resulting directed segment is the endpoint of the vector 
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a + b. We note that when a and b are collinear, the triangle collapses to a line segment, 
as in Figure 1.1.8(b). 

Figure 1.1.8 (a) Vector addition may be visualized in terms of triangles as well 
as parallelograms, (b) The triangle collapses to a line segment when a and b are 
collinear. 

In Figure 1.1.8 we have placed a and b head to tail. That is, the tail of b is placed 
at the head of a, and the vector a + b goes from the tail of a to the head of b. If we do 
it in the other order, b + a, we get the same vector by going around the parallelogram 
the other way. Consistent with this figure, it is useful to let vectors "glide" or "slide," 
keeping the same magnitude and direction. We want, in fact, to regard two vectors 
as the same if they have the same magnitude and direction. When we insist on vec-
tors beginning at the origin, we will say that we have bound vectors. If we allow 
vectors to begin at other points, we will speak of free vectors or just vectors. 

Vectors Vectors (also called free vectors) are directed line segments in [the 
plane or] space represented by directed line segments with a beginning (tail) 
and an end (head). Directed line segments obtained from each other by parallel 
translation (but not rotation) represent the same vector. 

The components (a\, a2, a3) of a are the (signed) lengths of the projections 
of a along the three coordinate axes; equivalently, they are defined by placing 
the tail of a at the origin and letting the head be the point (a\, a2, a3). We write 
a = («1,^2,03). 

Two vectors are added by placing them head to tail and drawing the vectors 
from the tail of the first to the head of the second, as in Figure 1.1.8. 

Scalar multiplication of vectors also has a geometric interpretation. If a is a scalar 
and a a vector, we define a a to be the vector that is \a\ times as long as a, with the 
same direction as a if a > 0, but with the opposite direction if a < 0. Figure 1.1.9 
illustrates several examples. 

y 

V) translated 

(a) (b) 
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y y y 

x 

J - a 
4 

x x 

Figure 1.1.9 Some scalar multiples of a vector a. 

Using an argument based on similar triangles, one finds that if a = (a\, a2, 03), 
and ce is a scalar, then 

That is, the geometric definition coincides with the algebraic one. 
Given two vectors a and b, how do we represent the vector b — a geometrically, 

that is, what is the geometry of vector subtraction? Because a + (b — a) = b, we 
see that b — a is the vector that one adds to a to get b. In view of this, we may 
conclude that b — a is the vector parallel to, and with the same magnitude as, the 
directed line segment beginning at the endpoint of a and terminating at the endpoint 
of b when a and b begin at the same point (see Figure 1.1.10). 

aa = (aa\,ota2i aa3). 

b - a 

B Figure 1.1.10 The geometry of vector subtraction. 

x 

I S K g ^ l U R S y Let u and v be the vectors shown in Figure 1.1.11. Draw the two 
vectors u + v and —2u. What are their components? 
EXAMPLE 4 
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S O L U T I O N Place the tail of v at the tip of u to obtain the vector shown in 
Figure 1.1.12. 

The vector —2u, also shown, has length twice that of u and points in the opposite 
direction. From the figure, we see that the vector u + v has components (5, 2) and 
—2u has components (—6, —4). • 

EXAMPLE 5 

(a) Sketch — 2v, where v has components (— 1, 1,2). 

(b) If v and w are any two vectors, show that v — | w and 3v — w are parallel. 

S O L U T I O N 

(a) The vector —2v is twice as long as v, but points in the opposite direction (see 
Figure 1.1.13). 

(b) v — = |(3v — w); vectors that are multiples of one another are parallel. • 
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z 
A 

( -1 ,1 ,2) 

Figure 1.1.13 Multiplying ( -1 , 1, 2) 
b y - 2 . 

• (2,-2,-4) 

The Standard Basis Vectors 
To describe vectors in space, it is convenient to introduce three special vectors along 
the x, y, and z axes: 

i: the vector with components (1, 0, 0) 

j: the vector with components (0, 1, 0) 

k: the vector with components (0, 0, 1). 

These standard basis vectors are illustrated in Figure 1.1.14. In the plane one has the 
standard basis i and j with components (1,0) and (0, 1). 

Let a be any vector, and let {a\, a2, a3) be its components. Then 

a = aii + a2j + 03k, 

because the right-hand side is given in components by 

fli(l, 0, 0) + a2(0, 1,0) + a3(0, 0, 1) = (ax, 0, 0) + (0, a2, 0) + (0, 0, a3) 
= (<a\,a2,a3). 

z 

4(0,0,1) 

(i, 

Figure 1.1.14 The standard basis vectors. 

x 
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Thus, we can express every vector as a sum of scalar multiples of i, j, and k. 

11 

The Standard Basis Vectors 

1. The vectors i, j, and k are unit vectors along the three coordinate axes, as 
shown in Figure 1.1.14. 

2. If a has components {a\, a2, a3), then 

a = aii + £z2j + a3k. 

EXAMPLE 6 Express the vector whose components are (e, n, — V3) in the stan-
dard basis. 

S O L U T I O N Substituting a\ = e, a2 = n, and a3 = —y/3 into a = a\\ + a2j + 
a3k gives 

= ei + Ti j — \/3k. A 

EXAMPLE 7 The vector (2, 3,2) equals 2i + 3j + 2k, and the vector ( 0 , - 1 , 4 ) 
is — j + 4k. Figure 1.1.15 shows 2i + 3j + 2k; the student should draw in the vector 
- j + 4 k . A 

Figure 1.1.15 Representation of (2, 3, 2) in terms 
of the standard basis vectors i, j, and k. 

Addition and scalar multiplication may be written in terms of the standard basis 
vectors as follows: 

(¿Hi + a2 j + a3k) + (bii + b2 j + b3k) = (ax + bi)i + (a2 + b2)j + (a3 + b3) k 

and 

ot(a\\ + a2\ + a3\i) = (aa i)i + (aa2)j + ct{a3)k. 
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The Vector Joining Two Points 

P P ' 

o 

To apply vectors to geometric problems, it is useful to assign a vector to a pair of 
points in the plane or in space, as follows. Given two points P and P', we can draw 
the vector v with tail P and head P', as in Figure 1.1.16, where we write PP' for v. 

P' 
Figure 1.1.16 The vector from P to P' is denoted PP'. 

If P = (x, y, z) and P' — (x', y', z'), then the vectors from the origin to P and P' 
are a = xi + y\ 4- zk and a' = x'i + y'j + z'k, respectively, so the vector PP' is the 
difference a' — a = (x' — x)i 4- (y' — >>)j + (?' ~ z)k. (See Figure 1.1.17.) 

Figure 1.1.17 PP' = OP' - OP. 

T h e Vector Joining Two Points If the point P has coordinates (x, y, z) and 
P' has coordinates (x', y', z'), then the vector PP' from the tip of P to the tip of 
Pr has components (xr — x, y' — y, z' — z). 

EXAMPLE 8 

(a) Find the components of the vector from (3, 5) to (4, 7). 

(b) Add the vector v from ( - 1 , 0 ) to (2, - 3 ) and the vector w from (2, 0) to (1, 1). 

(c) Multiply the vector v in (b) by 8. If the resulting vector is represented by the 
directed line segment from (5, 6) to Q, what is Q? 

S O L U T I O N 

(a) As in the preceding box, we subtract the ordered pairs: (4, 7) — (3, 5) = (1, 2). 
Thus the required components are (1, 2). 

(b) The vector v has components (2, —3) — (— 1, 0) = (3, —3), and w has com-
ponents (1, 1) — (2, 0) = (— 1, 1). Therefore, the vector v + w has compo-
nents (3, —3) + (—1, 1) = (2, - 2 ) . 
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(c) The vector 8v has components 8(3, —3) = (24, —24). If this vector is rep-
resented by the directed line segment from (5, 6) to Q, and Q has coordi-
nates (x, y)9 then (x, y) - (5, 6) = (24, -24) , so (x, y) = (5, 6) + (24, - 2 4 ) = 
(29,-18). A 

EXAMPLE 9 Let P = ( - 2 , - 1 ) , Q = ( - 3 , - 3 ) , and R = ( - 1 , - 4 ) in the x>> 
plane. 

(a) Draw these vectors: v joining P to Q; w joining Q to R; u joining R to P. 

(b) What are the components of v, w, and u? 

(c) What is v + w + u? 

S O L U T I O N 

(a) See Figure 1.1.18. 

Figure 1.1.18 The vector v joins P to Q; w joins Q to R; 
and u joins R to P. 

(b) Because v = PQ, w = QR, and u = RP, we get 

v = ( - 3 , - 3 ) - ( - 2 , - 1 ) = ( - 1 , - 2 ) , 

w = ( - 1 , - 4 ) - ( - 3 , - 3 ) = (2 , -1 ) , 

u = - ( - 1 , - 4 ) + ( - 2 , - 1 ) = ( -1 ,3 ) . 

(c) v + w + u = ( - 1 , - 2 ) + ( 2 , - 1 ) + ( - 1 , 3 ) = (0,0). A 

Geometry Theorems by Vector Methods 
Many of the theorems of plane geometry can be proved by vector methods. Here is 
one example. 
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EXAMPLE 10 
each other. 

Use vectors to prove that the diagonals of a parallelogram bisect 

S O L U T I O N Let OPRQ be the parallelogram, with two adjacent sides represented 
by the vectors a = OP and b = OQ. Let M be the midpoint of the diagonal OR, N 
the midpoint of the other diagonal, PQ. (See Figure 1.1.19.) 

Q Q 

Figure 1.1.19 If the midpoints M and N 
coincide, then the diagonals OR and PQ 
bisect each other. 

Observe that OR = OP + OQ = a + b by the parallelogram rule for vector ad-
dition, so OM = \OR = + b). On the other hand, 

PQ = OQ - OP = b - a, so PN = ±PQ = ±(b - a), 

and hence 

ON = OP + PN = a + Ub - a) = k a + b). 

Because OM and ON are equal vectors, the points M and N coincide, so the diagonals 
bisect each other. A 

of Lines 
Planes and lines are geometric objects that can be represented by equations. We shall 
defer until Section 1.3 a study of equations representing planes. However, using the 
geometric interpretation of vector addition and scalar multiplication, we will now 
find the equation of a line I that passes through the endpoint of the vector a, with the 
direction of a vector v (see Figure 1.1.20). 

As t varies through all real values, the points of the form t\ are all scalar 
multiples of the vector v, and therefore exhaust the points of the line passing through 
the origin in the direction of v. Because every point on / is the endpoint of the diagonal 
of a parallelogram with sides a and t\ for some real value of t, we see that all the 
points on / are of the form a + t\. Thus, the line / may be expressed by the equation 
1(f) = a + t\. We say that / is expressed parametrically, with t the parameter. At 
t = 0,1(£) = a. As t increases, the point I(£) moves away from a in the direction of v. 
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o 

Figure 1.1.20 The line /, parametrically 
given by 1(0 = a + tx, lies in the direction 
v and passes through the tip of a. 

As t decreases from t = 0 through negative values, 1(0 moves away from a in the 
direction of —v. 

Point-Direction Form of a Line The equation of the line / through the tip of a 
and pointing in the direction of the vector v is 1(0 = a 4- t v, where the parameter 
t takes on all real values. In coordinate form, the equations are 

where a = (x\,yi,z\) and v = (<a, b, c). For lines in the xy plane, one simply 
drops the z component. 

x = x\ 4- at, 

y = yi + bt, 

Z — Z\ +ct, 

Determine the equation of the line / passing through (1, 0, 0) in 
the direction j. See Figure 1.1.21. 

z 

Figure 1.1.21 The line / passes 
through the tip of i in the direction j. 

x 
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S O L U T I O N The desired line can be expressed parametrically as 1(0 = i + *j. In 
terms of coordinates, 

1(0 = 0 , 0 , 0) + *(0, 1,0) = (1,*,0). 

E X A M P L E 12 

(a) Find the equations of the line in space through the point (3, — 1, 2) in the direction 
2i — 3j + 4k. 

(b) Find the equation of the line in the plane through the point ( 1, — 6) in the direction 
of 5i — 7rj. 

(c) In what direction does the line x = —3* + 2, y = —2(* — 1), z = 8* + 2 point? 

S O L U T I O N 

(a) Here a = ( 3 , - 1 , 2 ) = (xi, y\, z j )andv = 2i — 3j + 4k, so« = 2, b = —3, and 
c = 4. From the box above, the equations are 

x = 3 + 2*, >> = - 1 - 3 * , z = 2 + 4f. 

(b) Here a = (1, —6) and v = 5i — n j , so the required line is 

1(0 = (1, - 6 ) + (51, -nt) = (1 + 51, -6 - 7Tt); 

that is, 

x = 1 + 5t, y = —6 — Tit. 

(c) Using the preceding box, we construct the direction v = ai + b\ + ck from the 
coefficients of t: a = —3, b = —2, c = 8. Thus, the line points in the direction 
o f v = - 3 i - 2 j + 8k. • 

E X A M P L E 13 Do the two lines (x, y, z) = (t, —6t + 1 , 2 1 —-8) and (x, y, z) = 
(31 + 1, 2t, 0) intersect? 

S O L U T I O N If the lines intersect, there must be numbers t\ and t2 such that the 
corresponding points are equal: 

(¿i, -6*i + 1, 2*i - 8) = (3*2 + 1, 2*2, 0); 

that is, all three of the following equations hold: 

tx = 3*2 + 1, 

- 6 * i + 1 = 2*2, 

2*! - 8 = 0. 
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From the third equation, t\ = 4. The first equation then becomes 4 = 3t2 4- 1; that is, 
¿2 = 1. We must check whether these values satisfy the middle equation: 

which is false, so the lines do not intersect. • 

Notice that there can be many equations of the same line. Some may be obtained 
by choosing instead of a, a different point on the given line, and forming the parametric 
equation of the line beginning at that point and in the direction of v. For example, the 
endpoint of a + v is on the line 1(7) = a + ¿v, and thus, li (t) = (a 4- v) + tx represents 
the same line. Still other equations may be obtained by observing that if a / 0, the 
vector ax has the same (or opposite) direction as v. Thus, ^(¿) = a + tax is another 
equation of 1(f) = a + tx. 

For example, both 1(f) = (1, 0, 0) 4- (¿, ¿, 0) and h(s) = (0, - 1 , 0) 4- (s, s, 0) 
represent the same line since both are in the direction i 4- j and both pass through 
the point (1, 0, 0); 1 passes through (1, 0, 0) at t = 0 and li passes through (1, 0, 0) at 
s = 1. 

Therefore, the equation of a line is not uniquely determined. Nevertheless, it 
is customary to use the term "the" equation of a line. Keeping this in mind, let us 
derive the equation of a line passing through the endpoints of two given vectors a 
and b. Because the vector b — a is parallel to the directed line segment from a to b, 
we calculate the parametric equation of the line passing through a in the direction of 
b — a (Figure 1.1.22). Thus, 

9 
—6t\ 4- 1 = 

Since ¿ i = 4 and ¿2 = 1, this reads 

- 2 4 4- 1 = 2, 

1(f) = a 4- ¿(b - a); that is, 1(0 = (1 - ¿)a 4- ¿b. 

¿(b-a) 

Figure 1.1.22 The line /, parametrically given 
by 1(0 = a 4- ¿(b - a) = (1 - ¿)a 4- ¿b, passes 
through the tips of a and b. 

0 

As ¿ increases from 0 to 1, ¿(b — a) starts as the zero vector and increases in length 
(remaining in the direction of b — a) until at / = 1 it is the vector b — a. Thus, for 
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1(f) = a + *(b — a), as * increases from 0 to 1, the vector 1(f) moves from the endpoint 
of a to the endpoint of b along the directed line segment from a to b. 

If P = (jti, y\, z\) is the tip of a and Q = (x2, y2, z2) is the tip of b, then v = 
(x2 — xi)i + (y2 — yi)} + (Z2 — z i)k, and so the equations of the line are 

x = XI + (X2 — X\)t, 

y =y\ +(y2-y\)t, 
Z — Z\ + (z2 — Z\)t. 

By eliminating *, these can be written as 

* _ y-yi _ z-zi 
x 2 - X i y2 - y\ Z2-Z\ 

Parametric Equation of a Line: Point-Point Form The parametric equa-
tions of the line / through the points P = (xi, y\, z\) and Q = (x2, y2, z2) are 

X = XI + (X2 — XI )t, 

y = y i +(y2-yi)t, 
z = z 1 + ( z 2 -Z\)t, 

where (x,y,z) is the general point of /, and the parameter t takes on all real 
values. 

EXAMPLE 14 Find the equation of the line through ( 2 , 1 , - 3 ) and (6, — 1, —5). 

SOLUTION Using the preceding box, we choose (xi, y\, z\) = (2, 1, —3) and 
j z2) = (6, — 1, —5), so the equations are 

x = 2 + ( 6 - 2 ) f = 2 + 4*, 

y = 1 +(-1 - 1)* = 1-2*, 

z = - 3 + ( - 5 - (-3))* = - 3 - 2*. A 

EXAMPLE 15 Find the equation of the line passing through (— 1, 1,0) and 
(0, 0, 1) (see Figure 1.1.23). 

SOLUTION Letting a == — i + j and b = k represent the given points, we have 

1(0 = (1 - *)(-i + j) + *k = - ( 1 - *)i + (1 - *)j + *k. 
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Figure 1.1.23 Finding the 
equation of the line through 
two points. 

x 

The equation of this line may thus be written as 

1(0 = (t - l)i + (1 - 0 j + 

or, equivalently, if 1(0 = xi + y] + zk, 

x — t — 1, y = 1 — t, z = t. • 

The description of a line segment requires that the domain of the parameter t be 
restricted, as in the following example. 

Find the equation of the line segment between (1, 1, 1) and 
(2,1,2). 

S O L U T I O N The line through (1, 1, 1) and (2, 1, 2) is described in parametric 
form by (x, y, z) = (1 + t, 1, 1 4- t), as t takes on all real values. When t = 0, the 
point (x, y, z) is (1, 1, 1), and when t — 1, the point (x, y, z) is (2, 1, 2). Thus, the 
point (x, y, z) lies between (1,1,1) and (2, 1, 2) when 0 < t < 1, so the line segment 
is described by the equations 

x = 1 +* , 

y = h 
z=l+t, 

together with the inequalities 0 < t < 1. • 

We can also give parametric descriptions of geometric objects other than lines. 

Describe the points that lie within the parallelogram whose ad-
jacent sides are the vectors a and b based at the origin ("within" includes points on 
the edges of the parallelogram). 
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S O L U T I O N Consider Figure 1.1.24. If P is any point within the given parallel-
ogram and we construct lines l\ and /2 through P parallel to the vectors a and b, 
respectively, we see that l\ intersects the side of the parallelogram determined by the 
vector b at some point t b, where 0 < t < 1. Likewise, /2 intersects the side determined 
by the vector a at some point sa, where 0 <s < I. 

Note that P is the endpoint of the diagonal of a parallelogram having adjacent 
sides sa and tb; hence, if v denotes the vector OP, we see that v = sa 4- tb. We 
conclude that all the points in the given parallelogram are endpoints of vectors of 
the form sa 4- tb for 0 < s < 1 and 0 < t < 1. Reversing our steps, we see that all 
vectors of this form end within the parallelogram. • 

As two different lines through the origin determine a plane through the origin, 
so do two nonparallel vectors. If we apply the same reasoning as in Example 17, we 
see that the entire plane formed by two nonparallel vectors v and w consists of all 
points of the form s\ 4- iw where s and t can be any real numbers, as in Figure 1.1.25. 

Figure 1.1.24 Describing points within the 
parallelogram formed by vectors a and b, with vertex 0. 

b 

Figure 1.1.25 Describing points P in 
the plane formed from vectors v and w. 

We have thus described the points in the plane by two parameters. For this reason, 
we say the plane is two-dimensional. Similarly, a line is called one-dimensional 
whether it lies in the plane or in space or is the real number line itself. 
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The plane determined by v and w is called the plane spanned by v and w. When v 
is a scalar multiple of w and w / 0, then v and w are parallel and the plane degenerates 
to a straight line. When v = w = 0 (that is, both are zero vectors), we obtain a single 
point. 

There are three particular planes that arise naturally in a coordinate system and 
that will be useful to us later. We call the plane spanned by vectors i and j the xy 
plane, the plane spanned by j and k the yz plane, and the plane spanned by i and k 
the xz plane. These planes are illustrated in Figure 1.1.26. 

yz plane 

Figure 1.1.26 The three coordinate planes. 

xy plane 

EXERCISES 

(Exercises with colored numbers are solved in the Study Guide.) 

Complete the computations in Exercises 1 to 4. 

1. (—21, 23) — (?, 6) = (—25, ?) 

2. 3(133, -0.33, 0) + ( -399, 0.99, 0) = (?, ?, ?) 

3. (Sa, -2b, 13c) = (52, 12, 11) + ?, ?) 

4. ( 2 , 3 , 5 ) - 4 i + 3j = (?,?,?) 

In Exercises 5 to 8, sketch the given vectors v and w. On your sketch, draw in — v, v + w, and 
v — w. 

5. v = (2, 1) and w = (1, 2) 

6. v = (0,4) and w = ( 2 , - 1 ) 

7. v = (2, 3, —6) and w = (—1, 1, 1) 

8. v = (2, 1,3) and w = (—2, 0, — 1) 
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9. What restrictions must be made on x, y, and z so that the triple (x, y, z) will represent a 
point on the y axis? On the z axis? In the xz plane? In the yz plane? 

10. (a) Generalize the geometric construction in Figure 1.1.7 to show that if vi = (x, y, z) 
and v2 = (xf, y', z'), then \\ + v2 = (x + x', y + y', z + z'). 

(b) Using an argument based on similar triangles, prove that ax = (ax, ay, az) when 
y = (x,y,z). 

In Exercises 11 to 17, use set theoretic or vector notation or both to describe the points that 
lie in the given configurations. 

11. The plane spanned by \ \ = (2, 7, 0) and v2 = (0, 2, 7) 

12. The plane spanned by Vj = ( 3 , - 1 , 1 ) and v2 = (0, 3, 4) 

13. The line passing through (— 1, — 1, — 1) in the direction of j 

14. The line passing through (0,2, 1 ) in the direction of 2i — k 

15. The line passing through ( - 1 , - 1 , - 1 ) and ( 1 , - 1 , 2 ) 

16. The line passing through (—5, 0, 4) and (6, —3, 2) 

17. The parallelogram whose adjacent sides are the vectors i + 3k and — 2j 

18. Find the points of intersection of the line x = 3 +2t,y = 7 +St,z = —2 + t, that is, 
1(f) = (3 + 2t, 7 + St, -2 + f), with the coordinate planes. 

19. Show that there are no points (x, y, z) satisfying 2x — 3y-\-z — 2 = 0 and lying on the 
line v = (2, —2, — 1) + ¿(1, 1, 1). 

20. Show that every point on the line v = (1, —1,2) + /(2, 3, 1) satisfies the equation 
5x - 3y - z - 6 = 0. 

21. Determine whether the lines x = 3t 2, y = t — 1, z = 6f + 1, and x = 3s — 1, 
y = s — 2, z = s intersect. 

22. Do the lines (x, y, z) = (t + 4, At + 5, t - 2) and (x, y, z) = (2s + 3, s + 1, 2s - 3) 
intersect? 

In Exercises 23 to 25, use vector methods to describe the given configurations. 

23. The parallelepiped with edges the vectors a, b, and c emanating from the origin. 

24. The points within the parallelogram with one corner at (x0, yo, z0) whose sides extending 
from that corner are equal in magnitude and direction to vectors a and b. 

25. The plane determined by the three points (x0, yo, z0), , y\, z\), and (x2, yi, z2). 
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Prove the statements in Exercises 26 to 28. 

26. The line segment joining the midpoints of two sides of a triangle is parallel to and has 
half the length of the third side. 

27. If PQR is a triangle in space and b > 0 is a number, then there is a triangle with sides 
parallel to those of PQR and side lengths b times those of PQR. 

28. The medians of a triangle intersect at a point, and this point divides each median in a 
ratio of 2 :1 . 

Problems 29 and 30 require some knowledge of chemical notation. 

29. Write the chemical equation CO + H 2 0 = H2 + CO2 as an equation in ordered triples 
(;ti, x2, x3) where x\, x2, are the number of carbon, hydrogen, and oxygen atoms, 
respectively, in each molecule. 

30. (a) Write the chemical equation /?C3H403 + q0 2 = rC0 2 + sH 2 0 as an equation in 
ordered triples with unknown coefficients p,q,r, and 5. 

(b) Find the smallest positive integer solution for /?, q, r , and s. 
(c) Illustrate the solution by a vector diagram in space. 

31. Find a line that lies entirely in the set defined by the equation x2 + y2 — z2 = 1. 

In this section and the next we shall discuss two products of vectors: the inner prod-
uct and the cross product. These are very useful in physical applications and have 
interesting geometric interpretations. The first product we shall consider is called the 
inner product. The name dot product is often used instead. 

The Inner Product 
Suppose we have two vectors a and b in R 3 (Figure 1.2.1) and we wish to determine 
the angle between them, that is, the smaller angle subtended by a and b in the plane 

1.2 The Inner Product, Length, and Distance 

z 

Figure 1.2.1 6 is the angle between the vectors a and b. 
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that they span. The inner product enables us to do this. Let us first develop the concept 
formally and then prove that this product does what we claim. Let a = a\ i + a2\ + 03 k 
and b = b\i + b2] + b^k. We define the inner product of a and b, written a • b, to be 
the real number 

a • b = a\b\ + «2^2 + 

Note that the inner product of two vectors is a scalar quantity. Sometimes the inner 
product is denoted (a, b); thus, (a, b) and a • b mean exactly the same thing. 

l a k H L M U I a l l 

(a) If a = 3i + j — 2k and b = i — j + k, calculate a • b. 

(b) Calculate (2i + j - k) • (3k - 2j). 

S O L U T I O N 

(a) a • b = 3 • 1 + 1 • (—1) + ( - 2 ) - 1 = 3 - 1 - 2 = 0. 

(b) (2i + j — k) • (3k — 2j) = (2i + j — k) • (Oi — 2 j + 3k) 
= 2 - 0 - 1 . 2 - 1 . 3 = - 5 . A 

Certain properties of the inner product follow from the definition. If a, b, and c 
are vectors in M3 and a and /3 are real numbers, then 

(i) a • a > 0; 

a • a = 0 if and only if a = 0. 

(ii) a a • b = a(a • b) and a • /3b = • b). 

(iii) a«(b + c) = a . b + a . c and (a + b)• c = a• c 4- b• c. 

(iv) a • b = b • a. 

To prove the first of these properties, observe that if a = a\i + a2\ + tf3k, then 
a • a = a\ + a\ + a\. Because a\, 02, and a3 are real numbers, we know a\ > 0, 
a\ > 0, a\ > 0. Thus, a • a > 0. Moreover, if a\ + af + ^3 — then = ¿z2 = 
<23 = 0; therefore, a = 0 (zero vector). The proofs of the other properties of the inner 
product are also easily obtained. 

It follows from the Pythagorean theorem that the length of the vector a = a\\ + 
02j + 03 k is y]a\ + a\+ a\ (see Figure 1.2.2). The length of the vector a is denoted 
by || a ||. This quantity is often called the norm of a. Because a • a = a\ + a\ + it 
follows that 

Hall = (a- a)1/2. 
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Figure 1.2.2 The length of the vector a = (a\, ¿z2, «3) 
is given by the Pythagorean formula: yja\ + a\ + 

Unit Vectors 
Vectors with norm 1 are called unit vectors. For example, the vectors i, j, k are unit 
vectors. Observe that for any nonzero vector a, a/1| a|| is a unit vector; when we divide 
a by || a ||, we say that we have normalized a. 

E X A M P L E 2 

(a) Normalize v = 2i + 3j — ^k. 

(b) Find unit vectors a, b, and c in the plane such that b 4- c = a. 

S O L U T I O N 

(a) We have ||v|| = ->/22 + 32 + (1 /2)2 = (1/2)753, so the normalization of v is 

1 4 . 6 . 1 
u — v = —— 1 H — = 1 = k. 

IM| V53 7 5 3 J 7 5 3 

(b) Because all three vectors are to have length 1, a triangle with sides a, b, and c 
must be equilateral, as in Figure 1.2.3. Orienting the triangle as in the figure, we 
take a = i, then necessarily 

^ 1. V 3 . , 1. V 3 . 
b = - i - | 1, and c = - 1 — 1. 

2 2 J 2 2 J 

Note that indeed ||a|| = 1 and that b + c = a. • 

Figure 1.2.3 The vectors a, b, and c are represented by the sides of an 
equilateral triangle. 
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In the plane, define the vector \Q = (cos#)i 4- (sin#)j, which is the unit vector 
making an angle 0 with the x axis (see Figure 1.2.4). 

sinfl < 
Figure 1.2.4 The coordinates of are cos 9 and sin it is a unit 
vector because cos2 6 + sin2 6 = 1. 

cos 6 

Distance 
If a and b are vectors, we have seen that the vector b — a is parallel to and has the 
same magnitude as the directed line segment from the endpoint of a to the endpoint 
of b. It follows that the distance from the endpoint of a to the endpoint of b is ||b — a|| 
(see Figure 1.2.5). 

Figure 1.2.5 The distance between the tips of a and b is ||b — a|| 

Inner Product, Length, and Distance Letting a = a\\ + a2\ 4- 03 k and 
b = b\\ + b2\ + 63 k, their inner product is 

a • b = a\b\ 4- a2b2 + «3^3, 

while the length of a is 

||a|| = Va^a = y ] a \ + a \ + a\. 

To normalize a vector a, form the vector 

a 
I N " 

The distance between the endpoints of a and b is ||a — b||, and the distance 
between P and Q is ||PQ||. 
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^ ¡ ¡ m f l j j Find the distance from the endpoint of the vector i, that is, the 

point (1,0, 0), to the endpoint of the vector j, that is, the point (0, 1, 0). S O L U T I O N ||j - i|| = 7 (0 - l)2 + (1 - 0)2 + (0 - 0)2 = V2. A 

The Angle Between Two Vectors 
Let us now show that the inner product does indeed measure the angle between two 
vectors. 

THEOREM 1 Let a and b be two vectors in R3 and let <9, where 0 < 6 < tt, 
be the angle between them (Figure 1.2.6). Then 

a b = ||a||||b|| cos0. 

It follows from the equation a • b = ||a|| ||b|| cos 0 that if a and b are nonzero, we 
may express the angle between them as 

PROOF If we apply the law of cosines from trigonometry to the triangle with one 
vertex at the origin and adjacent sides determined by the vectors a and b (as in the 
figure), it follows that 

z 
A 

y 

Figure 1.2.6 The vectors a, b, and the angle 6 between them; 
the geometry for Theorem 1 and its proof. 

X 

| | b - a | | 2 = | |a| |2+ | |b | |2-2 | |a| | | |b| | cos0. 
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Because ||b - a||2 = (b - a)-(b - a), ||a||2 = a - a, and ||b||2 = b-b, we can rewrite 
the above equation as 

(b - a) • (b - a) = a • a + b • b - 2||a|| ||b|| cos<9. 

We can also expand (b — a) • (b — a) as follows: 

(b - a) • (b - a) = b - (b - a) - a • (b - a) 

= b - b - b - a - a « b + a - a 

= a - a + b - b - 2 a * b . 

Thus, 

That is, 

a - a + b«b — 2a-b = a«a + b- b — 2||a||||b|| cos<9. 

EXAMPLE 4 
(see Figure 1.2.7). 

a • b = || a || || b || cos 6. • 

Find the angle between the vectors i + j + k and i + j — k 

i + j +k 

Figure 1.2.7 Finding the angle between a = i + j + k 
and b = i + j — k. 

y 

S O L U T I O N Using Theorem 1, we have 

(i + j + k).( i + j - k ) = ||i + j+k | | | | i + j - k | | cos<9, 

and so 

1 + 1 - 1 =(V3)(V3)cos <9. 
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Hence, 

That is, 

COS V = 3 . 

G = cos _ 1 ( | ) ^ 1.23 radians (71°). A 

The Cauchy-Schwarz Inequality 
Theorem 1 shows that the inner product of two vectors is the product of their lengths 
times the cosine of the angle between them. This relationship is often of value in 
problems of a geometric nature. An important consequence of Theorem 1 is: 

COROLLARY: Cauchy-Schwarz Inequality For any two vectors a and b, 
we have 

|a-b|<| |a | | | |b | | 

with equality if and only if a is a scalar multiple of b, or one of them is 0. 

PROOF If a is not a scalar multiple of b, then 0, the angle between them, is not 
zero or n , and so |cos#| < 1, and thus the inequality holds; in fact, if a and b are 
both nonzero, strict inequality holds in this case. When a is a scalar multiple of b, 
then 0 = 0 or n and |cos 0 \ = 1, so equality holds in this case. • 

EXAMPLE 5 
b = 3i + k. 

Verify the Cauchy-Schwarz inequality for a = — i + j + k and 

S O L U T I O N The dot product is a • b = - 3 + 0 + 1 = - 2 , so | a - b | = 2 . 
Also, ||a|| = VI + 1 + 1 = \ /3 and ||b|| = V9 + 1 = VlO, and it is true that 
2 < y/3 • y/\0 because V3 • A/IO > V3- \ /3 = 3 > 2. A 

If a and b are nonzero vectors in R3 and 6 is the angle between them, we see 
that a • b = 0 if and only if cos 6 = 0. Thus, the inner product of two nonzero vec-
tors is zero if and only if the vectors are perpendicular. Hence, the inner product 
provides us with a convenient method for determining whether two vectors are per-
pendicular. Often we say that perpendicular vectors are orthogonal. The standard basis 
vectors i, j, and k are mutually orthogonal and of length 1; any such system is called 
orthonormal. We shall adopt the convention that the zero vector is orthogonal to 
all vectors. 
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bwtt lMiSlwdH The vectors i* = (cos 6)i + (sin 0)j and \9 = - (s in 0)i + (cos 0)j 
are orthogonal, because 

ie . j0 = — cos 6 sin 6 + sin 0 cos 6 = 0 

(see Figure 1.2.8). 

V i L 

i \ h ^ r i \ 

Figure 1.2.8 The vectors \e and j0 are orthogonal and of unit 
length, that is, they are orthonormal. 

Let a and b be two nonzero orthogonal vectors. If c is a vector in 
the plane spanned by a and b, then there are scalars a and fi such that c = ce a + /3 b. 
Use the inner product to determine a and fi (see Figure 1.2.9). 

SOLUTION Taking the inner product of a and c, we have 

a • c = a • (aa 4- /3b) = aa • a + /3a • b. 
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Because a and b are orthogonal, a • b = 0, and so 

a«c a - c 
a 

a - a IIa 12" 

Similarly, 

ß = 
b«c b - c 
b b l|2 * 

Orthogonal Projection 
In the preceding example, the vector a a is called the projection of c along a, and /3 b 
is its projection along b. Let us formulate this idea more generally. If v is a vector, 
and / is the line through the origin in the direction of a vector a, then the orthogonal 
projection of v on a is the vector p whose tip is obtained by dropping a perpendicular 
line to / from the tip of v, as in Figure 1.2.10. 

Figure 1.2.10 p is the orthogonal projection of v on a. 

Referring to the figure, we see that p is a multiple of a and that v is the sum of p 
and a vector q perpendicular to a. Thus, 

v = ca + q, 

where p = caanda • q = 0. Taking the dot product of a with both sides of v = ca + q, 
we find a • v = ca • a, so c = (a • v)/(a • a), and hence 

a« v 

The length of p is 
a ' v M M a ' v h M /) 

- ¡ r n r l | a | 1 = T T = v c o s 0 -
a 2 a 
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EXAMPLE 8 Find the orthogonal projection of i + j on i — 2j. 

SOLUTION With a = i — 2j and v = i + j, the orthogonal projection of v on a 
is 

a« v 1 
a a a ~ 1 + 4 

a = 7-7-7 ( i - 2 j ) = -

(see Figure 1.2.11). • 

Orthogonal 
projection 
of v on a 

Figure 1.2.11 The orthogonal projection of v on a equals — ̂  a. 

The Triangle Inequality 
A useful consequence of the Cauchy-Schwarz inequality, which is called the triangle 
inequality, relates the lengths of vectors a and b and of their sum a + b. Geometrically, 
the triangle inequality says that the length of any side of a triangle is no greater than 
the sum of the lengths of the other two sides (see Figure 1.2.12). 

Figure 1.2.12 This geometry shows that 
||OQ|| < ||OR|| + HRQII or, in vector notation, that 
II a + b || < || a || + ||b || 9 which is the triangle inequality. 

T H E O R E M 2: Triangle Inequality For vectors a and b in space, 

l|a + b|| < ||a|| + ||b||. 
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PROOF While this result may be clear geometrically, it is useful to give a proof 
using the Cauchy-Schwarz inequality, as it will generalize to «-dimensional vectors. 
We consider the square of the left-hand side: 

||a + b||2 = (a + b) • (a + b) = ||a||2 + 2a . b + ||b||2. 

By the Cauchy-Schwarz inequality, we have 

||a||2 + 2 a . b + ||b||2 < ||a||2 + 2||a||||b|| + ||b||2 = (||a|| + ||b||)2. 

Thus, 

l|a + b | | 2 < ( | | a | | + ||b||)2; 

taking square roots proves the result. • 

E X A M P L E 9 

(a) Verify the triangle inequality for a = i + j and b = 2i + j + k. 

(b) Prove that ||u — v|| < ||u — w|| + || w — v|| for any vectors u, v, and w. Illustrate 
with a figure in which u, v, and w have the same base point. 

S O L U T I O N 

(a) We have a + b = 3i + 2j + k, so ||a + b|| = V9 + 4 + 1 = >/l4. On the 
other hand, ||a|| = \ f l and ||b|| = V6, so the triangle inequality asserts that 
>/l4 < y/2 + y/6. The numbers bear this out: yf\A ^ 3.74, while y/l + V6 « 
1.41 +2.45 = 3.86. 

(b) We find that u — v = (u — w) + (w — v), so the result follows from the triangle 
inequality with a replaced by u — w and b replaced by w — v. Geometrically, 
we are considering the shaded triangle in Figure 1.2.13. • 

u - v 

Figure 1.2.13 Illustrating the inequality 
I |u-V| | < | | u - w | | + | | w - v | | . 

Physical Applications of Vectors 
A simple example of a physical quantity represented by a vector is a displacement. 
Suppose that, on a part of the earth's surface small enough to be considered flat, we 
introduce coordinates so that the x axis points east, the y axis points north, and the 
unit of length is the kilometer. If we are at a point P and wish to get to a point Q, 
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the displacement vector d = PQ joining P to Q tells us the direction and distance we 
have to travel. If x and y are the components of this vector, the displacement of P to 
Q is "JC kilometers east, y kilometers north." 

E X A M P L E 10 Suppose that two navigators who cannot see one another but can 
communicate by radio wish to determine the relative position of their ships. Explain 
how they can do this if they can each determine their displacement vector to the same 
lighthouse. 

S O L U T I O N Let Pi and P2 be the positions of the ships, and let Q be the position 
of the lighthouse. The displacement of the lighthouse from the ith ship is the vector 
d/ joining P/ to Q. The displacement of the second ship from the first is the vector d 
joiningPi toP2 . Wehaved + d2 = dj (Figure 1.2.14), and sod = dj — d2.Thatis,the 
displacement from one ship to the other is the difference between the displacements 
from the ships to the lighthouse. • 

F igure 1.2.14 Vector methods can be used to locate objects. 

We can also represent the velocity of a moving object as a vector. For the moment, 
we will consider only objects moving at uniform speed along straight lines. Suppose, 
for example, that a boat is steaming across a lake at 10 kilometers per hour (km/h) in 
the northeast direction. After 1 hour of travel, the displacement is (10/72 , 10/a/2) ^ 
(7.07, 7.07); see Figure 1.2.15. 

Position after 1 h 

10 Figure 1.2.15 If an object moves northeast at 10 km/h, its velocity 
sß vector has components (10 /72 , 10 /72) = 10(1/72, 1/72) , where 

(1 /72 , 1 / 7 2 ) of the northeast direction. 
Initial 10 
position ^¡2 

The vector whose components are (10 /72 , 10 /72) is called the velocity vec-
tor of the boat. In general, if an object is moving uniformly along a straight line, 
its velocity vector is the displacement vector from the position at any moment to 
the position 1 unit of time later. If a current appears on the lake, moving due 
eastward at 2 km/h, and the boat continues to point in the same direction with its 
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engine running at the same rate, its displacement after 1 hour will have components 
given by(10/V2 + 2, 10/72); see Figure 1.2.16. The new velocity vector, therefore, 
has components (10/V2 + 2, 10/72). We note that this is the sum of the original 
velocity vector (10/V2, 10/>/2) of the boat and the velocity vector (2, 0) of the 
current. 

Displacement due 
to current 

Displacement 
due to 
engine 

Total displacement 

Figure 1.2.16 The total displacement is the sum of the 
displacements due to the engine and the current. 

Displacement and Velocity If an object has a (constant) velocity vector v, 
then in t units of time the resulting displacement vector of the object is d = tx; 
thus, after time t = 1, the displacement vector equals the velocity vector. See 
Figure 1.2.17. 

Figure 1.2.17 Displacement = time x velocity. 

Displacement in time t 

A bird is flying in a straight line with velocity vector lOi + 6j + k 
(in kilometers per hour). Suppose that (x, y) are its coordinates on the ground and z 
is its height above the ground. 

(a) If the bird is at position (1, 2, 3) at a certain moment, what is its location 1 hour 
later? 1 minute later? 

(b) How many seconds does it take the bird to climb 10 meters? 

S O L U T I O N (a) The displacement vector from (1, 2, 3) after 1 hour is given by 
lOi + 6j + k, so the new position is (1, 2, 3) + (10, 6, 1) = (11, 8, 4). After 1 minute, 
the displacement vector from (1, 2, 3) is ¿ (10 i 4- 6j + k) = + -^j + ^ k , and so 
the new position is (1, 2, 3) + (±, = 

(b) After t seconds (= t/3600 hours), the displacement vector from (1, 2, 3) is 
(f/3600) (lOi + 6j + k) = (f/360)i + (f/600)j + (f/3600)k. The increase in altitude 
is the z component, namely, t/3600. This will equal 10 m (= ^ km) when t/3600 = 

that is, when t = 36 s. • 
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E X A M P L E 12 Physical forces have magnitude and direction and may thus be 
represented by vectors. If several forces act at once on an object, the resultant force 
is represented by the sum of the individual force vectors. Suppose that forces i + k 
and j + k are acting on a body. What third force F must we impose to counteract the 
two—that is, to make the total force equal to zero? 

S O L U T I O N The force F should be chosen so that (i + k) 4- ( j + k) + F = 0; 
that is, F = —(i + k) — ( j + k) = —i — j — 2k. (Recall that 0 is the zero vector, the 
vector whose components are all zero.) • 

EXERCISES 

1. Calculate (3i + 2j + k) • (i + 2j - k). 

2. Calculate a • b where a = 2i + lOj - 12k and b = - 3 i + 4k. 

3. Find the angle between 7j + 19k and —2i — j (to the nearest degree). 

4. Compute u • v, where u = \/3i — 315j + 22k and v = u/||u||. 

5. Is ||8i - 12k|| • ||6j + k|| - |(8i - 12k) • (6j + k)| equal to zero? Explain. 

In Exercises 6 to 11, compute ||u||, ||v||, and u • v for the given vectors in R3. 

6. u = 15i - 2j + 4k, v = 7i\ + 3j - k 

7. u = 2j - i, v = - j + i 

8. u = 5i - j + 2k, v = i + j - k 

9. u = - i + 3j + k, v = - 2 i - 3j - 7k 

10. u = - i + 3k, v = 4j 

11. u = - i + 2j - 3k, v = - i - 3j + 4k 

12. Normalize the vectors in Exercises 6 to 8. (Only the solution corresponding to Exercise 7 
is in the Student Guide.) 

13. Find the angle between the vectors in Exercises 9 to 11. If necessary, express your 
answer in terms of cos -1 . 

14. Find the projection of u = — i + j + k onto v = 2i + j — 3k. 

15. Find the projection of v = 2i + j — 3k onto u = — i + j + k. 

16. What restrictions must be made on the scalar b so that the vector 2i + b\ is orthogonal to 
(a) —3i + 2j + k and (b) k? 

17. Find two nonparallel vectors both orthogonal to (1, 1, 1). 



1.2 The Inner Product, Length, and Distance 37 

18. Find the line through (3,1, —2) that intersects and is perpendicular to the line 
x = — I + t, y = — 2 + t, z = — 1 + f . [HINT: If (jt0, yo, ZO) IS the point of intersection, find 
its coordinates.] 

19. A ship at position (1, 0) on a nautical chart (with north in the positive y direction) sights 
a rock at position (2, 4). What is the vector joining the ship to the rock? What angle 6 does 
this vector make with due north? (This is called the bearing of the rock from the ship.) 

20. Suppose that the ship in Exercise 19 is pointing due north and traveling at a speed of 4 
knots relative to the water. There is a current flowing due east at 1 knot. The units on the chart 
are nautical miles; 1 knot = 1 nautical mile per hour. 

(a) If there were no current, what vector u would represent the velocity of the ship 
relative to the sea bottom? 

(b) If the ship were just drifting with the current, what vector v would represent its 
velocity relative to the sea bottom? 

(c) What vector w represents the total velocity of the ship? 
(d) Where would the ship be after 1 hour? 
(e) Should the captain change course? 
( f ) What if the rock were an iceberg? 

21. An airplane is located at position (3,4, 5) at noon and traveling with velocity 
400i + 500j — k kilometers per hour. The pilot spots an airport at position (23, 29, 0). 

(a) At what time will the plane pass directly over the airport? (Assume that the plane is 
flying over flat ground and that the vector k points straight up.) 

(b) How high above the airport will the plane be when it passes? 

22. The wind velocity vi is 40 miles per hour (mi/h) from east to west while an airplane 
travels with air speed v2 of 100 mi/h due north. The speed of the airplane relative to the 
ground is the vector sum \ \ + v2. 

(a) F i n d v i + v 2 . 
(b) Draw a figure to scale. 

23. A force of 50 lb is directed 50° above horizontal, pointing to the right. Determine its 
horizontal and vertical components. Display all results in a figure. 

24. Two persons pull horizontally on ropes attached to a post, the angle between the ropes 
being 60°. Person A pulls with a force of 150 lb, while B pulls with a force of 110 lb. 

(a) The resultant force is the vector sum of the two forces. Draw a figure to scale that 
graphically represents the three forces. 

(b) Using trigonometry, determine formulas for the vector components of the two forces 
in a conveniently chosen coordinate system. Perform the algebraic addition, and find the 
angle the resultant force makes with A. 

25. A 1-kilogram (1-kg) mass located at the origin is suspended by ropes attached to the two 
points (1, 1, 1) and ( - 1 , - 1 , 1). If the force of gravity is pointing in the direction of the 
vector — k, what is the vector describing the force along each rope? [HINT: Use the symmetry 
of the problem. A 1-kg mass weighs 9.8 newtons (N).] 
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26. Suppose that an object moving in direction i + j is acted on by a force given by the 
vector 2i + j. Express this force as a sum of a force in the direction of motion and a force 
perpendicular to the direction of motion. 

27. A force of 6 N (newtons) makes an angle of 7T/4 radian with the y axis, pointing to the 
right. The force acts against the movement of an object along the straight line connecting 
(1,2) to (5, 4). 

(a) Find a formula for the force vector F. 
(b) Find the angle 6 between the displacement direction D = (5 — l)i + (4 — 2)j and 

the force direction F. 
(c) The work done is F • D, or equivalently, ||F|| ||D|| cos 6. Compute the work from both 

formulas and compare. 

1.3 Matrices, Determinants, and the Cross Product 
In Section 1.2 we defined a product of vectors that was a scalar. In this section we 
shall define a product of vectors that is a vector; that is, we shall show how, given two 
vectors a and b, we can produce a third vector a x b, called the cross product of a and 
b. This new vector will have the pleasing geometric property that it is perpendicular 
to the plane spanned (determined) by a and b. The definition of the cross product is 
based on the notions of the matrix and the determinant, and so these are developed 
first. Once this has been accomplished, we can study the geometric implications of 
the mathematical structure we have built. 

2 x 2 Matrices 
We define a 2 x 2 matrix to be an array 

au aX2 

_Cl2\ Cl22_ 

where a\\, a\2, a2\, and «22 are four scalars. For example, 

0 J} [ ! ?]' and [5 n] 
are 2 x 2 matrices. The determinant 

flu a 12 
a2\ 022 

of such a matrix is the real number defined by the equation 

flu 
«21 

an 
022 

: 011^22 — 012^21- (i) 
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I- I 
1 1 
1 1 = 1 - 1 = 0 ; 

1 2 
3 4 

= 4 - 6 = - 2 ; 
5 6 
7 8 

= 40 - 42 = - 2 . A 

3 Matrices 
A 3 x 3 matrix is an array 

«11 «12 «13 

«21 «22 «23 

«31 «32 «33 

where, again, each ciij is a scalar; a¡j denotes the entry in the array that is in the ith 
row and the y th column. We define the determinant of a 3 x 3 matrix by the rule 

a ii a i2 0i3 
Ü2\ Ü22 «23 

«31 «32 «33 

= a ii «22 «23 

«32 «33 
«12 

«21 «23 

«31 «33 
+ «13 

«21 «22 
«31 «32 

(2) 

Without some mnemonic device, formula (2) would be difficult to memorize. The rule 
to learn is that you move along the first row, multiplying a \ j by the determinant of 
the 2 x 2 matrix obtained by canceling out the first row and the j t h column, and then 
you add these up, remembering to put a minus in front of the a n term. For example, 
the determinant multiplied by the middle term of formula (2), namely, 

«21 «23 

«31 «33 

is obtained by crossing out the first row and the second column of the given 3 x 3 
matrix: 

— f n — « T 3 
«21 
«31 

«22 

¿ 3 2 

«23 

«33 

E X A M P L E 2 

1 0 0 
0 1 0 
0 0 1 

1 2 3 c 
4 5 6 = 1 J 

o 

1 

1 
7 8 9 o 

1 0 - 0 
0 0 

+ 0 
0 1 

0 1 - 0 0 1 + 0 0 0 

4 6 
7 9 + 3 

4 5 
7 8 

= 1. 

= - 3 + 1 2 - 9 = 0. 
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Properties of Determinants 
An important property of determinants is that interchanging two rows or two columns 
results in a change of sign. For 2 x 2 determinants, this is a consequence of the 
definition as follows: For rows, we have 

an a\2 

«21 «22 
= ÖHÖ22 - «21«12 = -(«21012 - 011022) = «21 «22 

«11 «12 

and for columns, 

«11 «12 
«21 «22 = («12«21 ~ «11«22) = «12 «11 

«22 «21 

We leave it to the reader to verify this property for the 3 x 3 case. 
A second fundamental property of determinants is that we can factor scalars out 

of any row or column. For 2 x 2 determinants, this means 

aa\\ «12 «11 ««12 = a «11 «12 
cta2\ «22 «21 aa22 

= a 
«21 «22 

aa 11 a«i2 
«21 «22 

«11 «12 
Of «21 Of «22 

Similarly, for 3 x 3 determinants we have 

««11 aa 12 a « l 3 a 11 «12 «13 «11 aaX2 a 13 
«21 «22 «23 = a «21 «22 «23 = «21 aa22 «23 

«31 «32 «33 «31 «32 «33 «31 aa32 «33 

and so on. These results follow from the definitions. In particular, if any row or column 
consists of zeros, then the value of the determinant is zero. 

A third fundamental fact about determinants is the following: If we change a row 
(or column) by adding another row (or, respectively; column) to it, the value of the 
determinant remains the same. For the 2 x 2 case, this means that 

«1 «2 
b\ b2 

«1 + b \ «2 4- b2 

b\ b2 

«1 «2 
b\ + «1 b2 + «2 

«1 + «2 «2 
b 1 4- b2 b2 

«1 «1 4- «2 
b\ b\ + b2 
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For the 3 x 3 case, this means 

ax a2 a3 a\ + b\ a2 + b2 a3 +b3 a\ + a2 a2 a3 

bx b2 b3 = bx b2 b3 = bx+b2 b2 b3 

c\ c2 c3 c\ c2 c3 c\ +c2 c2 c3 

and so on. Again, this property can be proved using the definition of the determinant. 

Suppose 

a = ah + that is, a = (aua2, a3) = a(bx,b2, b3) + P(c\,c2, c3). 

Show that 

= 0. 

S O L U T I O N We shall prove the case a ^ 0, P ^ 0. The case a = 0 = P is trivial, 
and the case where exactly one of a, ¡3 is zero is a simple modification of the case we 
prove. Using the fundamental properties of determinants, the determinant in question 

a2 a3 

bx b2 b3 

Cx c2 c3 

ab\ + f3c\ ab2 + /3c2 ab3 4- /3c3 

b i 
c\ 

b2 

c2 

b3 

c3 

ab\ + Pc\ ab2 + fic2 ab3 + fic3 

—otb\ —ab2 —otb3 

C\ c2 c3 

(factoring — 1 ¡ a out of the second row) 

-Hx-a 
l 

o¿¡3 

1 
ctj3 

Pcx Pc2 pc3 

—ab i —ab2 —ab3 

-Pcx -Pc2 ~pc3 

0 0 0 
—abx —ab2 —ab3 

-Pcx ~pc2 ~pc3 

ab\ + p>c\ ab2 + /3c2 ab3 + /3c3 

—ab\ —ab2 —ocb3 

-f$c2 -fic3 

(factoring —1//3 out of the third row) 

(adding the second row to the first row) 

(adding the third row to the first row) 

= 0. • 
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Closely related to these properties is the fact that we can expand a 3 x 3 determi-
nant along any row or column using the signs in the following checkerboard pattern: 

+ - + 
- + -
+ - + 

For instance, the reader can check that we can expand "by minors" along the middle 
row: 

an «12 «13 

«21 «22 «23 

«31 «32 «33 

Let us redo the second determinant in Example 2 using this formula: 

= ( - 4 ) ( - 6 ) + (5)(12) + (-6X6) = 0. 

«12 «13 «11 «13 «11 «12 

= - « 2 1 + «22 - « 2 3 

«32 «33 «31 «33 «31 «32 

1 2 3 2 3 1 3 1 2 
4 5 6 = - 4 + 5 - 6 
7 8 9 8 9 7 9 7 8 

Determinants appear to have been invented and first used by Leibniz in 
1693, in connection with solutions of linear equations. Maclaurin and 
Cramer developed their properties between 1729 and 1750; in particular, 
they showed that the solution of the system of equations 

CL\\X\ + ¿112*2 + ^13*3 = t>i 

<121*1 + 4-22*2 + 4-23*3 = £>2 

¿131*1 + 432*2 + 433X3 = b3 

is 

X1 = Z 

bi 412 413 1 411 bi 413 1 a n 412 b 1 

b2 422 423 
' X 2 = x 

421 b2 423 
' X 3 = A 

421 422 b2 

bs 432 433 
ZA 

431 b3 433 
ZA 

431 432 b3 

where 

A = 
411 4 i 2 4 i 3 

421 4 2 2 4 2 3 

431 432 033 

a fact now known as Cramer's rule. While this method is rather inefficient 
from a numerical point of view, it is of theoretical importance in matrix 
theory. Later, Vandermonde (1772) and Cauchy (1812), treating 
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determinants as a separate topic worthy of special attention, developed the 
field more systematically, with contributions by Laplace, Jacobi, and others. 
Formulas for volumes of parallelepipeds in terms of determinants are due to 
Lagrange (1775). We shall study these later in this section. Although during 
the nineteenth century mathematicians studied matrices and determinants, 
the subjects were considered separate. For the full history up to 1900, see 
T. Muir, The Theory of Determinants in the Historical Order of Development 
(reprinted by Dover, New York, 1960). 

Cross P r o d u c t s 

Now that we have established the necessary properties of determinants and discussed 
their history, we are ready to proceed with the cross product of vectors. 

DEFINITION: The Cross Product Suppose that a = axi + a2j + a3k and 
b = ¿?ii H- b2j -b b3k are vectors in R3. The cross product or vector product of 
a and b, denoted a x b, is defined to be the vector 

a x b = 02 a 3 «i a 3 
j + 

«i a2 

b2 b3 1 b i b 3 j + b i b2 

or, symbolically, 

a x b 
i j k 

a\ a2 a3 
b i b2 b3 

k, 

Even though we only defined determinants for arrays of real numbers, this formal 
expression involving vectors is a useful memory aid for the cross product. 

I ^ M t U l i i a Find (3i — j + k) x (i + 2j — k). 

S O L U T I O N 

( 3 i - j + k ) x ( i + 2 j - k ) = 
i j k 
3 - 1 1 
1 2 - 1 

= - i + 4j + 7k. • 

Certain algebraic properties of the cross product follow from the definition. If a, 
b, and c are vectors and a, p, and y are scalars, then 

(i) a x b = —(b x a) 
(ii) a x (/Sb + y c) = /S(a x b) + y( a x c) and (aa + fib) xc = 

a(a x c) + ¿¡(b x c). 
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Note that a x a = —(a x a), by property (i). Thus, a x a = 0. In particular, 

i x i = 0, j x j = 0, k x k = 0. 

Also, 

i x j = k, j x k = i, k x i = j, 

which can be remembered by cyclicly permuting i, j, k like this: 

To give a geometric interpretation of the cross product, we first introduce the 
triple product. Given three vectors a, b, and c, the real number 

(a x b) • c 

is called the triple product of a, b, and c (in that order). To obtain a formula for it, let 
a = a\\4- a2\ 4- 03k, b = b\\ + b2] + 63k, and c = c\\4- c2j + C3k. Then 

(a x b) • c 
-( 

a2 a3 
b2 b3 

a2 a3 
b2 b3 

c 1 

ax a3 
bi b3 

ax a3 
b\ b3 

j + 

C2 + 

a\ a2 
b\ b2 

a\ a2 
b 1 b2 

k . (cii + c2j + c3k) 

c3. 

This is the expansion by minors of the third row of the determinant, so 

(a x b) • c : 
a 1 a2 a3 
b\ b2 b3 
c\ c2 c3 

If c is a vector in the plane spanned by the vectors a and b, then the third row in the 
determinant expression for (a x b) • c is a linear combination of the first and second 
rows, and therefore (a x b) • c = 0. In other words, the vector a x b is orthogonal to 
any vector in the plane spanned by a and b, in particular to both a and b. 

Next, we calculate the length of a x b. Note that 

a2 a3 
2 

+ 
a\ a3 

2 
+ 

ax a2 
b2 b3 

2 

+ 
bx b3 

2 
+ 

bx b2 

= (a2b3 - a3b2f + («163 - bxa3)2 + (axb2 - b\a2)2. 
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If we expand the terms in the last expression, we can recollect them to give 

{a\ + a\ + al)(b\ + b\ + b\) - (axbx + a2b2 + a3b3)2, 

which equals 

||a||2||b||2 - (a • b)2 = ||a||2||b||2 - ||a||2||b||2 cos2 9 = ||a||2||b||2 sin2 6 

where 0 is the angle between a and b, 0 < 6 < n . Taking square roots and using 
V F = 1*1, we find that ||a x b|| = ||a||||b | | |sin0|. 

Combining our results, we conclude that a x b is a vector perpendicular to the 
plane V spanned by a and b with length || a || || b || | sin 9 |. We see from Figure 1.3.1 that 
this length is also the area of the parallelogram (with base ||a|| and height ||b sin01|) 
spanned by a and b. There are still two possible vectors that satisfy these conditions, 
because there are two choices of direction that are perpendicular (or normal) to V. 
This is clear from Figure 1.3.1, which shows the two choices ni and — ni perpendicular 
to'P, with ||ni || = II-niH = M | |b | | | s in0 | . 

Figure 1.3.1 ni and n2 are the two possible vectors orthogonal 
to both a and b, and with norm ||a|| ||b|| | sin0|. 

Which vector represents a x b , n i o r - ni? The answer is ni. Try a few cases such 
as k = i x j to verify this. The following "right-hand rule" determines the direction 
of a x b in general. Take your right hand and place it so your fingers curl from a 
toward b through the acute angle 0, as in Figure 1.3.2. Then your thumb points in the 
direction of a x b. 

a x b 

Figure 1.3.2 The right-hand rule for determining in which of the two 
possible directions a x b points. 
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The Cross Product 

Geometric definition: a x b is the vector such that: 

(1) || a x b || = || a || ||b|| sin0, the area of the parallelogram spanned by a and b 
(0 is the angle between a and b; 0 < 0 < n); see Figure 1.3.3. 

(2) a x b is perpendicular to a and b, and the triple (a, b, a x b) obeys the 
right-hand rule. 

Component formula: 

Algebraic rules: 
1. a x b = 0 if and only if a and b are parallel or a or b is zero. 

2. a x b = —b x a. 

3. a x (b + c) = a x b + a x c. 

4. (a + b) x c = a x c + b x c. 

5. (aa) x b = a ( a x b). 

Multiplication table: 

i j k 
(öii + a2j + 03k) x (Z?ii + b2j + b3k) = ax a2 a3 

b\ b2 b3 

= {a2b3 - a3b2)\ - {axb3 - a3b\)\ + (axb2 - a2bi)k. 

Second factor 
x i j k 

i 0 k 
First j - k 0 
factor k j —i 

- j 

0 

length = ||b|| |sin 6\ 

Figure 1.3.3 The length of a x b is the area of 
the parallelogram formed by a and b. 
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E X A M P L E 5 Find the area of the parallelogram spanned by the two vectors 
a = i + 2j + 3k and b = - i - k. 

S O L U T I O N We calculate the cross product of a and b by applying the com-
ponent or determinant formula, with a\ — 1, a2 =2, a3 = 3, b\ = — 1, b2 = 0, 
b3 = -1: 

a x b = [(2)(—1) - (3)(0)]i + [(3)(—1) - ( l ) ( - l ) ] j + [(1X0) - (2)(- l ) ]k 

= —2i - 2j + 2k. 

Thus, the area is 

||a x b|| = y/(-2)2 + ( -2 ) 2 + (2)2 = 2^3 . A 

E X A M P L E 6 Find a unit vector orthogonal to the vectors i + j and j + k. 

S O L U T I O N A vector perpendicular to both i + j and j + k is their cross product, 
namely, the vector 

i j k 
( i + j ) x ( j + k) = 1 1 0 = i — j + k. 

0 1 1 

Because ||i — j + k|| = \/3, the vector 

is a unit vector perpendicular to i + j and j + k. • 

Derive an identity relating the dot and cross products from the E X A M P L E 7 
formulas 

||U X v|| = ||u||IMI sin<9 and u * v = ||u||||v|| cos0 

by eliminating 6. 

S O L U T I O N Seeing sin 0 and cos 9 multiplied by the same expression suggests 
squaring the two formulas and adding the results. We get 

IIu X v f + (u - v)2 = ||u||2||v||2(sin2 e + cos2 0) = ||u ii2 iuri|2 

SO 

| | u x v | | 2 = | | u | | 2 | | v | | 2 - (u-v) 2 . 

This identity is interesting because it establishes a link between the dot and cross 
products. • 
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Geometry of Determinants 
Using the cross product, we may obtain a basic geometric interpretation of 2 x 2 
and 3 x 3 determinants. Let a = a\\ + a2j and b = b\i + b2] be two vectors in the 
plane. If 0 is the angle between a and b, we have seen that ||a x b|| = ||a|| ||b|| |sin#| 
is the area of the parallelogram with adjacent sides a and b. The cross product as a 
determinant is 

a x b 
i j k 

a\ a2 0 

bi b2 0 

a\ a2 

b\ b2 

Thus, the area ||a x b|| is the absolute value of the determinant 

a\ a2 

b\ b2 
— ü\b2 — a2b\. 

Geometry of 2 X 2 Determinants The absolute value of the determinant 
a
b
2
2\ is the area of the parallelogram whose adjacent sides are the vectors 

a = a\\ 4- a2\ and b = b\\ 4- b2j. The sign of the determinant is + when, ro-
tating in the counterclockwise direction, the angle from a to b is less than n. 

E X A M P L E 8 Find the area of the triangle with vertices at the points (1,1), (0,2), 
and (3, 2) (Figure 1.3.4). 

c - a 

1 2 3 
(a) 

Figure 1.3.4 (a) Find the area A of the shaded triangle by expressing the sides as 
vector differences (b) to get A = ||(b — a) x (c — a)||/2. 

S O L U T I O N Let a = i + j, b = 2j, and c = 3i + 2j. It is clear that the triangle 
whose vertices are the endpoints of the vectors a, b, and c has the same area as the 
triangle with vertices at 0, b — a, and c — a (Figure 1.3.4). Indeed, the latter is merely a 
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translation of the former triangle. Because the area of this translated triangle is one-half 
the area of the parallelogram with adjacent sides b — a = —i + j, and c — a = 2i + j, 
we find that the area of the triangle with vertices (1,1), (0,2), and (3,2) is the absolute 

that is, 3/2. • 

There is an interpretation of determinants of 3 x 3 matrices as volumes that is 
analogous to the interpretation of determinants of 2 x 2 matrices as areas. 

Geometry of 3 X 3 Determinants The absolute value of the determinant 

is the volume of the parallelepiped whose adjacent sides are the vectors 

a = a\\ + Q2] 4- a3k, b = b\\ + b2] + 63k, and c = c\\ + C2J 4- ¿3k. 

To prove the statement in the box above, we refer to Figure 1.3.5 and note that the length 
of the cross product, namely, ||a x b||, is the area of the parallelogram with adjacent 
sides a and b. Moreover, (a x b) • c = ||a x b|| ||c|| cos xj/, where \Jf is the angle that 
c makes with the normal to the plane spanned by a and b. Because the volume of the 
parallelepiped with adjacent sides a, b, and c is the product of the area of the base 
||a x b|| and the altitude ||c|| | cos it follows that the volume is |(a x b) • c)|. We 
saw earlier that (a x b) • c = D, so the volume equals the absolute value of D. 

value of 

1 - 1 1 _ _ 3 
2 2 1 - 2 ' 

a i a2 a3 
D= bx b2 b3 

c1 c2 c3 

z 

Figure 1.3.5 The volume of the parallelepiped 
spanned by a, b, c is the absolute value of the 
determinant of the 3 x 3 matrix having a, b, c 
as its rows. 

x 
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E X A M P L E 9 Find the volume of the parallelepiped spanned by the three vectors 
i + 3k, 2i + j - 2k, and 5i + 4k. 

S O L U T I O N The volume is the absolute value of 

1 0 3 
2 1 - 2 
5 0 4 

If we expand this determinant by minors by going down the second column, the only 
nonzero term is 

1 3 
5 4 (1) = - H . 

so the volume equals 11. 

Equations of Planes 
Let V be a plane in space, P0 = (x0, yo, zo) a point on that plane, and suppose that n = 
Ai + Bj + Ck is a vector normal to that plane (see Figure 1.3.6). Let P = (x, y, z) 
be a point in R3. Then P lies on the plane V if and only if the vector P0P = (x — *o)i + 
(y — yo)] + (z — z0)k is perpendicular to n, that is, P0P • n = 0, or, equivalently, 

(Ai + B\ + Ck) * [(* - *0)i + (y - yo).j + (*- zo)k] = 0. 

V 

• P 

P0 Figure 1.3.6 The points P of the plane through P0 and 
perpendicular to n satisfy the equation PQP • n = 0. 

x 

Thus, 

A(x - jto) + B(y - yo) + C(z - z0) = 0. 
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Equation of a Plane in Space The equation of the plane V through (xo, yo, z0) 
that has a normal vector n = Ai 4- B\ + Ck is 

A(x - x0) + B(y - y0) + C(z - z0) = 0; 

that is, (x, y, z) eV if and only if 

Ax + By + Cz + D = 0 

where D = — AXQ — Byo — CZQ. 

The four numbers A, B,C, and D are not determined uniquely by the plane V. To 
see this, note that (x, y, z) satisfies the equation Ax + By + Cz + D = 0 if and only 
if it also satisfies the relation 

(XA)x + (^B)y + (AC)z + (AD) = 0 

for any constant X / 0. Furthermore, if A, B, C, D and Af,B',C', determine the 
same plane P , then A = XA', 5 = C = AC', D = XD' for a scalar A. Conse-
quently, A, B,C, D are determined by V up to a scalar multiple. 

E X A M P L E 10 Determine an equation for the plane that is perpendicular to the 
vector i + j + k and contains the point (1,0, 0). 

S O L U T I O N Using the general form A(x - x0) + B(y - y0) + C(z - z0) = 0, 
the plane is l(x - 1) + l(y - 0) + 1 (z - 0) = 0; that is, x + y + z = 1. • 

E X A M P L E 11 Find an equation for the plane containing the three points 
(1,1,1), (2, 0, 0), and (1,1,0). 

S O L U T I O N Method 1. This is a "brute force" method that you can use if 
you have forgotten the vector methods. The equation for any plane is of the form 
Ax + By + Cz + D = 0. Because the points (1, 1, 1), (2, 0, 0), and (1, 1, 0) lie in 
the plane, we have 

A + B + C + D = 0, 

2 A +D = 0, 

A + B +D = 0. 

Proceeding by elimination, we reduce this system of equations to the form 

2 A + D = 0 (second equation) 

2B + D = 0 (2 x third - second), 

C = 0 (first - third). 
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Because the numbers A, B,C, and D are determined only up to a scalar multiple, we 
can fix the value of one of them, say A = 1, and then the others will be determined 
uniquely. We get A = 1, D = —2, B = 1, C = 0. Thus, an equation of the plane that 
contains the given points is x + y — 2 = 0. 

Method 2. Let P = (1, 1, 1), Q = (2, 0, 0), R = (1, 1, 0). Any vector normal to 
the plane must be orthogonal to the vectors QP and RP, which are parallel to the 
plane, because their endpoints lie on the plane. Thus, n = QP x RP is normal to the 
plane. Computing the cross product, we have 

n = 
i j k 

-1 1 1 
0 0 1 

= i + j. 

Because the point (2, 0, 0) lies on the plane, we conclude that the equation is given 
by (x - 2) + (y - 0) + 0 - (z - 0) = 0; that is, x + y - 2 = 0. • 

Two planes are called parallel when their normal vectors are parallel. Thus, 
the planes A\x + Bxy + C\z + D\ = 0 and A2x + B2y + C2z + D2 = 0 are par-
allel when ni = A\i 4- B\] 4- C\k and n2 = A2i + B2j + C2k are parallel; that is, 
ni = crn2 for a constant a. For example, the planes 

x - 2y + z = 0 and -2x + 4y - 2z = 10 

are parallel, but the planes 

x - 2y + z = 0 and 2x - 2y + z = 10 

are not parallel. 

Distance: Point to Plane 
Let us now determine the distance from a point E = (x\,yi,z\) to the plane V 
described by the equation A(x — xo) + B(y — yo) + C(z — zo) = Ax + By + Cz + 
D = 0. To do so, consider the unit normal vector 

A\ + B\ + Ck 
n _ VA2 + B2 + C 2 ' 

which is a unit vector normal to the plane. Drop a perpendicular from E to the 
plane and construct the triangle REQ shown in Figure 1.3.7. The distance d = 
||EQ|| is the length of the projection of v = RE (the vector from R to E) onto n; 
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Z E = U,J>i,zi) 

ii 
V Figure 1.3.7 The geometry for determining the 

distance from the point E to plane V. 
c R=(Wo>zo) 

y 

X 

thus, 

Distance = |v • n| = \[(x{ - x0)i + (y\ - yo)\ + (zx - z0)k] • n| 

\A(xi - x0) + B(y! - yo) + C(zx - z0)| 
Y/A2 + B2 + C2 

If the plane is given in the form Ax + By + Cz + D = 0, then for any point 
(xo, zo) on it, D = —(Axo + BYO + CZQ). Substitution into the previous formula 
gives the following: 

Distance f rom a Point to a Plane The distance from (xi, yx, zx) to the plane 
Ax + By + Cz + D = 0 is 

| I Find the distance from Q = (2, 0, —1) to the plane 3x — 2y + 
8z + 1 = 0. 

S O L U T I O N We substitute into the formula in the preceding box the values xi = 2 
y x = 0, zi = - 1 (the point) and A = 3, B = - 2 , C = 8, D = 1 (the plane) to 
give 

Distance = 
\Axi+Byx+Czx+D\ 

y/A2 + B2 + C2 

Distance = |3 • 2 4- (—2) • 0 + 8(—1) + 1| | - 1 | 1 
• 

-v/32 4- (—2)2 4- 82 V77 V 7 7 ' 
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d f f c b t o i c t f r ^ {y^/otii 

The Origins of the Vector, Scalar, Dot, and Cross Products 
QUADRATIC EQUATIONS, CUBIC EQUATIONS, AND IMAGINARY 
NUMBERS. We know from Babylonian clay tablets that this great 
civilization possessed the quadratic formula, enabling them (in verbal form) 
to solve quadratic equations. Because the concept of negative numbers had to 
wait until the sixteenth century to see the light of day, the Babylonians did 
not consider either negative (or imaginary) solutions. 

With the Renaissance and the rediscovery of ancient learning, Italian 
mathematicians began to wonder about the solutions of cubic equations, 
x3 + ax2 + bx + c = 0, where a, b, and c are positive numbers. 

Around 1500, Scipione del Ferro, a professor in Bologna (the oldest 
European university) was able to solve cubics of the form x3 + bx = c, but 
kept his discovery secret. Before his death, he passed his formula to his 
successor, Antonio Fior, who for a while also kept the formula to himself. It 
remained a secret until a brilliant, self-taught mathematician named Nicolo 
Fontana, also known as Tartaglia (the stammerer), appeared on the scene. 
Tartaglia claimed he could solve the cubic, and Fior felt he needed to protect 
the priority of del Ferro, and so in response challenged Tartaglia to a public 
competition. 

We are told that Tartaglia was able to solve all of the thirty cubic 
equations posed by Fior. Amazingly, some scholars believe that Tartaglia 
discovered the formula for solutions to x3 + cx = d only days before the 
contest was to take place. 

The greatest mathematician of the sixteenth century, Gerolamo 
Cardano (1501-1576)—a Renaissance scholar, mathematician, 
physician, and fortuneteller—gave the first published solution of the general 
cubic. Although born of modest means, he (like Tartaglia) rose, through 
effort and natural brilliance, to great fame. Cardano is the author of 
the first book on games of chance (marking the beginning of modern 
probability theory) and also of Ars Magna (the Great Art), which marks 
the beginning of modern algebra. It was in this book that Cardano 
published the solution to the general cubic x3 + ax2 + bx + c = 0. 
How did he get it? 

While working on his algebra book, and aware that Tartaglia was able to 
solve forms of cubic, Cardano, in 1539, wrote to Tartaglia asking for a 
meeting. After some cajoling, Tartaglia agreed. It was at this meeting that, in 
exchange for a pledge of secrecy (and we know how these generally go), 
Tartaglia revealed his solution, from which Cardano was able to derive a 
solution to the general equation, which then appeared in Ars Magna. Feeling 
betrayed, Tartaglia led a scathing attack on Cardano, leading to a small soap 
opera. 
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What is important for us, at the moment, is that as a consequence of the 
method of solution, something very strange occurred. Consider the cubic 
x3 — 1 Sx = 4. Its only positive root is 4. However, the Tartaglia-Cardano 
solution formula yields 

x = + + (1) 

as the positive root. Thus, this number must be equal to 4. Yet this must be 
nonsense, because inside the cube root we are taking the square root of a 
negative number—at the time, an absolute impossibility. This was a real 
shock. Over 100 years later, in 1702, when Leibniz, codiscoverer of calculus, 
showed the great Dutch scientist Christian Huygens the formula 

Huygens was completely flabbergasted, and remarked that this equality 
"defies all human understanding." [Try, informally, to verify both formulas 
(1) and (2) for yourself.] 

Whether nonsense or not, Tartaglia and Cardano's formula forced 
mathematicians to confront square roots of negative numbers (or imaginary 
numbers, as they are called today). This historical incident is another 
example that negates the (widespread) view that mathematics is "made 
up" by mathematicians. As is often the case, it is the mathematics itself that 
speaks to us. 

T H E MATURING OF COMPLEX NUMBERS. For well over two centuries , 
numbers like i = T were looked at with great suspicion. The square root 
of any negative number can be written in terms of i; for example, 
yj—a = yj(a)(—1) = y/ay/--i.. In the middle of the eighteenth century, the 
Swiss mathematician Leonhard Euler connected the universal cosmic 
numbers e and n with the imaginary number i. Whatever i was or meant, it 
necessarily follows that 

e* = - 1 , 
that is, e "raised to the power ni equals — 1. Thus, these cosmic numbers, 
reflecting perhaps some deeper mystery, are in fact connected to each other 
by a very simple formula. 

At the beginning of the nineteenth century, the German mathematician 
Karl Friedrich Gauss was able to prove the fundamental theorem of algebra, 
which says that any nth-degree polynomial has n roots (some or all of which 
may be imaginary; that is, the roots have the form a + bi, where, as earlier, 
i = yf—1 and where a and b are real numbers). 

By the middle of the nineteenth century, the French mathematician 
Augusten-Louis Cauchy and the German mathematician Bernhard 
Riemann had developed the differential calculus for functions of one 
complex variable. An example of such a function is F(z) = where 
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z — a 4- hi. In this case, the usual formula for the derivative, F\z) = nz*1'1, 
still holds. However, by introducing imaginary numbers, Cauchy was able to 
evaluate "real integrals" that heretofore could not be evaluated. For example, 
it is possible to show that 

These were stunning results. 
In summary, the solution of the cubic equation, the fundamental 

theorem of algebra, and the evaluation of real integrals proved how valuable 
it was to consider imaginary numbers a + hi, even though they were not (at 
least not yet) on terra firma. Did they really exist or were they simply 
phantoms of our imagination, and thus truly imaginary? 

HAMILTON'S DEFINITION OF COMPLEX NUMBERS. M a n y 
mathematicians after Cardano made important contributions to imaginary 
(or complex) numbers, including Argand, Wessel, and Gauss—all of whom 
represented them geometrically. However, the modern, intellectually 
rigorous definition of a complex number is due to the great Irish 
mathematician William Rowan Hamilton (see Figure 1.3.8). After Newton, 
who created the vector concept through his invention of the notion of force, 
Hamilton was, beyond any doubt, the most important and singular figure in 

and that 

r 
I logsinxdx = — 71 log 2, 

Jo 

Figure 1.3.8 Sir William Rowan 
Hamilton (1805-1865). 
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the development of vector calculus. It was Hamilton who gave us the terms 
vector and scalar quantity. 

William Rowan Hamilton was born in Dublin, Ireland, at midnight on 
August 3, 1805. In 1823, he entered Trinity College, Dublin. His university 
career, by any standard, was phenomenal. By his third year, Trinity offered 
him a professorship, the Andrew's Chair of Astronomy, and the State named 
him Royal Astronomer of Ireland. These honors were based on his 
theoretical prediction (in 1824) of two entirely new and unexpected optical 
phenomena, namely, internal and external conical refraction. 

By 1827 he had become interested in imaginary numbers. He wrote that 
"the symbol y/—l is absurd, and denotes an impossible extraction..." He set 
out to put the idea of a complex number on a firm logical foundation. His 
solution was to define a complex number a + hi as a point (a, b) in the plane 
R2, much as we do today. Thus, the imaginary number hi for Hamilton was 
simply the point (0, b) on the y axis. The difference between complex 
numbers and the Cartesian plane was that Hamilton followed the proforma 
multiplication of complex numbers: 

(a + bi)(c + di) = (ac — bd) + {ad + bc)if 

and defined a new multiplication on the complex plane: 

(a, b) • (c, d) = (ac — bd, ad + be). 

Thus, i = y/— 1 just disappears into the point (0, 1), and the mystery and 
confusion over complex numbers disappears along with it. 

F R O M COMPLEX NUMBERS TO QUATERNIONS. F r o m H a m i l t o n ' s 
interpretation, complex numbers are nothing more than the extension of real 
numbers into a new dimension, two dimensions. Hamilton, however, also did 
fundamental work in mechanics, and he knew well that two dimensions were 
too limiting for the space analysis necessary for understanding the physics of 
the three-dimensional world. Therefore, Hamilton set out to find a triplet 
system; that is, an acceptable1 multiplication scheme on points (a,b,c) in R3, 
or, as it were, on vectors ai + bj + ck. 

By 1843, Hamilton realized that his quest was hopeless. But then, on 
October 16, 1843, Hamilton discovered that what he could not achieve for 
R3 he could achieve for R4; he discovered quaternions, an entirely new 
number system. 

^ o r him, "acceptable" meant that the associative law of multiplication would hold. 
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Let us revisit the important historical moment in Hamilton's own 
words: 

But on the 16th day of the same month—which happened to be a 
Monday, and a Council Day of the Royal Irish Academy—I was 
walking in to attend and preside, and your mother was walking 
with me, along the Royal Canal, to which she had perhaps driven; 
and although she talked with me now and then, yet another 
under-current of thought was going on in my mind, which gave at 
last a result, whereof it is not too much to say that I felt at once the 
importance. An electric circuit seemed to close; and a spark flashed 
forth, the herald (as I foresaw, immediately) of many long years to 
come of definitely directed thought and work, by myself if spared, 
and at all events on the parts of others, if I should even be allowed to 
live long enough to distinctly communicate the discovery. Nor could 
I resist the impulse—unphilosophical as it may have been—to cut 
with a knife on a stone of Brougham Bridge, as we passed it, the 
fundamental formula with the symbols i,j ,k; namely 

i 2 = j 2 = k2 = ijk = - i , 

which contains the Solution of the Problem, but of course, as an 
inscription, has long since moldered away.2 

Hamilton had realized that the multiplication he had been searching for 
could be introduced on 4-tuples (a, b, c, d), which he had denoted by 

a + bi + cj 4- dk. 

The a was called the scalar part and bi 4- cj 4- dk was called the vector 
part, which in reality, as with complex numbers, meant the point (a, b, c, d) 
in R4. The multiplication table he introduced was 

ij = k = - j i 

ki = j = - i k 

jk = i = - k j 

i2 = j2 = k2 = ijk = - 1 . 

Hamilton continued to passionately believe in his quaternions until the 
end of his life. Unfortunately, historical development went in another 
direction. 

2North British Review 14 (1858): 57. 
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The first step away from the quaternions was in fact taken by a 
firm believer in the importance of quaternions, namely, Peter Guthrie Tait, 
who was born in 1831 near Edinburgh, Scotland. In 1860, Tait was 
appointed to the Chair of Natural Philosophy at Edinburgh University, 
where he remained until his death in 1901. In 1867, he wrote his Elementary 
Treatises on Quaternions, a text stressing physical applications. His third 
chapter was most significant. It was here that Tait looked at the quaternionic 
product of two vectors: 

v = ai + bj + ck and w = ai + b j + c k. 

Then the product vw, as defined by Hamilton, yields: 

(ai + bj + ck)(a'i + bj + c'k) 

= -(ad + bbf + cc') + (be - cb')i + (acr - car)j + (abr - ba')k 

or, in modern form: 

vw = —(v • w) + V X w, 

where • is the modern dot or inner product of vectors and x is the cross 
product. Tait discovered the formulas 

v • w — ||v|| ||w|| cos0 and ||v x w|| = ||v|| ||w|| sin#, 

where 6 is the angle formed by v and w. Moreover, he showed that v x w was 
orthogonal to v and w, therefore giving a geometric interpretation of the 
quaternionic product of two vectors. 

This began the move away from the study of quaternions and back to 
Newton's vectors, with the quaternionic product eventually being replaced 
by two separate products, the inner product and the cross product. 

By the way, you might wonder why Hamilton did not at first discover the 
cross product, since it is a product on M3. The reason is that it did not have a 
fundamental property that he required—namely, it was not associative:3 

0 = (i x i) x k i x (i x k) = —k 

3 Interestingly, if one is willing to continue to live with nonassociativity, there is also a vector product with most 
of the properties of the cross product in R7; this involves yet another number system called the octonians, which 
exists in R8 . The nonexistence of a cross product in other dimensions is a result that goes beyond the scope 
of this text. For further information, see the American Mathematical Monthly, 74 (1967), pp. 188-194, and 90 
(1983), p. 697, as well as J. Baez, "The Octonians,"Bulletin of the American Mathematical Society, 39 (2002), 
pp. 145-206. One can show that systems like the quaternions and octonians occur only in dimension 1 (the reals 
R), dimension 2 (the complex numbers), dimension 4 (the quaternions), and dimension 8 (the octonians). On 
the other hand, the "right "way to extend the cross product is to introduce the notion of differential forms, which 
exists in any dimension. We discuss their construction in Section 8.6. 
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T H E M O V E AWAY FROM QUATERNIONS. T h e scientists u l t imate ly 
responsible for the demise of quaternions were James Clerk Maxwell 
(see Figure 1.3.9), Oliver Heaviside, and Josiah Willard Gibbs, a founder of 
statistical mechanics. In the 1860s, Maxwell wrote down his monumental 
equations of electricity and magnetism. No vector notation was used (it did 
not exist). Instead, Maxwell wrote out his equations in what we would now 
call "component form." Around 1870, Tait began to correspond with 
Maxwell, piquing his interest in quaternions. 

Figure 1.3.9 James Clerk 
Maxwell (1831-1879). 

In 1873, Maxwell published his epic work, Treatise on Electricity and 
Magnetism. Here (as we shall do in Chapter 8), Maxwell wrote down the 
equations of the electromagnetic field using quaternions, thus motivating 
physicists and mathematicians alike to take a closer look at them. From this 
manuscript many have concluded that Maxwell was a supporter of the 
"quaternionic approach" to physics. The truth, however, is that Maxwell 
was reluctant to use quaternions. It was Maxwell, in fact, who began the 
process of separating the vector part of a product of two quaternions (the 
cross product) from its scalar part (the dot product). 

It is known that Maxwell was troubled by the fact that the scalar part of 
the "square"of a vector (vv) was always negative (—v • v), which in the case 
of a velocity vector could be interpreted as negative kinetic energy—an 
unacceptable idea! 

It was Heaviside and Gibbs who made the final push away from 
quaternions. Heaviside, an independent researcher interested in electricity 
and magnetism, and Gibbs, a professor of mathematical physics at Yale, 
almost simultaneously—and independently—crcated our modern system of 
vector analysis, which we have just started to study. 
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In 1879, Gibbs taught a course at Yale in vector analysis with 
applications to electricity and magnetism. This treatise was clearly motivated 
by the advent of Maxwell's equations, which we will be studying in Chapter 
8. In 1884, he published his Elements of Vector Analysis, a book in which 
all the properties of the dot and cross products are fully developed. 
Knowing that much of what Gibbs wrote was in fact due to Tait, Gibbs's 
contemporaries did not view his book as highly original. However, it is one of 
the sources from which modern vector analysis has come into existence. 

Heaviside was also largely motivated by Maxwell's brilliant work. His 
great Electromagnetic Theory was published in three volumes. Volume I 
(1893) contained the first extensive treatment of modern vector analysis. 

We all owe a great debt to E. B. Wilson's 1901 book Vector Analysis: A 
Textbook for the Use of Students of Mathema tics and Physics Founded upon the 
Lectures of J. Willard Gibbs. Wilson was reluctant to take Gibbs's course, 
because he had just completed a full-year course in quaternions at Harvard 
under J. M. Pierce, a champion of quaternionic methods; but he was forced 
by a dean to add the course to his program, and he did so in 1899. Wilson 
was later asked by the editor of the Yale Bicentennial Series to write a book 
based on Gibbs's lectures. For a picture of Gibbs and for additional 
historical comments on divergence and curl, see the Historical Note in 
Section 4.4. 

EXERCISES 

1. Verify that interchanging the first two rows of the 3 x 3 determinant 

1 2 1 
3 0 1 
2 0 2 

changes the sign of the determinant. 

2. Evaluate the determinants 

(a) 2 - 1 0 (c) 1 4 9 
4 3 2 4 9 16 
3 0 1 9 16 25 

(b) 36 18 17 (d) 2 3 5 
45 24 20 7 11 13 

3 5 -2 17 19 23 

3. Compute a x b, where a = i — 2j + k, b = 2i + j + k. 

4. Compute a • (b x c), where a and b are as in Exercise 3 and c = 3i — j + 2k. 

5. Find the area of the parallelogram with sides a and b given in Exercise 3. 
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6. A triangle has vertices (0, 0, 0), (1, 1, 1), and (0, —2, 3). Find its area. 

7. What is the volume of the parallelepiped with sides 2i + j — k, 5i — 3k, and i — 2j + 

8. What is the volume of the parallelepiped with sides i, 3j — k, and 4i + 2j — k? 

In Exercises 9 to 12, describe all unit vectors orthogonal to both of the given vectors. 

9. i , j 

10. - 5 i + 9 j - 4 k , 7 i + 8j + 9k 

U . - 5 i + 9 j - 4 k , 7 i + 8j + 9k,0 

12. 2 i - 4 j + 3k, - 4 i + 8 j - 6 k 

13. Compute u + v, u • v, ||u||, ||v||, and u x v, where u = i — 2j + k, v = 2i — j + 2k. 

14. Repeat Exercise 13 for u = 3i + j — k, v = —6i — 2j — 2k. 

15. Find an equation for the plane that 

(a) is perpendicular to v = (1, 1, 1) and passes through (1,0, 0). 
(b) is perpendicular to v = (1, 2, 3) and passes through (1, 1, 1). 
(c) is perpendicular to the line 1(0 = (5, 0, 2)t + (3, - 1 , 1) and passes through 

( 5 , - 1 , 0 ) . 
(d) is perpendicular to the line 1(0 = (— 1, —2, 3)t + (0, 7, 1) and passes through 

( 2 , 4 , - 1 ) . 

16. Find an equation for the plane that passes through 

(a) (0, 0, 0), (2, 0 , - 1 ) , and (0,4, - 3 ) . 
(b) (1,2,0), (0, 1 , -2 ) , and (4,0, 1). 
(c) ( 2 , - 1 , 3), (0, 0, 5), and (5, 7, - 1 ) . 

17. (a) Show that two parallel planes are either identical or they never intersect, 
(b) How do two nonparallel planes intersect? 

18. Find the intersection of the planes x + 2y + z = 0 and x — 3y — z = 0. 

19. Find the intersection of the planes * + (}> — 1) + z = 0 and — x + (>> + 1) — z = 0. 

20. Find the intersection of the two planes with equations 3(x — 1) + 2y + (z + 1) = 0 ai 
(x — \) + 4y — (z + \) = 0. 

21. (a) Prove the two triple-vector-product identities 

(a x b) x c = (a • c)b — (b • c)a and a x (b x c) = (a • c)b — (a • b)c. 

(b) Prove (u x v) x w = u x (v x w) if and only if (u x w) x v = 0. 
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(c) Also prove that (u x v) x w + (v x w) x u + (w x u) x v = 0 (called the Jacobi 
identity). 

22. (a) Prove, without recourse to geometry, that 

23. Verify Cramer's rule. 

24. Find an equation for the plane that passes through the point ( 2 , - 1 , 3 ) and is 
perpendicular to the line v = (1, —2, 2) + t(3, —2, 4). 

25. Find an equation for the plane that passes through the point (1,2, —3) and is 
perpendicular to the line v = (0, —2, 1) + r(l, —2, 3). 

26. Find the equation of the line that passes through the point (1, —2, —3) and is 
perpendicular to the plane 3x — y — 2z + 4 = 0. 

27. Find an equation for the plane containing the two (parallel) lines 

v, - ( 0 , 1 , - 2 ) +¿(2, 3, - 1 ) and v2 = (2, - 1 , 0) + t(2, 3, - 1 ) . 

28. Find the distance from the point (2, 1, — 1) to the plane x 2y + 2z + 5 = 0. 

29. Find an equation for the plane that contains the line v = (— 1, 1, 2) + t(3, 2, 4) and is 
perpendicular to the plane 2x -h y — 3z + 4 = 0. 

30. Find an equation for the plane that passes through (3, 2, — 1) and ( 1 , - 1 , 2 ) and that is 
parallel to the line v = (1, - 1 , 0) + t(3, 2, - 2 ) . 

31. Redo Exercises 19 and 20 of Section 1.1 using the dot product and what you know about 
normals to planes. 

32. Given vectors a and b, do the equations x x a = b and x • a = ||a|| determine a unique 
vector x? Argue both geometrically and analytically. 

33. Determine the distance from the plane \2x + \3y + 5z + 2 = 0 to the point (1,1, —5). 

34. Find the distance to the point (6, 1, 0) from the plane through the origin that is 
perpendicular to i — 2j + k. 

35. (a) In mechanics, the moment M of a force F about a point O is defined to be the 
magnitude of F times the perpendicular distance d from O to the line of action of F. The 
vector moment M is the vector of magnitude M whose direction is perpendicular to the plane 

u • (v X w) = V • (w X u) = w • (u x v) = — u • (w X v) 

— — w . (y X u) = —V • (u X w). 

(b) Use part (a) and Exercise 21(a) to prove that 

(u x v) • (u' x v') = (u • u')(v • v') — (u • v')(u' • v) = u • u' u • v' 
u' • V V • v' 
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of O and F, determined by the right-hand rule. Show that M == R x F, where R is any vector 
from O to the line of action of F. (See Figure 1.3.10.) 

(b) Find the moment of the force vector F = i — j + 2k newtons about the origin if the 
line of action is x = 1 t,y = 1 — t, z = It. 

36. Show that the plane that passes through the three points A = (a\, a2, a3), B = 
(b\, b2, ¿>3)» and C = (c\, C2, C3) consists of the points P = (jc, y, z) given by 

(HINT: Write the determinant as a triple product.) 

37. Two media with indices of refraction n\ and n2 are separated by a plane surface 
perpendicular to the unit vector N. Let a and b be unit vectors along the incident and 
refracted rays, respectively, their directions being those of the light rays. Show that 
«i(N x a) = 722(N x b) by using Snell's law, sin0i/ sin#2 = "2/^1» where 0\ and 02 are the 
angles of incidence and refraction, respectively. (See Figure 1.3.11.) 

O 

Line of action 
Figure 1.3.10 Moment of a force. 

a \ — x a2 — y ö3 — z 
b\ — x b2 — y ¿>3 — z — 0. 
CI - x c2- y c3-z 

Figure 1.3.11 Snell's law. 



1.4 Cylindrical and Spherical Coordinates 65 

38. Justify the steps in the following computation: 

1 2 3 1 2 3 1 2 3 -5 F. 
4 5 6 = 0 - 3 - 6 = 0 - 3 - 6 = 

— J 
£ 

—0 
- 1 1 

= 33 - 36 = - 3 . 
7 8 10 7 8 10 0 - 6 - 1 1 —O 

—0 
- 1 1 

39. Show that adding a multiple of the first row of a matrix to the second row leaves the 
determinant unchanged; that is, 

ax bi C\ ax bx C\ 
Cl2 + Afif i b2 + Xbx C2 + kc\ = a2 b2 C2 

«3 b3 C3 «3 bi £3 

[In fact, adding a multiple of any row (column) of a matrix to another row (column) leaves the 
determinant unchanged.] 

1.4 Cylindrical and Spherical Coordinates 
A standard way to represent a point in the plane M2 is by means of rectangular 
coordinates (.x, y). However, as the reader has probably learned in elementary calculus, 
polar coordinates in the plane can be extremely useful. As portrayed in Figure 1.4.1, 
the coordinates (r, 6) are related to (x, y) by the formulas 

x=rcosO and y = rsin6, 

where we usually take r > 0 and 0 < 0 < 2n. 

y 
A 

(x,y) 

V Figure 1.4.1 The polar coordinates of (x, y) are (r, 0). 

Readers not familiar with polar coordinates are advised to study the relevant 
section of their calculus texts. We now set forth two ways of representing points in 
space other than by using rectangular Cartesian coordinates (x, y, z). These alternative 
coordinate systems are particularly well suited for certain types of problems, such as 
the evaluation of integrals using a change of variables. 
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In 1671, Isaac Newton wrote a manuscript entitled The Method of Fuxions 
and Infinite Series, which contains many uses of coordinate geometry to 
sketch the solutions of equations. In particular, he introduces the polar 
coordinate system, among various other coordinate systems. 

In 1691, Jacob Bernoulli published a paper also containing polar 
coordinates. Because Newton's manuscript was not published until after his 
death in 1727, credit for the discovery of polar coordinates is usually 
attributed to Bernoulli. 

Cyl indr ica l C o o r d i n a t e s 

D E F I N I T I O N The cylindrical coordinates (r, 6, z) of a point (x, y, z) are 
defined by (see Figure 1.4.2) 

x=rcosQ, y = rsinO, z — z. (1) 

» (x,y,z) 

/ 

/ 
Figure 1.4.2 Representing a point (x,y,z) in terms of its 
cylindrical coordinates r, 0, and z. 

To express r, 0, and z in terms of x, y, and z, and to ensure that 0 lies between 0 and 
2k, we can write 

r = yjx1 + y2 , 
tan-1(>>/x) i fx > 0 and;; > 0 
7T + tan-1(>>/x) i f x < 0 z = z, 
2n + tan_1(j^/x) i f x > 0 and ^ < 0, 
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where tan_1(>>/x) is taken to lie between —n/2 and 7T/2. The requirement that 0 < 
0 < 2n uniquely determines 0 and r > 0 for a given x and y. If x = 0, then 6 = TZ ¡2 
for y > 0 and 3iz/2 for v < 0. If x = = 0, 0 is undefined. 

In other words, for any point (x,y,z), we represent the first and second co-
ordinates in terms of polar coordinates and leave the third coordinate unchanged. 
Formula (1) shows that, given (r, 6, z), the triple (x, y, z) is completely determined, 
and vice versa, if we restrict 0 to the interval [0, 2N) (sometimes the range (—N, TZ] 
is convenient) and require that r > 0. 

To see why we use the term cylindrical coordinates, note that if the conditions 
0 <6 <2n, — oo < z < oo hold and if r = a is some positive constant, then the 
locus of these points is a cylinder of radius a (see Figure 1.4.3). 

i 
y 

Figure 1.4.3 The graph of the points whose cylindrical 
coordinates satisfy r = a is a cylinder. 

E X A M P L E 1 (a) Find and plot the cylindrical coordinates of (6, 6, 8). (b) If a 
point has cylindrical coordinates (8, 2n/3, —3), what are its Cartesian coordinates? 
Plot. 

S O L U T I O N For part (a), we have r = V62 + 62 = 6 ^ 2 and 0 = tan"1 (6/6) = 
tan_ 1( l ) = 7T/4. Thus, the cylindrical coordinates are (672, TT/4, 8). This is point P 
in Figure 1.4.4. For part (b), note that 27T/3 = tz¡2 + 7r/6 and compute 

2n 8 x — r cos 6 = 8 cos — = — = —4 3 2 

and 

271 y/3 r-
y = r sin6 = 8 sin — = 8 — = 4V3. 
' 3 2 

Thus, the Cartesian coordinates are ( - 4 , 4 V 3 , —3). This is point Q in the figure. 
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z 

Figure 1.4.4 Some examples of 
the conversion between Cartesian 
and cylindrical coordinates. 

Spherical Coordinates 
Cylindrical coordinates are not the only possible generalization of polar coordinates 
to three dimensions. Recall that in two dimensions the magnitude of the vector xi + y\ 
(that is, yjx1 4- y2) is the r in the polar coordinate system. For cylindrical coordinates, 
the length of the vector xi 4- y\ + zk, namely, 

P = yx2+>>2+z2, 

is not one of the coordinates of that system—instead, we used the magnitude 
r = yjx1 + y2, the angle 6, and the "height" z. 

We now modify this by introducing the spherical coordinate system, which does 
use p as a coordinate. Spherical coordinates are often useful for problems that possess 
spherical symmetry (symmetry about a point), whereas cylindrical coordinates can 
be applied when cylindrical symmetry (symmetry about a line) is involved. 

Given a point ( x j , z ) e E 3 , let 

p = y/x2+y2+z2 

and represent x and y by polar coordinates in the xy plane: 

x=rcosO, y = rsmO (2) 

where r = y/x2 + y2 and 6 is determined by formula (1) [see the expression for 6 
following formula (1)]. The coordinate z is given by 

Z — p COS (J), 
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where 0 is the angle (chosen to lie between 0 and n , inclusive) that the radius vector 
v = xi + y] + zk makes with the positive z axis, in the plane containing the vector v 
and the z axis (see Figure 1.4.5). Using the dot product, we can express 0 as follows: 

v - k 
cos 0 — , that is, 0 = cos V IMI / 

(x,y,z) 

y 
Figure 1.4.5 Spherical coordinates (p, 0, 0); the 
graph of points satisfying p — a is a sphere. 

We take as our coordinates the quantities p, 0, 0. Because 

r = p sin0, 

we can use formula (2) to find x, y, z in terms of the spherical coordinates p, 0, 0. 

DEFINITION The spherical coordinates of (x,y, z) is the triple (p, 0, 0), 
defined as follows: 

x — ps in0cos0 , = ps in0s in0 , z = p c o s 0 (3) 

where 

p > 0, 0 < 0 < 2tt, 0 < 0 < 7i. 

In 1773, Joseph Louis Lagrange was working on Newton's gravitational 
theory as it applied to ellipsoids of revolution. In attempting to calculate the 
total gravitational attraction of such an ellipsoid, he encountered an integral 
that was difficult to evaluate. Motivated by this application, he introduced 
spherical coordinates, which allowed him to calculate the integral. We will be 
discussing the method of changing coordinates as it applies to multiple 
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integrals in Section 6.2, and applications to gravitation in Section 6.3, where 
we show how the inverse square law of gravity allowed Newton to consider 
spherical masses as point masses. 

Spherical coordinates are also closely connected to navigation by latitude 
and longitude. To see the connection, first note that the sphere of radius a 
centered at the origin is described by a very simple equation in spherical 
coordinates, namely, p = a. Fixing the radius a, the spherical coordinates 6 
and 4> are similar to the geographic coordinates of longitude and latitude if we 
take the earths axis to be the z axis. There are differences, though: The 
geographical longitude is \0\ and is called east or west longitude, according to 
whether 6 is a positive or negative measure from the Greenwich meridian; 
the geographical latitude is |7t/2 — and is called north or south latitude, 
according to whether n / 2 — 0 is positive or negative. 

I -S' ' ••• I 
(a) Find the spherical coordinates of the Cartesian point ( 1 , - 1 , 1 ) and plot. 
(b) Find the Cartesian coordinates of the spherical coordinate point (3, n /6 , n /4 ) 

and plot. 

(c) Let a point have Cartesian coordinates ( 2 , - 3 , 6 ) . Find its spherical coordinates 
and plot. 

(d) Let a point have spherical coordinates (1, — 7T/2, 7T/4). Find its Cartesian coor-
dinates and plot. 

S O L U T I O N 

(a) p = Jx2 + y2 + z2 = 7 l 2 + ( - 1 ) 2 + l 2 = V3, 

0 = 2n + tan"1 = 2TT + tan"1 = 2 n ~ ^ = 

0 = cos"1 ( ^ j = cos"1 ^ 0.955 ^ 54.74°. 

See Figure 1.4.6(a) and the formula for 0 following formula (1). 

(b) x = psin</>cos# = 3 sin(—^ cos(—^ = 3^ —^^ — = 
\ 4 / V6/ \ y / 2 j 2 2 y / 2 

y = p sin 0 sin 0 = 3 sin 

/ a /7T\ 3 3V2 
z = p cos (p = 3 cos — J = —— = . 

V4 / ^ 2 2 

See Figure 1.4.6(b). 
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(a) 

- 1 , 1 ) p=j3 

y 
In ¡4 7 

/ K 
4 " 4 

(C) 

II <5. 

Figure 1.4.6 Finding (a) the 
spherical coordinates of the 
point (1,-1, 1), and (b) the 
Cartesian coordinates of 
(3,7T/6,7T/4). 

6 = 2n + tan"1 = 2tt + tan - 1 

0 = c o s " 1 ^ ^ = C 0 S " 1 ^ «0 .541 «31.0° . 

5.3004 radians « 303.69°, 

See Figure 1.4.7(a). 

(a) 

31c 

-56° 

y 

Figure 1.4.7 Finding (a) the 
spherical coordinates of the point 
(2, -3 , 6), and (b) the Cartesian 
coordinates of (1, —n/2, tt/4). 

(d) x = ps in0cos# = 1 s i n ^ ^ c o s ( ~ ^ " ) = - 0 = 0, 

y = psin0sin<9 = 1 s i n ( ^ ) s i n ( - y ) = = 

/7T\ 7 2 
z = p cos (p — 1 cos^—J = — . 

See Figure 1.4.7(b) 
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E X A M P L E 3 Express (a) the surface xz = 1 and (b) the surface x2 + y2 — 
z2 = 1 in spherical coordinates. 

S O L U T I O N From formula (3), x = p s i n0cos# , andz = pcos0 , and so the 
surface xz = 1 in (a) consists of all (p, 0, 0) such that 

p2 sin 0 cos 6 cos 0 = 1 , that is, p2 sin 20 cos 6 = 2. 

For part (b), we can write 

x2 + y2 - z2 = x2 + y2 + z2 - 2z2 = p2 - 2p2 cos2 0 , 

so that the surface is p2( l — 2 cos2 0) = 1; that is, — p2 cos (20) = 1 . • 

Associated with cylindrical and spherical coordinates are unit vectors that are the 
counterparts of i, j, and k for rectangular coordinates. They are shown in Figure 1.4.8. 
For example, er is the unit vector parallel to the xy plane and in the radial direction, so 
that er = (cos#)i + (sin#)j. Similarly, in spherical coordinates, e^ is the unit vector 
tangent to the curve parametrized by the variable 0 with the variables p and 6 held 
fixed. We shall use these unit vectors later when we use cylindrical and spherical 
coordinates in vector calculations. 

z 

Figure 1.4.8 (a) Orthonormal vectors e r , eg, and ez associated with cylindrical 
coordinates. The vector er is parallel to the line labeled r. (b) Orthonormal vectors 
ep ,ee, and e^ associated with spherical coordinates. 

EXERCISES 

1. (a) The following points are given in cylindrical coordinates; express each in 
rectangular coordinates and spherical coordinates: (1, 45°, 1), (2, 7T/2, —4), (0,45°, 10), 
(3, 7T/6, 4), (1, TT/6, 0), and (2, 3TT/4, - 2 ) . (Only the first point is solved in the Study 
Guide.) 

(b) Change each of the following points from rectangular coordinates to spherical 
coordinates and to cylindrical coordinates: (2, 1, —2), (0, 3,4), (\/2, 1, 1), (—2^/3, —2, 3). 
(Only the first point is solved in the Study Guide.) 
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2. Describe the geometric meaning of the following mappings in cylindrical coordinates: 

(a) (r, 0, z) i-> (r, 0, - z ) 
(b) (r, 0, z) (r, 0 + TT, - z ) 
(c) (r, 0, z) (—r, 0 - TT/4, z) 

3. Describe the geometric meaning of the following mappings in spherical coordinates: 

(a) ( p , 0 , 0 ) i - > ( p , 0 + t t , 0 ) 
(b) G o , 0 , 0 ) ^ O o , 0 , 7 T - 0 ) 
(c) ( p , 0 , 0 ) (2p ,0 + 7T/2,0) 

4. (a) Describe the surfaces r = constant, 0 = constant, and z = constant in the 
cylindrical coordinate system. 

(b) Describe the surfaces p = constant, 0 — constant, and 0 = constant in the spherical 
coordinate system. 

5. Show that to represent each point in M3 by spherical coordinates it is necessary to take 
only values of 0 between 0 and 2n, values of 0 between 0 and TT, and values of p > 0. Are 
coordinates unique if we allow p <07 

6. Using cylindrical coordinates and the orthonormal (orthogonal normalized) vectors 
er, ee, and ez (see Figure 1.4.8), 

(a) express each of er, and ez in terms of i, j, k and (x, y, z); and 
(b) calculate ee x j both analytically, using part (a), and geometrically. 

7. Using spherical coordinates and the orthonormal (orthogonal normalized) vectors ep,ee, 
and e0 (see Figure 1.4.8(b)), 

(a) express each of ep , ee, and e0 in terms of i, j, k and (x, y, z); and 

(b) calculate ee x j and x j both analytically and geometrically. 

8. Express the plane z = x in (a) cylindrical, and (b) spherical coordinates. 

9. Show that in spherical coordinates: 
(a) p is the length of xi + yj + zk. 
(b) 0 = cos - 1 (v • k/| |v| |), where v = xi + + zk. 
(c) 0 = cos - 1 (u • i/||u||), where u = xi + yy 

10. Two surfaces are described in spherical coordinates by the two equations p = f(6, 0) and 
p = —If(6, 0), where f(6, 0) is a function of two variables. How is the second surface 
obtained geometrically from the first? 

11. A circular membrane in space lies over the region x2 + y2 < a2. The maximum z 
component of points in the membrane is b. Assume that (x, y, z) is a point on the membrane. 
Show that the corresponding point (r, 6, z) in cylindrical coordinates satisfies the conditions 
0 < r < fl, 0 < e < 2TT, |z| < b. 

12. A tank in the shape of a right-circular cylinder of radius 10 ft and height 16 ft is half 
filled and lying on its side. Describe the air space inside the tank by suitably chosen 
cylindrical coordinates. 
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13. A vibrometer is to be designed that withstands the heating effects of its spherical 
enclosure of diameter d, which is buried to a depth d/3 in the earth, the upper portion being 
heated by the sun (assume the surface is flat). Heat conduction analysis requires a description 
of the buried portion of the enclosure in spherical coordinates. Find it. 

14. An oil filter cartridge is a porous right-circular cylinder inside which oil diffuses from 
the axis to the outer curved surface. Describe the cartridge in cylindrical coordinates, if the 
diameter of the filter is 4.5 inches, the height is 5.6 inches, and the center of the cartridge is 
drilled (all the way through) from the top to admit a |-inch-diameter bolt. 

15. Describe the surface given in spherical coordinates by p = cos 26. 

1.5 ft-Dimensional Euclidean Space 

Vectors in n - space 

In Sections 1.1 and 1.2 we studied the spaces R = R1, R2, and R3 and gave geometric 
interpretations to them. For example, a point (x, y, z) in R3 can be thought of as a geo-
metric object, namely, the directed line segment or vector emanating from the origin 
and ending at the point (x, y, z). We can therefore think of R3 in either of two ways: 

(i) Algebraically, as a set of triples (x, y, z) where x,y, and z are real numbers 

(ii) Geometrically, as a set of directed line segments 

These two ways of looking at R3 are equivalent. For generalization it is easier to 
use definition (i). Specifically, we can define Rw, where n is a positive integer (possibly 
greater than 3), to be the set of all ordered «-tuples (xi, X2, . . . , xn\ where the x; are 
real numbers. For instance, (1, >/5, 2, y/3) e R4. 

The set Rw so defined is known as Euclidean n-space, and its elements, which we 
write as x = (xi, X2, . . . , x„), are known as vectors or n-vectors. By setting n = 1,2, 
or 3, we recover the line, the plane, and three-dimensional space, respectively. 

We launch our study of Euclidean «-space by introducing several algebraic op-
erations. These are analogous to those introduced in Section 1.1 for R2 and R3. The 
first two, addition and scalar multiplication, are defined as follows: 

(i) (xi, x2 , . . . , xn) + Oi, y2,..., y„) = (xi + yu x2 + yi,..., xn + yn)\ 
and 

(ii) for any real number a , 

a(x\,x2, ...,x„) = (axi,ax2,..., axn). 

The geometric significance of these operations for R2 and R3 was discussed in 
Section 1.1. 

The n vectors 

d = (1, 0, 0 , . . . , 0), e2 = (0, 1, 0 , . . . , 0 ) , . . . , ew =(0 , 0 , . . . , 0, 1) 



1.5 «-Dimensional Euclidean Space 75 

are called the standard basis vectors of Rw, and they generalize the three mutually 
orthogonal unit vectors i, j, k of R3 . The vector x = (xi, x2, -.., xn) can then be 
written as x = jcjei 4 X2^i H h xnen. 

For two vectors x = (x\, X2, x^) and y = 0>i, j>2, J>3) in R3 , we defined the dot or 
inner product x • y to be the real number x • y = x\y\ 4 X2>>2 4 x3^3. This definition 
easily extends to Rw; specifically, for x = (xi, X2,. • •, x„), y = (y\, y2,.. •, yn), we 
define the inner product of x and y to be x • y = x\y\ 4 X2>>2 H h xnyn. In Rn, 
the notation (x, y) is often used in place of x • y for the inner product. 

Continuing the analogy with R3 , we are led to define the notion of the length or 
norm of a vector x by the formula 

Length of x = ||x|| = ^/x • x = y/x\ 4 x f H hx 2 . 

If x and y are two vectors in the plane (R2) or in space (R3), then we know that 
the angle 0 between them is given by the formula 

The right side of this equation can be defined in RM as well as in R2 or R3 . It still 
represents the cosine of the angle between x and y; this angle is geometrically well 
defined, because x and y lie in a two-dimensional subspace of Rw (the plane determined 
by x and y) and our usual geometry ideas apply to such planes. 

It will be useful to have available some algebraic properties of the inner product. 
These are summarized in the next theorem [compare with properties (i), (ii), (iii), and 
(iv) of Section 1.2]. 

T H E O R E M 3 For x , y , z e M " and a, p, real numbers, we have 

(i) (ax 4 Py) • z = a(x • z) + /?(y • z). 

(ii) x • y = y • x. 

(iii) x • x > 0. 

(iv) x • x = 0 if and only if x = 0. 

PROOF Each of the four assertions can be proved by a simple computation. For 
example, to prove property (i) we write 

(ax + fiy) • z = (ax i + Py\,ax2 +Pyi,- ,<*xn + pyn) • (zu z2, • • •, zn) 
= (ax\ 4- Py\)z\ + (ax2 + fiyipi + • • • + (axn + Py„)z„ 
= cix\Z\ + Py\Z\ + ax2z2 + + • • • + axnzn + pynzn 

= a(x • z) 4- P(y • z). 

The other proofs are similar. • 
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In Section 1.2, we proved an interesting property of dot products, called the 
Cauchy-Schwarz inequality.4 For R2 our proof required the use of the law of cosines. 
For Rw we could also use this method, by confining our attention to a plane in W. 
However, we can also give a direct, completely algebraic proof. 

THEOREM 4: Cauchy-Schwarz Inequality in Rn Let x,y be 
vectors in Rw. Then 

PROOF Let a = y • y and b = — x • y. If a = 0, the theorem is clearly valid, be-
cause then y = 0 and both sides of the inequality reduce to 0. Thus, we may suppose 
a ^ 0. By Theorem 3 we have 

Dividing by y • y gives 0 < (y - y)(x - x) - (x • y)2, that is, (x • y)2 < (x • x)(y • y) = 
||x||2||y||2. Taking square roots on both sides of this inequality yields the desired 
result. • 

There is a useful consequence of the Cauchy-Schwarz inequality in terms of 
lengths. The triangle inequality is geometrically clear in R3 and was discussed in 
Section 1.2. The analytic proof of the triangle inequality that we gave in Section 1.2 
works exactly the same in Rw and proves the following: 

COROLLARY: Triangle Inequality in Rn Let x, y be vectors in Rn. Then 

If Theorem 4 and its corollary are written out algebraically, they become the 
following useful inequalities: 

|x -y |< | |x | | | | y | | . 

0 < (ax + by) - (ax + by) = a2\ • x + 2abx • y + b2y - y 

= (yy)2x-x-(y-y)(x-y)2. 

I|x + y|| < ||x|| + ||y||. 

n 1/2 1/2 

4Sometimes called the Cauchy-Bunyakovskii-Schwarz inequality, or simply the CBS inequality, because it was indepen-
dently discovered in special cases by the French mathematician Cauchy, the Russian mathematician Bunyakovskii, and 
the German mathematician Schwarz. 
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E X A M P L E 1 Let x = (1, 2, 0, — 1) and y = (— 1, 1, 1, 0). Verify Theorem4 and 
its corollary in this case. 

S O L U T I O N 

||x|| = x / l 2 + 22 + 02 + ( - l ) 2 = V6 

llyll = 7 ( - i ) 2 + i2 + i2 + o2 = A/3 

x • y = 1(—1) + 2 • 1 + 0 • 1 + (—1)0 = 1 

x + y = (0, 3, 1, —1) 

||x + y|| = VO2 + 32 + l2 + ( -1 ) 2 = VTT. 

We compute x • y = 1 < 4.24 ^ v W 3 = ||x 
larly, we can check its corollary: 

which verifies Theorem 4. Simi-

||x + y|| = VTT ^ 3.32 

< 4.18 = 2.45 + 1.73 ^ A/6 + A/3 = ||x|| + ||y||. • 

By analogy with R3, we can define the notion of distance in Rw; namely, if x and 
y are points in Rw, the distance between x and y is defined to be || x — y ||, or the length 
of the vector x — y. We do not attempt to define the cross product on Rw except for 
n = 3. 

General Matrices 
Generalizing 2 x 2 and 3 x 3 matrices (see Section 1.3), we can consider m x n 
matrices, which are arrays of mn numbers: 

A = 

a ii «12 
«21 «22 

tfml am2 

a\n 

din 

We shall also write A as [o/y]. We define addition and multiplication by a scalar 
componentwise, just as we did for vectors. Given two m x n matrices A and B, we 
can add them to obtain a new m x n matrix C = A + B, whose ij th entry c/y is the 
sum of a t j and ft/y. It is clear that A + B = B + A. 

E X A M P L E 2 

(a) 
2 1 0 
3 4 1 + 

r - i i 3i r i 
0 0 7J L3 

2 3 
3 4 8 
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(b) [1 2] + [0 - 1 ] = [1 1]. 

« E H H ']• * 
Given a scalar k and mm x n matrix A, we can multiply A by X to obtain a new 

m x n matrix XA = C, whose ijth entry is the product Xciij. 

E X A M P L E 3 

"1 - 1 2" "3 - 3 6" 
3 0 1 5 = 0 3 15 

1 0 3 3 0 9 

Next we turn to matrix multiplication. If A = [¿ziy], 5 = [¿>iy] are n x «matrices, 
then the product AB = C has entries given by 

n 

Cij = Y a i k b k j , 
k= l 

which is the dot product of the /th row of A and the jth column of B: 

yth column 

••• b\ n 

— ftww 

«11 a\n b\ \ — 

/th row tf/l 

E X A M P L E 4 Let 

Then 

"1 0 3" 0 1 0' 
A = 2 1 0 and B = 1 0 0 

1 0 0 0 1 1 

= 

"0 4 3" 2 1 0' 
1 2 0 and BA = 1 0 3 
0 1 0 3 1 0 

Observe that AB ^ BA. • 
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Similarly, we can multiply an m x n matrix (m rows, n columns) by an n x p 
matrix (n rows, p columns) to obtain an m x p matrix (m rows, p columns) by the 
same rule. Note that for AB to be defined, the number of columns of A must equal 
the number of rows of B. 

E X A M P L E 5 Let 

|~2 0 1" L1 1 2. 
Then 

and B A is not defined. • 

Let E X A M P L E 6 

Then 

AB 

and B = 
1 0 2 
0 2 1 
1 1 1 

AB = 3 
3 4 

1 51 4 5_|' 

2 2 
4 4 
2 2 
6 6 

and B = [2 2 1 2]. 

1 2 
2 4 
1 2 
3 6 

and = [13]. • 

Any m x n matrix A determines a mapping of W1 to Rm defined as follows: Let 
x = ( x i , . . . , xn) e Rw; consider the n x 1 column matrix associated with x, which 
we shall temporarily denote \ T 

and multiply A by \ T (considered to be an n x 1 matrix) to get a new m x 1 matrix: 

au • X\ yi~ 

_am\ Q-mn _ _Xn_ _ym_ 
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corresponding to the vector y = (y\,..., ym).5 Thus, although it may cause some 
confusion, we will write x = ( x i , . . . , xn) and y = (yi,..., ym) as column matrices 

Xi y\ 
X = y = 

_Xn _ _ym_ 

when dealing with matrix multiplication; that is, we will identify these two forms of 
writing vectors. Thus, we will delete the T on xT and view xT and x as the same. 

Thus, Ax = y will "really" mean the following: Write x as a column matrix, 
multiply it by A, and let y be the vector whose components are those of the resulting 
column matrix. The rule x h A x therefore defines a mapping of W to Rw . This 
mapping is linear; that is, it satisfies 

A(x + y) = Ax + Ay 
A (ax) = a (Ax), a a scalar, 

as may be easily verified. One learns in a linear algebra course that, conversely, any 
linear transformation of W1 to Wn is representable in this way by an m x n matrix. 

If A = [ciij] is an m x n matrix and ey is the y'th standard basis vector of R", 
then Aej is a vector in Rm with components the same as the y'th column of A. That 
is, the ith component of Aej is atJ. In symbols, (Aej)i = aij. 

E X A M P L E 7 If 

A = 
1 0 3 

- 1 0 1 
2 1 2 

- 1 2 1 

then x i—> Ax of M3 to R4 is the mapping defined by 

Xi 
x2 
x3 

X\ + 3x3 
X l + x3 

2x\ + x2 + 2x3 
—Xi + 2X2 + X3 

5 To use a matrix A to get a mapping from vectors x = (xi xn) to vectors y = ... ,yn) according to the equation 
A\t = yT, we write the vectors in the column form \ T instead of the row form (jcj , . . . , x„). This sudden switch from 
writing x as a row to writing x as a column is necessitated by standard conventions on matrix multiplication. 
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E X A M P L E 8 The following illustrates what happens to a specific point when 
mapped by a 4 x 3 matrix: 

Ae 2 = 

4 2 9 0" 
1 
0 

" 2 " 
3 5 4 0" 

1 
0 

5 
1 2 3 

0" 
1 
0 2 

0 1 2 

0" 
1 
0 1 

= 2nd column of A. A 

Properties of Matrices 
Matrix multiplication is not, in general, commutative: If A and B are n x n matrices, 
then generally 

AB # BA, 

as Examples 4, 5, and 6 show. 
An n x n matrix is said to be invertible if there is an n x n matrix B such that 

AB = BA = In, 

where 

1 0 0 • • 0 
0 1 0 • • 0 

/„ = 0 0 1 • • 0 

0 0 0 •• . 1 

is the n x n identity matrix: In has the property that InC = CIn = C for any n x n 
matrix C. We denote B by A~l and call A~x the inverse of A. The inverse, when it 
exists, is unique. 

E X A M P L E 9 

A = 

If 

'2 4 0' 
0 2 1 
3 0 2 

then A~l = 
20 

4 - 8 4 
3 4 - 2 

-6 12 4 

because A A 1 = /3 = A 1 A, as may be checked by matrix multiplication. • 

Methods of computing inverses are learned in linear algebra; we won't require 
these methods in this book. If A is invertible, the equation Ax = y can be solved for 
the vector x by multiplying both sides by A~x to obtain6 x = A~ly. 

6In fact, Cramer's rule from Section 1.3 provides one way to invert matrices. Numerically more efficient methods based 
on elimination methods are learned in linear algebra or computer science. 
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In Section 1.3, we defined the determinant of a 3 x 3 matrix. This can be gen-
eralized by induction to n x n determinants. We illustrate here how to write the 
determinant of a 4 x 4 matrix in terms of the determinants of 3 x 3 matrices: 

«11 a 12 a 13 «14 

«21 an «23 «24 

«31 «32 «33 fl34 

«41 Ü42 «43 «44 

flu 
«22 Ö23 «24 

«32 «33 «34 

«42 «43 «44 
- « 1 2 

a n «23 «24 

«31 «33 «34 

«41 «43 «44 

«21 «22 «24 «21 «22 «23 

+ «13 «31 «32 «34 «14 «31 «32 «33 

«41 «42 «44 «41 «42 «43 

[see formula (2) of Section 1.3; the signs alternate +, —, +, —]. 
The basic properties of 3 x 3 determinants reviewed in Section 1.3 remain valid 

for n x n determinants. In particular, we note the fact that if A is an n x n matrix and 
B is the matrix formed by adding a scalar multiple of one row (or column) of A to 
another row (or, respectively, column) of A, then the determinant of A is equal to the 
determinant of B (see Example 10). 

A basic theorem of linear algebra states that an n x n matrix A is invertible if and 
only if the determinant of A is not zero. Another basic property is that the determinant 
is multiplicative: det (AB) = (det v4)(det B). In this text, we shall not make use of 
many details of linear algebra, and so we shall leave these assertions unproved. 

E X A M P L E 10 Let 

1 0 1 0 
1 1 1 1 
2 1 0 1 
1 1 0 2 

A = 

Find det A. Does A have an inverse? 

SOLUTION Adding (— 1) x first column to the third column, we get 

det A = 

1 0 
1 1 
2 1 
1 1 

0 0 
0 1 

-2 1 
-1 2 

= 1 
0 1 

- 2 1 

- 1 2 

Adding (— 1) x first column to the third column of this 3 x 3 determinant gives 

det A = 
1 0 
1 - 2 
1 - 1 

- 2 
- 1 -2. 

Thus, det A = —2 / 0, and so A has an inverse. • 
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If we have three matrices A, B, and C such that the products AB and BC are 
defined, then the products (.AB)C and A(BC) are defined and are in fact equal (that 
is, matrix multiplication is associative). We call this the triple product of matrices 
and denote it by ABC. 

Let 

B = [1 1], and C 

Then 

ABC — A(BC) = j PI = [ 15] ' 
E X A M P L E 12 

2 0| 

0 
0] r i 1] 1*0 - i i _ \ i oi r i oi _ 1*2 0] 
i j | _ i 1JL1 i J ~ | o u h o j - [ i o j -

^còÙkctCL£ c À ^ Ù 

The founder of modern (coordinate) geometry was René Descartes (see 
Figure 1.5.1), a great physicist, philosopher, and mathematician, as well as a 
founder of modern biology. 

Born in Touraine, France, in 1596, Descartes had a fascinating life. After 
studying law, he settled in Paris, where he developed an interest in mathe-
matics. In 1628, he moved to Holland, where he wrote his only mathematical 
work, La Geometrie, one of the origins of modern coordinate geometry. 

Descartes had been highly critical of the geometry of the ancient Greeks, 
with all their undefined terms and with their proofs requiring ever newer and 
more ingenious approaches. For Descartes, this geometry was so tied to 
geometrical figures "that it can exercise the understanding only on condition 
of greatly fatiguing the imagination." He undertook to exploit, in geometry, 
the use of algebra, which had recently been developed. The result was La 
Geometrie, which made possible analytic or computational methods in 
geometry. 

Remember that the Greeks were, like Descartes, philosophers as well as 
mathematicians and physicists. Their answer to the question of the meaning 
of space was "Euclidean geometry." Descartes had therefore succeeded in 
"algebrizing"the Greek model of space. 

Gottfried Wilhelm Leibniz, cofounder (with Isaac Newton) of calculus, 
was also interested in "space analysis," but he did not think that Descartes' 
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I M 

Figure 1.5.1 Rene Descartes 
(1596-1650). 

algebra went far enough. Leibniz called for a direct method of space analysis 
(analysis situs) that could be interpreted as a call for the development of 
vector analysis. 

On September 8,1679, Leibniz outlined his ideas in a letter to Christian 
Huygens: 

I am still not satisfied with algebra, because it does not give the 
shortest methods or the most beautiful constructions in geometry. 
This is why I believe that, so far as geometry is concerned, we need 
still another analysis which is distinctly geometrical or linear and 
which will express situation (situs) directly as algebra expresses 
magnitude directly. And I believe that I have found the way and that 
we can represent figures and even machines and movements by 
characters, as algebra represents numbers or magnitudes. I am 
sending you an essay which seems to me to be important. 

In the essay, Leibniz described his ideas in greater detail: 

I have discovered certain elements of a new characteristic which is 
entirely different from algebra and which will have great advantages 
in representing to the mind, exactly and in a way faithful to its 
nature, even without figures, everything which depends on sense 
perception. Algebra is the characteristic for undetermined numbers 
of magnitudes only, but it does not express situation, angles, and 
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motion directly. Hence it is often difficult to analyze the properties 
of a figure by calculation, and still more difficult to find very 
convenient geometrical demonstrations and constructions, even 
when the algebraic calculation is completed. But this new 
characteristic, which follows the visual figures, cannot fail to give 
the solution, the construction, and the geometric demonstration all 
at the same time, and in a natural way and in one analysis, that is, 
through determined procedure. 

Leibniz's ideas influenced Hamilton and others. In the middle of the 
nineteenth century, Bolyai and Lobachevsky developed their "non-Euclidean" 
geometry, and Gauss studied and developed a theory of curved surfaces 
in three-dimensional space. Gauss developed two measures of curvature, 
the mean curvature and the Gauss curvature. For example, soap bubbles 
and soap films have constant mean curvature, whereas only soap bubbles 
have constant Gauss curvature. We discuss these ideas further in Section 7.7. 

Bernhard Riemann (see Figure 1.5.2), possibly the greatest 
mathematical genius of all time, gave an inaugural address in 1854 before the 
faculty of Gottingen University, entitled "On the Hypotheses Which Lie at 
the Foundation of Geometry." It was this monumental work that would lay 
the foundation, 50 years later, of Einstein's general theory of relativity. 
Riemann, like Leibniz and the early Greeks, was interested in space, 
especially its metric (or distance) properties. 

I 

Figure 1*5.2 Bernhard Riemann 
(1826-1866). 
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Riemann called for the study of n-dimensional spaces and surfaces. He 
showed how to measure the curvature of three-, four-, . . . , n -dimensional 
surfaces and (incredibly) showed that in order to be called "curved," a 
surface need not be "curving" inside anything else; curvature was simply a 
consequence of the intrinsic "metric properties of space." Once Riemann 
demonstrated that mathematical models permitted us to think of spaces 
of any dimension, the question naturally arose as to why our space is 
three-dimensional and not four-, five-, or more dimensional. Surprisingly, ' 
no one has yet put forth a convincing explanation why, at the moment of 
creation, space became three-dimensional. 

Around 1910, Albert Einstein realized that gravity could be explained as 
a consequence of the curvature of a four-dimensional space-time (matter and 
energy curve space and time), and, thanks to Riemann, Einstein's space-time 
need not be enclosed in an ambient universe. Exactly how matter and energy 
curve space-time is the essence of Einstein's field equations in general 
relativity. In Section 7.7, we will discuss the ideas of curvature in greater 
depth and will indicate some of the ideas behind general relativity. The idea 
of n -dimensions also began to creep into mathematics from another, very 
different direction—from matrices. 

The definition of a matrix, as an isolated abstract object, is due to the 
English mathematician Arthur Cayley. Cayley was born in 1821, and in 1863 
was appointed Sedlesian Professor of Mathematics at Cambridge University. 
Around 1855, one year after Riemann'sinaugural address, Cayley, in an 
effort to simplify notation for his study of linear equations (as we saw in 
Section 1.5), introduced the abstract idea of a matrix of m columns and n 
rows. Naturally, a l x n matrix could also be viewed as a vector in an 
"n-dimensional space." 

After this concept took hold, mathematicians realized that they lost 
little in working in general dimensions, and the subject of modern linear 
algebra was off and running. Again, physics was to be a major impetus. 
Modern, abstract, linear algebra, including abstract vector spaces, began to 
turn up in textbooks after the appearance in 1918 of Hermann Weyl's 
Space-Time-Matter. 

E X E R C I S E S 

1. Calculate the dot product of x = (1, - 1 , 0, 2) g R4 and y = (1, 2, 3, 4) e M4. 

2. In Rn show that 

(a) 2||x||2 + 2||y||2 = ||x + y||2 + ||x - y||2 (This is known as the parallelogram law.) 
(b) | | x - y | | | | x + y | | < | | x | | 2 + ||y||2 

(c) 4(x, y) = ||x + y||2 — ||x — y||2 (This is called the polarization identity.) 

Interpret these results geometrically in terms of the parallelogram formed by x and y. 
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Verify the Cauchy-Schwarz inequality and the triangle inequality for the vectors in Exercises 
3 to 6. 

3. x = ( 2 , 0 , - l ) , y = ( 4 , 0 , - 2 ) 

4. x = (1,0, 2, 6), y = (3,8,4, 1) 

5. x = ( l , - l , 1 , - 1 , l ) ,y = (3 ,0 ,0 ,0 ,2 ) 

6. x = (1,0,0, 1), y = ( - 1 , 0 , 0 , 1) 

7. Compute AB, det A, det B, det (.AB), and det (A + B) for 

"1 - 1 0" " - 2 0 2 
A = 0 3 2 and B = - 1 1 - 1 

3 1 1 1 4 3 

8. Compute AB, det A, det B, det (AB), and det (A + B) for 

"3 0 r "1 0 - 1 ' 
A = 1 2 - i and B = 2 0 1 

1 0 i 0 1 0 

9. Use induction on k to prove that if X j , . . . , xk e l " , then 

||xi + - - - + x*|| < IIXJH + h ||x*||. 

10. Prove using algebra, the identity of Lagrange: For real numbers x\,..., xn and 

(i>-)2 = { p f ) { i y f ) - Yf*yi-*mf-

Use this to give another proof of the Cauchy-Schwarz inequality in R", 

11. Prove that if A is an n x n matrix, then 

(a) det (XA) = Xn det A; and 
(b) if B is a matrix obtained from A by multiplying any row or column by a scalar X, 

then det B = X det A. 

In Exercises 12 to 14, A, B, and C denote n x n matrices. 

12. Is det (A + B) = det A + det B1 Give a proof or counterexample. 

13. Does (A + B)(A - B) = A2 - B21 

14. Assuming the law det (AB) = (det ^)(det B\ prove that det (ABC) = 
(det ^)(det B)(det C). 
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15. (This exercise assumes a knowledge of integration of continuous functions of one 
variable.) Note that the proof of the Cauchy-Schwarz inequality (Theorem 4) depends only 
on the properties of the inner product listed in Theorem 1. Use this observation to establish 
the following inequality for continuous functions / , g: [0, 1] —> E: 

[' f(x)g(x) dx 
I Jo 

Do this by 

(a) verifying that the space of continuous functions from [0, 1] to E forms a vector 
space; that is, we may think of functions / , g abstractly as "vectors" that can be added to each 
other and multiplied by scalars. 

(b) introducing the inner product of functions 

f'g= f f(x)g(x)dx 
Jo 

and verifying that it satisfies conditions (i) to (iv) of Theorem 3. 

16. Define the transpose AT of an n x n matrix A as follows: the ij th element of AT is aj j 
where atj is the ij th entry of A. Show that A T is characterized by the following property: For 
all x, y in R n , 

(ATx) • y = x • (Ay). 

17. Verify that the inverse of 

° is _L_r * ~b\ 

c d\ ad - be | -c a\ 
18. Use your answer in Exercise 17 to show that the solution of the system 

ax + by = e 
cx + dy = f 

is 

M = _L_r ' -*1M 
bJ ad — be \_—c aJL/T 

19. Assuming the law det (AB) = (det ^)(det B\ verify that (det ^)(det A~l) = 1 and 
conclude that if A has an inverse, then det A ^ 0. 

R E V I E W E X E R C I S E S F O R C H A P T E R 1 

1. Let v = 3i + 4j + 5k and w = i — j + k. Compute v + w, 3v, 6v + 8w, —2v, v • w, 
v x w. Interpret each operation geometrically by graphing the vectors. 

2. Repeat Exercise 1 with v — 2j + k and w = — i — k. 

dx. 
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3. (a) Find the equation of the line through (—1,2, — 1) in the direction of j. 
(b) Find the equation of the line passing through (0, 2 , - 1 ) and (—3, 1, 0). 
(c) Find the equation for the plane perpendicular to the vector (—2, 1,2) and passing 

through the point (— 1, 1,3). 

4. (a) Find the equation of the line through (0, 1, 0) in the direction of 3i + k. 
(b) Find the equation of the line passing through (0, 1, 1) and (0, 1, 0). 
(c) Find an equation for the plane perpendicular to the vector ( - 1 , 1 , - 1 ) and passing 

through the point (1, 1, 1). 

5. Compute v • w for the following sets of vectors: 

(a) v = — i + j; w = k. 
(b) v = i + 2 j - k ; w = 3i + j. 
(c) v = - 2 i - j + k; w = 3i + 2j - 2k. 

6. Compute v x w for the vectors in Exercise 5. [Only part (b) is solved in the Study Guide.] 

7. Find the cosine of the angle between the vectors in Exercise 5. [Only part (b) is solved in 
the Study Guide.] 

8. Find the area of the parallelogram spanned by the vectors in Exercise 5. [Only part (b) is 
solved in the Study Guide.] 

9. Use vector notation to describe the triangle in space whose vertices are the origin and the 
endpoints of vectors a and b. 

10. Show that three vectors a, b, c lie in the same plane through the origin if and only if there 
are three scalars a, p, y, not all zero, such that c*a + /3b + }/c = 0. 

11. For real numbers a\, a2, «3, b\, b2, 63, show that 

(aibi + a2b2 + a3b3)2 < (a2 + a\ + aj)(b2 + b\ + bj). 

12. Let u, v, w be unit vectors that are orthogonal to each other. If a = au + /3v + yw, show 
that 

a = a -u , p = a • v, y = a • w. 

Interpret the results geometrically. 

13. Let a, b be two vectors in the plane, a = (a\, a2). b = (b\, b2), and let X be a real 
number. Show that the area of the parallelogram determined by a and b + A a is the same as 
that determined by a and b. Sketch. Relate this result to a known property of determinants. 

14. Find the volume of the parallelepiped determined by the vertices (0, 1, 0), (1, 1, 1), 
(0, 2, 0), (3, 1,2). 

15. Given nonzero vectors a and b in IR3, show that the vector v = ||a||b + ||b||a bisects the 
angle between a and b. 
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16. Use vector methods to prove that the distance from the point (JCJ , y\) to the line 
ax + by = c is 

\axx + byi - c\ 

17. Verify that the direction of b x c is given by the right-hand rule, by choosing b, c to be 
two of the vectors i, j, and k. 

18. (a) Suppose a • b = a' • b for all b. Show that a = a'. 
(b) Suppose a x b = a' x b for all b. Is it true that a = a'? 

19. (a) Using vector methods, show that the distance between two nonparallel lines l\ and l2 

is given by 

d = |(v2 - vi)-(ai x a2)l 
11*1 X II 

where Vi, v2 are any two points on lx and /2, respectively, and aj and a2 are the directions of l\ 
and l2. [HINT: Consider the plane through l2 that is parallel to l\. Show that the vector 
(ai x a2)/| |ai x a2|| is a unit normal for this plane; now project v2 — vi onto this normal 
direction.] 

(b) Find the distance between the line l\ determined by the points ( - 1 , - 1 , 1 ) and 
(0, 0, 0) and the line /2 determined by the points (0, - 2 , 0) and (2, 0, 5). 

20. Show that two planes given by the equations Ax + By + Cz + D\ = 0 and 
Ax + By + Cz + D2 — 0 are parallel, and that the distance between them is 

\Dl-D2\ 
VA2 + B2 + C2' 

21. (a) Prove that the area of the triangle in the plane with vertices (jti, y\), (x2, y2), (*3, ̂ 3) 
is the absolute value of 

1 1 1 
*2 

y\ yi y^ 

(b) Find the area of the triangle with vertices (1,2), (0, 1), (— 1, 1). 

22. Convert the following points from Cartesian to cylindrical and spherical coordinates and 
plot: 

(a) (0,3,4) (d) ( - 1 , 0 , 1 ) 
(b) (—>/2, 1,0) (e) (—2\/3, —2, 3) 
(c) (0,0,0) 

23. Convert the following points from cylindrical to Cartesian and spherical coordinates and 
plot: 

(a) (1, 7T/4, 1) (b) (3,TT/6,-4) 
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(c) (O.JT/4, 1) 
(d) (2, —TT¡2,1) 

(e) ( - 2 , —n/2,1) 

24. Convert the following points from spherical to Cartesian and cylindrical coordinates and 
plot: 

(a) (1,7t/2,7t) 
(b) (2, - t t / 2 , Ti16) 
(c) (0, 7T/8, TT/35) 

25. Rewrite the equation z - v2 . 

(d) (2, - t t / 2 , -7r ) 
(e) (— 1, 7T, 71 j6) 

• y2 using cylindrical and spherical coordinates. 

26. Using spherical coordinates, show that 

0 = C O S I I 

V Hull) 
where u = xi + y\ + zk. Interpret geometrically. 

27. Verify the Cauchy-Schwarz and triangle inequalities for 

x = (3, 2, 1, 0) and y = (1 ,1 ,1 ,2) . 

28. Multiply the matrices 

A = 
"3 0 1' 
2 0 1 

1 0 1 
and B = 

"1 0 1' 
1 1 1 
0 0 1 

Does = BA1 

29. (a) Show that for two n x n matrices A and B, and XGM", 

(.AB)x = A(Bx). 

(b) What does the equality in part (a) imply about the relationship between the 
composition of the mappings x h* Bx, y Ay, and matrix multiplication? 

30. Find the volume of the parallelepiped spanned by the vectors 

(1,0,1), (1,1,1), and ( - 3 , 2 , 0 ) . 

31. (For students with some knowledge of linear algebra.) Verify that a linear mapping T of 
W1 to W1 is determined by an n x n matrix. 

32. Find an equation for the plane that contains ( 3 , - 1 , 2 ) and the line with equation 
v = (2, — 1, 0) + t(2, 3, 0). 

33. The work W done in moving an object from (0, 0) to (7, 2) subject to a constant force F 
is W = F • r, where r is the vector with its head at (7, 2) and tail at (0, 0). The units are feet 
and pounds. 



3 8 The Geometry of Euclidean Space 

(a) Suppose the force F = 10 cos 6\ + 10 sin 6\. Find W in terms of 6. 
(b) Suppose the force F has magnitude of 6 lb and makes an angle of tt/6 rad with the 

horizontal, pointing right. Find W in foot-pounds. 

34. If a particle with mass m moves with velocity v, its momentum is p = m\. In a game of 
marbles, a marble with mass 2 grams (g) is shot with velocity 2 meters per second (m/s), hits 
two marbles with mass 1 g each, and comes to a dead halt. One of the marbles flies off with 
a velocity of 3 m/s at an angle of 45° to the incident direction of the larger marble as in 
Figure 1 .R. 1. Assuming that the total momentum before and after the collision is the same 
(according to the law of conservation of momentum), at what angle and speed does the 
second marble move? 

3 m/s 
vi / / i g n/4 
/N> J_ 
/ 1 \ 

lg 

Figure l .R . l Momentum and marbles. 

35. Show that for all x, y, z, 

x + 2 y z y x + 2 z 
z y + i 10 = - 1 z — x — 2 10 — z 
5 5 2 5 5 2 

36. Show that 

X x2 

y y2 

z z2 

if x,y, and z are all different. 

37. Show that 

66 628 246 68 627 247 
88 435 24 = 86 436 23 
2 - 1 1 2 - 1 1 

38. Show that 

n n + 1 n + 2 
n + 3 n + 4 n + 5 
n + 6 n + 1 n + 8 

has the same value no matter what n is. What is this value? 



Review Exercises 93 

39. The volume of a tetrahedron with concurrent edges a, b, c is given by V = • (b x c). 

(a) Express the volume as a determinant. 
(b) Evaluate V when a = i + j + k, b = i — j + k, c = i + j. 

Use the following definition for Exercises 40 and 41: Let ru ..., rn be vectors in M3 from 0 to 
the masses m i,..., mn. The center of mass is the vector 

£ / = i 

40. A tetrahedron sits in xyz coordinates with one vertex at (0, 0, 0), and the three edges 
concurrent at (0, 0, 0) are coincident with the vectors a, b, c. 

(a) Draw a figure and label the heads of the vectors a, b, c. 
(b) Find the center of mass of each of the four triangular faces of the tetrahedron if a 

unit mass is placed at each vertex. 

41. Show that for any vector r, the center of mass of a system satisfies 

n n 

£ mi\\r - ri ii 2 = J2 m<Hr<- ~ CH2 + mii r - c " 2 ' 

i=i /=i 

where m = YH=i mt t o t a^ m a s s ^ system. 

In Exercises 42 to 47, find a unit vector that has the given property. 

42. Parallel to the line x = 3t + 1, y = \6t - 2, z = -{t + 2). 

43. Orthogonal to the plane x — 6y + z = 12. 

44. Parallel to both the planes 8x + y z = 1 and x — y — z = 0. 

45. Orthogonal to i + 2j — k and to k. 

46. Orthogonal to the line x = 2t — y — — t — l , z = f + 2, and the vector i — j. 

47. At an angle of 30° to i and making equal angles with j and k. 


