
Differentiation 
I turn away with fright and horror from the lamentable evil of functions 
which do not have derivatives. 

CharlesJiermite, 
in a letter to Thomas Jan Stieltjes 

This chapter extends the principles of differential calculus for functions of one 
variable to functions of several variables. We begin in Section 2.1 with the ge-

ometry of real-valued functions and study the graphs of these functions as an aid 
in visualizing them. Section 2.2 gives some basic definitions relating to limits and 
continuity. This subject is treated briefly, because it requires time and mathematical 
maturity to develop fully and is therefore best left to a more advanced course. For-
tunately, a complete understanding of all the subtleties of the limit concept is not 
necessary for our purposes; the student who has difficulty with this section should 
bear this in mind. However, we hasten to add that the notion of a limit is central to 
the definition of the derivative, but not to the computation of most derivatives in spe-
cific problems, as we already know from one-variable calculus. Sections 2.3 and 2.5 
deal with the definition of the derivative, and establish some basic rules of calculus: 
namely, how to differentiate a sum, product, quotient, or composition. In Section 2.6, 
we study directional derivatives and tangent planes, relating these ideas to those in 
Section 2.1. Finally, the Internet supplement gives some of the technical proofs. 

In generalizing calculus from one dimension to several, it is often convenient 
to use the language of matrix algebra. What we shall need has been summarized in 
Section 1.5. 

2.1 The Geometry of Real-Valued Functions 
We launch our investigation of real-valued functions by developing methods for vi-
sualizing them. In particular, we introduce the notions of a graph, a level curve, and 
a level surface of such functions. 

94 
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Functions and Mappings 
Let / be a function whose domain is a subset A of RM and with a range contained 
in Rw . By this we mean that to each x = ( x j , . . . , xn) e A, f assigns a value / (x) , 
an m -tuple in Rw . Such functions / are called vector-valued functions1 if m > 1, 
and scalar-valued functions if m = 1. For example, the scalar-valued function 
fix, y, z) = (x2 + >>2 + z2)"3/2 maps the set A of (x, z) # (0, 0, 0) in R3 (n = 3 
in this case) to R (m = 1). To denote / we sometimes write 

/ • (x,y,z)\-> (x2 + y1 + z2) - 3 /2 . 

Note that in R3 we often use the notation (x, y, z) instead of (xi, X2, X3). In general, 
the notation xi-> / (x ) is useful for indicating the value to which a point x e 1 " is 
sent. We write / : A C Rw Rw to signify that A is the domain of / ( a subset of Rw) 
and the range is contained in Rw . We also use the expression / maps A into Rw . Such 
functions / are called functions of several variables if A c Rw, n > 1. 

As another example we can take the vector-valued function g: R6 —> R2 defined 
by the rule 

g(x) = g(x 1. *2, *5,X6) = 1̂X2X3X4X5X6, y/xf +X%y 

The first coordinate of the value of g at x is the product of the coordinates of x. 
Functions from Rw to W" are not just mathematical abstractions, they arise natu-

rally in problems studied in all the sciences. For example, to specify the temperature 
T in a region A of space requires a function T: ^ c R 3 - > R ( « = 3,m = l); thus, 
T(x, y, z) is the temperature at the point (x, y, z). To specify the velocity of a fluid 
moving in space requires a map V: R4 R3, where V(x, y,z,t) is the velocity 
vector of the fluid at the point ( x , y , z ) in space at time t (see Figure 2.1.1). To 

Figure 2.1.1 A fluid in motion defines a 
V(*. y, Z, 0 = fluid velocity v e c t o r field V by specifying the velocity of 

the fluid particles at each point in space 
and time. 

1 Some mathematicians would write such an / in boldface, using the notation f(x), because the function is vector-valued. 
We did not do so, as a matter of personal taste. We use boldface primarily for mappings that are vector fields, introduced 
later. The notion of function was developed over many centuries, with the definition extended to cover more cases as 
they arose. For example, in 1667 James Gregory defined a function as "a quantity obtained from other quantities by a 
succession of algebraic operations or by any other operation imaginable." In 1755 Euler gave the following definition: 
"If some quantities depend on others in such a way as to undergo variation when the latter are varied then the former are 
called functions of the latter." 
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specify the reaction rate of a solution consisting of six reacting chemicals 
A, B,C, D, E, F in proportions x, y, z, w, w, v requires a map a : £/ c R6 —• R, 
where a(x, y, z, w, u, v) gives the rate when the chemicals are in the indicated pro-
portions. To specify the cardiac vector (the vector giving the magnitude and di-
rection of electric current flow in the heart) at time t requires a map c: R R3, 
t H» c0). 

When / : U C Rw -> R, we say that / is a real-valued function of n variables 
with domain U. The reason we say "n variables" is simply that we regard the co-
ordinates of a point x = ( x j , . . . , x„) e U as n variables, and / (x ) = f ( x \ , . , xn) 
depends on these variables. We say "real-valued" because f(x\,..., xn) is a real 
number. A good deal of our work will be with real-valued functions, so we give them 
special attention. 

LS of F u n c t i o n s 

For / : U C R —• R (n = 1), the graph of / is the subset of R2 consisting of all 
points (x, / (x ) ) in the plane, for x in U. This subset can be thought of as a curve in 
R2. In symbols, we write this as 

graph/ = {(x, / (x ) ) g R2 | x e U], 

where the curly braces mean "the set of all" and the vertical bar is read "such that." 
Drawing the graph of a function of one variable is a useful device to help visualize 
how the function actually behaves. (See Figure 2.1.2.) It will be helpful to generalize 
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the idea of a graph to functions of several variables. This leads to the following 
definition: 

DEFINITION: Graph of a Function Let f:U C Rw R. Define the 
graph of / to be the subset of Rw+1 consisting of all the points 

in Rw+1 for ( x j , . . . , xn) in U. In symbols, 

graph f = {(xi, . . . , x w , / ( x i , . . . , x n ) ) e Rw+1 | (xi, . . . , x w ) e U}. 

For the case n — 1 the graph is a curve in R2, while for n — 2 it is a surface in 
R3 (see Figure 2.1.2). For n = 3 it is difficult to visualize the graph, because, since 
we are humans living in a three-dimensional world, it is hard for us to envisage sets 
in R4. To help overcome this handicap, we introduce the idea of a level set. 

Suppose / ( x , y, z) = x2 + y2 + z2. A level set is a subset of R3 on which / is 
constant; for instance, the set where x2 + y2 + z2 = 1 is a level set for / . This we can 
visualize: It is just a sphere of radius 1 in R3. Formally, a level set is the set of (x,y,z) 
such that f(x,y,z) = c, where c is a constant. The behavior or structure of a function 
is determined in part by the shape of its level sets; consequently, understanding these 
sets aids us in understanding the function in question. Level sets are also useful for 
understanding functions of two variables fix, y), in which case we speak of level 
curves or level contours. 

The idea is similar to that used to prepare contour maps, where one draws lines 
to represent constant altitudes; walking along such a line would mean walking on a 
level path. In the case of a hill rising from the xy plane, a graph of all the level curves 
gives us a good idea of the function h(x, y), which represents the height of the hill at 
point (x, y) (see Figure 2.1.3). 

( x i , . . . , x w , / ( x i , . . . , x j ) 

Level Sets, Curves, and Surfaces 

h = 50 

(a) (b) 

Figure 2.1.3 Level contours of a function are defined in the same manner as 
contour lines for a topographical map. 
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E X A M P L E 1 The constant function / : R2 -> R, (x, y) 2, that is, the func-
tion / ( x , y) = 2, has as its graph the horizontal plane z = 2 in R3. The level curve 
of value c is empty if c ^ 2, and is the whole xy plane if c = 2. • 

E X A M P L E 2 The function / : R2 -> R, defined by f ( x , y) = x + y + 2 has as 
its graph the inclined plane z = x + y 4- 2. This plane intersects the x>> plane (z = 0) 
in the line y = — x — 2 and the z axis at the point (0, 0, 2). For any value e e l , the 
level curve of value c is the straight line y = — x + (c — 2); or in symbols, the set 

Lc = {(x, JO \ y =-X+ (C-2)} C R2. 

We indicate a few of the level curves of the function in Figure 2.1.4. This is a contour 
map of the function / . 

Line of 
intersection of 
plane z = x+y + 
and the xy plane 

Figure 2.1.4 The level curves of f ( x , y) = x + y + 2 
show the sets on which / takes a given value. 

From level curves labeled with the value or "height" of the function, the shape of 
the graph may be inferred by mentally elevating each level curve to the appropriate 
height, without stretching, tilting, or sliding it. If this procedure is visualized for all 
level curves, Lc, that is, for all values e e l , they will assemble to give the entire 
graph of / , as indicated by the shaded plane in Figure 2.1.5. If the graph is visualized 

Figure 2.1.5 The relationship 
of level curves of Figure 2.1.4 
to the graph of the function 
f ( x , y) = x + y + 2, which is 
the plane z = x + y + 2. 

Level curve lifted 
to surface 

Level curvex+y+ 2 

V 
x,+y + 2 = 2 in xy plane 

x+y + 2 = 4inxy plane 

= 0 

Level curve lifted 
to surface 
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using a finite number of level curves, a contour model is produced. If / is a smooth 
function, its graph will be a smooth surface, and so the contour model, mentally 
smoothed over, gives a good impression of the graph. • 

DEFINITION: Level Curves and Surfaces Let / : U C Rn -> R and 
let c e l . Then the level set of value c is defined to be the set of those points 
x e U at which / (x ) = c. If n = 2, we speak of a level curve (of value c); 
and if n = 3, we speak of a level surface. In symbols, the level set of value 
c is written 

S O L U T I O N The graph is the paraboloid of revolution z = x2 + y2, oriented 
upward from the origin, around the z axis. The level curve of value c is empty for 
c < 0; for c > 0 the level curve of value c is the set {(x, y) \ x2 + y2 = c}, a circle 
of radius centered at the origin. Thus, raised to height c above the xy plane, the 
level set is a circle of radius y/c, indicating a parabolic shape (see Figures 2.1.6 and 
2.1.7). A 

{xeU I / ( x ) = c} c Rw. 

Note that the level set is always in the domain space. 

Describe the graph of the quadratic function 

/ : R2 R, (x, y) x2 + y2. 

y 

x2+y2=i2 

x 2 + y 2 = 2 2 

x2+y2 = 42 

x 
Figure 2.1.6 Some level curves for the function 
f(x,y) = x2+y2. 
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x2+y2 = 42 

Figure 2.1.7 Level curves in Figure 2.1.6 raised to the 
graph. 

The Method of Sections 
By a section of the graph of / we mean the intersection of the graph and a (vertical) 
plane. For example, if P\ is the xz plane in R3, defined by y = 0, then the section of 
/ in Example 3 is the set 

Pi H graph / = {(x, y, z) | y = 0, z = x2}, 

which is a parabola in the xz plane. Similarly, if P2 denotes the yz plane, defined by 
x = 0, then the section 

P2 H graph / = {(x, y, z) \ x = 0, z = y2} 

is a parabola in the yz plane (see Figure 2.1.8). It is usually helpful to compute at 
least one section to complement the information given by the level sets. 

I E X A M P L E 4 The graph of the quadratic function 

/ : R2 R, (x,y) x2-y2 

is called a hyperbolic paraboloid, or saddle, centered at the origin. Sketch the graph. 

S O L U T I O N To visualize this surface, we first draw the level curves. To de-
termine the level curves, we solve the equation x2 — y2 = c. Consider the values 
c = 0, =bl, ±4. For c = 0, we have y2 = x2 , or y = =bt, so that this level set consists 
of two straight lines through the origin. For c = 1, the level curve is x2 — y2 = 1, or 
y = ± V x 2 — 1, which is a hyperbola that passes vertically through the x axis at the 
points (±1,0) (see Figure 2.1.9). Similarly, for c — 4, the level curve is defined by 
y — ± Vx2 — 4, the hyperbola passing vertically through the x axis at (±2, 0). For 
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z = y2, x = 0 

Figure 2.1.8 Two sections of the graph 
of f(x,y) = x2+y2. 

X 

c = — 1, we obtain the curve x2 — y2 = —1, that is, x = zbyjy1 — 1, the hyperbola 
passing horizontally through the y axis at (0, zbl). And for c — —4, the hyperbola 
through (0, ±2) is obtained. These level curves are shown in Figure 2.1.9. Because it 
is not easy to visualize the graph of / from these data alone, we shall compute two 
sections, as in the previous example. For the section in the xz plane, we have 

P\ n graph of / = {(x, y, z) | y = 0, z = x2}, 

which is a parabola opening upward; and for the yz plane, 

P2 H g r a p h / = { ( x , > > , z ) | x = 0 , z = - / } , 

which is a parabola opening downward. The graph may now be visualized by lifting the 
level curves to the appropriate heights and smoothing out the resulting surface. Their 
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placement is aided by computing the parabolic sections. This procedure generates 
the hyperbolic saddle indicated in Figure 2.1.10. Compare this with the computer-
generated graphs in Figure 2.1.11 (note that the orientation of the axes has been 
changed). • 

I 2 ; z = l 

Figure 2.1.10 Some level curves on the 
= -(12);Z = - l graph of f ( x , y) = x2 — y2. 

6 

4 

2 

0 
- 2 

- 4 

- 6 

Figure 2.1.11 The graph of z = 

- 2 - 1 0 1 2 
x axis 

— y2 and its level curves. 

E X A M P L E 5 Describe the level sets of the function 

/ : R3 -> R, (x,y,z)\-> x2+y2+z2. 

S O L U T I O N This is the three-dimensional analogue of Example 3. In this context, 
level sets are surfaces in the three-dimensional domain R3. The graph, in R4, cannot 
be visualized directly, but sections can nevertheless be computed. 

The level set with value c is the set 

{(x,y,z)\x2 +y2 +z2 = c], 
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which is the sphere centered at the origin with radius «Jc for c > 0, is a single point 
at the origin for c = 0, and is empty for c < 0. The level sets for c = 0, 1, 4, and 9 
are indicated in Figure 2.1.12. A 

z 

Describe the graph of the function / : M3 -> M defined by 
f(x,y,z) = x2-\-y2—z2, which is the three-dimensional analogue of Example 4, 
and is also called a saddle. 

S O L U T I O N Formally, the graph of / is a subset of four-dimensional space. If we 
denote points in this space by (x, y, z, t), then the graph is given by 

{(x,y,z, t)\t = x2 + y2 — z2}. 

The level surfaces of / are defined by 

Lc = {(x, y, z) | x2 + y2 - z2 = c}. 

For c — 0, this is the cone z = dbyjx2 + y2 centered on the z axis. For c negative, 
say, c — —a2, we obtain z = ±y/x2 + y2 + a2, which is a hyperboloid of two sheets 
around the z axis, passing through the z axis at the points (0, 0, ±a). For c positive, 
say, c = b2, the level surface is the single-sheeted hyperboloid of revolution around 
the z axis defined by z = ±>/x2 + y2 — b2, which intersects the xy plane in the circle 
of radius |6|. These level surfaces are sketched in Figure 2.1.13. 

Another view of the graph may be obtained from a section. For example, the 
subspace = {(*> y,z, t) \ y = 0} intersects the graph in the section 

Sy=o H graph / = {(x, y, z, t) | y = 0, t = x2 - z2}, 

that is, the set of points of the form (x, 0, z, x2 — z2), which may be considered to be 
a surface in xzt space (see Figure 2.1.14). A 
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We have seen how the methods of sections and level sets can be used to understand 
the behavior of a function and its graph; these techniques can be quite useful to 
people who desire comprehensive visualization of complicated data. There are many 
computer programs available to do this, and we show the results of one such program 
in Figure 2.1.15. 
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2 

1 

y axis 0 

-1 

- 2 

F i g u r e 2.1.15 Computer-generated graph of z = (x2 + 3 y 2 ) exp (1 — x2 — y2) 
represented in three ways: (a) by sections, (b) by level curves on a graph, and 
(c) by level curves in the xy plane. 

E X E R C I S E S 

1. Sketch the level curves and graphs of the following functions: 

(a) / : R2 -> M, (JC, y) i-> x - y + 2 (c) / : R2 -> M, (JC, y) H> -xy 
(b) / : M2 -> R, (JC, y) H» x2 + 4y2 

2. Describe the behavior, as c varies, of the level curve f ( x , y) = c for each of these 
functions: 

(a) f{x,y) = x2+y2 + \ (b) f(x, y) = \ - x2 - y2 (c )f(x,y) = x3-x 

3. For the functions in Examples 2, 3, and 4, compute the section of the graph defined by 
the plane 

Se = {(x, y, z) | y = x tan0} 

for a given constant 0. Do this by expressing z as a function of r , where x = r cos 6, y — 
r sin 9. Determine which of these functions / have the property that the shape of the section 
Se H graph / is independent of 6. (The solution for Example 3 only is in the Study Guide.) 

x axis 
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In Exercises 4 to 10, draw the level curves (in the xy plane) for the given function f and 
specified values of c. Sketch the graph of z — f ( x , y). 

4. f(x,y) = 4 — 3x + 2y, c = 0, 1 , 2 , 3 , - 1 , - 2 , - 3 

5. f ( x , y) = (100 - JC2 - y2)1'2, c = 0, 2,4, 6, 8, 10 

6. f ( x , y ) = (x2+y2)l/2,c = 0, 1 , 2 ,3 ,4 ,5 

7. f ( x , y) = x2+ y2, c = 0, 1 , 2 ,3 ,4 ,5 

8. f ( x , y) = 3x — ly, c = 0, 1 , 2 , 3 , - 1 , - 2 , - 3 

9. f(x,y) = x2 + xy,c = 0, 1 , 2 , 3 , - 1 , - 2 , - 3 

10. f(x,y) = x/y,c = 0, 1 , 2 , 3 , - 1 , - 2 , - 3 

In Exercises 11 to 13, sketch or describe the level surfaces and a section of the graph of each 
function. 

11. / : R3 -> R, (JC, y, z) -x2 - y2 - z2 

12. / : R3 M, (JC, y, z) 4x2 + y2 + 9Z2 

13. / : R 3 - > R , (JC, y, z) JC2 + y2 

In Exercises 14 to 18, describe the graph of each function by computing some level sets and 
sections. 

14. / : M3 -> R, (JC, y, z) xy 

15. / : M3 -> R, (JC, y, z) xy + yz 

16. / : R 3 - > R , (JC, y, z) xy + z2 

1 7 . / : R 2 - > R , ( J C , y ) \y\ 

1 8 . / : R 2 R , ( JC , J O H^ m a x ( | x | , \y\) 

Sketch or describe the surfaces in R3 of the equations presented in Exercises 19 to 31. 

1 9 . 4JC2 + y2 = 16 2 0 . JC + 2 z = 4 

21. z2=y2 +4 22. JC2 + y2 - 2x = 0 

2 2 2 2 2 X V z V Zz X 
23. - = — + — 24. — H = I -\ 

4 4 9 9 4 1 6 

25. z — x2 26. y2 + z2 = 4 
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28. y2=x2+z: ,2 

29. 4x2 - 3y2 + 2z2 = 0 

31. x2 + y2 + z2 + 4x — by + 9z — b = 0, where b is a constant 

32. Using polar coordinates, describe the level curves of the function defined by 

/(*, y) = 2xy/(x2 + / ) if (x,y)^ (0, 0) and / ( 0 , 0) = 0. 

33. Let / : M2\{0} -> R be given in polar coordinates by / ( r , 0) = (cos26>)/r2. Sketch a 
few level curves in the xy plane. Here, M2\{0} = {x e M2 | x ^ 0}. 

34. Show that in Figure 2.1.15, the level "curve" z = 3 consists of two points. 

This section develops the concepts of open sets, limits, and continuity; open sets are 
needed to understand limits, and limits are in turn needed to understand continuity 
and differentiability. 

As in elementary calculus, it is not necessary to completely master the limit 
concept in order to work problems in differentiation. For this reason, instructors may 
treat the following material with varying degrees of rigor. The student should consult 
with the instructor about the depth of understanding required. 

We begin formulating the concept of an open set by defining an open disk. Let xo e W1 

and let r be a positive real number. The open disk (or open ball) of radius r and center 
xo is defined to be the set of all points x such that ||x — xo|| < r. This set is denoted 
A-(xo), and is the set of points x in W1 whose distance from x0 is less than r. Notice 
that we include only those x for which strict inequality holds. The disk Dr(xo) is 
illustrated in Figure 2.2.1 for n = 1, 2, 3. For the case n = 1 and € the open 
disk Dr(x o) is the open interval (xo — r, + r), which consists of all numbers x e M 
strictly between x0 — r andx0 + r. For the case n = 2, x0 e M2, £>r(xo) Is *he "inside" 
of the disk of radius r centered at x0. For the case n = 3, x0 e M3, Dr(x 0) is the part 
strictly "inside" of the ball of radius r centered at XQ. 

DEFINITION: Open Sets Let U cW1 (that is, let U be a subset of IT). 
We call U an open set when for every point xo in U there exists some r > 0 
such that Dr(x0) is contained within U; symbolically, we write £>r(xo) C U (see 
Figure 2.2.2). 

2.2 Limits and Continuity 

O p e n Sets 
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n=1 n=2 n=3 

(a) (b) (c) 

Figure 2.2.1 What disks A-(x0) look like in (a) one, (b) two, and (c) three 
dimensions. 

x n + r 

The number r > 0 can depend on the point x0, and generally r will shrink as 
xo gets closer to the "edge" of U. Intuitively speaking, a set U is open when the 
"boundary" points of U do not lie in U. In Figure 2.2.2, the dashed line is not 
included in U. 

We establish the convention that the empty set 0 (the set consisting of no ele-
ments) is open. 

We have defined an open disk and an open set. From our choice of terms it would 
seem that an open disk should also be an open set. A little thought shows that this 
fact requires some proof. The following theorem does this. 

/ ^ 
/ / N » 

' ' 9*0 I r K ° | 
^ x 7 J Figure 2.2.2 An open set U is one that completely 

/ 

^ ~ — ™ 
/ encloses some disk A-(xo) about each of its points xq. 
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T H E O R E M 1 For each x0 e W1 and r > 0, Dr(x0) is an open set. 

PROOF Let x E A-(xo), that is, let ||x — XQ || < r. According to the definition of an 
open set, we must find an s > 0 such that Ds(x) C A-(xo). Referring to Figure 2.2.3, 
we see that s = r — ||x — x0|| is a reasonable choice; note that s > 0, but that s 
becomes smaller if x is nearer the edge of Dr(x0). 

d = | | X - X 0 | | 

s = r - II x Xq II 

Figure 2.2.3 The geometry of the proof that 
an open disk is an open set. 

To prove that ^ ( x ) c Dr(xo), let y e Ds(x); that is, let ||y — x|| < 5 . We want 
to prove that y e Dr(xo) as well. Proving this, in view of the definition of an r-disk, 
entails showing that ||y — XQ|| < r. This is done by using the triangle inequality for 
vectors in W1: 

lly - xoll = II(y - x) + (x - x0)|| < ||y - x|| + ||x - x0|| < s + ||x - x0|| = r. 

Hence, ||y - x0|| < r . • 

The following example illustrates some techniques that are useful in establishing 
the openness of sets. 

E ^ ^ ^ U g ^ l Prove that A = {(x, y) e M2 | x > 0} is an open set. 

S O L U T I O N The set is pictured in Figure 2.2.4. 
Intuitively, this set is open, because no points on the "boundary," x = 0, are 

contained in the set. Such an argument will often suffice after one becomes accustomed 
to the concept of openness. At first, however, we should give details. To prove that 
A is open, we show that for every point (x, y) e A there exists an r > 0 such that 

y) C A. If (x, y) e A, then x > 0. Choose r = x. If (xi, j^i) e Dr(x, y), we 
have 

1*1 - = 7 ( x i - x ) 2 < y/(xi -x)2 + (yx - y)2 < r = x , 

and so xi — x < x and x — X] < x. The latter inequality implies X] > 0, that is, 
(xi ,yi)eA. Hence Dr(x, y) C A, and therefore A is open (see Figure 2.2.5). A 
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Figure 2.2.4 Show that A is an open set. 

Figure 2.2.5 The construction of a disk about a point in A 
that is completely enclosed in A. 

It is useful to have a special name for an open set containing a given point x, 
because this idea arises often in the study of limits and continuity. Thus, by a neigh-
borhood ofx G M" we merely mean an open set U containing the point x. For example, 
A-(xo) is a neighborhood of xo for any r > 0. The set A in Example 1 is a neighbor-
hood of the point x0 = (3, —10). 

Boundary 
Let us formally introduce the concept of a boundary point, which we alluded to in 
Example 1. 

DEFINITION: Boundary Points Let A C W. A point xeW1 is called a 
boundary point of A if every neighborhood of x contains at least one point in A 
and at least one point not in A. 

In this definition, x itself may or may not be in A; if x e A, then x is a boundary 
point if every neighborhood of x contains at least one point not in A (it already 
contains a point of A, namely, x). Similarly, if x is not in A, it is a boundary point if 
every neighborhood of x contains at least one point of A. 
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We shall be particularly interested in boundary points of open sets. By the defi-
nition of an open set, no point of an open set A can be a boundary point of A. Thus, 
a point x is a boundary point of an open set A if and only ifx is not in A and every 
neighborhood of x has a nonempty intersection with A. 

This expresses in precise terms the intuitive idea that a boundary point of A is a 
point just on the "edge" of A. In many examples it is perfectly clear what the boundary 
points are. 

E X A M P L E 2 (a) Let A = (a, b) in M. Then the boundary points of A consist 
of the points a and b. A consideration of Figure 2.2.6 and the definition will make 
this clear. [The reader will be asked to prove this in Exercise 20(c).] 

^ — Boundary points 

o % — • x Figure 2.2.6 The boundary points of the interval (<a, b). 

(b) Let A — Dr(xo,yo) be an r-disk about (xo, ĵ Q) in the plane. The boundary 
consists of points (x, y) with (x — XQ)2 + (y — yo)2 = r2 (Figure 2.2.7). 

Boundary 

—«Î • \ I % Figure 2.2.7 The boundary of A consists of points on the edge 

(c) Let A = {(x, y) e M2 | x >0}. Then the boundary of A consists of all points 
on the y axis (the student should draw a figure). 

(d) Let A be Z)r(x0) minus the point x0 (a "punctured" disk about x0). Then x0 is a 
boundary point of A. A 

Limits 
We now turn our attention to the concept of a limit. Throughout the following discus-
sions the domain of definition of thefunction f will be an open set A. We are interested 
in finding the limit of / as x e A approaches either a point of A or a boundary point 
of A. 

The reader should appreciate the fact that the limit concept is a basic and use-
ful tool for the analysis of functions; it enables us to study derivatives, and hence 
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maxima and minima, asymptotes, improper integrals, and other important features of 
functions, as well as being useful for infinite series and sequences. We will present a 
theory of limits for functions of several variables that includes the theory for functions 
of one variable as a special case. 

In one-variable calculus, the student has encountered the notion of limit/(x) = / 
for a function / : A c M M from a subset A of the real numbers to the real 
numbers. Intuitively, this means that as x gets closer and closer to XQ, the val-
ues / ( x ) get closer and closer to (the limiting value) /. To put this intuitive idea 
on a firm, mathematical foundation, either the "epsilon (e) and delta (8) method" 
or the "neighborhood method" is usually introduced. The same is true for func-
tions of several variables. In what follows we develop the neighborhood approach 
to limits. The epsilon-delta approach is left for optional study at the end of this 
section. 

DEFINITION: Limit Let f: A C W1 -> Mm, where A is an open set. Let 
xo be in A or be a boundary point of A, and let TV be a neighborhood of b e Mm. 
We say / is eventually in N as x approaches x0 if there exists a neighborhood 
U of xq such that x / xq, x e U, and x e A imply / (x ) e N. [The geometric 
meaning of this assertion is illustrated in Figure 2.2.8; note that xo need not be 
in the set A, so that /(XQ) is not necessarily defined.] We say fix) approaches 
b as x approaches x0, or, in symbols, 

limit / ( x ) = b or / (x ) -> b as x -> x0, 
X-»X0 

when, given any neighborhood N of b, / is eventually in TV as x approaches xo 
[that is, " / (x) is close to b if x is close to XQ"]. It may be that as x approaches 
XQ, the values / (x ) do not get close to any particular number. In this case, we say 
that limit/(x) does not exist. 

X-»X0 

Henceforth, whenever we consider the notion limit / (x) , we shall always assume 
X-»X0 

that XQ either belongs to some open set on which / is defined or is on the boundary 
of such a set. 

One reason we insist on x ^ xo in the definition of limit will become clear if we 
remember from one-variable calculus that we want to be able to define the derivative 
f\x o) of a function / at a point xo by 

/ ( * „ ) = limif 
x^XQ X — Xo 

and this expression is not defined at x = XQ. 
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(X , / (X) ) 

Figure 2.2.8 Limits in terms of neighborhoods; if x is in U, then / (x ) will be in N. 
(The little open circle denotes that the point does not lie on the graph.) In the figure, 
/: A = {(x, y) | x2 + y2 < 1} -> M. (The dashed line is not in the graph of / . ) 

E X A M P L E 3 (a) This example illustrates a limit that does not exist. Consider 
the function / : R -> R defined by 

i f x > 0 
if x < 0. 

The limit/(x) does not exist, since there are points x\ arbitrarily close to 0 with 
/ (x i ) = 1 and also points x2 arbitrarily close to 0 with / (x 2 ) = — 1; that is, there 
is no single number that / is close to when x is close to 0 (see Figure 2.2.9). If 
/ is restricted to the domain (0, 1) or (—1, 0), then the limit does exist. Can you 
say why? 

(b) This example illustrates a function whose limit does exist, but whose limiting 
value does not equal its value at the limiting point. Define / : R —> R by 

0 if x / 0 
1 i fx = 0. 

Itistruethathmit/(x) = 0, since for any neighborhood U ofO, x e U andx ^ 0 
implies that / ( x ) = 0. One sees from the graph in Figure 2.2.10 that / approaches 0 
as x -> 0; we do not care that / happens to take on some other value at 0. A 
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y 
M 

*2 

/(*l) = 1 
" 1 

I 
I 

— X 

Figure 2.2.9 The limit of this function as 
x -> 0 does not exist. 

f ^ 2)= "I 

y i k 

(°> ̂  Figure 2.2.10 The limit of this function as x -> 0 is zero. 

x 

E X A M P L E 4 

where x and XQ e 
Use the definition to verify that the "obvious" limit x = XQ holds, 

x-»x0 

S O L U T I O N Let / be the function defined by / (x ) = x, and let N be any neigh-
borhood of x0. We must show that / ( x ) is eventually in TV as x -> x0. According to the 
definition, we must find a neighborhood U of x0 with the property that if x / x0 and 
x g U, then / (x ) e N. Pick U = N. If x e U, then x e N; because x = /(x) , it fol-
lows that / (x ) G N. Thus, we have shown that limit x = x0. In a similar way, we have 

X - » X 0 

limit x = x0, etc. A 

In what follows, the student may assume, without proof, the validity of limits from 
one-variable calculus. For example, limit J x — yf\ = 1 and limit sin 6 = sin 0 = 0 

x—> 1 6^0 
may be used. 

E X A M P L E 5 (This example demonstrates another case in which the limit cannot 
simply be "read off" from the function.) Find limit g(x) where 

x—> 1 

X - 1 

«Jx — 1 
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S O L U T I O N This function is graphed in Figure 2.2.11 (a). 

y y 
i i 

g*: x Vx" + 1 

(a) (b ) 

Figure 2.2.11 These graphs are the same except that in part (a), g is undefined at 
x = 1, whereas in part (b), g* is defined for all x > 0. 

We see that g(l) is not defined, because division by zero is not defined. However, 
if we multiply the numerator and denominator of g(x) by y/x + 1, we find that for all 
x in the domain of g we have 

The expression g*(x) = y/x + 1 is defined and takes the value 2 at x = 1; from 
one-variable calculus, g*(x) —> 2 as x —> 1. But because g*(x) = g(x) for all x > 0, 
x / 1, we must have as well that g(x) 2 as x -> 1. A 

We will consider other examples in two variables shortly. 

To properly speak of the limit, we should establish that / can have at most one limit 
as x ^ x0. This is intuitively clear and we now state it formally. (See the Internet 
supplement for the proof.) 

THEOREM 2: Uniqueness of Limits 

If limit / (x ) = bi and limit / (x ) = b2, then bi = b2. 

Properties of Limits 

To carry out practical computations with limits, we require some rules for limits, 
for example, that the limit of a sum is the sum of the limits. These rules are summarized 
in the following theorem (see the Internet supplement for Chapter 2 for the proof). 
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T H E O R E M 3: Properties of Limits Let / : A C IT Mm, g: A C 
W1 Rm , x0 be in A or be a boundary point of A, b e Mm, and c e R; then 

(i) If limit / ( x ) = b, then limit cf(x) = cb, where cf: A -> Mw is defined by 
X - » X o X - » X o 

X l-> c(/(x)). 

(ii) If limit / ( x ) = bi and limit g(x) — b2, then limit ( / + g)(x) = bi + b2, 
X ^ - X o X - > X o X ^ - X o 

where ( / + g): ,4 —»> Mm is defined by x / ( x ) + g(x). 

(iii) If m = 1, l imit / (x) = fei, and limitg(x) = b2, then limit(/g)(x) = b\b2, 
X—»Xo X ^ X o x—>Xo 

where ( /g) : A R is defined by x h^ /(x)g(x). 

(iv) If m = 1, limit / ( x ) = b / 0, and / ( x ) / 0 for all x e then 
X - » X 0 

limit l / / ( x ) = 1/6, where 1 / / : A -> R is defined by x i-> l / / (x ) . 
X—»Xo 

(v) I f / ( x ) = ( / i ( x ) , . . . , / m ( x ) ) w h e r e R , / = 1 , . . . , /w, arethecom-
ponent functions of / , then limit f ( x ) = b = (b\,...,bm) if and only if 

X - » X 0 

limit /¡(x) = bi for each i = 1 , . . . , m. 
X - > X 0 

These results ought to be intuitively clear. For instance, rule (ii) says that if 
/ ( x ) is close to bi and g(x) is close to b2 when x is close to XQ, then / ( x ) +g (x ) 
is close to bi + b2 when x is close to xo. The following example illustrates how this 
works. 

E X A M P L E 6 L e t / : I, (x, y) h^ x2 4- y 1 + 2. Compute the limit 

limit fix, y). 
(*,jO-«U) 

S O L U T I O N Here / is the sum of the three functions (x, V) X2, (X, V) y2, 
and (x, y) 2. The limit of a sum is the sum of the limits, and the limit of a product 
is the product of the limits (Theorem 3). Hence, using the fact that limit x = xo 
(Example 4), we obtain 

limit x2 = ( limit x J ( limit x I 

and, using the same reasoning, limit y = y0. Consequently, 

limit f(x,y) = 02 + l 2 + 2 = 3. A 
(XO0-K0.1) 
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Continuous Functions 
In single-variable calculus we learned that the idea of a continuous function is based 
on the intuitive notion of a function whose graph is an unbroken curve, that is, a curve 
that has no jumps, or the kind of curve that would be traced by a particle in motion or 
by a moving pencil point that is not lifted from the paper. 

To perform a detailed analysis of functions, we need concepts more precise than 
this rather vague notion. An example may clarify these ideas. Consider the specific 
function / : M -> R defined by / ( x ) = — 1 ifx < Oand / ( x ) = 1 i fx > 0. The graph 
of / is shown in Figure 2.2.12(a). [The little open circle denotes the fact that the point 
(0, 1) does not lie on the graph of / ] . Clearly, the graph of / is broken at x = 0. 
Consider also the function g: i x2. This function is pictured in Figure 2.2.12(b). 
The graph of g is not broken at any point. 

(a) (b) 

Figure 2.2.12 The function / in part (a) is not continuous, because its value jumps 
as x crosses 0, whereas the function g in part (b) is continuous. 

If one examines examples of functions like / , whose graphs are broken at some 
point xo, and functions like g, whose graphs are not broken, one sees that the principal 
difference between them is that for a function like g, the values of g(x) get closer to 
g(*o) as x gets closer and closer to xo- The same idea works for functions of several 
variables. But the notion of closer and closer does not suffice as a mathematical 
definition; thus, we shall formulate these concepts precisely in terms of limits. 

Because the condition limit / (x ) = / (x 0 ) means that / ( x ) is close to /(x0)when 
X - » X 0 

x is close to XQ, we see that this limit condition does indeed correspond to the require-
ment that the graph of / be unbroken (see Figure 2.2.13, where we illustrate the 
case / : R -> M). The case of several variables is easiest to visualize if we deal with 
real-valued functions, say / : R2 —> R. In this case, we can visualize / by drawing 
its graph, which consists of all points (x, y, z) in M3 with z = f(x,y). The continuity 
of / thus means that its graph has no "breaks" in it (see Figure 2.2.14). 
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w 
• > 

(a) (b) 

Figure 2.2.13 (a) Discontinuous function for which limit*^^ f ( x ) does not exist, 
(b) Continuous function for which this limit exists and equals / (x0) . 

Break in the 
surface z =f(x, y) 

*=/tx,y) 

Set of discontinuities of / ; 
i.e., the set of points 
where/ is discontinuous 

(a) 

y 

(b) 

Figure 2.2.14 (a) A discontinuous function of two variables, (b) A continuous 
function. 

DEFINITION: Continuity Let / : A C Rn Mm be a given function with 
domain A. Let xo e A. We say / is continuous at xq if and only if 

l imit /(x) = / (x 0) . 
X - » X 0 

If we just say that / is continuous, we shall mean that / is continuous at each 
point xo of A. If / is not continuous at xo, we say / is discontinuous at xo. If / 
is discontinuous at some point in its domain, we say / is discontinuous. 



2.2 Limits and Continuity 119 

Any polynomial p(x) = ao 4- a\x H h anxn is continuous 
from M to M. Indeed, from Theorem 3 and Example 4, 

limit (ao + a\x H h = limit flo 4- limit a\x H h limit 
JC—»JCo JC—»JCo JC—»JCo JC—»JCo 

= ao + aiXo H h anx^ 

because the limit of a product is the product of the limits, which gives 

limit xn = (limit x ) = x j . A 

E X A M P L E 8 Let / : M2 -> R, / ( x , y) = xy. Then / is continuous, because, by 
the limit theorems and Example 4, 

limit xy = ( limit x I ( limit y I = 
(•KÜO-K-KO.J'O) / \(*o')-K*oo'o) ) 

Wo-

One can see by the same method that any polynomial p(x,y) [for example, 
p(x, y) = 3x2 — 6xy2 + y3] in x and y is continuous. 

The function / : R2 R defined by 

[1 if x < 0 or y < 0 

E X A M P L E 9 

[o Otherwise 

is not continuous at (0, 0) or at any point on the positive x axis or positive y axis. 
Indeed, if (xo, yo) = u is such a point (i.e., xo = 0 and yo > 0, or yo = 0 and xo > 0) 
and 8 > 0, there are points (x, y) e Ds(u), a neighborhood of u, with f(x,y) = 1 
and other points (x, y) e D$(u) with f(x,y) = 0. Thus, it is not true that f(x,y) —> 
f(xo, yo) = 1 as (x, y) -> (x0, yo). * 

To prove that specific functions are continuous, we can avail ourselves of the 
limit theorems (see Theorem 3 and Example 7). If we transcribe those results in terms 
of continuity, we are led to the following: 

T H E O R E M 4: Propert ies o f C o n t i n u o u s F u n c t i o n s Suppose that 
/ : ^ c r - > M m , g : ^ c r - > Rm , and let c be a real number. 

(i) If / is continuous at x0, so is c f , where (c/)(x) = c[/(x)]. 

(ii) If / and g are continuous at x0, so is / + g, where the sum of / and g is 
defined by ( / + g)(x) = / ( x ) + g(x). 
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(iii) If / and g are continuous at x0 and m = 1, then the product function fg 
defined by (/g)(x) = /(x)g(x) is continuous at x0. 

(iv) If / : A c W1 -> M is continuous at x0 and nowhere zero on A, then the 
quotient 1 I f is continuous at x0, where (1 / / )(x) = 1 / /(x). 

(v) If / : A c IT Mm and / (x ) = ( / i (x ) , . . . , /m(x)), then / is continuous 
at xo if and only if each of the real-valued functions f\,..., fm is continuous 
at x0. 

A variant of (iv) is often used: If /(XQ) ^ 0 and / is continuous, then / (x ) / 0 
in a neighborhood of xo and so 1 / / is defined in that neighborhood, and 1 / / is 
continuous at XQ. 

Let / : M2 -> M2, (x, y) (.x2y, (y + x3)/(l + x2)). Show that 
/ is continuous. 

SOLUTION To see this, it is sufficient, by property (v) of Theorem 4, to show 
that each component is continuous. As we have mentioned, any polynomial in two 
variables is continuous; thus, the map (jc, y) x2y is continuous. Because 1 + x 2 

is continuous and nonzero, by property (iv), we know that 1/(1 + x 2 ) is continu-
ous; hence, (y + x3) /( l +x2) is a product of continuous functions, and by (iii) is 
continuous. A 

Similar reasoning applies to examples like the function c: M —> M3 given by 
c( t ) = (i2, 1, / 3 / ( l + t2)) to show they are continuous as well. 

C o m p o s i t i o n 

Next we discuss composition, another basic operation that can be performed on func-
tions. If g maps A to B and / maps B to C, the composition of g with / , or of / on 
g, denoted by f o g , maps A to C by sending x h^ /(g(x)) (see Figure 2.2.15). For 
example, sin (x2) is the composition o f x \ - ^ x 2 with y sin y. 
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THEOREM 5: Continuity of Compositions Let g: A c IT Mw 

and let / : B C Mw W. Suppose g(A) C B, so that / o g is defined on A. 
If g is continuous at XQ £ and / is continuous at yo = g(xo), then / o g is 
continuous at XQ. 

The intuition behind this is easy; the formal proof in the Internet supplement 
follows a similar pattern. Intuitively, we must show that as x gets close to x0, / (g(x)) 
gets close to /(g(x0)) . But as x gets close to x0, g(x) gets close to g(x0) (by continuity 
of g at xo); and as g(x) gets close to g(xo), / (g(x)) gets close to /(g(xo)) [by continuity 
o f / a t g ( x 0 ) ] . 

Let f ( x , y, z) = (x2 + y2 + z2)30 + sin z3. Show that / is 
continuous. 

S O L U T I O N Here we can write / as a sum of the two functions (x2 + y2 + z2)30 

and sin z3, so it suffices to show that each is continuous. The first is the composite 
of (x,y,z)\-+ (x2 H- y2 -f- z2) with u U30, and the second is the composite of 
(JC, y, z) h^ z3 with u sin u, and so we have continuity by Theorem 5. A 

We now state a theorem (proved in the Internet supplement for Chapter 2) giving 
a useful formulation of the notion of limit in terms of epsilons and deltas that is 
often taken as the definition of limit. This is, in fact, another way of making precise 
the intuitive statement that " / ( x ) is close to b when x is close to XQ." To help understand 
this formulation, the reader should consider it with respect to each of the examples 
already presented. 

T H E O R E M 6 Let and let x0 be in A or be a boundary point 
of A. Then limit / ( x ) = b if and only if for every number e > 0 there is a 8 > 0 

X-̂Xo 
such that for any x e A satisfying 0 < ||x — x0|| < <5, we have | | / (x) — b|| < e (see 
Figure 2.2.16). 

To illustrate the methodology of the epsilon-delta technique in Theorem 6, we 
consider the following examples. 

S O L U T I O N Note that if 8 > 0, ||(jc, y) - (0, 0)|| = yjx2+y2 < 8 implies 
|JC - 0| = |JC| = yfx2 < y/x2 + y2 < 8. Thus, if ||(JC, y) - (0, 0)|| < 8, then |JC - 0| 
is also less than 8. Given e > 0, we are required to find a 8 > 0 (generally depending 
on e) with the property that 0 < ||(x, y) — (0, 0)|| < 5 implies |jc — 0| < e. What are 
we to pick as our 81 From the preceding calculation, we see that if we choose 8 = 8, 

Limits in Terms of e9s and 89s 

Show that limit x = 0 using the e-8 method. 
(x,30^(0,0) 
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Figure 2.2.16 The geometry of the s-8 definition of limit. 

then ||(x, y) — (0, 0)|| < 8 implies |JC — 0| < e. This shows that limit x = 0. Given 
(*,>>)-• (0,0) 

s > 0, we could have also chosen 8 = e/2 or e/3, but it suffices to find just one 8 
satisfying the requirements of the definition of a limit. A 

i ^ J i a i f l Consider the function 

sin(x2 + y2) 
f(*,y) = x2 +y2 

Even though / is not defined at (0, 0), determine whether f(x,y) approaches some 
number as (x, y) approaches (0, 0). 

S O L U T I O N From one-variable calculus or L'Hopital's rule we know that 

. sin a 
limit = 1. 
a—»0 a 

Thus, it is reasonable to guess that 

r ^ ^ r s i n »vll2 i limit f (v) = limit — = 1. 

v—»(0,0) v—»(0,0) || v|| 

Indeed, because limit (sin a ) / a = 1, given e > 0 we are able to find a 8 > 0, with 
a-»0 

0 < 8 < 1, such that 0 < |a | < 8 implies that |( sin a ) / a — 1| < s. If 0 < ||v|| < 8, 
then 0 < ||v||2 < 82 < 8, and therefore 

l / (v)- l | = 
sin ||v||2 

< £. 

Thus, limit / (v ) = 1. If we plot [sin (x2 + y2)]/(x2 + y2) on a computer, we get a 
v-»(0,0) 

graph that is indeed well behaved near (0, 0) (Figure 2.2.17). A 
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Figure 2.2.17 Graph of 
the function f(x,y) = 
[sin(x2 + y2)]/(x2 + y2). 

E X A M P L E 14 Show that 

limit 
(x,y)->{0,0) yjx2 -f- y: = 0. 

S O L U T I O N We must show that x2/yfx2 + y2 is small when (x, y) is close to the 
origin. To do this, we use the following inequality: 

0 < 
x2-hy2 

y/x2 + y2 yjx2 + y2 (because y2 > 0) 

Given £ > 0, choose 8 = s. Then \\(x, y) - (0, 0)|| = ||(x, _y)|| = yjx2 -hy2, and so 
||(x, y) - (0, 0)|| < 8 implies that 

J 2 
0 

y f ^ + J 2 < y/x2+y2 = \\(x,y)-(0, 0)11 = 

Thus, the conditions of Theorem 6 have been fulfilled and the limit is verified, A 

[ S l î Q ^ m j (a) Does 

limit x2/(x2 + y2) 
(x,y)-+( 0,0) 

exist? [See Figure 2.2.18(a).] 
(b) Prove that [see Figure 2.2.18(b)] 

t. . lx2y 
limit ——~~r = 0. 

(*o0->(o,o) x2 4- y2 
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As (x, y) approaches 
(0, 0) along this 
ridge, z 1 

As (x, y) approaches 
(0, 0) in this 
valley, z -> 0 

y 

Figure 2.2.18 (a) The function z = x2/(x2 + y2) has no limit at (0, 0). (b) The 
function z = (2x2y)/(x2 + y2) has limit 0 at (0, 0). 

S O L U T I O N (a) If the limit exists, x2/(x2 + y2) should approach a definite 
value, say a, as (x, y) gets near (0, 0). In particular, if (x, y) approaches zero along 
any given path, then x2 / (x2 + y2) should approach the limiting value a. If (x,>>) 
approaches (0, 0) along the line y = 0, the limiting value is clearly 1 (just set y = 0 
in the preceding expression to get x2/x2 = 1). If (x, y) approaches (0, 0) along the 
line x = 0, the limiting value is 

°2 

lim — r = 
y ^ o 0 + y 

Hence, limit x2 /(x2 + v2) does not exist. 
0,0) 

(b) Note that 

0 / 1 . 

2 x2y 
< 

2 x2y 
x2 -hy2 X2 = 2\y\. 

Thus, given e > 0, choose 8 = e/2; then 0 < ||(x, y) - (0, 0)|| = Jx2 + y2 < 8 
implies < 8, and thus 

2X2>> 
x y 

0 <28 8. 

Using the s-8 notation, we are led to the following reformulation of the definition 
of continuity. 

! - > THEOREM 7 Let / : A c 
if and only if for every number 

x e A and ||x — X Q | | <8 

, ^ ^ given. Then / is continuous at xo e A 
£ > 0 there is a number 8 > 0 such that 

1 be i 

implies l l / ( x ) - / ( x 0 ) | | < e. 

The proof is almost immediate. Notice that in Theorem 6 we insisted that 
0 < ||x — x0||, that is, x / x0. That is not imposed here; indeed, the conclusion of 
Theorem 7 is certainly valid when x = XQ, and so there is no need to exclude this 
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case. Here we do care about the value of / at xo; we want / at nearby points to be 
close to this value. 

EXERCISES 

In the following exercises the reader may assume that the exponential, sine, and cosine 
functions are continuous and may freely use techniques from one-variable calculus, such as 
UHopital s rule. 

Show that the subsets of the plane in Exercises 1-4 are open: 

1. A = l(x,y) | - 1 < a- < 1, - 1 < v < 1} 

2. B = {(x,y)\y>0} 

3 . C = {(x,y) | 2 < x2+y2 < 4} 

4. D = {(*, y) \ x ^ 0 and y ^ 0} 

5. Compute the limits: 
eh — 1 

(a) limit x3y (c) limit . 
(x,y)^( 0,1) h^O h 

x . cos* - 1 
(b) limit JC2 

6. Compute the following limits: 
. sin2jc 

(a) limit ery (c) limit — — 

(b) limit 
sin2 JC 

7. Compute the following limits: 

9 (x + h)2 

(a) limit(x - 3x + 5) (c) limit - 7 
jc—>3 h-+ 0 h 

(b) limit sin x 
jc->0 

8. Compute the following limits if they exist: 

, , v f {x + y?-(x-y? v .. 
(a) limit (c) limit — 

(x,y)-+ (0,0) xy (x,y)-*(0,0) x2 + y2 

. sin xy 
(b) limit -(*,;>)-• (0,0) y 

9. Compute the following limits if they exist: 

exy — 1 xv 
(a) limit (c) limit 

(x,y)~* (0,0) y (x,y)-± (0,0) X2 + y2 + 2 

V -f cosjxy)- 1 
(b) limit — 

(*o0-(0.0) x2y2 
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10. Compute the following limits, if they exist: 
exy

 (JC - y)2 

(a) limit (c) limit \ % 
{x,y)-> (0,0) X + 1 {x,y)-+ (0.0) X 2 + y 2 

• cos* - 1 - (x2/2) 
(b) limit 

(jr,jO-( 0,0) x4+y4 

11. Compute the following limits if they exist: 
. sin xy 

(a) limit -
(•*»>') ~(0,0) xy 

• sin ( x y z ) 
(b) limit — 

(x,y,z)~* (0,0,0) xyz 
(c) limit fix, V, z), where fix, v, z) = (x2 + 3v2)/(x + 1). 

(x,y,z)~* (0,0,0) 

12. Compute the following limits if they exist: 
s i n 2 .X — 2x . 2 X 2 J > C O S Z 

(a) limit (c) limit — — 
* - > 0 X3 (x,y,z)-> (0,0,0) X 2 + y 2 

. sin2x — 2x y 
(b) limit -

(•*»>') (0.0) x3+y 

13. Compute limit / (x) , if it exists, for the following cases: 
x-*x 0 

(a) f:R-+R,x i-> | x | , x 0 = 1 
(b) / : Rn -> R, x i-> ||x||, arbitrary x0 

(c) f:R-> M2, x i-» ( x 2 , ex), x0 = 1 
(d) / : R2\{(0, 0)} - > M2, ( x , y) i-> ( s i n ( x - y), e x ^ - JC - l ) / | | ( x , y)||, x0 = (0, 0). 

14. Let A c R2 be the open unit disk Dx (0, 0) with the point x0 = (1, 0) added, and let 
/: A -> R, x / ( x ) be the constant function / (x ) = 1. Show that limit / ( x ) = 1. 

x-»xo 

15. If / : M" M and g: R" -> M are continuous, show that the functions 

f2g: M" —» R, x [/(x)]2g(x) 

and 

/ 2 + g: M" ^ ]R, x i-> [/(x)]2 + g(x) 

are continuous. 

16. (a) Show that / : R M, x i-> (1 - x)8 + cos (1 + JC3) is continuous, 
(b) Show that the map / : R R, x i-» x2e* / (2 — sinx) is continuous. 

17. (a) Can [sin (JC + y)]/(x + y) be made continuous by suitably defining it at (0, 0)? 
(b) Can xy/(x2 + y2) be made continuous by suitably defining it at (0, 0)? 
(c) Prove that f:R2->R,(x,y) i-» yex + sinx + (xy)4 is continuous. 

18. Using either s's and 8's or spherical coordinates, show that 

• x y z 

limit — = 0. 
{x,y,z)-+ (0,0,0) X2 + y2 + z 2 



2.3 Differentiation 127 

19. Use the e-8 formulation of limits to prove that x2 -> 4 as x -> 2. Give another proof 
using Theorem 3. 

20. (a) Prove that for x e M" and s <t, Ds(x) c D,(x). 
(b) Prove that if U and V are neighborhoods o f x e M " , then so are U n V and U U F . 
(c) Prove that the boundary points of an open interval {a, b) C R are the points a and b. 

21. Suppose x and y are in R" and x ^ y. Show that there is a continuous function 
/ : R" R with / (x) = 1, / (y ) = 0, and 0 < / (z ) < 1 for every z in R". 

22. Let / : A c Rn R be given and let x0 be a boundary point of A. We say that 
limit f(x) — oo if for every N > 0 there is a 8 > 0 such that 0 < ||x — x01| <8 and x e A 
X-+X0 
implies / (x ) > N. 

(a) Prove that limit (x — \)~2 = oo. 
1 

(b) Prove that limit \/\x\ = oo. Is it true that limit 1 /x = oo? 
jc-»0 JC->0 

(c) Prove that limit \/{x2 + v2) = oo. 

23. Let b e R and / : R\[b] -> R be a function. We write limit f ( x ) = L and say that L 
x-th-

is the left-hand limit of / at b, if for every e > 0, there is a 5 > 0 such that x < b and 
0 < \x — b\ < 8 implies \f(x) — L\ < £. 

(a) Formulate a definition of right-hand limit, or limit / (x) . 
(b) Find limit 1/(1 + and limit 1/(1 + el/x). 
(c) Sketch the graph of 1 /(I + ex>x\ 

24. Show that / is continuous at x0 if and only if 

limit | | /(x) - /(x0) | | = 0. 
X - > X 0 

25. Let / : A C M" satisfy | |/(x) - /(y)| | <K\\x- y||a for all x and y in A for 
positive constants K and a. Show that / is continuous. (Such functions are called 
Holder-continuous or, if a = 1, Lipschitz-continuous.) 

26. Show that / : R" -> Rm is continuous at all points if and only if the inverse image of 
every open set is open. 

27. (a) Find a specific number 8 > 0 such that if \a\ < 8, then |a3 + 3a2 + a\ < 1/100. 
(b) Find a specific number 8 > 0 such that if x2 + y2 < 8 2 , then 

\x2 ~by2 + 3xy + \S0xy5\ < 1/10,000. 

2.3 Differentiation 
In Section 2.1 we considered a few methods for graphing functions. By these methods 
alone it may be impossible to compute enough information to grasp even the general 
features of a complicated function. From elementary calculus we know that the idea 
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of the derivative can greatly aid us in this task; for example, it enables us to locate 
maxima and minima and to compute rates of change. The derivative also has many 
applications beyond this, as the student surely has discovered in elementary calculus. 

Intuitively, we know from our work in Section 2.2 that a continuous function is 
one that has no "breaks" in its graph. A differentiate function from M2 to M ought to 
be such that not only are there no breaks in its graph, but there is a well-defined plane 
tangent to the graph at each point. Thus, there must not be any sharp folds, corners, 
or peaks in the graph (see Figure 2.3.1). In other words, the graph must be smooth. 

Pa r t i a l De r iva t i ve s 

To make these ideas precise, we need a sound definition of what we mean by the 
phrase " / ( x \ , . . . , xn) is differentiable at x = (x\,..., Actually, this definition 
is not quite as simple as one might think. Toward this end, however, let us introduce 
the notion of the partial derivative. This notion relies only on our knowledge of one-
variable calculus. (A quick review of the definition of the derivative in a one-variable 
calculus text might be advisable at this point.) 

DEFINITION: Partial Derivatives Let U C M" be an open set and suppose 
/: U C W1 —• M is a real-valued function. Then df/dx\,..., df/dxn, the par-
tial derivatives of / with respect to the first, second, . . . , nih. variable, are the 
real-valued functions of n variables, which, at the point (x\,..., xn) = x, are 
defined by 

a / f(xx,x2,...,Xj +h,...,xn)- f(xu...,x„) —~(xu • • •, xn) = lim -
dXj h^ o h 

— lim 
h —> 0 

/ ( x + hej) — / (x ) 
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if the limits exist, where 1 < j < n and e7 is the j th standard basis vector defined 
by e7 = ( 0 , . . . , 1 , . . . , 0), with 1 in the y'th slot (see Section 1.5). The domain 
of the function df/dxj is the set of x e W1 for which the limit exists. 

In other words, df/dx j is just the derivative of / with respect to the variable 
x j , with the other variables held fixed. If / : . we shall often use the notation 
df/dx, df/dy, a / / az inp iaceofa / / a j c i , a / /a*2, a / / a x 3 . i f / : u c : 
we can write 

,then 

f(xU ...,*„) = (fl(x\, • • . , * „ ) , . . . , fm(x 1, 

so that we can speak of the partial derivatives of each component; for example, 
dfm/dxn is the partial derivative of the mth component with respect to xn, the nth 
variable. 

E X A M P L E 1 If / ( x , y) = x2y + y3, find d f /3x and df/dy. 

S O L U T I O N To find df/dx we hold y constant (think of it as some number, say 1) 
and differentiate only with respect to x; this yields 

df d t f y + y') 
2 xy. 

dx dx 

Similarly, to find d f / d y we hold x constant and differentiate only with respect to y: 

df d(x2y+y3) 
dy dy = xz + 3yz. 

To indicate that a partial derivative is to be evaluated at a particular point, for 
example, at (XQ , Ĵ Q), we write 

d f 

dx (*o, yo) or 
dl 

dx 
or 

ax (*o ,vo ) 

When we write z = f(x, y) for the dependent variable, we sometimes write dz/dx 
for df/dx. Strictly speaking, this is an abuse of notation, but it is common practice 
to use these two notations interchangeably. 

E X A M P L E 2 If z = cos xy + x cosy = f(x,y), find the two partial derivatives 
(dz/dx) (x0, yo) and (dz/dy)(x0, >>o)-

S O L U T I O N First we fix >>o and differentiate with respect to x, giving 

az d(cosxyo + x cos^o) 
—(^0,^0) = 1 
dx dx X = X Q 

= (-yo sinxj^o + cos j>o)L^*0 

= -J^o sinxo^o + cos yo • 
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Similarly, we fix XQ and differentiate with respect to y to obtain 

dz ¿/(cos xoy + xo cos y) 
—(x0,y0) = 

y=yo dy dy 

= (~xo sinx0y - x0 smy)\y=yo 

= —xq sinxoj>o — xo sin jo- ^ 

E X A M P L E 3 Find df/dx if f(x, y) = xy/Jx2+y2. 

S O L U T I O N By the quotient rule, 

9/ yy/*2 + y2 ~ xy(x/jx2 + y2) y(x2-\-y2)-x2y y3 

dx x2 + >>2 (x2 + y2)3/2 (x2 + y2)3'2' 

A definition of differentiability that requires only the existence of partial deriva-
tives turns out to be insufficient. Many standard results, such as the chain rule for 
functions of several variables would not follow, as Example 4 shows. Below, we shall 
see how to rectify this situation. 

E X A M P L E 4 Let f(x, y) = xl/3yl/3. By definition, 

^ ( 0 , 0) = limit / ( * ' ° > - / ( ° ' ° > = l i m i t dx h^O h h^o h 

and, similarly, (df/dy)(0, 0) = 0 (these are not indeterminate forms!). It is necessary 
to use the original definition of partial derivatives, because the functions x1^3 and y1 / 3 

are not themselves differentiate at 0. Suppose we restrict / to the line y = x to get 
f ( x , x) = x2/3 (see Figure 2.3.2). We can view the substitution y — JC as the compo-
sition / o g of the function g: R —> M2, defined by g(x) = (x, x), and / : M2 —> R, 
defined by f ( x , y) = x1/3>^1/3. 

Thus, the composite / o g is given by ( / o g)(x) = x2 / 3 . Each component of g is 
differentiate in x, and / has partial derivatives at (0,0), but / o g is not differentiable 
at x = 0, in the sense of one-variable calculus. In other words, the composition of f 
with g is not differentiable in contrast to the calculus of functions of one variable, where 
the composition of differentiable functions is differentiable. Below, we shall give a 
definition of differentiability that has the pleasant consequence that the composition 
of differentiable functions is differentiable. 

There is another reason for being dissatisfied with the mere existence of partial 
derivatives of f(x,y) = xx/3yx/3\ There is no plane tangent, in any reasonable sense, 
to the graph at (0, 0). The xy plane is tangent to the graph along the x and y axes 
because / has slope zero at (0, 0) along these axes; that is, df/dx = 0 and df /dy = 0 
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Figure 2.3.2 The portion of the graph of 
x i /3j , i/3 j n t h e ^ r s t q u a ( i r a n t . 

at (0, 0). Thus, if there is a tangent plane, it must be the xy plane. However, as is 
evident from Figure 2.3.2, the xy plane is not tangent to the graph in other directions, 
because the graph has a severe crinkle, and so the xy plane cannot be said to be 
tangent to the graph of / . A 

The Linear Approximation 
To "motivate" our definition of differentiability, let us compute what the equation of 
the plane tangent to the graph of / : M2 M, (x, y) f(x,y) at (xo, Jo) ought to 
be if / is smooth enough. In R3, a nonvertical plane has an equation of the form 

z = ax + by c. 

If it is to be the plane tangent to the graph of / , the slopes along the x and y axes 
must be equal to df/dx and df/dy, the rates of change of / with respect to x and y. 
Thus, a = df/dx, b = df/dy [evaluated at (x0, Jo)]- Finally, we may determine the 
constant c from the fact that z = /(xo, yo) when x = xo, y = yo- Thus, we get the 
linear approximation: 

z = fix o, yo) + 
dl 
dx Oo, yo) (x - X o ) + yo) (y - yo), (i) 

which should be the equation of the plane tangent to the graph of / at (xo, .yo), if / 
is "smooth enough" (see Figure 2.3.3). 

Our definition of differentiability will mean in effect that the plane defined by 
the linear approximation (1) is a "good" approximation of / near (x0, Jo)- To get an 
idea of what one might mean by a good approximation, let us return for a moment to 
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z Tangent plane 
of graph / at 

(xo,yo,f(xo,yo)) 

Figure 2.3.3 For points (.x, y) near (xo, yo), the 
fro.Wfr&.Vo)) g r aph of the tangent plane is close to the graph of / . 

(*o,.H>) 

-fry) 

one-variable calculus. If / is differentiable at a point xo, then we know that 

limit — + — ~ = /'(Jt0). 
Ax->o AX 

Let x = xo + Ax and rewrite this as 

limit f { X ) - / ( X 0 ) = /'(xo). 
X — Xo 

Using the trivial limit limit / ' (x 0 ) = /'(xo), we can rewrite the preceding equation as 
x-̂ xo 

limit / ( X ) - / ( X 0 ) = limit / '(xo); 
x-»x0 X — Xo x-*x0 

that is, 

limit \f(x)~fix0)-f(x0)]=0-
X̂-XQ |_ X — XO 

that is, 

H m i t / ( x ) - / (x 0 ) - f'(x0)(x - xp) = Q 

x-+x0 X — X o 

Thus, the tangent line / through (x0, / (x 0 ) ) with slope / '(*o) is close to / in the sense 
that the difference between / ( x ) and /(x) = / (x 0 ) + / '(x0)(x — x0), the equation of 
the tangent line goes to zero even when divided by x — xo as x goes to xo- This is the 
notion of a "good approximation" that we will adapt to functions of several variables, 
with the tangent line replaced by the tangent plane [see equation (1), given earlier]. 
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Differentiability for Functions of Two Variables 
Using the linear approximation, we are ready to define the notion of differentiability. 

D E F I N I T I O N : Differentiable: Two Variables Let / : M2 M. We say / 
is differentiable at (x0, jo), if df/dx and d f / d y exist at (x0, and if 

/(*> y) - f(xo> jo) -
' 9 / 1 
—(*o, Jo) (x - x0) f 3 J 

. J o ) ] Oo, Jo) ( j - J o ) 

||(x, j ) - ( * o , Jo) II 

as (x, j ) (x0, jo)- This equation expresses what we mean by saying that 

" V , 

(2) 

f(x0, Jo) + 
ax (*o,yo) (x - XO) + j 0 ) j ( j - Jo) 

is a good approximation to the function / . 

It is not always easy to use this definition to see whether / is differentiable, but 
it will be easy to use another criterion, given shortly in Theorem 9. 

Tangent Plane 
We have used the informal notion of the plane tangent to the graph of a function 
to motivate our definition of differentiability. Now we are ready to adopt a formal 
definition of the tangent plane. 

D E F I N I T I O N : Tangent Plane Let / : M2 M be differentiable at x0 = 
(x0, jo). The plane in M3 defined by the equation 

Z = / O o , Jo) + 
r a / i r a / 
I äx y o > > r x ~ Xo>} + 1 â j Jo) ( J - Jo), 

is called the tangent plane of the graph of / at the point (XQ, jo). 

E X A M P L E 5 Compute the plane tangent to the graph of z = x2 + y4 + e*y at 
the point (1,0, 2). 

S O L U T I O N Use formula (1), with x0 = 1, jo = 0, and z0 = / ( x 0 , jo) = 2. The 
partial derivatives are 

— =2x+yeKy 

dx 
and — =4y3+xexy. 8y 
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At (1, 0, 2), these partial derivatives are 2 and 1, respectively. Thus, by formula (1), 
the tangent plane is 

z = 2(x - 1) + 1 (y - 0) + 2, that is, z = 2x + y. A 

Let us write D/(xo, yo) for the row matrix 

" V 3 / 
T-OO^O) — (*o,Jo) _dx dy 

so that the definition of differentiability asserts that 

f(x0,y0) + vf(xo,yo)[x
yZx

y°o] 

= fix0, yo) + »>](, - X0) + ^(A'o, >'o)j(>' -yo) (3) 

is our good approximation to / near (xo,jo)- As earlier> "good" is taken in 
the sense that expression (3) differs from f(x,y) by something small times 
y/(x — *o)2 + (y ~ yo)2- We say that expression (3) is the best linear approxima-
tion to / near (xo, Jo)-

Differentiability: The General Case 
Now we are ready to give a definition of differentiability for maps / of W1 to Mw, using 
the preceding discussion as motivation. The derivative D/(x0) of / = ( / i , . . . , fm) 
at a point x0 is a matrix T whose elements are Uj = dfi/dxj evaluated at x0.2 

DEFINITION: Differentiable, n Variables, m Functions Let U be an open 
set in W1 and let / : U C W1 -> Mm be a given function. We say that / is differ-
entiable at xo e U if the partial derivatives of / exist at x0 and if 

limit H / ( x ) - / ( x o ) - T ( * - * o ) H = o 
Ji^xo l | x - X 0 | | (4) 

where T = D / ( x 0 ) is the m x n matrix with matrix elements df/dxj evaluated 
at xo and T(x — XQ) means the product of T with x — xo (regarded as a column 
matrix). We call T the derivative of / at x0. 

2 It turns out that we need to postulate the existence of only some matrix giving the best linear approximation near xo e W , 
because in fact this matrix is necessarily the matrix whose ijth entry is 3 ft /dxj (see the Internet supplement for Chapter 2). 
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We shall always denote the derivative T of / at x0 by D/(x0) , although in some 
books it is denoted df (x0) and referred to as the differential of / . In the case where 
m = 1, the matrix T is just the row matrix 

3f 
^ - ( x o ) 
OX 1 M 

(Sometimes, when there is danger of confusion, we separate the entries by commas.) 
Furthermore, setting n = 2 and putting the result back into equation (4), we see that 
conditions (2) and (4) do agree. Thus, if we let h = x — x0, a real-valued function / 
of n variables is differentiate at a point x0 if 

limit 
h-»0 

1 

because 

/ ( x 0 + h) - / (x 0 ) - J 2 ¥ - ( x o ) h j 
j=l °XJ 

T h = È h J ^ o). 

= 0, 

7 = 1 

For the general case of / mapping a subset of W1 to 
m x n matrix given by 

the derivative is the 

D/(x0) = 

dA 

dx\ 

_ 3xi 

dxn 

Vm 
dxn _ 

where d f / d x j is evaluated at x0. The matrix D/(x0) is, appropriately, called the 
matrix of partial derivatives of f at x0. 

E X A M P L E 6 Calculate the matrices of partial derivatives for these functions. 

(a) f(x,y) = (e*+y+y,y2x) 

(b) f(x, y) = (x2 + cos^, ye?) 

(c) f(x,y,z) = (zex, -yez) 

S O L U T I O N 

(a) Here / : R2 R2 is defined by f\(x,y) = ex+^ + y and f2(x,y) = y2x. 
Hence, D/(x, y) is the 2 x 2 matrix 

ex+y ex+y + j 

y2 2 xy 
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(b) We have 

[ 2x —sinj ~ 
Wx>y)=lye< e* * 

(c) In this case, 

, \zex 0 ex 1 

Gradients 
For real-valued functions we use special terminology for the derivative. 

DEFINITION: Gradient Consider the special case / : U C W -> M. 
Here D/(x) is a 1 x n matrix: 

Idxi dxn\ 

We can form the corresponding vector (df/dx\,..., df/dxn), called thQ gradient 
of / and denoted by V / or grad / . 

From the definition, we see that for / : M3 

while for / : 

df df df 
dx oy dz 

3 / 3 / 

The geometric significance of the gradient will be discussed in Section 2.6. In 
terms of inner products, we can write the derivative of / as 

E X A M P L E 7 

D/(x)(h) = V/ (x ) .h . 

Let / : M3 -> R, f(x,y, z) = xey. Then 

dy dz J 
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E X A M P L E 8 If / : R2 -> R is given by (x, y) exy 4- sinx>>, then 

Y f ( x , y ) = (yexy 4- y cosx^)i 4- (xexy 4- x cosx>>)j 

= (exy + cos xy)( yi + x j). A 

In one-variable calculus it is shown that if / is differentiate, then / is continuous. 
We will state in Theorem 8 that this is also true for differentiate functions of several 
variables. As we know, there are plenty of functions of one variable that are continuous 
but not differentiable, such as f(x)= \x\. Before stating the result, let us give an 
example of a function of two variables whose partial derivatives exist at a point, but 
which is not continuous at that point. 

E X A M P L E 9 Let / : R2 R be defined by 

[ 1 if x = 0 or if y 
10 otherwise. 

Because / is constant on the x and y axes, where it equals 1, 

df df 
7~(0, 0) = 0 and 7~-(0, 0) = 0. ox oy 

But / is not continuous at (0, 0), because limit f(x,y) does not exist. A 
-» (0.0) 

Some Basic Theorems 
The first of these basic theorems relates differentiability and continuity. 

T H E O R E M 8 Let / : U C Rn -> Rm be differentiable at x0 e U. Then / is 
continuous at XQ. 

This result is very reasonable, because "differentiability" means that there is 
enough smoothness to have a tangent plane, which is stronger than just being contin-
uous. Consult the Internet supplement for Chapter 2 for the formal proof. 

As we have seen, it is usually easy to tell when the partial derivatives of a function 
exist using what we know from one-variable calculus. However, the definition of dif-
ferentiability looks somewhat complicated, and the required approximation condition 
in equation (4) may seem, and sometimes is, difficult to verify. Fortunately, there is 
a simple criterion, given in the following theorem, that tells us when a function is 
differentiable. 

T H E O R E M 9 Let / : U c Rw -> Rm . Suppose the partial derivatives dfi/dxj 
of / all exist and are continuous in a neighborhood of a point x e U. Then / is 
differentiable at x. 
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We give the proof in the Internet supplement for Chapter 2. Notice the following 
hierarchy: 

Definition 
Theorem 9 of derivative 

i i 
Continuous partials Differentiate Partials exist 

Each converse statement, obtained by reversing an implication, is invalid. [For a 
counterexample to the converse of the first implication, use / ( x ) = x2 sin(l/x), 
/ ( 0 ) = 0; for the second, see Example 1 in the Internet supplement for Chapter 2 or 
use Example 4 in this section.] 

A function whose partial derivatives exist and are continuous is said to be of class 
C1. Thus, Theorem 9 says that any Cl function is differentiable. 

E X A M P L E 10 Let 

cosx+e*^ 
f(x>y)= 2 i 2 * 

X2 +y2 

Show that / is differentiable at all points (x,y) ^ (0, 0). 

S O L U T I O N Observe that the partial derivatives 

9 / _ (* + y )(ye*y ~ s i n * ) - 2x(cosx + 
dx ~ (x2+y2)2 

3/ _ (x2 + y2)xexy - 2><cos x + exy) 
" (x2+y2)2 

are continuous except when x = 0 and y = 0 (by the results in Section 2.2). Thus, / 
is differentiable by Theorem 9. • 

In the Internet supplement we show that f(x,y) = xy/y/x2 + y2 [with 
/ ( 0 , 0) = 0] is continuous, has partial derivatives at (0, 0), yet is not differentiable 
there. See Figure 2.3.4. By Theorem 9, its partial derivatives cannot be continuous at 
(0,0). 
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Z 

y 

F i g u r e 2.3.4 This function is not d i f ferent ia te 
at (0, 0), because it is "crinkled." 

X 

E X E R C I S E S 

1. Find df/dx, df/dy if 

(a) f(x,y) = xy 
(b) f(x, y) = e*y 

(c) f(x,y) = xcosxcosy 
(d) f(x,y) = (x2+y2)\og(x2+y2) 

2. Evaluate the partial derivatives dz/dx, dz/dy for the given function at the indicated 
points. 

(a) z = J a2 - x 2 - y2; (0, 0), (a/2, a/2]) 
(b) z = log y/TT^y; (1,2), (0, 0) 
(c) z = cos (bx + y); (2n/b, 0) 

3. In each case following, find the partial derivatives dw/dx, dw/dy. 

(a) w = xex2+y2 (d) w —x/y 

(c) w = exy \og(x2 + y2) 

4. Show that each of the following functions is differentiable at each point in its domain. 
Decide which of the functions are C1. 

(e) w = cos^e^sin.* 

,2 

(b) f(x,y)=- + y-
y * 

(c) f(r, 6) = ^r sin20, r > 0 
x 

2 

(e) f(x,y)=JLL 
x4 + 1 
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5. Find the equation of the plane tangent to the surface z = x2 +y3 at (3, 1, 10). 

6. Using the respective functions in Exercise 1, compute the plane tangent to the graphs at 
the indicated points. 

(a) (0,0) ( b ) ( 0 , l ) (C)(0,TT) (d) (0, 1) 

7. Compute the matrix of partial derivatives of the following functions: 

(a) f : R 2 ^ R 2 , f ( x , y ) = (x,y) 
(b) / : IR2 M3, f ( x , y) = (xey + cosy , x, x + ey) 
(c) / : M3 M2, f ( x , y, z) = (x + ez + y, yx2) 
(d) / : M2 -> f ( x , y) = (xyexy, x sin>>, 5 x y 2 ) 

8. Compute the matrix of partial derivatives of 

(a) f(x,y) = ( e s i n xy) (c) f(x,y) = (x+y,x-y, xy) 
(b) f(x,y,z) = (x-y3y + z) (d) f(x,y,z) = (x+z,y-5z,x-y) 

9. Where does the plane tangent to z = e*~y at (1, 1, 1) meet the z axis? 

10. Why should the graphs of /(JC, y) = x2 + y2 and y) = —x2 — y2 + xy3 be called 
"tangent" at (0, 0)? 

11. Let f ( x , y) = exy. Show that JC(9//3JC) = y(8f/dy). 

12. Use the linear approximation to approximate a suitable function f(x,y) and thereby 
estimate the following: 

(a) (0.99e002)8 

(b) (0.99)3 + (2.01)3 - 6(0.99)(2.01) 
(c) y(4.01)2 +(3.98)2 + (2.02)2 

13. Compute the gradients of the following functions: 

(a) f(x,y,z) = x exp (—x2 — y2 — z2) (Notethatexp u = eu.) 
xyz 

(b) f i x , y, z) = (c) f ( x , y, z) = z V cosy 
x1 + yz + zz 

14. Compute the tangent plane at (1, 0, 1) for each of the functions in Exercise 13. [The 
solution to part (c) only is in the Study Guide.] 

15. Find the equation of the tangent plane to z = x2 + 2y3 at (1, 1,3). 

16. Calculate V/z(l, 1, 1) if h(x, y, z) = (x + z)e?~y. 

17. Let f ( x , y, z) = x2 + y2 - z2. Calculate V/(0, 0, 1). 

18. Evaluate the gradient of/(JC, y, z) = log(x2 + y2 + z2) at (1, 0, 1). 
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19. Describe all Holder-continuous functions with a > 1 (see Exercise 25, Section 2.2). 
(HINT: What is the derivative of such a function?) 

20. Suppose / : is a linear map. What is the derivative of / ? 

2.4 Introduction to Paths and Curves 
In this section, we introduce some of the basic geometry and computational methods 
for paths in the plane and space. This will be an important ingredient for the chain 
rule treated in the next section. We will return to paths with additional topics in 
Chapter 4. 

Paths and Curves 
One often thinks of a curve as a line drawn on paper, such as a straight line, a circle, 
or a sine curve. It is useful to think of a curve C mathematically as the set of values 
of a function that maps an interval of real numbers into the plane or space. We shall 
call such a map a path. We usually denote a path by c. The image C of the path then 
corresponds to the curve we see on paper (see Figure 2.4.1). Often we write t for the 
independent variable and imagine it to be time, so that c(i) is the position at time t of 
a moving particle, which traces out a curve as t varies. We also say c parametrizes 
C. Strictly speaking, we should distinguish between c( t ) as a point in space and as a 
vector based at the origin. 

c(b) 

curve C = image of c 

Figure 2.4.1 The map c is the path; its 
image C is the curve we "see." 

E X A M P L E 1 The straight line L in R through the point (xo, y0, z0) in the 
direction of vector v is the image of the path 

c(0 = fa, yo, ZQ) + t\ 

for t e l (see Figure 2.4.2). Thus, our notion of curve includes straight lines as special 
cases. A 
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c(0= (x0,y09z0) + t\ 

(xo>yo,Zo) 
Figure 2.4.2 L is the straight line in space through 
(xo, yo, ^o) and in direction v; its equation is 
c ( 0 = (xo,yo,zo) + t\. 

EXAMPLE 2 
path 

The unit circle C: x2 + y2 = 1 in the plane is the image of the 

c : K —> c ( t ) = (cos t, sin t), O < t < 2JT, 

(see Figure 2.4.3). The unit circle is also the image of the path c(i) = (cos 21, sin 21), 
0 < t < 7r. Thus, different paths may parametrize the same curve. A 

Figure 2.4.3 c(i) = (cos t, sin ¿) is a path whose image C is the 
x unit circle. 

Paths and Curves A path in W1 is a map c: [a, b] —> W; it is a path in the 
plane if n = 2 and a path in space if n = 3. The collection C of points c(t) as t 
varies in [<a, 6] is called a and c(a) and c(b) are its endpoints. The path c 
is said to parametrize the curve C. We also say c(/) traces out C as t varies. 

IfcisapathinM3 , we can write c(i) = (x(i), y(i), z(/))andwecallx(i), y(t), 
and z{t) the component functions of c. We form component functions similarly 
in M2 or, generally, in W1. 

The path c(t) = (t, t2) traces out a parabolic arc. This curve coin-
cides with the graph f ( x ) = x2 (see Figure 2.4.4). A 
EXAMPLE 3 
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y 

c(-i) = ( - U ) (1, 1)= c(l) 

y=x 2 

X 

Figure 2.4.4 The image of c(t) = (t, t2) is the 
parabola y = x2. 

c(0) = (0,0) 

A wheel of radius R rolls to the right along a straight line at speed 
v. Use vector methods to find the path c(i) of the point on the wheel that initially lies 
at a distance r below the center. 

S O L U T I O N We place the wheel in the xy plane with its center initially at (0, R), 
so that the position of the center at time t is given by the path C ( t ) = (vt, R). (Refer 
to Figure 2.4.5.) 

Figure 2.4.5 The vector d(/) points from the wheel's center, C(t), to the position 
c( t) of a point on the wheel and rotates in the clockwise direction while the wheel 
moves to the right. 

The position of the point c ( t ) relative to the center is given by the vector d(i) = 
c( t ) — C(/) that has the initial value —rj and rotates in the clockwise direction. The 
rate of rotation is such that the wheel makes a full rotation after the center has moved 
a distance 2TTR (equal to the circumference of the wheel). This takes a time 2nR/v, 
so the angular velocity d6/dt of the wheel is v/R. Because the rotation is clockwise, 
the vector function d(i) is of the form 

S ~7~7 
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for some initial angle 0. Because d(0) = —rj, we have cos# = 0 and sin 6 = — 1, so 
6 = — 7r/2, and hence 

m 

Using cos((p — n/2) = sin <p and sin(<p — n/2) = — cosy, along with cos(—<p) • 
cos tp and sin (—cp) = —sin we get 

d(0 
/ vt vt \ 

= r I —sin— i — cos — i . 
V R R J 

Finally, the path c( t) is given by adding the components of the vector function d(/) to 
the coordinates of the path C(t); the result is 

c (0 ( . vt vt vt — r sin —, R —r cos — R R 
In the special case v = R = r — 1, we get c(t) = (t — sin/, 1 — cost). The image 
curve C of this path c is shown in Figure 2.4.6; it is called a cycloid. A 

c (t) = (t - sin t, 1 - cos t) 
/ Figure 2.4.6 The curve traced by a 

point moving on the rim of a rolling 
circle is called a cycloid. 

The preceding example considered the path of a point not necessarily on the rim 
of a wheel rolling along a straight line. When the wheel rolls on a circle, the resulting 
curve is called an epicycle. These are the epicycles discussed in the Ptolemaic theory 
in the introduction. If the wheel is outside the circle and the point is on the rim, the 
curve is called an epicycloid, and when the wheel is inside the circle it is a hypocycloid. 
An example of the latter is shown in Figure 2.4.7. 

7.5 

/ 5 

y 2.5 

-7.5 \ - 5 -2.5 

/ ~ 2 5 

: 2.5 5 I 7.5 

-5 

Figure 2.4.7 An example of a hypocycloid. 
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The French mathematician Blaise Pascal studied the cycloid in 1649 as a 
way of distracting himself at a time when he was suffering from a painful 
toothache. When the pain disappeared, he took it as a sign that God was 
not displeased with his thoughts. Pascal's results stimulated other 
mathematicians to investigate this curve, and subsequently numerous 
remarkable properties were found. One of these was discovered by the 
Dutchman Christian Huygens, who used it in the construction of a 
"perfeet"pendulum clock. 

Velocity and Tangents to Paths 
If we think of c(t) as the curve traced out by a particle and t as time, it is reasonable 
to define the velocity vector as follows. 

DEFINITION: Velocity Vector If c is a path and it is differentiate, we say 
c is a differentiablepath. The velocity of c at time t is defined by3 

c'(0 = lim 
h^ o 

cit + h) - c(t) 
h ' 

We normally draw the vector c'(0 with its tail at the point c(t). The speed of 
the path c(/) is s = ||c'(OII> the length of the velocity vector. If c(t) = (x(t), y(t)) 
in M2, then 

¿(t) = (x'(0,/(0) = x'(t)l + /(0i 

and if c(0 = 0 ( 0 , y(t), z(t)) in M3, then 

c ' ( 0 = (x\t\ y\t\ z(t)) = x'(t)\ + y\t)\ + z'(t)k. 

Here, jc'(0 is the one-variable derivative dx/dt. If we accept limits of vectors inter-
preted componentwise, the formulas for the velocity vector follow from the definition 
of the derivative. However, the limit can be interpreted in the sense of vectors as well. 
In Figure 2.4.8, we see that [c(t -+ h) — c ( t ) ] /h approaches the tangent to the path as 
h -> 0. 

3 If t lies at the endpoint of an interval, one should, as in one-variable calculus, take right- or left-handed limits. 
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Tangent Vector The velocity c'(t) is a vector tangent to the path c(t) at time 
t. If C is a curve traced out by c and if c ' (0 is not equal to 0, then c'(/) is a vector 
tangent to the curve C at the point c(/). 

E X A M P L E 5 

E X A M P L E 6 

If we think of the derivative Dc(/) as a matrix, it will be a column vector with the 
entries x'(t), yf(t), and z'(/). Thus, the derivative here is consistent with our earlier 
notion. 

Compute the tangent vector to the path c(/) = (/, /2, el) at t = 0. 

SOLUTION Here c'(0 = (1,2/, e% and so at t = 0 we obtain the tangent vector 
(1,0,1). A 

Describe the path c(/) = (cos /, sin/, t). Find the velocity vector 
at the point on the image curve where t = TT/2. 

SOLUTION For a given t, the point (cos /, sin /, 0) lies on the circle x2 + y2 = 1 
in the xy plane. Therefore, the point (cos/, sin/, t) lies t units above the point 
(cos/, sin/, 0) if t is positive and —t units below (cos/, sin/, 0) if / is negative. As 
/ increases, (cos /, sin /, /) wraps around the cylinder x2 + y2 = 1 with the z coordi-
nate increasing. The curve this traces out is called a helix, which is depicted in Figure 
2.4.9. At / = JT/2, C'(TT/2) = ( -s in TT/2, cos TT/2, 1) = ( -1 , 0, 1) = - i + k. A 

E X A M P L E 7 The cycloidal path of a particle on the edge of a wheel of radius 
R with velocity v is given by c(/) = (vt — R sin(i)t /R), R — R cos (vt/R)). (See 
Example 4.) Find the velocity c'(t) of the particle as a function of /. When is the 
velocity zero? Is the velocity vector ever vertical? 
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-i + k 

t, t) Figure 2.4.9 The helix c( t ) = (cos t, sin t, t) 
wraps around the cylinder x2 + y2 = 1. 

/,0) 

S O L U T I O N To find the velocity, we differentiate: 

c'(0 = (— (vt - Rs\n—— \R - tfcos —) | w \dt\ RJ dt\ RjJ 

( vt . vt\ 
= I v — v cos —, v sin — I. 

In vector notation, c'(0 = (v — v cos(vt/R))i + (v sin(vt/R))\. The component in 
the direction of i is — cos (vt/R)), which is zero whenever vt/R is an integer 
multiple of 2n. For such values of t, sin (vt/R) is zero as well, so the only times at 
which the velocity is zero are when t = 2nnR/v for some integer n. At such times, 
c ( t ) = (InnR, 0), so the moving point is touching the ground. These moments occur 
at time intervals of 2TTR/V (more frequently for small wheels, as well as for rapidly 
rolling ones). 

The velocity vector is never vertical, because the horizontal component vanishes 
only when the vertical one does as well. A 

Figure 2.4.10 shows some velocity vectors superimposed on the cycloidal path of 
Figure 2.4.6. 

X 

Figure 2.4.10 Velocity vectors for the curve 
traced out by a point on the rim of a rolling wheel. 
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Tangent Line 
The tangent line to a path at a point is the line through the point in the direction 
of the tangent vector. Using the point-direction form of the equation of a line, we 
obtain the parametric equation for the tangent line. 

Tangent Line to a Path If c( t) is a path, and if c'(io) / 0, the equation of its 
tangent line at the point C(7Q) is 

If C is the curve traced out by c, then the line traced out by / is the tangent line 
to the curve C at c ( /o) . 

Notice that we have written the equation in such a way that / goes through the 
point c(t0) at t = t0 (rather than t = 0). See Figure 2.4.11. 

| I A path in M3 goes through the point (3, 6, 5) at / = 0 with tangent 
vector i — j. Find the equation of the tangent line. 

SOLUTION The equation of the tangent line is 

lit) = (3, 6, 5) + t(i - j ) = (3, 6, 5) + t( 1, - 1 , 0) = (3 + 6 - 5). 

In (x, y, z) coordinates, the tangent line isx = 3 + t,y = 6 — t,z = 5. A 

Physically, we can interpret motion along the tangent line as the path that a 
particle on a curve would follow if it were set free at a certain moment. 

l(t) = c(/0) + (t - /o)c'(io). 

Figure 2.4.11 The tangent line to a path. 

Suppose that a particle follows the path c(t) = (e*, e cos t) until 
it flies off on a tangent at t = 1. Where is it at t = 3? 
EXAMPLE 9 
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S O L U T I O N The velocity vector is (e1, — e~*, —sin t), which at t = 1 is the vector 
(e, — 1/e, —sin l ) .Thepar t ic le i sa t (e , 1/e, cos l ) a t / = 1. The equation of the tangent 
line i s / ( 0 = (e, 1/e, cos 1) + (t — l)(e, —1/e, — sin 1). A t / = 3, the position on this 
line is 

1(3) = - , cos 1 ^ + 2 — - , —sin = — - , cos 1 — 2 sin 

= (8.155, - 0 . 3 6 8 , - 1 . 1 4 3 ) . A 

E X E R C I S E S 

Sketch the curves that are the images of the paths in Exercises 1 to 4. 

1. x = sin t, y = 4 cos t, where 0 < t < 2TT 

2. x = 2 sin t, y = 4 cos t, where 0 < t <2n 

3. c(t) = (2t- l , f + 2 , / ) 

4. c(0 = ( - i , 2i, 1 /0 , where 1 < t < 3 

In Exercises 5 to 8, determine the velocity vector of the given path. 

5. c(0 = 6d + 3i2j + / 3 k 

6. c(0 = (sin 3r)i + (cos 3/)J + 2i3 /2k 

7. Y(t) = (cos2t,3t -t3,t) 

8. r(0 = (4^ ,6 i 4 , co s0 

In Exercises 9 to 12, compute the tangent vector to the given path. 

9. c(0 — (cf i cos 0 

10. c(t) = (3t2,t3) 

11. c(t) = (¿sin ¿,40 

12. c(t) = (t2,e2) 

13. When is the velocity vector of a point on the rim of a rolling wheel horizontal? What is 
the speed at this point? 

14. If the position of a particle in space is (6t, 3t2, t3) at time t, what is its velocity vector at 
t = 0? 
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In Exercises 15 and 16, determine the equation of the tangent line to the given path at the 
specified value of t. 

15. (sin 3t, cos 3t, 2t5/2); t = 1 

16. (cos2t,3t -t3,t);t = 0 

In Exercises 17 to 20, suppose that a particle following the given path c(t) flies off on a 
tangent at t = t0. Compute the position of the particle at the given time t\. 

17. c(t) = (t2, t3 - 4 t , 0), where t0 = 2,h=3 

18. c ( t ) = (<e*, e~l, cos t), where t0 = 1, tx = 2 

19. c(t) = (4e/, 614, cost), where t0 = 0, tx = 1 

20. c (0 = (sin e*, t, 4 - t3), where t0 = 1, tx = 2 

In elementary calculus, we learn how to differentiate sums, products, quotients, and 
composite functions. We now generalize these ideas to functions of several variables, 
paying particular attention to the differentiation of composite functions. The rule for 
differentiating composites, called the chain rule, takes on a more profound form for 
functions of several variables than for those of one variable. 

If / is a real-valued function of one variable, written as z = f ( y \ and y is a 
function of x, written y = g(x), then z becomes a function of x through substitution, 
namely, z = f(g(x)), and we have the familiar chain rule: 

If / is a real-valued function of three variables u, v, and w, written in the form 
z = f(u, v, w), and the variables u, v, w are each functions of x, u = g(x), v = h(x), 
and w = k(x), then by substituting g(x), h(x), and k(x) for u, v, and w, we obtain z 
as a function of x: z = f(g(x), h(x), k(x)). The chain rule in this case reads: 

2,5 Properties of the Derivative 

dz dz dy 
dx dy dx = f'(g(x))g\x). 

dz dz du dz dv dz dw 

dx du dx dv dx dw dx 
One of the goals of this section is to explain such formulas in detail. 
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Sums, Products, Quotients 
These rules work just as they do in one-variable calculus. 

T H E O R E M 10: Sums, Products, Quotients 

(i) Constant Multiple Rule. Let / : U C W1 -> Mm be differentiate at x0 

and let c be a real number. Then h(x) = cf(x) is differentiate at XQ and 

D/z(xo) = cDf (x0) (equality of matrices). 

(ii) Sum Rule. Let f : U cW1 andg: U C IT Mm be differentiable 
at XQ. Then h(x) = / ( x ) -F g(x) is differentiable at XQ and 

D/Z(XQ) = D/(xo) + Dg(xo) (sum of matrices). 

(iii) Product Rule. L e t / : U C W1 -> Mandg: U C W1 -> R be differentiable 
at x0 and let h(\) = g(x)/(x). Then h: U C -> M is differentiable at x0 

and 

DA(x<>) = g(x0)D/(x0) + /(xo)Dg(xo). 

(Note that each side of this equation is a 1 x n matrix; a more general 
product rule is presented in Exercise 29 at the end of this section.) 

(iv) Quotient Rule. With the same hypotheses as in rule (iii), let h(x) = 
f (x)/g(x) and suppose g is never zero on U. Then h is differentiable at 
x0 and 

n J i , , g(xo)D/(xo) - /(xo)Dg(xo) 
Vh(x 0) = . 

[g(xo)]2 

PROOF The proofs of rules (i) through (iv) proceed almost exactly as in the one-
variable case with a slight difference in notation. We shall prove rules (i) and (ii), 
leaving the proofs of rules (iii) and (iv) as Exercise 25. 

(i) To show that D/Z(XQ) = CD/(xo), we must show that 

limit = 0, 
x^xo ||x — Xq II 

that is, that 

limit L K / 0 0 - cfjxp) - CD/(XQ)(X - XP)|| = O 

x^xo ||x — Xq II 
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[see equation (4) of Section 2.3]. This is certainly true, since / is differentiate 
and the constant c can be factored out [see Theorem 3(i), Section 2.2]. 

(ii) By the triangle inequality, we may write 

IIh(x) - h(x0) - [D/(x0) + Dg(xp)](x - x0)|| 
l | x - x o | | 

= II/(X) - / ( x 0 ) - [D/(x0)](x - x0) + g(x) - g(x0) - [Dg(x0)](x - XP)|| 
l lx-xoll 

^ | | / ( X ) - / ( X O ) - [ D / ( X Q ) ] ( X - X O ) | | | | | g ( x ) - g ( x o ) - [ D g ( x o ) ] ( x - x 0 ) | | 
L | X - X 0 | | IIX XQ || 

and each term approaches 0 as x -> xo. Hence, rule (ii) holds. • 

Verify the formula for Dh in rule (iv) of Theorem 10 with 

f(x,y,z) = x2 +y2 + z2 a n d g ( x , y , z ) = x2 + 1. 

S O L U T I O N Here 

x2+y2+z2 

h(x, y, z) = r— , 
xl + 1 

so that by direct differentiation 

' (x2 + 1 ) 2 * - (JC2 + y2 + Z2)2JC 2 y 2Z x rdh dh dhl r 

- [ 
(x2 + l)2 ' x2+l' x2 + l 

2x(l - y 2 - z 2 ) 2y 2z 

(x2 + l)2 'x2 + l ' x 2 + l_ 

By rule (iv), we get 

gDf - / D g _ (x2 + l)[2x, 2y, 2z] - (jc2 + / + z2)[2x, 0, 0] 
g 2 " (x2 + 1 ) 2 

which is the same as what we obtained directly. A 

Chain Rule 
As we mentioned earlier, it is in the differentiation of composite functions that we 
meet apparently substantial alterations of the formula from one-variable calculus. 
However, if we use the D notation, that is, matrix notation for derivatives, the chain 
rule for functions of several variables looks similar to the one-variable rule. 
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T H E O R E M 11: Chain Rule Let U cW1 and V c Mm be open sets. Let 
g : i / c M " - > Mm and / : F c M ^ M ^ be given functions such that g maps 
U into V, so that / o g is defined. Suppose g is differentiate at xo and / is 
differentiate at y0 = g(x0). Then / o g is differentiable at x0 and 

D(/og)(xo) = D/(yo)Dg(xo). (1) 

The right-hand side is the matrix product of D/(y0) with Dg(xo). 

We shall now give a proof of the chain rule under the additional assumption 
that the partial derivatives of f are continuous, building up to the general case by 
developing two special cases that are themselves important. (The complete proof of 
Theorem 11 without the additional assumption of continuity is given in the Internet 
supplement for Chapter 2.) 

First Special Case of the Chain Rule 
Suppose c: M -> M3 is a differentiable path and / : M3 -> M. Let h(t) = / ( c (0) = 
/(*(/) , XO, *(0)> where c(0 = MO, y(0. *('))• Then 

dh = d f d ^ ^ d f d y ^ d f d l 

dt dx dt dy dt dz dt 

That is, 

dh 
— = V/(c(0)-c '(0, 

where c'(0 = (*'(0> / ( 0 . ^(0)-
This is the special case of Theorem 11 in which we take c = g and / to be 

real-valued, and m = 3. Notice that 

v / ( c ( 0 ) - ^ ( 0 = 0/(0(0)00(0, 

where the product on the left-hand side is the dot product of vectors, while the product 
on the right-hand side is matrix multiplication, and where we regard D f (c(0) as a row 
matrix and Dc(0 as a column matrix. The vectors V/(c(0) and c'(t) have the same 
components as their matrix equivalents; the notational change indicates the switch 
from matrices to vectors. 

PROOF OF EQUATION (2). By definition, 

dh ^ h(t) - h(t0) -—(t0) = limit . 
dt t^t0 t -10 
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Adding and subtracting two terms, we write 

h(t) - h(t0) f(x(t), y(t), z(0) - f(x(to), y(to), z(t0)) 
t -t0 t -to 

f(x(t\y(t), z(0) " /(*(fo), ><0, *(0) 

+ 

+ 

t -to 

f(x(to), y(t), z(Q) - f(x(tp), y(t0), z(t)) 
t -t0 

f(x(t0), y(tp), z(t)) - f(x(t0), y(t0), z(t0)) 
t -t0 

Now we invoke the mean-value theorem from one-variable calculus, which states: 
If g: [a, b] —> M is continuous and is differentiable on the open interval (<a, b), then 
there is a point c in (a, b) such that g(b) — g(a) = g'(c)(b — a). Applying this to / 
as a function of x, we can assert that for some c between x and x0, 

f(x,y, z) - /Oo, y, z) = y, - x0). 

In this way, we find that 

Kt) - h(to) 
to 

+ p / 

x(t) - x(t0) 
to 

+ (*(<b), d, z{t)) 
y(t)-y(to) 

to 

(x(to), y(to), e) 
- z(to) 

to 
where c, d, and e lie between x(t) and x( to) , between y(t) and y( to) , and between z(t) 
and z(to), respectively. Taking the limit t —> to, using the continuity of the partials 
df/dx, df/dy, df/dz, and the fact that c, d, and e converge to x(to), .K^o), and z ( f o ) , 

respectively, we obtain formula (2). • 

Second Special Case of the Chain Rule 
Let / : M3 —• M and let g: M3 M3. Write 

g(x, >>, z) = 0(x, >>, z), v(x, y, z), w(x, >>, z)) 

and define h: M3 M by setting 

/*(x, y, z) = / 0 ( x , >>, z), u(x, >>, z), w(x, y, z)). 

In this case, the chain rule states that 
d u d u du 

dh dh dh 
dx dy dz 

~df df V ] 
_ du dv dw J 

dx dy dz 
dv dv dv 
dx dy dz 
dw dw dw 

_ dx dy dz 

(3) 
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In this special case, we have taken n = m = 3 and p = 1 for concreteness, 
and U = M3 and V = M3 for simplicity, and have written out the matrix prod-
uct [D/(yo)][Dg(xo)] explicitly (with the arguments x0 and yo suppressed in the 
matrices). 

PROOF OF THE SECOND SPECIAL CASE OF THE CHAIN RULE. By 
definition, dh/dx is obtained by differentiating h with respect to x, holding y and z 
fixed. But then (u(x, y, z), v(x ,y,z), w(x ,y,z)) may be regarded as a vector function 
of the single variable x. The first special case applies to this situation and, after the 
variables are renamed, gives 

dh df du ^ df dv ^ df dw 
dx du dx dv dx dw dx 

Similarly, 

and 

dh dfdu dfdv df dw 
— = — (- — (- — (3") 
dy du dy dv dy dw dy 

dh df du df dv df dw 
— = — (- — 1- — . (3"') 
dz du dz dv dz dw dz 

These equations are exactly what would be obtained by multiplying out the matrices 
in equation (3). • 

PROOF OF THEOREM 11. The general case in equation (1) may be proved in 
two steps. First, equation (2) is generalized to m variables; that is, for f(x\,... ,xm) 
and c(t) = (xi(i), •. •, xm(t)), one has 

dh df_dxj_ 
dt ~ ~ dxi dt ' ¿=1 1 

where h(t) = f(x\(t),..., xm(t)). Second, the result obtained in the first step is used 
to obtain the formula 

d_h = ydAdJl 
dx, f^ dyk dXi' 

where / = ( / i , . . . , fp) is a vector function of arguments y\,..., ym;g(x i,..., xn) = 
..., x w ) , . . . , ym{xi,..., xn)); and h j { x u • • •, *n) = fj(yi(x\, • • •, *n), • • •, 

ym(x i, ...,xn)). (Using the letter y for both functions and arguments is an abuse of 
notation, but it can help one remember the formula.) This formula is equivalent to 
formula (1) after the matrices are multiplied out. • 
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The pattern of the chain rule will become clear once the student has worked some 
additional examples. For instance, 

a dfdu dfdv df dw a / dz 
—f(u(x,y), v(x,y), w(x, y), z(x, y)) = — — + — — + — —- + — —, ax ou ax av ox ow ox oz ox 

with a similar formula for df/dy. 
The chain rule can help us understand the relationship between the geometry of a 

mapping / : R2 R2 and the geometry of curves in R2. (Similar statements may be 
made about R3 or, generally, W1.) If c(i) is a path in the plane, then as we saw in Section 
2.4, c'(0 represents the tangent (or velocity) vector of the path c(t), and this tangent 
(or velocity) vector is thought of as beginning at c(t). Now let p ( t ) = /(c(/)), where 
/ : R2 R2. The path p represents the image of the path c( t) under the mapping / . 
The tangent vector to p is given by the chain rule: 

i 
matrix 
multiplication 

p ' ( 0 = D/ (c (O) c ' ( f ) . 
matrix column 

vector 

In other words, the derivative matrix of f maps the tangent (or velocity) vector of 
a path c to the tangent (or velocity) vector of the corresponding image path p (see 
Figure 2.5.1). Thus, points are mapped by / , while tangent vectors to curves are 
mapped by the derivative of / , evaluated at the base point of the tangent vector in 
the domain. 

p'(0 = D/(c(/))c'(/) 

The path c(t) 

Figure 2.5.1 Tangent vectors 
are mapped by the derivative 
matrix. 

p(i) is the image of c(7) under / 

Verify the chain rule in the form of formula (3r) for 

f(u, v, w) = u2 + v2 — w, 
where 

u(x, y, z) = x2y, v(x, y, z) = y2, w(x, y,z) = e xz. 
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SOLUTION Here 

h(x,y,z) = f(u(x,y, z), v(x,y,z), w(x,y, z)) 

= (x2y)2 + / - <T*Z = A'V + y —xz 

Thus, differentiating directly, 

dh 
dx 

= 4x3y2 + ze" 

On the other hand, using the chain rule, 

dh df du df dv df dw ^ ^ x ^ ^ r_ — = — + — + — = 2u(2xy) + 2v - 0 + (-1 )(-ze~xz) 
dx du dx dv dx dw dx 

= (2x2y)(2xy) + ze"*z, 

which is the same as the preceding equation. A 

Given g(x, y) = (x2 + 1 ,y2) and f(u, v) = (u + v, u, v2), com-
pute the derivative of / o g at the point (x, y) = (1, 1) using the chain rule. 

SOLUTION The matrices of partial derivatives are 

Df(u, v) = 

d_A dA 
du dv 

dh 
du dv 
dA W 

_ du dv _ 

1 1 
1 0 
0 2v 

and Dg(x,j>) = 2x 
0 2 y Y -

When (x, y) = (1, 1), note that g(x, y) = (u, v) = (2, 1). Hence, 

' 1 1 [2 0" 
0 ? 

"2 2 
D ( / o g ) ( l , l ) = D/ (2 , l )Dg( l , l ) = 1 0 [2 0" 

0 ? 
= 2 0 

0 2 1 \j z. 0 4 

is the required derivative. A 

E X A M P L E 4 Let f(x,y) be given and make the substitution x = r cos 6, y 
r sin# (polar coordinates). Write a formula for df/d6. 

SOLUTION By the chain rule, 

V = dfdy 
de dx de dy de 



158 2.3 Differentiation 158 

that is, 

V • J f J f 
— = —r sin 6 b r cos 6 — . 
36 dx dy 

E X A M P L E 5 Let f(x,y) = (cosy + x2, ex+y) and g(w, v) = (eu , u — sin v). 
(a) Write a formula for f o g . (b) Calculate D ( / o g)(0, 0) using the chain rule. 

SOLUTION (a) We have 

(/ ° g)(u, v) = f(eu\ u - sin v) 

= (cos (u - sin v) + e2"2, + w"sin v). 

(b) By the chain rule, 

D ( / o g)(0, 0) = [D/(g(0, 0))][Dg(0, 0)] = [D/(l, 0)][Dg(0, 0)]. 

Now 

Dg(o, o ) = \ 2 u f ° I =R? ° I 
L 1 -cosl,J(M,,)=(o,o) L1 -U 

and 

D/(1,0) 2x —sin>> ] - E 2} 
[Remember that D / is evaluated at g(0, 0), not at (0, 0)!] Thus, 

Let f : U C E" -»• Rm be differentiable, with / = ( / , , . . . , / „ , ) , 
and let g(x) = sin [ /(x) • /(x)]. Compute Dg(x). 

SOLUTION By the chain rule, Dg(x) = cos[/(x) • /(x)]DA(x), where h(\) = 
[/(X) • /(X)] = /,2(x) + • • • + fl(x). Then 

_ [" dh_ dh I 
|_9xi dx„j 

2fl
dA + . . . + 2 f m f L 

OX 1 dXi 
2 f ^ + ...+2fmf 

OXn dXj 
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which can be written 2/(x)D/(x), where we regard / as a row matrix, 

Thus, Dg(x) = 2[cos ( / (x) • /(x))]/(x)D/(x). • 

EXERCISES 

1. If / : U C R" -> M is differentiable, prove that x i-> / 2 ( x ) + 2 / ( x ) is difFerentiable as 
well, and compute its derivative in terms of D/(x). 

2. Prove that the following functions are differentiable, and find their derivatives at an 
arbitrary point: 

(a) / : R2 R,(x,y) i-> 2 
(b) / : R2 ->R,(x,y)\^ x + y 
(c) f:R2^>R,(x,y)\-^2 + x+y 
(d) / : R2 M, (x,>>) i-> x2 +>>2 

(e) / : R2 -> M, (x, >0 i-> 
(f) / : U M, (x, >0 i-> YI - JC2 - j 2 , where (7 = {(x, y) | x2 + j 2 < 1} 
(g) / : M 2 - > M , ( x , ^ ) ^ x 4 - / 

3. Write out the chain rule for each of the following functions and justify your answer in 
each case using Theorem 11. 

(a) dh/dx where h(x,y) = f(x,u(x,y)) 
(b) dh/dx where h(x) = f(x,u(x),v(x)) 
(c) dh/dx where h(x,y,z) = f(u(x,y,z),v(x,y),w(x)) 

4. Verify the chain rule for dh/dx, where h(x, y) = f(u(x, y), i>(x, y)) and 

5. Verify the first special case of the chain rule for the composition / o c in each of the 
cases: 

9/i 
3xi 

f = U \ fm] and D / = 
dfm_ dfm 

3xi dxn 

u2 + v1 

f(u,v)= — T, u(x,y) = e 
1 J A — ? ) z 

,-x-y v(x, y) = exy. 

(a) f(x,y) = xy, c ( t ) = (e', cos/) 
(b) f(x,y) = exy,c(t) = (3t2,t3) 
(c) / ( x , y) = (x2 + / ) log 7 x 2 + / , c(i) = (e', O 
(d) / ( x , J,) = * exp(x2 + / ) , c(i) - (t, - t ) 

6. What is the velocity vector for each path c ( t ) in Exercise 5? [The solution to part (b) only 
is in the Study Guide to this text.] 
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7. Let / : R3 -> R and g: M3 M. be differentiable. Prove that 

V( /g ) = / V g + gV/. 

8. Let / : M3 R be differentiable. Making the substitution 

x = p cos0 sin0, = p sin0 sin0, z — p cos0 

(spherical coordinates) into /(JC, >>, z), compute df/dp, df/d6, and df/d<p in terms of 
a//9jc, and df/dz. 

9. Let /(w, i>) = (tan(w — 1) — ev, w2 — i>2) and g(x, = x — >>)• Calculate fog 
and D(f o g)(l, 1). 

10. Let /(w, v, w) = (eu~w, cos(v + u) + sin(w + v + w)) andg(jc,_y) = 
(ex, cos ( y - x), e~y). Calculate / o g and D ( / o g)(0, 0). 

11. Find (d/ds)(f o T)( 1 0), where /(w, u) = cos u sin i; and T: M2 -> M2 is defined by 
T(s, t) = (cos(i2s), log x/T+7 2) . 

12. Suppose that the temperature at the point (x, y, z) in space is T(x, y, z) = x2 + y2 + z2. 
Let a particle follow the right-circular helix <r(0 = (cos t, sin t, i) and let be its 
temperature at time t. 

(a) What is T ( 0 ? 
(b) Find an approximate value for the temperature at t = (n/2) + 0.01. 

13. Suppose that a duck is swimming in the circle x = cos t, y = sin t and that the water 
temperature is given by the formula T — x2ey — xy3. Find d T/dt, the rate of change in 
temperature the duck might feel: (a) by the chain rule; (b) by expressing T in terms of t and 
differentiating. 

14. Let / : R" -> Rm be a linear mapping so that (by Exercise 20, Section 2.3) D/(x) is the 
matrix of / . Check the validity of the chain rule directly for linear mappings. 

15. Let / : M2 R2; (JC, y) H> ex~y). Let c(f) be a path with c(0) - (0, 0) and 
c'(0) = (1, 1). What is the tangent vector to the image of c ( t ) under / at t — 0? 

16. Let / ( JC , J / ) = 1 /yjx2 +y2. Compute V / ( JC , y). 

17. (a) Let be defined implicitly by G(x, y(x)) = 0, where G is a given function of two 
variables. Prove that if and G are differentiable, then 

(b) Obtain a formula analogous to that in part (a) if y\, y2 are defined implicitly by 

Gi(x,y1(x),y2(x)) = 0, 

G2(x,yl(x),y2(x)) = 0. 

dy _ dG/dx 
dx ~ dG/dy 
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(c) Let y be defined implicitly by 

J c 2 + y +e y = 0. 

Compute dy/dx in terms of x and y. 

18. Thermodynamics texts4 use the relationship 

\ d x j \ d y j \ d z j 

Explain the meaning of this equation and prove that it is true. [HINT: Start with a relationship 
F(x, y, z) = 0 that defines x = f(y,z),y — g(x, z), and z = k(x,y) and differentiate 
implicitly.] 

19. Dieterici's equation of state for a gas is 

P(V -b)ea/RVT = RT, 

where a, b, and R are constants. Regard volume V as a function of temperature T and 
pressure P and prove that 

8V 
a r 

20. This exercise gives another example of the fact that the chain rule is not applicable if / is 
not differentiate. Consider the function 

f(*,y) = 

2 xy 
X2 +y z 

0 (x,y) = ( 0,0). 

Show that 

(a) df/dx and df/dy exist at (0, 0). 
(b) If g( t ) = (at, bt) for constants a and b, then / o g is differentiate and ( / o g)r(0) = 

ab2/(a2 + b2), but V/(0, 0) • gr(0) = 0. 

21. Prove that if / : U c M" M is differentiate at x0 e U, there is a neighborhood V of 
OGR" and a function Rx: V R such that for all h E V, we have x0 + h E U, 

/ ( x 0 + h) = / ( x o) + [D/(xo)]h + Rx( h) 

4See S. M. Binder, "Mathematical Methods in Elementary Thermodynamics," J. Chem. Educ. 43 (1966): 85-92. A 
proper understanding of partial differentiation can be of significant use in applications; for example, see M. Feinberg, 
"Constitutive Equation for Ideal Gas Mixtures and Ideal Solutions as Consequences of Simple Postulates," Chem. Eng. 
Sei. 32 (1977): 75-78. 
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and 

22. Suppose x0 e R" and 0 < rx < r2. Show that there is a C1 function / : R" -> R such 
that / ( x ) = 0 for ||x - x0|| > r 2 ;0 < / ( x ) < 1 for n < ||x - x0|| < r2\ and / ( x ) = 1 for 
||x — XO|| <r\. [HINT: Apply a cubic polynomial withg(R2) = 1 and g(R|) = g'(RF) = 
g'(r\) = 0 to ||x - Xq||2 when ri < ||x - x0|| < r2.] 

23. Find a C1 mapping f : R 3 - > R 3 that takes the vector i + j + k emanating from the 
origin to i — j emanating from (1, 1,0) and takes k emanating from (1, 1, 0) to k — i 
emanating from the origin. 

24. What is wrong with the following argument? Suppose w = f ( x , y,z) and z = g(x, y). 
By the chain rule, 

Hence, 0 = ( d w / d z ) ( d z / 8 x ) , and so dw/dz = 0 or dz/dx = 0, which is, in general, 
absurd. 

25. Prove rules (iii) and (iv) of Theorem 10. (HINT: Use the same addition and subtraction 
tricks as in the one-variable case and Theorem 8.) 

26. Show that h: R" Rm is differentiable if and only if each of the m components 
hi\ Rn R is differentiable. (HINT: Use the coordinate projection function and the chain 
rule for one implication and consider 

n h ( x ) - /Z(xq) - D/Z(XQ)(X - x0)in2
 = T ^ i i h i W - h ^ m ^ - x0)]2 

L llx - Xoll J ||X - x 0 | | 2 

to obtain the other.) 

27. Use the chain rule and differentiation under the integral sign, namely, 

dw dw d x d w dy dw dz dw dw dz 
dx dz dx dx dz dx dz dx 

to show that 

28. For what integers p > 0 is 

xp s in ( l /x ) x^O 
0 jc = 0 

differentiable? For what p is the derivative continuous? 
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29. Suppose / : Rn -> R and g: Rn -> Rm are differentiable. Show that the product function 
h(\) = / (x)g(x) from Rn to Rm is differentiable and that if x0 and y are in R", then 
[D/*(x0)]y = /(x0){[Dg(x0)]y} + {[D/(x0)]y}g(x0). 

2.6 Gradients and Directional Derivatives 
In Section 2.1 we studied the graphs of real-valued functions. Now we take up this 
study again, using the methods of calculus. Specifically, gradients will be used to 
obtain a formula for the plane tangent to a level surface. 

Gradients in 
Let us recall the definition. 

DEFINITION: The Gradient I f / : U C M3 R is differentiable, the gra-
dient of / at (x, y, z) is the vector in space given by 

V / = ( X v v y 
\ dx dy dz J 

This vector is also denoted V/(x, y, z). Thus, V / is just the matrix of the deriva-
tive D/, written as a vector. 

E X A M P L E 1 Let f(x,y, z) = y /x 2 +y2 + z2 = r, the distance from 0 to 
(x, y, z). Then 

y 
H -^yjx2 -h y2 H- z2 ' yjx2 + y2 + z2 ' yfx2+y2+z2, 

where r is the point (x, jy, z). Thus, V / is the unit vector in the direction of (x, y, z). 

If / ( x , z) = x>> + z, then E X A M P L E 2 

Vf(x,y,z)= hr-.T" 
\ 9x ' ' 3z / 

••(y,x, 1). A 

Suppose / : M3 -> M is a real-valued function. Let v and x G I 3 be fixed vectors 
and consider the function from M to M defined by t / ( x + t\). The set of points 
of the form x 4- ¿v, t e M, is the line L through the point x parallel to the vector v 
(see Figure 2.6.1). 
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Figure 2.6.1 The equation of L is l(i) = x + t\. 
"7 y 

Directional Derivatives 
The function t f(x + tx) represents the function / restricted to the line L. For 
example, if a bird flies along this line with velocity v so that x 4-1\ is its position at 
time t, and if / represents the temperature as a function of position, then / ( x 4-1\) 
is the temperature at time /. We may ask: How fast are the values of / changing 
along the line L at the point x? Because the rate of change of a function is given by a 
derivative, we could say that the answer to this question is the value of the derivative 
of this function of t at / = 0 (when t = 0, x 4-1\ reduces to x). This would be the 
derivative of / at the point x in the direction of L, that is, of v. We can formalize this 
concept as follows. 

DEFINITION: Directional Derivatives If / : 
derivative of / at x along the vector v is given by 

the directional 

dt / ( x + iv) 
/ = 0 

if this exists. 
In the definition of a directional derivative, we normally choose v to be a 

unit vector. In this case we are moving in the direction v with unit speed and we 
refer to ^ / ( x 4- ¿v)|/=o as the directional derivative of f in the direction v. 

We now elaborate on why a unit vector is chosen in the definition of the directional 
derivative. Suppose that / measures the temperature in degrees and that we are 
interested in how fast the temperature changes as we move in a particular direction. 
If we are measuring distance in meters, then the rate of change of temperature will 
be measured in degrees per meter. Suppose, for simplicity, that the temperature is 
changing at a constant rate—say, two degrees per meter—as we move in a given 
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direction v starting at x. Thus, when we go one meter ahead, the temperature changes 
by two degrees. That is, 

/ ( x + v ) - / ( x ) = 2 

Such a relation is going to hold only when v is a unit vector, reflecting the fact that 
we are going ahead by one meter. More generally, the definition of the directional 
derivative is going to truly measure only the rate of change of / with respect to 
distance along a line in a given direction if v is a unit vector. 

From the definition, we can see that the directional derivative can also be defined 
by the formula 

limit 
h^o 

/ ( x + hv) - / ( x ) 

T H E O R E M 12 I f / : M3 —• M is differentiate, then all directional derivatives 
exist. The directional derivative at x in the direction v is given by 

D/(x)v = g r a d / ( x ) - v = V/(x) . 

where\ = (y\,V2, v3). 

PROOF Let c(0 = x + t\, so that / ( x + t\) = /(c(/)). By the first special case 
of the chain rule, (d/dt)f(c(t)) = V/(c(0) • c'(0- However, c(0) = x and c'(0) = v, 
and so 

- / ( x + ,v) V/ (x) .v , 
t=0 

as we were required to prove. • 

Notice that one does not have to use straight lines when computing the rate of 
change of / in a specific direction v. Indeed, for a general path c(t) with c(0) = x and 
c'(0) = v, we have from the chain rule, 

dt / W O ) v / ( c ( 0 ) . c ' ( 0 = V/ (x) .v . 
/=0 

E X A M P L E 3 Let f(x9y,z) = x2e yz. Compute the rate of change of / in the 
direction of the unit vector 

v = ( —7=, —7=, —7= ) at the point (1,0,0). 
VV3 V3 V 3 J 
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S O L U T I O N The required rate of change is, using Theorem 12, 

v / . v = < 2 ^ , ( - 1 - L . - L ) , 

which, at the point (1,0, 0), becomes 

Directions of Fastest Increase 
From Theorem 12 we can also obtain the geometrical significance of the gradient: 

T H E O R E M 13 Assume V/(x) / 0. Then V/(x) points in the direction along 
which / is increasing the fastest. 

PROOF If n is a unit vector, the rate of change of / in direction n is given 
by V/(x) • n = || V/(x)|| cos0, where 0 is the angle between n and V/(x). This is 
maximum when 0 = 0; that is, when n and V / are parallel. [If V/(x) = 0 this rate of 
change is 0 for any n.] • 

In other words, if one wishes to move in a direction in which / will increase most 
quickly, one should proceed in the direction V/(x). Analogously, if one wishes to move 
in a direction in which f decreases the fastest, one should proceed in the direction 
- V / ( x ) . 

w ^ a t direction f r o m 1) does f ( x , y) = x2 — y2 increase the 
fastest? 

S O L U T I O N The gradient is 

V / = 2xi - 2y\, 

and so at (0, 1) this is 

V/|(o,i) = - 2 j . 

By Theorem 1 3 , / increases fastest in the direction — j. (Can you see why this answer 
is consistent with Figure 2.1.9?) • 

Gradients and Tangent Planes to Level Sets 
Now we find the relationship between the gradient of a function / and its level 
surfaces. The gradient points in the direction in which the values of / change most 
rapidly, whereas a level surface lies in the directions in which they do not change 
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at all. If / is reasonably well behaved, the gradient and the level surface will be 
perpendicular. 

T H E O R E M 14: The Gradient is Normal to Level Surfaces Let 
/ : R3 -> R be a C1 map and let (xo, yo, lie o n the level surface S defined 
by f(x,y,z) = k, for A: a constant. Then V/(xo, yo, zo) is normal to the level 
surface in the following sense: If v is the tangent vector at t = 0 of a path c(i) in 
S with c(0) = (x0, yo, z0), then V/(x0 , yo, z0)-v = 0 (see Figure 2.6.2). 

z 

Figure 2.6.2 Geometric significance of 
the gradient: V / is orthogonal to the 
surface S on which / is constant. 

PROOF Let c(t) lie in S'f then f(c(ty) = k. Let v be as in the hypothesis; then 
v = c ' (0 ) . Hence, the fact that f(c(t)) is constant in t, and the chain rule give 

o = |/(c(0) = V/(c(0)) .v. 
t=0 

If we study the conclusion of Theorem 14, we see that it is reasonable to define 
the plane tangent to S as the orthogonal plane to the gradient. 

D E F I N I T I O N : Tangent Planes to Level Surfaces Let S be the surface 
consisting of those (x, y, z) such that f(x,y,z) = k, for A: a constant. The tan-
gent plane of S at a point (xo, yo.zo) of S is defined by the equation 

V/(*o. ^o, z0) • (x - x0, y - yo, z-z0) = 0 (1) 

if V/(xo, yo, zo) ^ 0. That is, the tangent plane is the set of points (x, y, z) that 
satisfy equation (1). 

vf(xo>yo> zo) 
parallel translated 
that it begins 
at (.x0,y0,z0) 

Vf(xo>yo> zo) 

v translated 
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This extends the definition we gave earlier for the tangent plane of the graph of 
a function (see Exercise 11 at the end of this section). 

Compute the equation of the plane tangent to the surface defined 
by 3xy + z2 = 4 a t ( l , 1, 1). 

S O L U T I O N Here / ( x , y, z) = 3xy + z2 and V / = (3y, 3x, 2z), which at 
(1, 1, 1) is the vector (3,3, 2). Thus, the tangent plane is 

(3, 3, 2) • (x — \ ,y — 1, z — 1) = 0; 

that is, 

3x + 3y + 2z = 8. A 

In Theorem 14 and the definition following it, we could just as well have worked 
in two dimensions as in three. Thus, if we have / : M2 -> M and consider a level curve 

C = {(x,y)\f(x,y) = kl 

then V/(x0 , j>o) is perpendicular to C for any point (x0, >>o) on C. Likewise, the tangent 
line to C at (xo, ^o) has the equation 

V/(xo, >>o) -(x-x0,y- y0) = 0 (2) 

if V/(x0, y0) / 0; that is, the tangent line is the set of points (x, y) that satisfy equation 
(2) (see Figure 2.6.3). 

Figure 2.6.3 In the plane, the gradient V / is 
orthogonal to the curve / = constant. 

T h e G r a d i e n t Vector Field 

We often speak of V / as a gradient vector field. The word "field" means that V / 
assigns a vector to each point in the domain of / . In Figure 2.6.4 we describe the 
gradient V / not by drawing its graph, which, if / : M3 -> R, would be a subset of 

V / translated 

Tangent line to C 
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M6, that is, the set of tuples (x, V/(x)), but by representing V/(P), for each point P, 
as a vector emanating from the point P rather than from the origin. Like a graph, this 
pictorial method of depicting V / contains the point P and the value V/(P) in the same 
picture. 

Figure 2.6.4 The gradient V / of a function / : M3 -> R 
is a vector field on M3; at each point P/, V/(P,-) is a vector 
emanating from P/. 

The gradient vector field has important geometric significance. It shows the 
direction in which / is increasing the fastest and the direction that is orthogonal to 
the level surfaces (or curves in the plane) of / . That it does both of these at once is 
quite plausible. To see this, imagine a hill as shown in Figure 2.6.5(a). Let h be the 
height function, a function of two variables. If we draw level curves of h, these are 
just level contours of the hill. We could imagine them as level paths on the hill [see 
Figure 2.6.5(b)]. One thing should be obvious to anyone who has gone for a hike: To 
get to the top of the hill the fastest, we should walk perpendicular to level contours.5 

This is consistent with Theorems 13 and 14, which state that the direction of fastest 
increase (the gradient) is orthogonal to the level curves. 

E X A M P L E 6 The gravitational force on a unit mass m at (x,y,z) produced by 
a mass M at the origin in M3 is, according to Newton's law of gravitation, given by 

GmM 
F = -—n, 

where G is a constant; r = ||r|| = y/x2 -hy2 + z2, which is the distance of (x,y,z) 
from the origin; and n = r/r, the unit vector in the direction of r = xi 4- y\ 4- zk, 
which is the position vector from the origin to (x, y, z). 

Note that F = V(GmM/r) = —VV, that is, F is the negative of the gradient 
of the gravitational potential V — —GmM jr. This can be verified as in Example 1. 

5 This discussion assumes that one walks at the same speed in all directions. Of course, hikers know that this is not 
necessarily realistic. 
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(a) (b) 

Figure 2.6.5 A physical illustration of the two facts (a) V / is the direction of 
fastest increase of / , and (b) V / is orthogonal to the level curves. 

Notice that F is directed inward toward the origin. Also, the level surfaces of V are 
spheres. The gradient vector field F is normal to these spheres, which confirms the 
result of Theorem 14. A 

f ^ l f f t t i i f l f * 5 ^ Find a unit vector normal to the surface S given by z = x2y2 + 
y + 1 at the point (0, 0, 1). 
S O L U T I O N Let f(x,y,z) = x2y2 + y + 1 — z, and consider the level surface 
defined by / ( x , y, z) = 0. Because this is the set of points (x, y, z) with z = x2y2 + 
y + 1, we see that this level set coincides with the surface S. The gradient is given by 

and so 

V/(x, y, + = 2xy2i + (2 x2y + l)j - k, 
ax ay az 

V/(0, 0, 1) — j — k. 

This vector is perpendicular to S at (0, 0, 1), and so to find a unit normal n we divide 
this vector by its length to obtain 

V/(0 ,0 ,1) 

IV/ (0 ,0 ,1)11" V 2 ( J 

^ S ^ f f i ^ f f i J Consider two conductors, one charged positively and the other 
negatively. Between them, an electric potential is set up. This potential is a function 
0: M3 M (an example of a scalar field). The electric field is given by E = — V0. 
From Theorem 14 we know that E is perpendicular to level surfaces of 0. These level 
surfaces are called equipotential surfaces, because the potential is constant on them 
(see Figure 2.6.6). A 

h = 50 

A curve of 
steepest ascent 
up the hill 

Contour map of a hill 
250 feet high 
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Lines of constant § 

Figure 2.6.6 Equipotential surfaces (the dotted lines) 
are orthogonal to the electric force field E. 

E X E R C I S E S 

1. Show that the directional derivative of f i x , y, z) = z2x + y3 at (1, 1, 2) in the direction 
( l /V5) i + (2 /V5) j i s2V5 . 

2. Compute the directional derivatives of the following functions at the indicated points in 
the given directions: 

(a) f(x,y) = x+ 2xy - 3y\ (*0, *>) = (1, 2), v = f i + f j 
(b) / ( * , y) = log ( x Q i y o ) = (1> o), y = (1/V5)(2i + j) 
(c) f ( x , y) = ^ COS(TT )̂, (JFO, yo) = (0, - 1 ) , v = - ( 1 / V 5 ) i + (2/V5)j 
(d) f ( x , y) = xy* + x ( * o , yo) = (4, - 2 ) , v = (l/VW)i + (3/VÎÔ)j 

3. Compute the directional derivatives of the following functions along unit vectors at the 
indicated points in directions parallel to the given vector: 

(a) f i x , y) = xy, ix0, y0) = (e, e), d = 5i + 12j 
(b) f(x,y,z) = e* +yz, (x0, yò,z0) = (1, 1, 1), d - (1, - 1 , 1) 
(c) f i x , y, z) = xyz, (x0, yo, z0) = (1,0, 1), d = (1, 0, - 1 ) 

4. Find the planes tangent to the following surfaces at the indicated points: 

(a) x2 + 2y2 + 3xz = 10, at the point (1, 2, 
(b) y2 -x2 = 3, at the point (1 ,2 ,8) 
(c) xyz — 1, at the point (1, 1, 1) 

5. Find the equation for the plane tangent to each surface z = fix,y) at the indicated 
point: 

(a) z = x3 + y3 — 6xy, at the point (1, 2, —3) 
(b) z = (cos x)(cos y), at the point (0,7r/2, 0) 
(c) z = (cosx)(sin>>), at the point (0,7r/2, 1) 

6. Compute the gradient V / for each of the following functions: 

(a) fix,y,z)=l/Jx2+y2+z2 

(b) f i x , y, z) = xy + >>z + xz 

(c) f i x , y, z) = 
x2 + y2 + z: 
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7. For the functions in Exercise 6, what is the direction of fastest increase at (1, 1, 1)? [The 
solution to part (c) only is in the Study Guide to this text.] 

8. Show that a unit normal to the surface x3y3 + y — z + 2 = 0 at (0, 0, 2) is given by 
n = ( l /V2 ) ( j - k). 

9. Find a unit normal to the surface cos(xy) = ez — 2 at (1, n, 0). 

10. Verify Theorems 13 and 14 for f(x, y, z) = x2 + y2 + z2. 

11. Show that the definition following Theorem 14 yields, as a special case, the formula for 
the plane tangent to the graph of f ( x , y) by regarding the graph as a level surface of 
F(x, y, z) = f(x,y) — z (see Section 2.3). 

12. Let f(x, y) = - ( 1 - x2 - y2)l/2 for (x, y) such that x2 + y2 < 1. Show that the plane 
tangent to the graph of / at (xo, yo, f (xo, yo)) is orthogonal to the vector with components 
(x0, yo, / (x 0 , yo))- Interpret this geometrically. 

13. For the following functions f:R3->R and g: R -> R3, find V / and g' and evaluate 
( /og) '0 ) . 

(a) f(x,y,z) = xz + yz +xy, g(t) — (e*, cos t, sin t) 
(b) / ( x , y, z) = g(0 = (61, 312, t3) 
(c) f(x, y, z) = (x2 + y2 + z2) log Jx2 + y2 + z2, g(t) = (e(, e~l, t) 

14. Compute the directional derivative of / in the given directions v at the given points P. 

(a) f(x, y, z) = xy2 + / z 3 + z3x, P = (4, - 2 , -1 ) , v = l />/R(i + 3j + 2k) 
(b) / ( x , y, z) = x?z, P = (e, e, 0), v = if i + + ^ k 

15. Let r = xi + y\ + zk and r = ||r||. Prove that 

16. Captain Ralph is in trouble near the sunny side of Mercury. The temperature of the ship's 
hull when he is at location (x, y, z) will be given by T(x, y, z) = e-x2~2y2~3z2

 ? where x, y, 
and z are measured in meters. He is currently at (1, 1, 1). 

(a) In what direction should he proceed in order to decrease the temperature most 
rapidly? 

(b) If the ship travels at e8 meters per second, how fast will be the temperature decrease 
if he proceeds in that direction? 

(c) Unfortunately, the metal of the hull will crack if cooled at a rate greater than \f\Ae2 

degrees per second. Describe the set of possible directions in which he may proceed to bring 
the temperature down at no more than that rate. 

17. A function / : R2 -> R is said to be independent of the second variable if there is a 
function g: R —> R such that f ( x , y) = g(x) for all x in R. In this case, calculate V / in 
terms of g'. 
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18. Let / and g be functions from R3 to R. Suppose / is differentiable and V/(x) = g(x)x. 
Show that spheres centered at the origin are contained in the level sets for / ; that is, / is 
constant on such spheres. 

19. A function / : R" R is called an even function if / ( x ) = /(—x) for every x in R". If 
/ is differentiable and even, find D / at the origin. 

20. Suppose that a mountain has the shape of an elliptic paraboloid z = c — ax2 — by2, 
where a, b, and c are positive constants, JC and y are the east-west and north-south map 
coordinates, and z is the altitude above sea level (x, y, z are all measured in meters). At the 
point (1, 1), in what direction is the altitude increasing most rapidly? If a marble were 
released at (1, 1), in what direction would it begin to roll? 

21. An engineer wishes to build a railroad up the mountain of Exercise 20. Straight up the 
mountain is much too steep for the power of the engines. At the point (1, 1), in what 
directions may the track be laid so that it will be climbing with a 3% grade—that is, an 
angle whose tangent is 0.03? (There are two possibilities.) Make a sketch of the situation 
indicating the two possible directions for a 3% grade at (1, 1). 

22. In electrostatics, the force P of attraction between two particles of opposite charge is 
given by P = &(r/||r||3) (Coulombs law), where A; is a constant and r = xi + y\ + zk. Show 
that P is the gradient of / = -¿ / | | r | | . 

23. The electrostatic potential V due to two infinite parallel filaments with linear charge 
densities X and — X is V = (X/Itzeo) In (r2 /r i) , where r\ = (x — x0)2 + y2 and = 
(x + x0)2 + y2. We think of the filaments as being in the z direction, passing through the xy 
plane at ( — 0 ) and (x0, 0). Find V V(x, y). 

24. For each of the following, find the maximum and minimum values attained by the 
function / along the path c(t): 

(a) f(x,y) = xy;c(t) = (cos t, s ini);0 < t <2n. 
(b) f(x,y) = x2 + y2; c(t) = (cosi, 2 sini); 0 <t<2n. 

25. Suppose that a particle is ejected from the surface x2 + y2 — z2 = — 1 at the point 
(1,1, \ /3) along the normal directed toward the xy plane to the surface at time t — 0 with a 
speed of 10 units per second. When and where does it cross the xy plane? 

26. Let / : R3 R and regard D / ( x , y, z) as a linear map of R3 to R. Show that the kernel 
(that is, the set of vectors mapped to zero) of D / is the plane in R3 orthogonal to V / . 

REVIEW EXERCISES F O R C H A P T E R 2 

1. Describe the graphs of: 

(a) f ( x , y) = 3x2 + / (b) f ( x , y) = xy + 3x 

2. Describe some appropriate level surfaces and sections of the graphs of: 

(a) f ( x , y, z) — 2x2 + y2 + z2 



174 Differentiation 

(b) / ( x , y, z) = x2 

(c) f(x,y,z) = xyz 

3. Compute the derivative D/(x) of each of the following functions: 

(a) f(x,y) = (x2y,e-*y) 
(b) / ( x ) = (x ,x) 
(c) f(x,y,z) = ex +ey + ez 

(d) f(x,y,z) = (x,y,z) 

4. Suppose f(x,y) = f ( y , x) for all (x, y). Prove that 

(df/dx)(a,b) = (df/dy)(b,a). 

5. Let / ( x , y) — (1 — x2 — y2)l/2. Show that the plane tangent to the graph of / at 
(x0, yo, f(xo, yo)) is orthogonal to the vector (x0, yo, / ( x 0 , y0)). Interpret geometrically. 

6. Let F(u, v) and u = h(x, y, z), v = k(x, y,z) be given (differentiable) real-valued 
functions and let / ( x , y, z) be defined by f ( x , y, z) — F(h(x, y, z), k(x, y, z)). Write a 
formula for the gradient of / in terms of the partial derivatives of F, h, and k. 

7. Find an equation for the tangent plane of the graph of / at the point (x0, yo, f(x0, jo)) 
for: 

(a) / : R2 R,(x,y)H>x-y + 2, (JC0.yo) = (1, 1) 
(b) / : E 2 R, (JC, y ) ^ x 2 + 4y2, (x0, y0) = (2, - 1 ) 
(c) / : M2 M, (x, y) i-> xy, (x0, y0) = ( - 1 , - 1 ) 
(d) f(x,y)= l o g C x + ^ + x c o s j + a r c t a n ^ + y ) , (x0, y0) = (1, 0) 
(e) f ( x , y) = V ^ T y 2 , (x0, ^o) = (1,1) 
(f) f(x,y) = xy, (x0,yo) = (2,\) 

8. Compute an equation for the tangent planes of the following surfaces at the indicated 
points. 

(a) x2+y2+z2 = 3, (1 ,1 ,1) 
(b) x3-2y3 +z3 = 0, (1, 1, 1) 
(c) (cosx)(cosy)e* = 0, (tt/2, 1, 0) 
(d) ^ = 1, (1, 1,0) 

9. Draw some level curves for the following functions: 

(a) f ( x , y) = 1 /xy 
(b) f(x,y) = x2 - x y - y 2 

10. Consider a temperature function T(x, y) = x siny. Plot a few level curves. Compute VT 
and explain its meaning. 

11. Find the following limits if they exist: 

(a) limit ° 0 S X y ~ 1 (b) limit y/\(x + y)/(x - y)\, x ^ y 
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12. Compute the first partial derivatives and gradients of the following functions: 

(a) f(x,y,z) = xe2 + ycosx 
(b) f ( x , y, z) = (x + y + z)10 

(c) f(x,y,z) = (x2+y)/z 

d ? ? 
13. Compute — [x exp (1 + JC + y )] 

dx 

14. Let y(x) be a difFerentiable function defined implicitly by F(x, >>(*)) = 0. From Exercise 
17(a), Section 2.5, we know that 

dy dF/dx 
dx dF/dy 

Consider the surface z = F(jt, y), and suppose F is increasing as a function of x and as a 
function of y; that is, dF/dx > 0 and dF/dy > 0. By considering the graph and the plane 
z = 0, show that for z fixed at z = 0, y should decrease as x increases and x should decrease 
as y increases. Does this agree with the minus sign in the formula for dy/dxl 

15. (a) Consider the graph of a function f ( x , y) [Figure 2.R. 1(a)]. Let (x0, yo) lie on a level 
curve C, so V/(JCO, ̂ O) IS perpendicular to this curve. Show that the tangent plane of the 
graph is the plane that (i) contains the line perpendicular to V/(jt0, ^o) and lying in the 
horizontal plane z = f(xo, ^o), and (ii) has slope || V/(x0 , _vo)II relative to the xy plane. (By 
the slope of a plane P relative to the xy plane we mean the tangent of the angle 0, 0 < 6 < 7r, 
between the upward-pointing normal p to P and the unit vector k.) 

(b) Use this method to show that the tangent plane of the graph of f(x,y) = 
(x + cosy)*2 at (1, 0, 2) is as sketched in Figure 2.R.l(b). 

(a) (b) 

Figure 2.R.1 (a) The relationship between the gradient of a function and the 
tangent plane to the graph [Exercise 15(a)]. A specific instance of the plane in 
(b) for Exercise 15(b). 
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16. Find the plane tangent to the surface z = x2 + y2 at the point (1, —2, 5). Explain the 
geometric significance, for this surface, of the gradient of f ( x , y) = x2 + y2 (see 
Exercise 15). 

17. In which direction is the directional derivative of f(x,y) = (x2 — y2)/(x2 + y2) at (1, 1) 
equal to zero? 

18. Find the directional derivative of the given function at the given point and in the direction 
of the given vector. 

(a) /(Jt, y, z) = e* cos (yz) , p0 = (0, 0, 0), v = (2, 1, - 2 ) 
(b) f(x,y,z) = xy+yz+zx, Po = ( 1,1,2), v = ( 1 0 , - 1 , 2 ) 

19. Find the tangent plane and normal to the hyperboloid x2 + y2 — z2 = 18 at (3, 5, —4). 

20. Let (x(t), y(0) be a path in the plane, 0 < t < 1, and let f ( x , y) be a C1 function of 
two variables. Assume that (dx/dt) fx + (dy/dt)fy < 0. Show that /(jc(1), y(l)) < 
/(*(0),y(0)). 

21. A bug finds itself in a toxic environment. The toxicity level is given by T(x, y) = 
2x2 — Ay2. The bug is at (— 1, 2). In what direction should it move to lower the toxicity the 
fastest? 

22. Find the direction in which the function w = x2 + xy increases most rapidly at the 
point (—1, 1). What is the magnitude of Vw at this point? Interpret this magnitude 
geometrically. 

23. Let / be defined on an open set S in MP. We say that / is homogeneous of degree p over 
S if /(Ax) = Xp f (x) for every real X and for every x in S for which Ax e S. 

(a) If such a function is differentiate at x, show that x • V/(x) = pf(\). This is known 
as Euler's theorem for homogeneous functions. [HINT: For fixed x, define g(X) = /(Ax) and 
compute g'O)-] 

(b) Find p and check Euler's theorem for the function f ( x , y,z) = x — 2y — yfxz, on 
the region where xz > 0. 

24. If z = [ f ( x — y)]/y (where / is differentiate and y 0), show that the identity 
z + y(dz/dx) + y(dz/dy) = 0 holds. 

25. Given z = f((x + y)/(x — y)) for / a C1 function, show that 

26. Let / have partial derivatives 9/(x)/9x f , where i = 1, 2 , a t each point x of an 
open set U in W1. If / has a local maximum or a local minimum at the point x0 in U, show 
that df(x0)/dxi — 0 for each i. 
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27. Consider the functions defined in M2 by the following formulas: 

(i) f ( x , y) = xy/(x2 + / ) if (x,y)* (0, 0), / (0 , 0) - 0 
(ii) f ( x , y) = x2y2/(x2 + / ) if (x,y)^ (0, 0), / (0 , 0) = 0 

(a) In each case, show that the partial derivatives df(x, y)/dx and df(x, y)/dy exist for 
every (x, in R2, and evaluate these derivatives explicitly in terms of x and y. 

(b) Explain why the functions described in (i) and (ii) are or are not differentiable at 
(0, 0). 

28. Compute the gradient vector V/(x, y) at all points (JC, y) in M2 for each of the following 
functions: 

(a) f ( x , y) = x2y2 log (x2 + y2) if (x9y)? (0, 0), / (0 , 0) = 0 
(b) f(x,y) = xysm[\/(x2+y2)) if (x, y) # (0, 0), / (0 , 0) = 0 

29. Find the directional derivatives of the following functions at the point (1, 1) in the 
direction (i + j ) / \ /2: 

(a) f(x,y) = xtim-l(x/y) 
(b) f(x9y) = cos ( ^ + 7 ) 
(c) f(x,y) = exp(-x2 - y2) 

30. (a) Let u = i — 2j -+• 2k and v = 2i + j — 3k. Find: ||u||, u • v, u x v, and a vector in the 
same direction as u, but of unit length. 

(b) Find the rate of change of e*y sin(xyz) in the direction u at (0, 1,1). 

31. Let h(x,y) = 2e~%1 + e~3y2 denote the height on a mountain at position (x, y). In what 
direction from (1,0) should one begin walking in order to climb the fastest? 

32. Compute an equation for the plane tangent to the graph of 

f(x,y) = xz+yz 

atx = l,y = 2. 

33. (a) Give a careful statement of the general form of the chain rule. 
(b) Let f ( x , y) = x2 +y and h(u) = (sin3w, cos 8u). Let g(u) = /(h(w)). Compute 

dg/du at u = 0 both directly and by using the chain rule. 

34. (a) Sketch the level curves of f(x,y) = —x2 — 9y2 for c = 0, — 1, —10. 
(b) On your sketch, draw in V / at (1, 1). Discuss. 

35. At time t = 0, a particle is ejected from the surface x2 + 2y2 + 3z2 = 6 at the point 
(1, 1, 1) in a direction normal to the surface at a speed of 10 units per second. At what time 
does it cross the sphere x2 + y2 + z2 = 103? 
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36. At what point(s) on the surface in Exercise 35 is the normal vector parallel to the line 
X = y=z7 

37. Compute dz/dx and dz/dy if 

u2 + v2 
z — — u = exy, v = exy 

ul — VL 

(a) by substitution and direct calculation, and (b) by the chain rule. 

38. Compute the partial derivatives as in Exercise 37 if z = uv, u = x -{- y, and v = x — y. 

39. What is wrong with the following argument? Suppose that w = f(x,y) and y = x2. By 
the chain rule, 

dw dw dx dw dy dw ^ dw 
dx dx dx dy dx dx dy 

Hence, 0 = 2x(dw/dy), and so dw/dy = 0. Choose an explicit example to really see that this 
is incorrect. 

40. A boat is sailing northeast at 20 km/h. Assuming that the temperature drops at a rate of 
0.2°C/km in the northerly direction and 0.3°C/km in the easterly direction, what is the time 
rate of change of temperature as observed on the boat? 

41. Use the chain rule to find a formula for (d/dt) exp [ / (0g (0L 

42. Use the chain rule to find a formula for (d/dt)(f(t)g{t)). 

43. Verify the chain rule for the function f(x, y,z) = [In (1 + x2 + 2z2)]/(l + y2) and the 
path c(0 == (i, 1 - t2, cos t). 

44. Verify the chain rule for the function f(x, y) = x2/(l + cosy) and the path x = e*, y — e~( • 

45. Suppose that u(x, t) satisfies the differential equation ut + uux = 0 and that JC, as a 
function x = f(t) of t, satisfies dx/dt = u(x, t). Prove that u(f(t), t) is constant in t. 

46. The displacement at time t and horizontal position on a line x of a certain violin string is 
given by u = sin (x — 61) + sin (JC + 6t). Calculate the velocity of the string atx = \ when 
/ = ! . 

47. The ideal gas law PV — nRT involves a constant R, the number n of moles of the gas, 
the volume V, the Kelvin temperature T, and the pressure P. 

(a) Show that each of n, P, T, V is a function of the remaining variables, and determine 
explicitly the defining equations. 

(b) Calculate d V/d T, d T/dP, dP/d V and show that their product equals - 1 . 



Review Exercises 179 

48. The potential temperature 6 is defined in terms of temperature T and pressure p by 

The temperature and pressure may be thought of as functions of position (x, y, z) in the 
atmosphere and also of time t. 

(a) Find formulas for 86/dx, 86/dy, 86/dz, d6/dt in terms of partial derivatives of T 
and p. 

(b) The condition d6/dz < 0 is regarded as an unstable atmosphere, for it leads to large 
vertical excursions of air parcels from a single upward or downward impetus. Meteorologists 
use the formula 

where g = 32.2 and Cp is a positive constant. How does the temperature change in the 
upward direction for an unstable atmosphere? 

49. The specific volume V, pressure P, and temperature T of a van der Waals gas are related 
by P = RT/(V - P) - a/ F2, where a, p, and R are constants. 

(a) Explain why any two of V, P, and T can be considered independent variables that 
determine the third variable. 

(b) Find dT/dP, dP/d V, 3 V/dT. Identify which variables are constant, and interpret 
each partial derivative physically. 

(c) Verify that (a r / a P)(aP/a K)(a K/a71) = - 1 ( not +1!). 

50. The height h of the Hawaiian volcano Mauna Loa is (roughly) described by the function 
h(x, y) = 2.59 — 0.00024>>2 — 0.00065.x2, where h is the height above sea level in miles and 
x and y measure east-west and north-south distances in miles from the top of the mountain. 
At(x, j /) = ( - 2 , - 4 ) : 

(a) How fast is the height increasing in the direction (1,1) (that is, northeastward)? 
Express your answer in miles of height per mile of horizontal distance traveled. 

(b) In what direction is the steepest upward path? 

51. (a) In what direction is the directional derivative of f(x,y) = (x2 — y2)/(x2 + y2) at 
(1,1) equal to zero? 

(b) How about at an arbitrary point (xo, yo) in the first quadrant? 
(c) Describe the level curves of / . In particular, discuss them in terms of the result 

of part (b). 

52. (a) Show that the curve x2 — y2 = c, for any value of c, satisfies the differential 
equation dy/dx = x/y. 

(b) Draw in a few of the curves x2 — y2 = c, say for c = ± 1. At several points (x, y) 
along each of these curves, draw a short segment of slope x/y\ check that these segments 
appear to be tangent to the curve. What happens when y = 0? What happens when c = 0? 



1 8 0 Differentiation 

53. Suppose that / is a differentiable function of one variable and that a function 
u = g(jt, y) is defined by 

u=g(x,y) 
\ xy 

Show that u satisfies a (partial) differential equation of the form 

}du 2du 
y = G(x,y)u 

dx dy 

and find the function G(x, y). 

54. (a) Let F be a function of one variable and / a function of two variables. Show that the 
gradient vector of y) = F(f(x, y)) is parallel to the gradient vector of f ( x , y). 

(b) Let f(x,y) and y) be functions such that V / = AVg for some function y). 
What is the relation between the level curves of / and g? Explain why there might be a 
function F such that y) — F(f(x, y)). 


