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Higher-Order Derivatives: 
Maxima and Minima 

Leonhard Euler 
(by Emanuel 
Handman) 
(1707-1783). 

All that is superfluous displeases God and Nature. 
All that displeases God and Nature is evil 

itante^fllighieri, circa 1300 

... namely, because the shape of the whole universe is most perfect, and, 
in fact, designed by the wisest creator, nothing in all of the world will 
occur in which no maximum or minimum rule is somehow shining forth. 

JCeonhard 8uler 

In one-variable calculus, to test a function f ( x ) for a local maximum or minimum, 
one often uses the second derivative. We look for critical points xo, that is, points xo 

for which f\x o) = 0, and at each such point we check the sign of the second derivative 
f"(xo). If f"(xo) < 0, f(xo) is a local maximum of / ; if f"(xo) > 0, f(xo) is a local 
minimum of / ; if f"(x0) = 0, the test fails. 

This chapter extends these methods to real-valued functions of several variables. 
We begin in Section 3.1 with a discussion of iterated and higher-order partial deriva-
tives, and in Section 3.2 we discuss the multivariable form of Taylor's theorem; this 
is then used in Section 3.3 to derive tests for maxima, minima, and saddle points. 
As with functions of one variable, such methods help one to visualize the shape of 
a graph. 

In Section 3.4, we study the problem of maximizing a real-valued function subject 
to supplementary conditions, also referred to as constraints. For example, we might 
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182 Higher-Order Derivatives: Maxima and Minima 

wish to maximize f(x,y,z) among those (x, y, z) constrained to lie on the unit sphere, 
x2 + y2 + z2 = 1. Section 3.5 discusses a technical theorem (the implicit function 
theorem) useful for studying constraints. It will also be useful later in our study of 
surfaces. 

3,1 Iterated Partial Derivatives 
The preceding chapter developed considerable information concerning the derivative 
of a map and investigated the geometry associated with the derivative of real-valued 
functions by making use of the gradient. In this section, we proceed to study higher-
order derivatives, with the goal of proving the equality of the "mixed second partial 
derivatives" of a function. We begin by defining the necessary terms. 

Let / : R3 R be of class C1. Recall that this means that 3/ /3x, df/dy, and 
df/dz exist and are continuous. If these derivatives, in turn, have continuous partial 
derivatives, we say that / is of class C2, or is twice continuously differentiable. 
Likewise, if we say / is of class C3, we mean / has continuous iterated partial 
derivatives of third order, and so on. Here are a few examples of how second-order 
derivatives are written: 

= ^L = L(dl\ ^L = L(dL\ e t c 

dx2 dx \Sx J9 3x3 y 3 x \ 3 y J9 dz dy dz\dy J' 

The process can, of course, be repeated for third-order derivatives, and so on. If / is 
a function of only x and y and df/dx, df/dy are continuously differentiable, then by 
taking second partial derivatives we get the four functions 

a V a y ^ 
dx2' 3y2' dx dy' dy dx 

All of these are called iterated partial derivatives, while 3 2 / /3x dy and d2f/dy dx 
are called mixed partial derivatives. 

Find all second partial derivatives of f(x, y) = xy + (x + 2y)2 . 

S O L U T I O N The first partials are 

df df 
- f = y + 2(x+ly), = * + 4 ( x + 2 yy 
dx dy 

Now differentiate each of these expressions with respect to x and y: 

d V = 2 a y 
dx2 ' dy2 

_ f f _ = s a2/ 
dx dy ' dy dx 

= 8 

= 5. A 
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^ ^ I ^ I Q J ^ Q Find all second partial derivatives of / ( x , y) = sinx sin2 y. 

S O L U T I O N We proceed just as in Example 1: 

9 / 2 3 / — = cosx sin y, — = 2 sinx smy cosy = sinx sin2y; 
dx d y 

dx2 ~ " dy2 
a 2 / • . 2 9 2 / o . 

— = — sinx sin y, — - = 2 smx cos2y; 

3 2 / 3 2 / 
= cosx sin2y, ——- = 2 cosx siny cosy = cosx sin2y. 

dx dy dy dx 

• ¡KttlMIUBapSf Let / ( x , y, z) = exy +z cosx. Then 

df 3f xv df — = ye y — z sinx, — = xe y, — = cosx, 
dx dy dz 

d2f . d2f 
— sinx, = — sinx, etc. A dz dx dx dz 

The Mixed Partials are Equal 
In all these examples note that the pairs of mixed partial derivatives, such as d2f/dx dy 
and d2f/dydx, or d2f/dzdx and d2f/dx dz, are equal. It is a basic and perhaps 
surprising fact that this is always the case for C2 functions. We shall prove this in 
the next theorem for functions f(x,y) of two variables, but the proof can be readily 
extended to functions of n variables. 

T H E O R E M 1: Equality of Mixed Partials If / (x, y) is of class C2 (is 
twice continuously differentiable), then the mixed partial derivatives are equal; 
that is, 

9 2 / _ 3 2 / 
dx dy dy dx 

PROOF Consider the following expression (see Figure 3.1.1): 

S(Ax, Ay) = /(xo + Ax, y0 + Ay) - / ( x 0 + Ax, y0) 

- / ( * o, yo + Ay) + f{x o, y0). 

Holding yo and Ay fixed, define 

g(x) = f{x, y0 + Ay) - / ( x , y0), 
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(xo + Ax^o + Ay) 

Oo^o) (x 0+Ax,j> 0) 

Figure 3.1.1 The algebra behind the equality 
of mixed partials: writing the difference of 
differences in two ways. 

so that S(Ax, Ay) = g(xo -f Ax) — g(xo), which expresses S as a difference of differ-
ences. By the mean-value theorem for functions of one variable, g(xo 4- Ax) — g(xo) 
equals g\x)Ax for some x between xo and xo 4- Ax. Hence, 

ra/ _ a/ _ 1 
S(Ax, Ay) = + Ay) - ^(x>yo) Ax. 

Applying the mean-value theorem again, there is a y between yo and yo + Ay such 
that 

d2f 
S(Ax, Ay) = y) Ax Aj>. ay ax 

Because d2f/dy dx is continuous, it follows that 

a2/ 1 
-(*o, yo) = limit [^(Ax, Ay)]. dy dx (Ax,Ay)^(0,0) Ax Ay 

Noting that S is symmetric in Ax and Ay, one shows in a similar way that d2f/dx dy 
is given by the same limit formula, which proves the result. 

The equality of mixed partial derivatives is one of the most important results 
of multivariable calculus. It will reappear on several occasions later in the 
book, when we study vector identities. 

In the next historical note, we will discuss the role of partial derivatives 
in the formulation of many of the basic equations governing physical 
phenomena. One of the giants in this era was Leonhard Euler (1707-1783), 
who developed the equations of fluid mechanics that bear his name—the 
Euler equations. It was in connection with the needs of this development that 
he discovered, around 1734, the equality of mixed partial derivatives. Euler 
was about 27 years old at the time. 
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In Exercise 11 we ask the reader to deduce from Theorem 1 that for a C3 function 
of x,y, and z, 

a3/ a3/ a3/ etc. dx dy dz dz dy dx dy dz dx ' 

In other words, we can compute iterated partial derivatives in any order we please. 

Verify the equality of the mixed second partial derivatives for the E X A M P L E 4 
function 

f(x,y) = xey +yx2. 

S O L U T I O N Here 

a/ a/ 7 — = ey 4- 2xy, — = xey -f x , dx dy 
a2/ a2/ J =ey+2x, =ey+2x, 

and so we have 

dy dx dx dy 

a2/ a2/ 
dy dx dx dy 

Sometimes the notation fx, fy, fz is used for the partial derivatives: fx = df/dx, 
and so on. With this notation, we write fxy = ( f x ) and so equality of the mixed 
partials is denoted by fxy = fyx. Notice that fxy = d2f/dy dx, so the order of x and 
y is reversed in the two notations; fortunately, the equality of mixed partials makes 
this potential ambiguity irrelevant. The following example illustrates this subscript 
notation. 

I ^ t 

z = / ( x , y) = ex sin xy 

and write x = g(s, /), y = h(s, t) for certain functions g and h. Let 

k(s,t) = f(g(s,t),h(s,t)). 

Calculate kst. 
S O L U T I O N By the chain rule, 

ks = fxgs + fyhs = (ex sin xy + yex cos xy)gs + (xex cos xy)hs. 
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Differentiating in t using the product rules gives 

kst = (fx)tgs + fx{gs\ + (fy)ths + fy(hs)r 

Applying the chain rule again to ( f x ) t and ( f y ) t gives 

(fx)t = fxxgt + fxyht and ( f y \ = fyxgt + fyyht, 

7* 

and so kst becomes 

kst = (fxxgt + fxyht)gs + fxgst + {fyxgt + fyyht)hs + fyhst 

= fxxgt gs + fxyihtgs + hsgt) + fyyhths + fxgst + fyhst. 

Notice that this last formula is symmetric in (s, t), verifying the equality kst = kts. 
Computing fxx, fxy, and fyy, we get 

kst = (ex sinxy + 2yex cos xy — y2ex sinxy)gig5 

+ (xex cos xy + ex cos xy — xyex sinxy){htgs + hsgt) 

— (x2ex sinxy)hths + (ex sinxy + ye* cosxy)gst + (xe* cosxy)hst, 

in which it is understood that x = g(s, t) and y = h(s,t). A 

Some Partial Differential Equations 
Philosophy [nature] is written in that great book which ever is 
before our eyes—I mean the universe—but we cannot understand it 
if we do not first learn the language and grasp the symbols in which 
it is written. The book is written in mathematical language, and the 
symbols are triangles, circles and other geometrical figures, without 
whose help it is impossible to comprehend a single word of it; 
without which one wanders in vain through a dark labyrinth. 

This quotation illustrates the Greek belief, again popular in the time of 
Galileo, that much of nature could be described using mathematics. In the 
latter part of the seventeenth century this thinking was dramatically 
reinforced when Newton used his law of gravitation to derive Kepler's three 
laws of celestial motion (see Section 4.1) to explain the tides, and to show that 

GALILEO 
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the earth was flattened at the poles. The impact of this philosophy on 
mathematics was substantial, and many mathematicians sought to 
"mathematize"nature. The extent to which mathematics pervades the 
physical sciences today (and, to an increasing amount, economics and the 
social and life sciences) is testament to the success of these endeavors. 
Correspondingly, the attempts to mathematize nature have often led to new 
mathematical discoveries. 

Many of the laws of nature were described in terms of either ordinary 
differential equations (ODEs, equations involving the derivatives of 
functions of one variable alone, such as the laws of planetary motion) or 
partial differential equations (PDEs), that is, equations involving partial 
derivatives of functions. To give the reader some historical perspective and 
offer motivation for studying partial derivatives, we present a brief 
description of three of the most famous partial differential equations: the 
heat equation, the potential equation (or Laplace's equation), and the wave 
equation. (Further information on some PDEs is given in Section 8.5.) 

THE HEAT EQUATION. In the early part of the nineteenth century the 
French mathematician Joseph Fourier (1768-1830) took up the study of heat. 
Heat flow had obvious applications to both industrial and scientific 
problems: A better understanding of it would, for example, make possible 
more efficient smelting of metals and would enable scientists to determine 
the temperature of a body given the temperature at its boundary, and to 
approximate the temperature of the earth's interior. 

Let a homogeneous body B C M3 (Figure 3.1.2) be represented by some 
region in 3-space. Let T(x, y, z, t) denote the temperature of the body at the 

z 

/ 

X 

Figure 3.1.2 A homogeneous body in space. 
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point (x, y, z) at time t. Fourier proved, on the basis of physical principles 
(described in Section 8.5), that T must satisfy the partial differential equation 
called the heat equation, 

'd2T d2T d2T\ _ ar 

where k is a constant whose value depends on the conductivity of the material 
comprising the body. 

Fourier used this equation to solve problems in heat conduction. In fact, 
his investigations into the solutions of equation (1) led him to the discovery 
of Fourier series. 

THE POTENTIAL EQUATION. Consider the gravitational potential V (often 
called Newton's potential) of a mass m at a point (x, y, z) caused by a point 
mass M situated at the origin. This potential is given by V — —GmM/r, 
where r = y/x2 + y2 -f z2. The potential V satisfies the equation 

— + — + — - 0 (2) 
dx2 dy2 dz2 

everywhere except at the origin, as we will check in the next chapter (see also 
Exercise 23). This equation is known as Laplace's equation. Pierre-Simon de 
Laplace (1749-1827) had worked on the gravitational attraction of nonpoint 
masses and was the first to consider equation (2) with regard to gravitational 
attraction. He gave arguments (later shown to be incorrect) that equation (2) 
held for any body and any point whether inside or outside that body. 
However, Laplace was not the first person to write down equation (2). The 
potential equation appeared for the first time in one of Euler's major papers 
in 1752, "Principles of the Motions of Fluids," in which he derived the 
potential equation with regard to the motion of (incompressible) fluids. Euler 
remarked that he had no idea how to solve equation (2). Poisson later showed 
that if (x, y, z) lies inside an attracting body, then V satisfies the equation 

a2v + a2v + a 2 v _ 
3x2 dy2 dz2 

where p is the mass density of the attracting body. Equation (3) is now called 
Poisson1s equation. Poisson was also the first to point out the importance 
of this equation for problems involving electric fields. Notice that if the 
temperature T is constant in time, then the heat equation (1) reduces to 
Laplace's equation (2). 
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Laplace's and Poisson's equations are fundamental to many fields 
besides fluid mechanics, gravitational fields, and electrostatic fields. For 
example, they are useful for studying soap films and liquid crystals (see The 
Parsimonious Universe: Shape and Form in the Natural World by S. 
Hildebrandt and A. Tromba, Springer-Verlag, New York/Berlin, 1995). 

THE WAVE EQUATION. The linear wave equation in space has the form 

* ( 4 ) dx2 dy2 dz2 dt2' 

The one-dimensional wave equation 

32/ 2 a2/ 

was derived in about 1727 by Johann II Bernoulli and several years later by 
Jean Le Rond d'Alembertin the study of how to determine the motion of a 
vibrating string (such as a violin string). Equation (4) became useful in the 
study of both vibrating bodies and elasticity. As we shall see when we 
consider Maxwell's equations for electromagnetism in Section 8.5, this 
equation also arises in the study of the propagation of electromagnetic 
radiation and sound waves. 

I S ^ Q i ^ I U R S Q The partial differential equation ut 4- uxxx 4- uux = 0 , called the 
Korteweg-de Vries equation (or KdV equation, for short), describes the motion of 
water waves in a shallow channel. 

(a) Show that for any positive constant c, the function 

u(x, t) = 3csech2[|(x — ct)^/c] 

is a solution of the Korteweg-de Vries equation. (This solution represents a 
traveling "hump" of water in the channel and is called a soliton .)1 

(b) How do the shape and speed of the soliton depend on ct 

S O L U T I O N (a) We compute ut, ux, uxx, and uxxx using the chain rule and the 
differentiation formula (dfdx)sechx = — sechx tanhx from one-variable calculus. 

1 Solitons were first observed by J. Scott Russell around 1840 in barge canals near Edinburgh. He reported his results in 
Trans. R. Soc. Edinburgh 14 (1840): 47-109. 
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Letting a = (x — ct)*Jc/2, 

Also, 

d ? da 
ut = 6c sech a — sech a = —6c sech a t a n h a — dt dt 

= 3c5/2 sech2 a tanha = c3/2w tanha. 

12 , da 
ux = —6c sech a tanha—— dx 

= —3c3/2 sech2 a tanha = —\fc u tanha, 

and so ut + cux = 0 and 

uxx = —yfc \ux tanh a + w(sech2 a ) — = — Ve (tanh a ) ^ 

t/2 
c(tanh a)u = c( 1 — sech a)u 

6 6 
2 2 2 W U U cu = cu 

3 6 2 

Thus, 

Hence, 

Uxxx — CUX UUX, that is, uxxx + uux=cux. 

Ut + Uxxx + uux =ut + cux = 0. 

u 
~6 

(b) The speed of the soliton is c, because u(x + ct, t) = u(x, 0). The soliton is higher 
and thinner when c is larger. Its shape at time t = 10 is shown in Figure 3.1.3. A 

(a) (b) 

Figure 3.1.3 The graph of u(x, t) = 3 sech2(>v/c(x — ct)/2) for c = \ at times 
(a) t = 0 and (b) t = 10. 
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E X E R C I S E S 

In Exercises 1 to 6, compute the second partial derivatives d2f/dx2, d2f/dx dy, d2f/dy dx, 
d2f/dy2 for each of the following functions. Verify Theorem 1 in each case. 

1. f(x,y) = 2xy/(x2 + y2)2, on the region where (x, y) ± (0, 0) 

2. f{x, y, z) — ez + (1/x) + xe~y, on the region where x ^ 0 

3. f(x,y) = cos(xy2) 

4. f(x,y) = e~xyZ +y3x4 

5. f(x,y) = l / (cos 2x + e~y) 

6. f(x,y)=\og{x-y) 

7. Find d2z/dx2, d2z/dx dy, d2z/dy dx, and d2z/dy2 for 

(a) z = 3x2 + 2y2 

(b) z = (2x2 + lx2y)/3xy, on the region where x ^ 0 and y ± 0 

8. Find all the second partial derivatives of 

(a) z = sin (x2 — 3 x y ) 

(b) z = x2y2e2xy 

9. Find fxy, fyz, fzx, and fxyz for 

f i x , y, z) = x2y + xy2 + yz2. 

10. Let z = x 4^ 3 — x8 + y4. 

(a) Compute d3z/dy dx dx, d3z/dx dy dx, and d3z/dx dx dy (also denoted d3z/dx2dy). 
(b) Compute d3z/dx dy dy, d3z/dy dx dy, and d3z/dy dy dx (also denoted d3z/dy2dx). 

11. Use Theorem 1 to show that if f ( x , y, z) is of class C3, then 

93/ _ 93 / 
dx dy dz dy dz dx 

12. Verify that 

d3f = d3f 
dx dy dz dz dy dx 

for f(x,y, z) = zexy + yz3x2. 

13. Verify that fxzw = fzwx for / ( x , y, z, w) = exyz sin(xw). 



192 Higher-Order Derivatives: Maxima and Minima 

14. If f ( x , y, z, w) is of class C3, show that fxzw = fzwx. 

15. Evaluate all first and second partial derivatives of the following functions: 

(a) f(x,y) = x arctanipcjy) 
(b) f(x,y) = c o s V ^ + 7 
(c) f(x,y) = exp(-x2 -y2) 

16. Let w = f ( x , y) be a function of two variables and let JC = u + v,y = u — v. Show 
that 

17. Let f : R2 R be a C2 function and let c(f) be a C2 curve in M2. Write a formula for 
the second derivative (d2/dt2)((f o c)(/)) using the chain rule twice. 

18. Let /(JC, >>, z) = tan(yz) and let JC = g(s, t), y — h(s, t), z = k(s, t), and define the 
function m(s, t) = f{g{s, t), h(s, t), k(s, t)). Find a formula for mst using the chain rule and 
verify that your answer is symmetric in 5 and t. 

19. A function u = f(x,y) with continuous second partial derivatives satisfying Laplace's 
equation 

is called a harmonic function. Show that the function w(jc, y) = x3 — 3 xy2 is harmonic. 

20. Which of the following functions are harmonic? (See Exercise 19.) 

21. Let / and g be C2 functions of one variable. Set 0 = f(x — t) + g(x + t). 

(a) Prove that 0 satisfies the wave equation: d2<j)/dt2 = d2(p/dx2. 
(b) Sketch the graph of 0 against t and x if f ( x ) = x2 and g(x) = 0. 

22. (a) Show that function t) = 2 + e~l sin* satisfies the heat equation: gt = gxx. 
[Here t) represents the temperature in a metal rod at position x and time /.] 

(b) Sketch the graph of g for t > 0. (HINT: Look at sections by the planes t = 0, t = 1, 
and t = 2.) 

(c) What happens to g(x, t) as / -> oo? Interpret this limit in terms of the behavior of 
heat in the rod. 

d2w d2w d2w 
dudv dx2 d y2 

(a) f{x,y) = x2-y2 

(b) f(x,y)=x2+y2 

(c) f ( x , y) = xy 

(d) f(x,y) = y3 + 3x2y 
(e) f(x,y)= sinx coshy 
(f) f(x.y) = e* s in / 
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23. Show that Newton's potential V = —GmM/r satisfies Laplace's equation 

d2V d2V d2V 
= 0 f o r 

24. Let 

f ( Y v^ _ M * 2 ~ y2)/(*2 + (*• ̂  # °) 
}0, (jc,JO = (0,0) 

(see Figure 3.1.4). 

(a) If (JC, y) ^ (0, 0), calculate d f / d x and d f / d y . 
(b) Show that (df/dx)(0, 0) = 0 = (df/dyX0, 0). 
(c) Show that ( d 2 f / d x dy)(0, 0) = 1, ( A 2 / / ^ 9JC)(0, 0) = - 1 . 
(d) What went wrong? Why are the mixed partials not equal? 

Figure 3.1.4 The graph of the function 
in Exercise 24. 

Taylor's Theorem 
When we introduced the derivative in Chapter 2, we saw that the linear approximation 
of a function played an essential role for a geometric reason—finding the equation 
of a tangent plane—as well as an analytic reason—finding approximate values of 
functions. Taylor's theorem deals with the important issue of finding quadratic and 
higher-order approximations. 

Taylor's theorem is a central tool for finding accurate numerical approxi-
mations of functions, and as such plays an important role in many areas of 
applied and computational mathematics. We shall use it in the next section to de-
velop the second derivative test for maxima and minima of functions of several 
variables. 

The strategy used to prove Taylor's theorem is to reduce it to the one-variable 
case by probing a function of many variables along lines of the form !(/) = xq -f th 
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emanating from a point x0 and heading in the direction h. Thus, it will be useful for 
us to begin by reviewing Taylor's theorem from one-variable calculus. 

Sing le -Var iab le T a y l o r T h e o r e m 

When recalling a theorem from an earlier course, it is helpful to ask these basic 
questions: What is the main point of the theorem? What are the key ideas in the 
proof? Can I understand the result better the second time around? 

The main point of the single-variable Taylor theorem is to find approximations 
of a function near a given point that are accurate to a higher order than the linear 
approximation. The key idea in the proof is to use thefundamental theorem ofcalculus, 
followed by integration by parts. In fact, just by recalling these basic ideas, one can 
reconstruct the entire proof. Thinking in this way will help organize all the pieces that 
need to come together to develop a mastery of Taylor approximations of functions of 
one and several variables. 

For a smooth function / : M —> M of one variable, Taylor's theorem asserts 
that: 

fix o + A) = f(x o) + f{x0) - h + l^-h2 + - • • + + Rk{x o, A), (1) 
2 K\ 

where 

Rk{xo, h) = / / CO dr 
Jx o k\ 

is the remainder. For small h, this remainder is small to order k in the sense that 

Rk{x^h) 
l im = 0. o hk (2) 

In other words, Rk{xo, h) is small compared to the already small quantity hk. 
The preceding is the formal statement of Taylor's theorem. What about the proof? 

As promised, we begin with the fundamental theorem of calculus, written in the 
form: 

rXQ+h 
f(x0 + h) = f(x0)+ f'(r)dr. 

Jx o 
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I rXQ+h 
f"(T)d(x0 + h-T)2 

Jx 0 

Next, we write dr = —d(xo + h — x) and integrate parts2 to give: 

pxo+h 
f(x 0 + h) = f{x 0) + f'(x0)h + / /"(T)(x0 + h-T) dr, 

Jx 0 

which is the first-order Taylor formula. Integrating by parts again: 

pxo+h 
/ f"(r)(x0 + h-r)dz 

Jx o 

= - r 
2 Jxn = -f"(x0)h2 + - / / ' "(r)(x0 + h - r)2 </r, 

^ ^ «/xo 

which, when substituted into the preceding formula, gives the second-order Taylor 
formula: 

I l pxo+h 
f(xo + A) = / (x 0 ) + /(*o)A + 2f"(Xo)h2 + 2 J / , , , ( r ) ( x ° + h ~ r ) 2 

This is Taylor's theorem for k = 2. 
Taylor's theorem for general A: proceeds by repeated integration by parts. The 

statement (2) that i^(x0 , h)/hk -> 0 as h 0 is seen as follows. For r in the interval 
[xo, + ^L w e h a v e 1*0 + h — r | < and fk+x(r), being continuous, is bounded; 
say, < M. Then: 

l / ^ x o , h)\ = | (*0 + * r y / * + 1 ( r ) rfr 

and, in particular, | i^(x0 , h)/hk| < |A| M/k\ 0 as h -> 0. 

< M 
k\ 

2Recall that integration by parts (the product rule for the derivative read backwards) reads as: 

I udv = uv\Q — I vdu. 
J a J a 

Here we choose u = f'(r) AND v = JCQ + h — x. 
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Taylor's Theorem for Many Variables 
Our next goal in this section is to prove an analogous theorem that is valid for functions 
of several variables. We already know a first-order version, that is, when k = 1. Indeed, 
if / : W1 -> M is differentiate at x0 and we define 

*!(*>, h) = / (x 0 + h) - /(xo) - [D/(x0)](h), 

so that 

/(xo + h) = f{xo) + [D/(x0)](h) + ^(xo , h), 

then by the definition of differentiability, 

l*i(xo,h)| 
ifhli " 

that is, RI (XQ , h) vanishes to first order at x0. In summary, we have: 

T H E O R E M 2: F i r s t - O r d e r T a y l o r F o r m u l a Let / : U c IT -> R be 
differentiable at x0 e U. Then 

/ (x 0 + h) = / (x 0 ) + ] T hi f ( x o ) + i?l(x0, h), 
i=1 

where i?i(x0, h)/||h|| -> 0 as h -> 0 in Mw. 

The second-order version is as follows: 

T H E O R E M 3: S e c o n d - O r d e r T a y l o r F o r m u l a Let f:U c M " - > 
M have continuous partial derivatives of third order.3 Then we may write 

/(Xo + h) = /(xo) + + ^ E h i h j " ^ i r ( X o ) + * 2 ( X o ' h ) > 

/=1 z i,y=l 1 J 

where i?2(xo, h)/||h||2 -> 0 as h —> 0 and the second sum is over all / 's andy's 
between 1 and n (so there are n2 terms). 

3 For the statement of the theorem as given here, / actually needs only to be of class C2 , but for a convenient form of the 
remainder we assume f is of class C3 . 
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Notice that this result can be written in matrix form as 
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/ ( x 0 + h) = / ( x 0 ) + ( f , . . . , f ) : 
\9xi dx„J \ • 

( 9 2 / 

h\ 

h n , 

+ -(hu...,hn) 

d2f 
dx\ dx] dx\ dx2 

a2/ a2/ 
dX2 dX2 

a2/ 92/ 
dxn dx2 

a2/ \ 

dx\ dxn 

8x2 dxn 

a2/ 
dxn dxn ) 

(hx\ 

h2 

\hn) 

+ R2(xo,h), 

where the derivatives of / are evaluated at x0. 
In the course of the proof of the Theorem 3, we shall obtain a useful explicit 

formula for the remainder, as in the single-variable theorem. 

PROOF OF THEOREM 3 Let g(t) = / ( x 0 + th) with x0 and h fixed, which is 
a C3 function of t. Now apply the single-variable Taylor theorem (1) to g, with k = 2 
to obtain 

je"fOi 

where 

R2 -f 
Jo 

( ' - 1 ) 2 

2! 
g"(t)dt. 

(3) 

By the chain rule, 

n ^r n f 
S'W = E + 'h)h<; Sit) = £ + ttyhihj, 

/=1 1 i,j= 1 1 J 
and 

g v ( 0 = E 
a 3 / 

. dxi dxj dxk 
(x0 + th)hihjhk. 
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Writing Rj = Rii*o, h) we have thus proved: 

f(xo + h) = f(xo) + J2 hi^ixo) + l- £ M y ^ d o ) + *2(x0, h), 
1 = 1 1 /,y=l 1 J 

where 

w r 1 (7 — lì2 93/~ 
i ? 2 (x 0 ,h )= J ] / o ^ J ^ + 

2 dxj dxk 

(4) 

The integrand is a continuous function of t and is therefore bounded by a positive 
constant C on a small neighborhood of xo (because it has to be close to its value at 
x0). Also note that \ht\ < ||h||, for ||h|| small, and so 

| i?2(xo,h)|<| |h| |3C. 

In particular, 

l*2(x0, h)| 
112 < ||h||C -> 0 as h 0, 

as required by the theorem. 
The proof of Theorem 2 follows analogously from the Taylor formula (1) with 

k = 1. A similar argument fori? i shows that |i?i(x0, h)|/||h|| Oash -> 0,although 
this also follows directly from the definition of differentiability. • 

F o r m s of the R e m a i n d e r In Theorem 2, 

n p\ n2 f n J ~2f 
* l ( x„, h) = £ I 0 - + W i h j d t = £ 

l,J=\ v v 1 J ij = 1 1 J 

where c¡j lies somewhere on the line joining xo to xo + h. 
In Theorem 3, 

ij)hih j, 

(5) 

,h)= £ f 
,,j,k=\ Jo 

(f - i)2 

2 dxi 3 Xj dxk ' 
Ä2(*o,h)= I „ 0„ 0 : 0 „ (xo+th)hihjhkdt 

where c ^ lies somewhere on the line joining XQ to XQ + h. 
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The formulas involving ciy and C/y* (called Lagrange's form of the remainder) are 
obtained by making use of the second mean-value theorem for integrals. This states 
that 

b rb 
h(t)g(t)dt = h(c) g(t)dt, 

J a 

provided h andg are continuous andg > 0 on [a, b]; here c is some number between 
a and b.4 This is applied in formula (5) for the explicit form of the remainder with 
h(t) = (d2f/dxidxj)(\o + th) andg(t) = 1 - t. 

The third-order Taylor formula is 

n J n 
f(xo + h) = fixo) + h~(xo) + - £ h.hj^-ixo) 

i = 1 1 i,j= 1 1 J 
1 n d3f 

+ 77 Y^ hihjhk————(Xo) +/?3(xo, h), 
3! dxidxjdxk 

where /?3(xo, h)/| |h| |3 -> 0 as h -> 0, and so on. The general formula can be proved 
by induction, using the method of proof already given. 

L 

Compute the second-order Taylor formula for the function 
f(x^y)= sin (x + 2y) , about the point xo = (0, 0). 

S O L U T I O N Notice that 

/ ( 0 , 0 ) = 0, 

—(0, 0) = cos(0 + 2 .0 ) = 1, —(0, 0) = 2 cos(0 + 2 • 0) = 2, 
dx dy 

d2f d2f d2f 
^ ( 0 , 0) = 0, ^ ( 0 , 0) = 0, ^ - ( 0 , 0) = 0. 

Thus, 

/ ( h ) = f(hu h2) = hx + 2h2 + R2(0, h), 

4Proof If g = 0, the result is clear, so we can suppose g / 0; thus, we can assume / j7 g(t) dt > 0. Let M and m be the 

maximum and minimum values of h, achieved at tM and tm, respectively. Because g(t) > 0, 

m g(t)dt < J\(t)g(t)dt < M j\(t)dt. 

Thus, ^f* h(t)g(t)dt^j j^ f^ g(t)dt^j lies between m — h(tm) and M = h{tM) and therefore, by the intermediate-value 
theorem, equals h(c) for some intermediate c. E 
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where 

R2(0, h) 

E X A M P L E 2 

0 as h -> 0. A 

Compute the second-order Taylor formula for f(x,y) = ex cosy 
about the point xo — 0, yo = 0. 

SOLUTION Here 

/ (0 ,0 ) = 1, ^ ( 0 , 0 ) = 1, 5r(0 ,0) = 0, 
ax ay 

d2f d2f d2f 
- 4 ( 0 , 0) = 1, - 4 ( 0 , 0) = — 1, — ^ ( 0 , 0) = 0, axz ay1 ax ay 

and so 

where 

/ (h) = f(hu hi) = 1 + hx + \h\ - \h\ + R2(0, h), 

*2(0, h) 
> 0 as h -> 0. 

In the case of functions of one variable, one can expand f ( x ) in an infinite power 
series, called the Taylor series: 

„ ,, ^ ^ , f"(xo)h2 , , f{k\x0)hk
 t 

fixo + h) = f{xo) + f {x0)h + + • • • + H , 
2 k\ 

provided one can show that Rk{xo, h) —> 0 as k -> oo. Similarly, for functions of 
several variables the preceding terms are replaced by the corresponding ones involving 
partial derivatives, as we have seen in Theorem 3. Again, one can represent such a 
function by its Taylor series provided one can show that R^ 0 as k —> oo. This 
point is examined further in Exercise 7. 

Find the first- and second-order Taylor approximations to 
f(x,y)= sin(xj>) at the point (x0, .yo) = (1, tt/2). 

SOLUTION Here 

f(xo,yo) = sinfoj'o) = sin(7r/2) = 1 

JT 

fx(x0,yo) = yo cos(xoyo) = — cos(?r/2) = 0 

fy(x0, yo) = Xo cos(xo^o) = C0S(7r/2) = 0 
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7T 
fxx(xo,yo) = -yl sin(xojFo) = - — s in (n /2) = -n2/4 

71 
fxy(xo, yo) = cos(xo^o) - Xoyo sin(*0J>o) = sin(7r/2) = -n/2 

fyy(xo,yo) = -Xq sin (x0y0) = —sin(n/2) = -1. 

Thus, the linear (first-order) approximation is 

l(x,y) = fix 0, yo) + fx(xo, yo)(x - x0) + fy(x0, y0)(y - y0) 
= 1 + 0 + 0 = 1 , 

and the second-order (or quadratic) approximation is 

g(x, y) = 1 + 0 + 0 + I - I)2 + ( " ! ) < * - ^ -

See Figure 3.2.1. • 

Figure 3.2.1 The linear and quadratic approximations to z = sin (xy) near (1, n/2). 

I i Find linear and quadratic approximations to the expression 
(3.98 - l)2/(5.97 - 3)2. Compare with the exact value. 



202 Higher-Order Derivatives: Maxima and Minima 

SOLUTION Let f(x,y) = (x — 1 )2/iy — 3)2. The desired expression is close to 
/ (4 , 6) = 1. To find the approximations, we differentiate: 

2(x - 1) r —2(x - 1): 2 

fx (y- 3)2' f y (y - 3)3 

—4(x - 1 ) „ 2 6 ( J C - L ) 2 

f*y — fy* — f ' J** ~ (v_ -j\2' fyy ( J - 3 ) 3 ' w ( y - 3 ) * ' ( y - 3 ) ^ 

At the point of approximation, we have 

2 2 4 2 2 
6) = —, f y = — —, f x y = f y x = f x x = g' /kF = ^ 

The linear approximation is then 

2 2 
1 + - ( -0 .02) - - ( -0 .03) = 1.00666. 

The quadratic approximation is 

2 2 2 (-0.02)2 4 2 (-0.03)2 

1 + - ( -0 .02) - - ( -0 .03) + - V
 o

 ; - - ( -0 .02X-0.03) + - ' ; 

3 ' 3V 7 9 2 9 3 2 
= 1.00674. 

The "exact" value using a calculator is 1.00675. • 

EXERCISES 

In each of Exercises I to 6, determine the second-order Taylor formula for the given function 
about the given point (x0, >;o). 

1- f i x , y) = (x + y)2, where x0 = 0, y0 = 0 

2. f(x, .Y) = 1/(JC2 + y2 + 1), where *0 = 0, y0 - 0 

3. f ( x , y) = where JC0 = 0, y0 = 0 

4. / (x , y) = e~x2~y2 cos (xy), where x0 = 0, y0 — 0 

5- / i x , >>) = sin (XJF) + cos (xy), where = 0, y0 = 0 

fix, y) = e(x~1)2 cosy, where x0 — 1, y0 = 0 

7. (Challenging) A function / : R R is called an analytic function provided 

f ( x + h) = f(x) + fXx)h + ... + ^ ^ h k + ... 
k\ 

[i.e., the series on the right-hand side converges and equals f ( x + h)]. 
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(a) Suppose / satisfies the following condition: On any closed interval [a, b], there is a 
constant M such that for all * = 1, 2, 3 , . . . , \ f ( k ) ( x ) \ < Mk for all x e [a, b]. Prove that / is 
analytic. 

(e~l/x x > 0 

0 U l 
Show that / is a C°° function, but / is not analytic. 

(c) Give a definition of analytic functions from W to M. Generalize the proof of part (a) 
to this class of functions. 

(d) Develop f(x,y) = ex+y in a power series about = 0, y0 = 0. 

3.3 Extrema of Real-Valued Functions 

d^cbtzyictckf t^/^tl 

As we saw in the book's Historical introduction, the early Greeks sought to 
mathematize nature and to find, as in the geometric Ptolemaic model of 
planetary motion, mathematical laws governing the universe. With the 
revival of Greek learning during the Renaissance, this point of view again 
took hold and the search for these laws recommenced. In particular, the 
question was raised as to whether there was one law, one mathematical 
principle that governed and superseded all others, a principle that the 
Creator used in His Grand Design of the Universe. 

MAUPERTUIS'S PRINCIPLE. In 1744, the French scientist P ie r re -Louis de 
Maupertuis (see Figure 3.3.1) put forth his grand scheme of the world. The 
"metaphysical principle"of Maupertuis is the assumption that nature always 
operates with the greatest possible economy. In short, physical laws are a 
consequence of a principle of "economy of means"; nature always acts in 
such a way as to minimize some quantity that Maupertuis called the action. 
Action was nothing more than the expenditure of energy over time, or 
energy x time. In applications, the type of energy changes with each case. 
For example, physical systems often try to "rearrange themselves" to have a 
minimum energy—such as a ball rolling from a mountain peak to a valley, 
or the primordial irregular Earth assuming a more nearly spherical shape. 
As another example, the spherical shape of soap bubbles is connected 
with the fact that spheres are the surfaces of least area containing a fixed 
volume. 

We state Maupertuis's principle formally as: Nature always minimizes 
action. Maupertuis saw in this principle an expression of the wisdom of the 
Supreme Being, of God, according to which everything in nature is 
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Figure 3.3.1 Pierre-Louis de Maupertuis (1698-1759). 

performed in the most economical way. He wrote: 

What satisfaction for the human spirit that, in contemplating these 
laws which contain the principle of motion and of rest for all bodies 
in the universe, he finds the proof of existence of Him who governs 
the world. 

Maupertuis indeed believed that he had discovered God's fundamental law, 
the very secret of Creation itself, but he was actually not the first person to 
pose this principle. 

In 1707, Leibniz wrote down the principle of least action in a letter to 
Johann Bernoulli, which became lost until 1913, when it was discovered 
in Germany's Gotha library. For Leibniz, this principle was a natural 
outgrowth of his great philosophical treatise The Theodicy, in which he 
argues that God may indeed think of all possible worlds, but would want to 
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create only the best among them; and hence our world is necessarily the best 
of all possible worlds. 

Action, as defined by Leibniz, was motivated by the following 
reasoning, used in his letter. Think of a hiker walking along a road, and 
consider how to describe his action. If he travels 2 kilometers in 1 hour, you 
would say that he has carried out twice as much action as he would if he 
traveled 2 kilometers in 2 hours. However, you would also say that he carries 
out twice as much action in traveling 2 kilometers in 2 hours as he would in 
traveling 1 kilometer in 1 hour. Altogether then, our hiker, by walking 2 
kilometers in 1 hour, carries out 4 times as much action as he would in 
traveling 1 kilometer in 1 hour. 

Using this intuitive idea, Maupertuis defined action as the product of 
distance, velocity, and mass: 

Action = Mass x Distance x Velocity. 

Mass is included in this definition to account for the hiker's backpack. 
Moreover, according to Leibniz, the kinetic energy E is given by the formula: 

1 2 E = - x Mass x (Velocity) . 

So action has the same physical dimension as 

Energy x Time, 

because velocity is distance divided by time. 

PRINCIPLE OF LEAST ACTION. In the 250 years af ter M a u p e r t u i s 
formulated his principle, this principle of least action has been found to be a 
"theoretical basis" for Newton's law of gravity, Maxwell's equations for 
electromagnetism, Schrodinger's equation of quantum mechanics, and 
Einstein's field equation in general relativity. 

Max Planck (see Figure 3.3.2), one of the greatest scientists of the modern 
era and the discoverer of the "quantization" of nature, was also a profound 
believer in the mathematical design of the universe. On June 29, 1922, on 
"Leibniz Day" in Berlin, Germany, just a few years after World War I, with all 
its terrible carnage, Planck delivered an address honoring this great scholar. 

What follows are some excerpts from Planck's remarks: 

The Theodicy culminates with the statement that whatever occurs in 
our world, in the large as in the small, in nature as in spiritual life, is 
once and for all regulated by divine reason, and in such a way that 
our world is the best among possible worlds. 

Would Leibniz reaffirm this statement even today, in view of 
the misery of the present time, in view of the bitter failure of many 
efforts not immediately aimed at material gain, in view of the 
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Figure 3.3.2 Max Planck 
(1858-1947). 

undeniable fact that the imagined general harmony of people today 
seems to be further away from its realization than ever? No doubt, we 
should have to answer this question in the affirmative, even if we did 
not know that Leibniz never ceased to earnestly occupy himself until 
his last years despite an adverse fate and disappointments of all kinds, 
and we shall hardly err in assuming that it was exactly the Theodicy 
that gave him support and comfort in the most sorrowful days of his 
life. This once again is a touching example of the old truth that our 
most profound and most sacred principles are firmly rooted in our 
innermost soul, independent of experiences in the outer world. 

Modern science, in particular under the influence of the 
development of the notion of causality, has moved far away from 
Leibniz's teleological point of view. Science has abandoned the 
assumption of a special, anticipating reason, and it considers each 
event in the natural and spiritual world, at least in principle, as 
reducible to prior states. But still we notice a fact, particularly in the 
most exact science, which, at least in this context, is most surprising. 
Present-day physics, as far as it is theoretically organized, is 
completely governed by a system of space-time differential 
equations which state that each process in nature is totally 
determined by the events which occur in its immediate temporal 
and spatial neighborhood. This entire rich system of differential 
equations, though they differ in detail, since they refer to 
mechanical, electric, magnetic, and thermal processes, is now 
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completely contained in a single dictum—the principle of least 
action. This, in short, states that, of all possible processes, the 
only ones that actually occur are those that involve minimum 
expenditure of action. As we can see, only a short step is required to 
recognize in the preference for the smallest quantity of action the 
ruling of divine reason, and thus to discover a part of Leibniz's 
teleological ordering of the universe.5 

In present-day physics the principle of least action plays a 
relatively minor role. It does not quite fit into the framework of 
present theories. Of course, admittedly it is a correct statement; yet 
usually it serves not as the foundation of the theory, but as a true but 
dispensable appendix, because present theoretical physics is entirely 
tailored to the principle of infinitesimal local effects, and sees 
extensions to larger spaces and times as an unnecessary and 
uneconomical complication of the method of treatment. Hence, 
physics is inclined to view the principle of least action more as a 
formal and accidental curiosity than as a pillar of physical knowledge. 

There is much more to the story of the least action principle, which we 
will revisit in Section 4.1. 

5For more information and history, consult S. Hildebrandt and A. J. Tromba, The Parsimonious Universe: Shape 
and Form in the Natural World, Springer-Verlag, New York/Berlin, 1995. 

Maxima and Minima for Functions of n-Variables 
As the previous remarks show, for Leibniz, Euler, and Maupertuis, and for much 
of modern science as well, all in nature is a consequence of some maximum or 
minimum principle. To make such grand schemes—as well as some that are more 
down to earth—effective, one must first learn the techniques of how to find maxima 
and minima of functions of n variables. 

Extreme Points 
Among the most basic geometric features of the graph of a function are its extreme 
points, at which the function attains its greatest and least values. In this section, we 
derive a method for determining these points. In fact, the method locates local extrema 
as well. These are points at which the function attains a maximum or minimum value 
relative only to nearby points. Let us begin by defining our terms. 

DEFINITION If / : U c K" -> R is a given scalar function, a point x0 e U is 
called a local minimum of / if there is a neighborhood V of xo such that for all points 
x in V, / (x ) > /(x0). (See Figure 3.3.3.) Similarly, x0 e U is a local maximum 
if there is a neighborhood V of x0 such that / (x ) < / (x 0 ) for all x e V. The point 
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y 

Figure 3.3.3 (a) Local minimum and (b) local maximum points for a function of 
two variables. 

xo e U is said to be a local, or relative, extremum if it is either a local minimum or 
a local maximum. A point XQ is a critical point of / if either / is not differentiable 
at xo, or if it is, D/(xo) = 0. A critical point that is not a local extremum is called a 
saddle point.6 

First Derivative Test for Local Extrema 
The location of extrema is based on the following fact, which should be familiar from 
one-variable calculus (the case n = 1): Every extremum is a critical point. 

T H E O R E M 4: First Derivative Test for Local Extrema If U c 
is open, the function / : U c W1 —>• M is differentiable, and xo £ U is a local 
extremum, then D/(XQ) = 0; that is, XQ is a critical point of / . 

PROOF Suppose that / achieves a local maximum at xo. Then for any h e M " , 
the function g(t) = /(xo + ih) has a local maximum at t = 0. Thus, from one-
variable calculus gr(0) = 0.7 On the other hand, by the chain rule, 

g'(0) = [D/(x0)]h. 

Thus, [D/(x0)]h = 0 for every h, and so D/(x0) = 0. The case in which / achieves 
a local minimum at XQ is entirely analogous. • 

6 The term "saddle point" is sometimes not used this generally; we shall discuss saddle points further in the subsequent 
development. 
7 Recall the proof from one-variable calculus: Because g(0) is a local maximum, g(t) < g(0) for small t > 0, so g(t) — 
g(0) < 0, and hence = limit (g(t) — g(0))/t < 0, where limit means the limit as t ->• 0, t > 0. For small t < 0, we 

similarly have g'(0) = limit (g( t ) - g(0))/t > 0. Therefore, g'(0) = 0. 
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If we remember that D/(x0) = 0 means that all the components of D/(x0) are 
zero, we can rephrase the result of Theorem 4: If x0 is a local extremum, then 

a/ 
— ( x 0 ) = 0, i = 1 w; OXi 

that is, each partial derivative is zero at xo. In other words, V/(xo) = 0, where V / is 
the gradient of / . 

If we seek to find the extrema or local extrema of a function, then Theorem 4 
states that we should look among the critical points. Sometimes these can be tested 
by inspection, but usually we use tests (to be developed below) analogous to the 
second-derivative test in one-variable calculus. 

E X A M P L E 1 Find the maxima and minima of the function / : M2 M, defined 
by f ( x , y) = x2 + y2. (Ignore the fact that this example can be done by inspection.) 

S O L U T I O N We first identify the critical points of / by solving the two equations 
df/dx = 0 and df/dy = 0, for x and y. But 

df df — — 2x and — = 2 y, dx 3 y 

so the only critical point is the origin (0, 0), where the value of the function is zero. 
Because f(x,y)> 0, this point is a relative minimum—in fact, an absolute, or global, 
minimum—of / . Because (0, 0) is the only critical point, there are no maxima. A 

Consider the function / : R2 M, (x, y) x2 — y2. Ignoring 
for the moment that this function has a saddle and no extrema, apply the method 
of Theorem 4 for the location of extrema. 

E X A M P L E 2 

S O L U T I O N As in Example 1, we find that / has only one critical point, at the 
origin, and the value of / there is zero. Examining values of / directly for points near 
the origin, we see that / ( x , 0) > / ( 0 , 0)and f(0,y) < / ( 0 , 0), with strict inequalities 
when x / 0 and y / 0. Because x or y can be taken arbitrarily small, the origin cannot 
be either a relative minimum or a relative maximum (so it is a saddle point). Therefore, 
this function can have no relative extrema (see Figure 3.3.4). • 

Find all the critical points of z = x2y + y2x. 

S O L U T I O N Differentiating, we obtain 

E X A M P L E 3 

dz 2 dz 2 — =2xy-hy, — =2xy+x . dx dy 

Equating the partial derivatives to zero yields 

2 xy +y2 = 0, 2 xy + x2 = 0. 
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Graph o f / 

Figure 3.3.4 A function of two variables 
with a saddle point. 

Subtracting, we obtain x2 = y2. Thus, x = ±y. Substituting x = +y in the first of 
the two preceding equations, we find that 

2y2 + y2 = 3y2 = 0, 

so that y = 0 and thus x = 0. If x = —y, then 

-2y2+y2 = -y2 = 0, 

so y = 0 and therefore x = 0. Hence, the only critical point is (0, 0). For x = y, 
z = 2x3, which is both positive and negative for x near zero. Thus, (0, 0) is not a 
relative extremum. • 

Refer to Figure 3.3.5, a computer-drawn graph of the function 
z = 2(x2 + y2) Where are the critical points? 

2 2 

Figure 3.3.5 The volcano: z = 2(x2 + y2) exp (—x2 — y2). 



3.3 Extrema of Real - Valued Functions 211 

S O L U T I O N Because z = 2(x2 + y2)e~x, we have 

9z 
dx 

and 

= 4x(e~x ~y ) + 2(x + y2)e~x ~y (~2x) 

= e~x2~y2[4x - 4x(x2 + y2)] 

= 4x(e~x2-y2)(\ -x2-y2) 

^=4y(e-x2-y2)(l-x2-y2). 
8y 

These both vanish when x = y = 0 or when x2 + y2 = 1. This is consistent with the 
figure: Points on the crater's rim are maxima and the origin is a minimum. • 

S e c o n d D e r i v a t i v e Tes t fo r Loca l E x t r e m a 

The remainder of this section is devoted to deriving a criterion, depending on the 
second derivative, for a critical point to be a relative extremum. In the special case 
n = 1, our criterion will reduce to the familiar condition from one-variable calculus: 
f"(xo) > 0 for a minimum and f"(xo) < 0 for a maximum. But in the general con-
text, the second derivative is a fairly complicated mathematical object. To state our 
criterion, we will introduce a version of the second derivative called the Hessian, 
which in turn is related to quadratic functions. Quadratic functions are functions 
g:Rn R that have the form 

g(hi,...,hn) = ^ aijhihj 
U=1 

for a n x n matrix [atj ]. In terms of matrix multiplication, we can write 

~an an ••• ain 

g(hu...,hn) = [hi •••/*„] 

an\ an2 

h i 

hn 

For example, if n = 3, 

1 - 1 0 "Ai" 
[hi h2h3] - 1 0 0 h2 

0 0 1 

is a quadratic function. 
We can, if we wish, assume that [<z/y ] is symmetric; in fact, g is unchanged if 

we replace ] by the symmetric matrix [Z?/y ], where b t j — faij + because 
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hihj = hjhi and the sum is over all i and j. The quadratic nature of g is reflected in 
the identity 

g(khi,..., Xhn) = X2g(h i,..., hn), 

which follows from the definition. 
Now we are ready to define Hessian functions (named after Ludwig Otto Hesse, 

who introduced them in 1844). 

DEFINITION Suppose that / : [ / c M " - > M has second-order continuous deriva-
tives (32f / dxi 9X7)(XQ) , for /, j = 1 a t a point x0 £ U. The Hessian of f at 
XQ is the quadratic function defined by 

2 A-**, dxi dx j 
i,j=l 1 J 

(XO)hihj 

a2/ a2/ ^ 
3xi dxn 

a2/ a2/ 
3xi dxn dx„ ^ 

Notice that, by equality of mixed partials, the second derivative matrix is 
symmetric. 

This function is usually used at critical points xo £ U. In this case, D/(xo) = 0, 
so the Taylor formula (see Theorem 2, Section 3.2) may be written in the form 

/ (x 0 + h) = /(xo) + Hf(xo)(h) + tf2(x0, h). 

Thus, at a critical point the Hessian equals the first nonconstant term in the Taylor 
series of / . 

A quadratic function g: Rn R is called positive-definite if g(h) > 0 for all 
h £ MM and g(h) = 0 only for h = 0. Similarly, g is negative-definite if g(h) < 0 
and g(h) = 0 for h = 0 only. Note that if n = 1, Hf(x0)(h) = ^f\x0)h2, which is 
positive-definite if and only if f"{xo) > 0. 

T H E O R E M 5: Second Derivative Test for Local Extrema If 
/: U c Mw M is of class C3, x0 £ U is a critical point of / , and the Hessian 
Hf(xo) is positive-definite, then xo is a relative minimum of / . Similarly, if 
Hf(x0) is negative-definite, then x0 is a relative maximum. 
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Actually, we shall prove that the extrema given by this criterion are strict. A 
relative maximum x0 is said to be strict if / ( x ) < / (xo) for nearby x / x0. A strict 
relative minimum is defined similarly. Also, the theorem is valid even if / is only C2 

but we have assumed C3 for simplicity. 
The proof of Theorem 5 requires Taylor's theorem and the following result from 

linear algebra. 

L E M M A 1 If B = [bij] is an n x n real matrix, and if the associated quadratic 
function 

1 n 

H: IT R, (h\,..., hn) i-> - ^ b^hj 
2 ij= 1 

is positive-definite, then there is a constant M > 0 such that for all h e M " , 

H(h) > M||h||2. 

PROOF For ||h|| = 1, set g(h) = //(h). Then g is a continuous function of h for 
||h|| = 1 and so achieves a minimum value, say M.8 Because H is quadratic, we have 

« « = " ( ¿ i n ) = " ( ¡ y i i i . i l 2 - « ( | i | ) m 2 * 

for any h ^ 0. (The result is obviously valid if h = 0). • 

Note that the quadratic function associated with the symmetric matrix 
d2f/dxi 3 x j ) is exactly the Hessian. 

PROOF OF THEOREM 5 Recall that if / : U c IT ^ R is of class C3 and 
xo e U is a critical point, Taylor's theorem may be expressed in the form 

/(xo + h) - /(x0) = ///(x0)(h) + R2(xo, h), 

where (R2(x0, h))/||h||2 0 as h 0. 
Because / / / ( x 0 ) is positive-definite, lemma 1 assures us of a constant M > 0 

such that for all h e R n 

Hf(x0)(h) > M||h||2. 

8 Here we are using, without proof, a theorem analogous to a theorem in calculus that states that every continuous function 
on an interval [a, b] achieves a maximum and a minimum; see Theorem 7. 
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Because R2(x0, h)/||h||2 0 as h ^ 0, there is a 8 > 0 such that for 0 < ||h|| < 8 

\R2(x0,h)\ < M||h||2. 

Thus, 0 < / / / (x0)(h) + R2(x0, h) = / ( x 0 + h) - / ( x 0 ) for 0 < ||h|| < 8, so that x0 

is a relative minimum, in fact, a strict relative minimum. 
The proof in the negative-definite case is similar, or else follows by applying the 

preceding to — / , and is left as an exercise. • 

I X A M P L E 5 Consider again the function / : M2 M, (x, y) X2 + y2. Then 
(0, 0) is a critical point, and / is already in the form of Taylor's theorem: 

/ ( (0 , 0) + (h!, h2)) = / ( 0 , 0) + (¿2 + /z2) + 0. 

We can see directly that the Hessian at (0, 0) is 

Hf( 0)(h) = h] + h2
2, 

which is clearly positive-definite. Thus, (0,0) is a relative minimum. This simple case 
can, of course, be done without calculus. Indeed, it is clear that f ( x , y) > 0 for all 
( x , y ) ^ ( 0 , 0 ) . A 

For functions of two variables f(x,y), the Hessian may be written as follows: 

r »2 

Hf(x,yyh)=ï[hi.h2] 

ay 9 / 
dx2 3y dx 

9 2 / 9 V 
_ dx 3y 3y2 

h 1 
h2 

Now we shall give a useful criterion for when a quadratic function defined by such a 
2 x 2 matrix is positive-definite. This will be useful in conjunction with Theorem 5. 

L E M M A 2 Let 

B = a b 
b c and 

hx 

h2 
H(h)=±[huh2]B 

Then / / (h) is positive-definite if and only if a > 0 and det B = ac — b2 > 0. 

PROOF We have 

H(h) = Uhuh2] 
ah\ +bh2 

bhi + ch2 
= \(ah2 + 2bhih2+ch\). 
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Let us complete the square, writing 

Suppose H is positive-definite. Setting h2 = 0, we see that a, > 0. Setting h i = 
—(b/a)h2, we get c — b2/a > 0or<zc — b2 > 0. Conversely, if a > Oand c — b2 ¡a > 0, 
//(h) is a sum of squares, so that //(h) > 0. If / /(h) = 0, then each square must 
be zero. This implies that both h\ and h2 must be zero, so that //(h) is positive-
definite. • 

Similarly, one can see that / /(h) is negative-definite if and only if a < 0 and 
ac — b2> 0. We note that an alternative formulation is that / /(h) is positive- (respec-
tively, negative-) definite if a + c = trace B > 0 (respectively, < 0) and det B > 0. 

Determinant Test for Positive Definiteness 
There are similar criteria for an n x n symmetric matrix B. Consider the n square 
submatrices along the diagonal (see Figure 3.3.6). B is positive-definite (that is, the 
quadratic function associated with B is positive-definite) if and only if the determi-
nants of these diagonal submatrices are all greater than zero. For negative-definite B, 
the signs should be alternately < 0 and > 0. We shall not prove this general case here.9 

In case the determinants of the diagonal submatrices are all nonzero, but the matrix 
is not positive- or negative-definite, the critical point is of saddle type; in this case, 
one can show that the point is neither a maximum nor a minimum in the manner of 
Example 2. 

Figure 3.3.6 "Diagonal" submatrices are used in the criterion for 
positive definiteness; they must all have determinant > 0. 

9This is proved in, for example, K. Hoffman and R. Kunze, Linear Algebra, Prentice Hall, Englewood Cliffs, N.J., 1961, 
pp. 249-251. For students with sufficient background in linear algebra, it should be noted that B is positive-definite when 
all of its eigenvalues (which are necessarily real, because B is symmetric) are positive. 
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Second Derivative Test 
Lemma 2 and Theorem 5 imply the following result: 

T H E O R E M 6: Second Derivative M a x i m u m - M i n i m u m Test 
for Funct ions of Two Variables Let / (x ,y ) be of class C3 on an open 
set U in M2. A point (xo, yo) is a (strict) local minimum of / provided the 
following three conditions hold: 

3 / df 
(0 yo) = —(*o, yo) = 0 

ox dy 
a2/ 

(n) ¿ ^ f o ^ o ) > 0 

< ' « > C = ( g ) ( 0 ) - ( ^ ) 2 > O a, ( , „ , « ) 

(D is called the discriminant of the Hessian.) If in (ii) we have < 0 instead of 
> 0 and condition (iii) is unchanged, then we have a (strict) local maximum. 

Classify the critical points of the function / : M2 -> M, defined by 
(x, y) x2 — 2xy + 2y2. 

SOLUTION As in Example 5, we find that / (0 , 0) = 0, the origin is the only 
critical point, and the Hessian is 

Hf( 0)(h) = h2-2hxh2 + 2h\ = (hx- h2)2 + h2, 

which is clearly positive-definite. Thus, / has a relative minimum at (0, 0). Al-
ternatively, we can apply Theorem 6. At (0, 0), d2f/dx2 = 2, d2f/dy2 = 4, and 
d2f/dx 3y = —2. Conditions (i), (ii), and (iii) hold, so / has a relative minimum 
at (0,0) A 

If D < 0 in Theorem 6, then we have a saddle point. In fact, one can prove that 
f(x, y) is larger than /(xo, yo) as we move away from (xo, yo) in some direction and 
smaller in the orthogonal direction (see Exercise 26). The general appearance is thus 
similar to that shown in Figure 3.3.4. The appearance of the graph near (xo, yo) m the 
case D = 0 must be determined by further analysis. 

We summarize the procedure for dealing with functions of two variables: After 
all critical points have been found and their associated Hessians computed, some of 
these Hessians may be positive-definite, indicating relative minima; some may be 
negative-definite, indicating relative maxima; and some may be neither positive- nor 
negative-definite, indicating saddle points. The shape of the graph at a saddle point 
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where D < 0 is like that in Figure 3.3.4. Critical points for which D ^ 0 are called 
nondegenerate critical points. Such points are maxima, minima, or saddle points. 
The remaining critical points, where D = 0, may be tested directly, with level sets 
and sections or by some other method. Such critical points are said to be degenerate; 
the methods developed in this chapter fail to provide a picture of the behavior of a 
function near such points, so we examine them case by case. 

E X A M P L E 7 
function 

Locate the relative maxima, minima, and saddle points of the 

/ ( x , j ) = l o g ( x 2 + / + l). 

S O L U T I O N We must first locate the critical points of this function; therefore, 
according to Theorem 3, we calculate 

2x 2 y 
Vf(x,y)= 2_L 2 _i_ 1 i + 2 _L 2. 1 J-

xl +yl + 1 xl + yz + 1 
Thus, V/(x, y) = 0 if and only if (x, y) = (0, 0), and so the only critical point of / is 
(0, 0). Now we must determine whether this is a maximum, a minimum, or a saddle 
point. The second partial derivatives are 

a2/ _ 2(x2 + j2 + 1) — (2x)(2x) 
fa2 " (x2+y

2 + i)2 ' 
a2/ 2(x2 + j>2 + 1) — (2y)(2y) 

and 

dy2 (x2 -f- y2 + l)2 

a2/ -2x(2 y) 
dxdy (x2+y2+l)2' 

Therefore, 

d2f d2f d2f 
^ ( 0 , 0) = 2 = ^ ( 0 , 0) and ^ - ( 0 , 0) = 0, 

which yields 

D = 2 - 2 = 4 > 0 . 

Because (d2f/dx2)(0, 0) > 0, we conclude by Theorem 6 that (0, 0) is a local min-
imum. (Can you show this just from the fact that log t is an increasing function of 
F > 0 ? ) A 
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The graph of the function g(x, y) = 1 /xy is a surface S in R3. 
Find the points on S that are closest to the origin (0, 0, 0). (See Figure 3.3.7.) 

Figure 3.3.7 The surface z = 1 /xy in the 
first quadrant. (There are similar figures in 
the other quadrants, but notice that z < 0 
in the second and fourth quadrants.) 

S O L U T I O N Each point on S is of the form (x, y, 1 /xy). The distance from this 
point to the origin is 

It is easier to work with the square of d, so let / ( x , y) = x2 + y2 + (1 /x 2 y 2 ) , which 
will have the same minimum point. Notice that f(x,y) becomes very large as x and 
y get larger and larger; f(x,y) also becomes very large as (x, y) approaches the x 
or y axis where / is not defined, so / must attain a minimum at some critical point. 
The critical points are determined by: 

df 
dx 

= 2x-
2 
x3y2 

9 / 
dy 

= 2y-
2 
y 3X2 

that is, x4y2 — 1 = 0 , and x2y4 — 1 = 0 . From the first equation we get y2 = 1 /x4 , 
and, substituting this into the second equation, we obtain 
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Thus, x = d=l and y = =t 1, and it therefore follows that / has four critical points, 
namely, (1, 1), (1, - 1 ) , ( - 1 , 1), and ( - 1 , - 1 ) . Note that / has the value 3 for all 
these points, so they are all minima. Therefore, the points on the surface closest to 
the point (0, 0, 0) are (1, 1, 1), (1, - 1 , - 1 ) , ( - 1 , 1, - 1 ) , and ( - 1 , - 1 , 1) and the 
minimum distance is \/3. Is this consistent with the graph in Figure 3.3.7? A 

E X A M P L E 9 Analyze the behavior of z = x5y + xy5 + xy at its critical points. 

S O L U T I O N The first partial derivatives are 

|i = Sx4y + y5 + = y(5x4 + / + 1) 
3x 

and 

| £ = J C ( 5 / + * * + !). 
8y 

The terms 5x4 + y4 + 1 and 5y4 + x4 + 1 are always greater than or equal to 1, and 
so it follows that the only critical point is (0, 0). 

The second partial derivatives are 

d2z _ o 32z _ o 

and 

3 2z dZ = 5x4 + 5y4 + 1. dx 3y 

Thus, at (0, 0), D = — 1, and so (0, 0) is a nondegenerate saddle point and the graph 
of z near (0, 0) looks like the graph in Figure 3.3.4. • 

G l o b a l M a x i m a a n d M i n i m a 

We end this section with a discussion of the theory of absolute, or global, maxima 
and minima of functions of several variables. Unfortunately, the location of absolute 
maxima and minima for functions on W is, in general, a more difficult problem than 
for functions of one variable. 

DEFINITION Suppose / : A M is a function defined on a set A in M2 or M3. A 
point xo e A is said to be an absolute maximum (or absolute minimum) point of / 
i f / W < /(xo) [or fix) > /(xo)] for all x e A. 

In one-variable calculus, one learns—but often does not prove—that every con-
tinuous function on a closed interval I assumes its absolute maximum (or minimum) 
value at some point x0 in I. A generalization of this theoretical fact also holds in Rn . 
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Such theorems guarantee that the maxima or minima one is seeking actually exist; 
therefore, the search for them is not in vain. 

DEFINITION A set D e Rn is said to be bounded if there is a number M > 0 
such that || x || < M for all x e D. A set is closed if it contains all its boundary points. 

Thus, a set is bounded if it can be strictly contained in some (large) ball. The 
appropriate generalization of the one-variable theorem on maxima and minima is the 
following result, stated without proof. 

T H E O R E M 7: Global Existence Theorem for Maxima and Minima 
Let D be closed and bounded in RM and let / : D R be continuous. Then / assumes 
its absolute maximum and minimum values at some points XQ and xj of D. 

Simply stated, XQ and xi are points where / assumes its largest and smallest 
values. As in one-variable calculus, these points need not be uniquely determined. 

Suppose now that D = U U 3£/, where U is open and dU is its boundary. If 
D c M2, we suppose that dU is a piecewise smooth curve; that is, D is a region 
bounded by a collection of smooth curves—for example, a square or the sets depicted 
in Figure 3.3.8. 

Figure 3.3.8 D = U U dU\ Two examples of regions whose boundary is a 
piecewise smooth curve. 

If xo and xj are in U, we know from Theorem 4 that they are critical points of 
/ . If they are in 3(7, and dU is a smooth curve (i.e., the image of a smooth path c 
with c ' 0 ) , then they are maximum or minimum points of /_yiewed as a function 
on dU. These observations provide a method of finding the absolute maximum and 
minimum values of / on a region D. 
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Strategy for Finding the Absolute Maxima and Minima on a Region 
with Boundary Let / be a continuous function of two variables defined on 
a closed and bounded region D in R2, which is bounded by a smooth closed 
curve. To find the absolute maximum and minimum of / on D: 

(i) Locate all critical points for / in U. 

(ii) Find the maximum and minimum of / viewed as a function only on 3 U. 

(iii) Compute the value of / at all of these critical points. 

(iv) Compare all these values and select the largest and the smallest. 

If D is a region bounded by a collection of smooth curves (such as a square), 
then one follows a similar procedure, but including in step (iii) the points where the 
curves meet (such as the corners of the square). 

All the steps except step (ii) should now be familiar to the student. To carry out 
step (ii) in the plane, one way is to find a smooth parametrization of 3 U\ that is, we find 
a path c: I —• dU, where I is some interval, which is onto dU. Second, we consider 
the function of one variable t f(c(t)), where t e I, and locate the maximum and 
minimum points to, t\ el (remember to check the endpoints!). Then c(io), c(t\) will 
be maximum and minimum points for / as a function on dU. Another method for 
dealing with step (ii) is the Lagrange multiplier method, to be presented in the next 
section. 

| [ j 2 2 2 2 2 S 3 E 0 m a x i m u m a n d minimum values of the function 
f{x, y) = x2 + y2 — x — y + 1 in the disk D defined by x2 + y2 < 1. 

S O L U T I O N (i) To find the critical points we set df/dx = df/dy = 0. Thus, 2x -
1 = 0, 2y — 1 = 0, and hence (x, y) = ( j , j) is the only critical point in the open 
disk£/ = {( j t , jO| j t 2+j> 2 < I}-

(ii) The boundary 3 U can be parametrized by c(i) = (sini, cosi), 0 < t <2n. 
Thus, 

f (c(i)) = sin21 + cos21 — sin t — cos t + 1 = 2 — sin t — cos t = g(t). 

To find the maximum and minimum of / on 3 U, it suffices to locate the maximum 
and minimum of g. Now g\t) = 0 only when 

7T 5n 
sin t = cos t, that is, when t = —, —. 

4 4 

Thus, the candidates for the maximum and minimum for / on dU are the points 
c(jr/4), C(57t/4) and the endpoints c(0) = C(2tt). 
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(iii) The values of / at the critical points are: f ( \ , \ ) = \ f rom step (i) and, f rom 
step (ii), 

and 

/ ( c ( 0 ) ) = /(C(2TT)) = /(0,1) = 1. 

(iv) Comparing all the values j, 2 — \Jl, 2 + >/2, 1, it is clear that the absolute mini-

m u m occurs at (1 / 2 , 1 / 2 ) and the absolute max imum occurs at (— 
V 2 / 2 , - V 2 / 2 ) . A 

In Section 3.4, we shall consider a generalization of the strategy for finding the 
absolute max imum and min imum to regions D in W. 

E X E R C I S E S 

In Exercises I to 16,find the critical points of the given function and then determine whether 
they are local maxima, local minima, or saddle points. 

1. f ( x , y) = x2 — y2 + xy 

2. f(x,y) = x2-\-y2—xy 

3. f(x,y) = x2 + y2 + 2xy 

4. f ( x , y) = x2 + y2 + 3xy 

5. f(x,y) = el+x2~y2 

6. / ( * , y) = x2 - 3xy + 5jc - + 6y2 + 8 

7. /(jc, >0 = 3x2 + + 2x + y2 + y + 4 

8. f(x,y) = s in (x 2 + y2) [consider only the critical point (0, 0)] 

9. f(x,y) = cos (JC2 + y2) [consider only the three critical points (0, 0), (y/n/2, y/n/2), 
and (0, y/jr)] 

10. f ( x , y) = y + JC siny 

11. f(x,y) = excosy 

12. f(x,y) = ( x - y ) ( x y - l ) 

1 1 
13. f(x,y) = xy H h -

x y 
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14. f ( x , y) = log (2 + sin xy) 

15. f ( x , y) = x sin y 

16. f{x,y) = (x+y)(xy + 1) 

17. Find the local maxima and minima for z = (x2 + 3y 2 ) el~x2~y2. (See Figure 2.1.15.) 

18. Let f ( x , y) = x2 + y2 + If you imagine the graph changing as k increases, at what 
values of k does the shape of the graph change qualitatively? 

19. An examination of the function / : M2 -> M, (x, y) (y — 3 x 2 ) ( y — x2) will give an 
idea of the difficulty of finding conditions that guarantee that a critical point is a relative 
extremum when Theorem 6 fails.10 Show that 

(a) the origin is a critical point of / ; 
(b) / has a relative minimum at (0, 0) on every straight line through (0, 0); that is, if 

g(t) = (at, bt), then / o g: M -> R has a relative minimum at 0, for every choice of a and b\ 
(c) the origin is not a relative minimum of / . 

20. Let f(x,y) — Ax2 + E where A and E are constants. What are the critical points of / ? 
Are they local maxima or local minima? 

21. Let f ( x , y) = x2 — 2xy + y2. Here D — 0. Can you say whether the critical points are 
local minima, local maxima, or saddle points? 

22. Find the point on the plane 2x — y + 2z = 20 nearest the origin. 

23. Show that a rectangular box of given volume has minimum surface area when the box is 
a cube. 

24. Show that the rectangular parallelepiped with fixed surface area and maximum volume is 
a cube. 

25. Write the number 120 as a sum of three numbers so that the sum of the products taken 
two at a time is a maximum. 

26. Show that if (x0, yo) is a critical point of a quadratic function f(x,y) and D < 0, then 
there are points (x, y) near (x0, yo) at which f(x,y) > / (x 0 , yo) and, similarly, points for 
which f(x,y) < f(xo,yo). 

27. Determine the nature of the critical points of the function 

f(x,y,z) = x2 +y2 +z2 +xy. 

28. Let n be an integer greater than 2 and set f ( x , y) = ax" + cy", where ac ^ 0. 
Determine the nature of the critical points of / . 

10This interesting phenomenon was first pointed out by the famous mathematician Giuseppe Peano (1858-1932). Another 
curious "pathology" is given in Exercise 41. 
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29. Determine the nature of the critical points of / ( x , y) = x3 + y2 — 6xy + 6x + 3y. 

30. Find the absolute maximum and minimum values of the function f(x,y) = (x2 + y2)4 

on the disk x2 + y2 < 1. (You do not have to use calculus.) 

31. Repeat Exercise 30 for the function /(JC, y) = x2 + xy + y2. 

32. A curve C in space is defined implicitly on the cylinder x2 + y2 = 1 by the additional 
equation x2 — xy + y2 — z2 = 1. Find the point or points on C closest to the origin. 

33. Find the absolute maximum and minimum values for /(;c, y) = sinx + cosy on the 
rectangle R defined by 0 < x < 2n, 0 < y < 2n. 

34. Find the absolute maximum and minimum values for the function f(x,y) = xy on the 
rectangle R defined by—1 < JC < 1 , - 1 < y < 1. 

35. Determine the nature of the critical points of /(JC, y) = xy + \/x + 8 / y . 

In Exercises 36 through 40, D denotes the unit disk. 

36. Let u be a C2 function on D which is "strictly subharmonic"; that is, the following 
inequality holds: V2w = (d2u/dx2) + (d2u/dy2) > 0. Show that u cannot have a maximum 
point in D\dD (the set of points in D, but not in 3 D). 

37. Let u be a harmonic function on D; that is, V2w = 0 on D\dD and be continuous on 
D. Show that if u achieves its maximum value in D\dD, it also achieves it on 3D. This is 
sometimes called the "weak maximum principle" for harmonic functions. [HINT: Consider 
V2(w + sex), e > 0. You can use the following fact, which is proved in more advanced texts: 
Given a sequence {p„}, n = 1, 2 , . . . , of points in a closed bounded set A in R2 or M3, there 
exists a point q such that every neighborhood of q contains at least one member of {p„}.] 

38. Define the notion of a strict superharmonic function u on D by mimicking Exercise 36. 
Show that u cannot have a minimum in D\dD. 

39. Let u be harmonic in D as in Exercise 37. Show that if u achieves its minimum value in 
D\dD, it also achieves it on 3D. This is sometimes called the "weak minimum principle" for 
harmonic functions. 

40. Let 0: 3D M be continuous and let T be a solution on D to V 2 J = 0, continuous on 
D and T = </> on 3D. 

(a) Use Exercises 36 to 39 to show that such a solution, if it exists, must be unique. 
(b) Suppose that T(x,y) represents a temperature function that is independent of time, 

with 4> representing the temperature of a circular plate at its boundary. Can you give a 
physical interpretation of the principle stated in part (a)? 

41. (a) Let / be a C1 function on the real line R. Suppose that / has exactly one critical 
point JC0 that is a strict local minimum for / . Show that x0 is also an absolute minimum for / , 
that is, that /(JC) > f(x0) for all JC. 
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(b) The next example shows that the conclusion of part (a) does not hold for functions 
of more than one variable. Let / : M2 R be defined by 

(i) Show that (0, 0) is the only critical point for / and that it is a local minimum. 
(ii) Argue informally that / has no absolute minimum. 

42. Suppose that a pentagon is composed of a rectangle topped by an isosceles triangle (see 
Figure 3.3.9). If the length of the perimeter is fixed, find the maximum possible area. 

3.4 Constrained Extrema and Lagrange Multipliers 
Often one is required to maximize or minimize a function subject to certain constraints 
or side conditions. For example, we might need to maximize f ( x , y) subject to the 
condition that x2 + y2 = 1; that is, that (x, y) lie on the unit circle. More generally, 
we might need to maximize or minimize f(x,y) subject to the side condition that 
(x, y) also satisfies an equation g{x, y) = c where g is some function and c equals a 
constant [in the preceding example, g(x, y) = x2 + y2, and c = 1]. The set of such 
(x, y) is a level curve for g. 

The purpose of this section is to develop some methods for handling this sort 
of problem. In Figure 3.4.1 we picture a graph of a function f ( x , y). In this picture, 

/(jc, y) = - / - éT*2 + 2y2yjex + e-*2. 

x Figure 3.3.9 Maximize the area for fixed perimeter. 

y 

z 

Point on x2 +y2 = 1 where/is maximized 

Figure 3.4.1 The geometric meaning of 
maximizing / subject to the constraint 
x2-hy2 = 1. 

X 
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the maximum of / might be at (0, 0). However, suppose we are not interested in 
this maximum but only the maximum of f ( x , y) when (x, y) belongs to the unit 
circle; that is, when x2 + y2 = 1. The cylinder over x2 + y2 = 1 intersects the graph 
of z = f ( x , y) in a curve that lies on this graph. The problem of maximizing or 
minimizing f(x,y) subject to the constraint x2 -\-y2 — 1 amounts to finding the 
point on this curve where z is the greatest or the least. 

In general, let / : U C RM -> R and g: U C W1 R be given C1 functions, and let 
S be the level set for g with value c [recall that this is the set of points XGM" with 
g(x) = c]. 

When / is restricted to S we again have the notion of local maxima or local 
minima of / (local extrema), and an absolute maximum (largest value) or absolute 
minimum (smallest value) must be a local extremum. The following method provides 
a necessary condition for a constrained extremum: 

T H E O R E M 8: T h e M e t h o d of L a g r a n g e Mul t ip l i e r s Suppose that 
/: U C RM R and g: U C Rw R are given C1 real-valued functions. Let 
xo G U and g(xo) = c, and let S be the level set for g with value c (recall that 
this is the set of points x e W1 satisfying g(x) = c). Assume Vg(x0) / 0. 

If f\S, which denotes " / restricted to S" has a local maximum or minimum 
on S at XQ, then there is a real number X such that 

In general, a point XQ where equation (1) holds is said to be a critical point 

PROOF We have not developed enough techniques to give a complete proof, but 
we can provide the essential points. (The additional technicalities needed are discussed 
in Section 3.5 and in the Internet supplement.) 

In Section 2.6 we learned that for n = 3 the tangent space or tangent plane of S 
at x0 is the space orthogonal to Vg(x0). For arbitrary n we can give the same definition 
for the tangent space of S at xo. This definition can be motivated by considering 
tangents to paths c(i) that lie in S, as follows: If c(t) is a path in S and c(0) = x0, then 
cr(0) is a tangent vector to S at x0, but 

The Lagrange Multiplier Method 

V/(x0) = AVg(xo). (1) 

o f / I S . 
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and on the other hand, by the chain rule, 

= Vg(x0)-c'(0), 
at t=o dt 

so that Vg(x0) • c'(0) = 0; that is, c'(0) is orthogonal to Vg(x0). 
If f\S has a maximum at xo, then f(c(t)) has a maximum at t = 0. By one-

variable calculus, df(c(t))/dt\t==o — 0. Hence, by the chain rule, 

Thus, V/(xo) is perpendicular to the tangent of every curve in S and so is perpendicular 
to the whole tangent space to S at XQ. Because the space perpendicular to this tangent 
space is a line, V/(x0) and Vg(x0) are parallel. Because Vg(x0) ^ 0, it follows that 
V/(xo) is a multiple of Vg(xo), which is the conclusion of the theorem, i 

Let us extract some geometry from this proof. 

T H E O R E M 9 If / , when constrained to a surface S, has a maximum or minimum 
at xo, then V/(xo) is perpendicular to S at xo (see Figure 3.4.2). 

grad/(x0, y0, z0) = y0, z0) 

These results tell us that in order to find the constrained extrema of / , we must 
look among those points xo satisfying the conclusions of these two theorems. We 
shall give several illustrations of how to use each. 

When the method of Theorem 8 is used, we look for a point xo and a constant 
À, called a Lagrange multiplier, such that V/(x0) = A.Vg(x0). This method is more 
analytic in nature than the geometric method of Theorem 9. Surprisingly, Euler in-
troduced these multipliers in 1744, some 40 years before Lagrange! 

Plane tangent to S 

Surface S 

Figure 3.4.2 The geometry of constrained 
extrema. 



2 2 8 Higher - Order Derivatives : Maxima and Minima 

Equation (1) says that the partial derivatives of / are proportional to those of g. 
Finding such points XQ at which this occurs means solving the simultaneous equations 

3 / dg 
—(xi, .. . ,x„) = X-—(x\,...,xn) 3xi dxi 

—(xi, ...,x„) = X-—(x\,...,xn) ÖX2 ox2 

df ( \ 1 ( \ —(x l 5 ...,x„) = X-—(xi, . . . , x„) 
oxn dx„ 

(2) 

g(x ¡,...,x„) = c 

for x\,..., xn and X. 
Another way of looking at these equations is as follows: Think of X as an addi-

tional variable and form the auxiliary function 

h(x 1, . . . , x „ , A) = f ( x u ...,x„)-c]. 

The Lagrange multiplier theorem says that to find the extreme points of f\S, we 
should examine the critical points of h. These are found by solving the equations 

„ d h df dS 0 = — = — - À — 3xi 3xi 3xi 

3 h 3 / dg 
0= = — -k — dxn dxn dxn 

3 h 
0= — =g(xl,...,xn)-c 

(3) 

which are the same as equations (2) above. 
Second derivative tests for maxima and minima analogous to those in Section 3.3 

will be given in Theorem 10 later in this section. However, in many problems it is pos-
sible to distinguish between maxima and minima by direct observation or by geometric 
means. Because this is often simpler, we consider examples of the latter type first. 

| Let S C M 2 be the line through ( - 1 , 0 ) inclined at 4 5 ° , and let 
/: R2 R, (JC, y) x2 + y2. Find the extrema o f / I S . 

S O L U T I O N Here S = {(x, y) \ y - x - 1 = 0}, and therefore we set g(x, y) = 
y — x — 1 and c = 0. We have Vg(x, y) = — i + j ^ 0. The relative extrema of f\S 
must be found among the points at which V / is orthogonal to S, that is, inclined at 
— 4 5 ° . But Vf(x,y) = (2x, 2y), which has the desired slope only when x = —y, or 
when (x, y) lies on the line L through the origin inclined at — 4 5 ° . This can occur 
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in the set S only for the single point at which L and S intersect (see Figure 3.4.3). 
Reference to the level curves of / indicates that this point, (—1/2, 1 /2), is a relative 
minimum of / | S (but not of / ) . 

Notice that in this problem, / on S has a minimum but no maximum. • 

Let / : R2 M, (X, y) H> X2 - y2, and let S be the circle of 
radius 1 around the origin. Find the extrema of f\S. 

S O L U T I O N The set S is the level curve for g with value 1, where g: R2 M, 
(x, y) x2 + y2. Because both of these functions have been studied in previous 
examples, we know their level curves; these are shown in Figure 3.4.4. In two dimen-
sions, the condition that V / = AVg at x0, that is, that V / and Vg are parallel at x0 is 
the same as the level curves being tangent at xo (why?). Thus, the extreme points of 
f\S are (0, ±1) and (±1, 0). Evaluating / , we find (0, ±1) are minima and (±1,0) 
are maxima. 

Figure 3.4.4 The geometry associated with the problem of 
finding the extrema of x2 — y2 on S = {(x, y) | x2 + y2 = 1}. 
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Let us also do this problem analytically by the method of Lagrange multipliers. 
Clearly, 

V/(*, y) = = (2x, —2j>) and Vg(x, j ) = (2x, 

Note that Vg(x, >>) ̂  0 if x2 + y2 = 1. Thus, according to the Lagrange multiplier 
theorem, we must find a k such that 

(2x, -2y) = k(2x, 2y) and (x, j>) G S, i.e., x2 + j>2 = 1. 

These conditions yield three equations, which can be solved for the three un-
knowns x, y, and k. From 2x = A2x we conclude that either x = 0 or k = 1. If x = 0, 
then y = ±\ and —2y = A2j> implies X = — 1. If k = 1, then y = 0 and x = ±1. 
Thus, we get the points (0, ±1) and (±1, 0), as before. As we have mentioned, this 
method only locates potential extrema; whether they are maxima, minima, or nei-
ther must be determined by other means, such as geometric arguments or the second 
derivative test given below.11 A 

I l aw Bfcl Maximize the function f(x,y,z) = x-\-z subject to the constraint 
x2 + y * + z 2 = 1. 

S O L U T I O N By Theorem 7 we know that the function / restricted to the unit 
sphere x2 + y2 + z2 = 1 has a maximum (and also a minimum). To find the maximum, 
we again use the Lagrange multiplier theorem. We seek k and (x, y, z) such that 

1 = 2xk, 0 = 2 yk, and 1 = 2zk, 

and 

x2 + y 2 + z 2 = 1. 

From the first or the third equation, we see that k ^ 0. Thus, from the second equation, 
we get y = 0. From the first and third equations, x = z, and so from the fourth, 
x = ±l/V2 = z. Hence, our points are (1/V2, 0, 1/V2) and ( - 1 / V 2 , 0, - 1 /V2) . 
Comparing the values of / at these points, we can see that the first point yields the 
maximum of / (restricted to the constraint) and the second the minimum. • 

l aKQjSIUHSg Assume that among all rectangular boxes with fixed surface area 
of 10 square meters there is a box of largest possible volume. Find its dimensions. 

S O L U T I O N If x, y, and z are the lengths of the sides, x > 0, y > 0, z > 0, respec-
tively, and the volume is f(x,y,z) = xyz. The constraint is 2 (xy + xz -I- yz) = 10; 

11 In these examples, Vg(x0) / 0 on the surface S, as required by the Lagrange multiplier theorem. If Vg(xo) were zero 
for some x0 on S, then it would have to be included among the possible extrema. 
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that is, xy + xz + yz = 5. Thus, the Lagrange multiplier conditions are 

yz — X(y + z) 

xz = X(x + z) 

xy = X(y + x) 

xy + xz + yz = 5. 

First of all, x ^ 0, because x = 0 implies yz = 5 and 0 = Xz, so that X = 0 and we get 
the contradictory equation yz = 0. Similarly, y ± 0, z ^ 0, x + y ^ 0. Elimination 
of X from the first two equations gives yz/(y + z) = xz/(x + z), which gives x = y; 
similarly, y — z. Substituting these values into the last equation, we obtain 3x2 = 5, 
or x = \ /5/3. Thus, we get the solution x = y = z = \ /5/3, and xyz = (5/3)3/2. 
This (cubical) shape must therefore maximize the volume, assuming there is a box of 
maximum volume. • 

Exis t ence of So lu t ions 

We should note that the solution to Example 4 does not demonstrate that the cube is 
the rectangular box of largest volume with a given fixed surface area; it proves that 
the cube is the only possible candidate for a maximum. We shall sketch a proof that 
it really is the maximum later. The distinction between showing that there is only one 
possible solution to a problem and that, in fact, a solution exists is a subtle one that 
many (even great) mathematicians have overlooked. 

Queen Dido (ca. 900 B.C.) realized that among all planar regions with fixed 
circumference, the disc is the region of maximum area. It is not difficult to prove 
this fact under the assumption that there is a region of maximum area; however, 
proving that such a region of maximum area exists is quite another (difficult) matter. 
A complete proof was not given until the second half of the nineteenth century by the 
German mathematician Weierstrass. 

Let us consider a nonmathematical parallel to this situation. Put yourself in the 
place of Lord Peter Wimsey, Dorothy Sayers' famous detective: 

"Undoubtedly," said Wimsey, "but if you think that this identification is 
going to make life one grand, sweet song for you, you are mistaken 
Since we have devoted a great deal of time and thought to the case on the 
assumption that it was murder, it's a convenience to know that the 
assumption is correct." 

Wimsey has found the body of a dead man, and after some time has located 
ten suspects. He is sure that no one else other than one of the suspects could be the 
murderer. By collecting all the evidence and checking alibis, he then reduces the 
number of suspects one by one, until, finally, only the butler remains; hence he is 
the murderer! But wait, Peter is a very cautious man. By checking everything once 
again, he discovers that the man died by suicide; so there is no murder. You see the 
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point: It does not suffice to find a clear and uniquely determined suspect in a criminal 
case where murder is suspected; you must prove that a murder actually took place. 

The same goes for our cube; the fact that it is the only possible candidate for a 
maximum does not prove that it is maximum. (For more information see The Parsi-
monious Universe: Shape and Form in the Natural World, by S. Hildebrandt and A. 
Tromba, Springer-Verlag, New York/Berlin, 1995.) 

The key to showing that f(x,y,z) = xyz really has a maximum lies in the fact 
that / is a continuous function that is defined on the unbounded surface S: xy + xz + 
yz = 5, and not on a bounded set, which includes its boundary, where Theorem 7 of 
Section 3.3 would apply. We have already seen problems of this sort for functions of 
one and two variables. 

The way to show that f(x,y,z) = xyz > 0 does indeed have a maximum on 
xy + yz + xz = 5 is to show that if either x, y, or z tend to oo, then f(x,y,z) 0. 
We may then conclude that the maximum of / on S must exist by appealing to 
Theorem 7 (the student should supply the details). So, suppose (x, y, z) lies in S and 
x —̂  oo, then y — 0 and z —> 0 (why?). Multiplying the equation defining S by z 
we obtain the equation xyz + xz2 -I- yz2 = 5z —> 0 as x oo. Because x, y, z > 0, 
xyz = f(x,y,z)—>0. Similarly, f(x,y,z)—> 0 if either y or z tend to oo. Thus, a 
box of maximum volume must exist. 

Some general guidelines may be useful for maximum and minimum problems 
with constraints. First of all, if the surface S is bounded (as an ellipsoid is, for ex-
ample), then / must have a maximum and a minimum on S. (See Theorem 7 in the 
preceding section.) In particular, if / has only two points satisfying the conditions 
of the Lagrange multiplier theorems or Theorem 9, then one must be a maximum 
and one must be a minimum. Evaluating / at each point will tell the maximum from 
the minimum. However, if there are more than two such points, some can be saddle 
points. Also, if S is not bounded (for example, if it is a hyperboloid), then / need not 
have any maxima or minima. 

then the Lagrange multiplier theorem may be generalized as follows: If f has a 
maximum or a minimum at XQ on S, there must exist constants X\,..., such that12 

Several Constraints 
If a surface S is defined by a number of constraints, namely, 

gl(X\,...,Xn) = Ci 
g2(x\, ...,Xn) = C2 

(4) 

gk(x 1, ...,xn) = ck 

V/(x0) - X[Vgi (xo) + • • • + A*Vg*(xo). (5) 

12AS with the hypothesis Vg(x0) / 0 in the Lagrange multiplier theorem, here one must assume that the vectors 
Vg,(xo). •••, are linearly independent; that is, each Vg, (xo) is not a linear combination of the other Vg, (x0), j / i. 
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This case may be proved by generalizing the method used to prove the Lagrange 
multiplier theorem. Let us give an example of how this more general formulation is 
used. 

^ Q ^ j j j g S y Find the extreme points of / ( x , y, z) = x + y + z subject to the 
two conditions x2 + y2 — 2 and x + z = 1. 

S O L U T I O N Here there are two constraints: 

gi(x, y, z) = x2 -j-y2 — 2 — 0 and giix, y, z) = x + z — 1 = 0. 

Thus, we must find x, y,z,Xi, and X2 such that 

V/(x, z) = Xx Vg\(x, y, z) + X2Vg2(x, y, z), 

gl(x,y,z) = 0, and g2(x,y,z) = 0. 

Computing the gradients and equating components, we get 

1 = Xi >2x +X2 • 1, 
1 = X\ - 2y + X2 - 0, 
1 =Xir0 + X2-l, 

x2+y2 = 2, and x+z= 1. 

These are five equations for x, y, z, k\, and X2. From the third equation, X2 = 1, and 
so 2xX\ = 0, 2yX\ = 1. Because the second implies X\ ^ 0, we have x = 0. Thus, 
y = d=V2 and z = 1. Hence, the possible extrema are (0, =b\/2, 1). By inspection, 
(0, >/2, 1) gives a relative maximum, and (0, —a/2, 1) a relative minimum. 

The condition x2 + y2 = 2 implies that x and y must be bounded. The condition 
x + z = 1 implies that z is also bounded. If follows that the constraint set S is closed 
and bounded. By Theorem 7 it follows that / has a maximum and minimum on S 
that must therefore occur at (0, A/2, 1) and (0, — A/2, 1), respectively. • 

The method of Lagrange multipliers provides us with another tool to locate the 
absolute maxima and minima of differentiable functions on bounded regions in M2 

(see the strategy for finding absolute maximum and minimum in Section 3.3). 

ftfó^lSJHSEj Find the absolute maximum of f(x,y) = xy on the unit disk D, 
where D is the set of points (x, y) with x2 + y2 < 1. 

S O L U T I O N By Theorem 7 of Section 3.3, we know the absolute maximum 
exists. First, we find all the critical points of / in U, the set of points (x, y) with 
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x2 + y2 < 1. Because 

9 / , 9 / 
— = y and — = x, dx 3 y 

(0, 0) is the only critical point of / in U. Now consider / on the unit circle, the level 
curve g(x, y) = 1, where g(x, y) = x2 + y2. To locate the maximum and minimum 
of / on C, we write down the Lagrange multiplier equations: Vf(x,y) = {y,x) = 
kVg(x, y) = k(2x, 2y) and x2 + y2 = 1. Rewriting these in component form, we get 

y = 2kx, 

x = 2 ky, 

x2+y2 = 1. 

Thus, 

= 4 k2y, 

or k = d=l/2 and y = ±x, which means that x2 +x2 = 2x2 = 1 or x = =hl/V2, 
y = ±1/V2. On C we compute four candidates for the absolute maximum and min-
imum, namely, 

\[2 \[2 

The value of / at both ( -1 /V2, -1 /V2) and (1/V2, 1/V2) is 1/2. The value o f / 
at ( -1 /V2, 1/V2) and (1/V2, -1 /V2) is - 1 / 2 , and the value of / at (0, 0) is 0. 
Therefore, the absolute maximum of / is 1 /2 and the absolute minimum is — 1 /2, 
both occurring on C. At (0, 0), d2f/dx2 = 0, d2f/dy2 = 0 and 32 / /3x dy = 1, so the 
discriminant is — 1 and thus (0, 0) is a saddle point. • 

Find the absolute maximum and minimum of f(x,y) = ¿x2 + 
^y2 in the elliptical region D defined by \x2 + y2 < 1. 

S O L U T I O N Again by Theorem 7, Section 3.3, the absolute maximum exists. We 
first locate the critical points of / in U, the set of points (x, y) with ^x2 + y2 < 1. 
Because 

v=x
 dJL = 

dx ' dy 

the only critical point is the origin (0, 0). 
We now find the maximum and minimum of / on C, the boundary of U, which 

is the level curve g(x, y) = 1, where g(x, y) = \x2 + y2. The Lagrange multiplier 



3.4 Constrained Extrema and Lagrange Multipliers 235 

equations are 

V/(x, y) = (x,y) = AVg(x, y) = A(x, 2y) 

and (x2/2) + y2 = 1. In other words, 

x = Xx 

y — 2 Xy 
X2 

If x = 0, then y = ±1 and X = If y — 0, then x = ± V 2 and X = 1. If x ^ 0 and 
y z/i 0, we get both X = 1 and 1 /2, which is impossible. Thus, the candidates for 
the maxima and minima of / on C are 

(0, ±1), (±V2, 0) and for / inside D, the 
candidate is (0, 0). The value of / at (0, ±1) is 1/2, at (±V2, 0) it is 1, and at (0, 0) 
it is 0. Thus, the absolute minimum of / occurs at (0, 0) and is 0. The absolute 
maximum o f f o n D is thus 1 and occurs at the points (±yf l , 0). • 

Global Maxima and Minima 
The method of Lagrange multipliers enhances our techniques for finding global max-
ima and minima. In this respect, the following is useful. 

DEFINITION Let U be an open region in W1 with boundary dU. We say that 
8U is smooth if 3 U is the level set of a smooth function g whose gradient Vg never 
vanishes (i.e., Vg ^ 0). Then we have the following strategy. 

Lagrange Multiplier Strategy for Finding Absolute Maxima and 
Minima on Regions with Boundary Let / be a differentiate function on 
a closed and bounded region D = U U 3 U, U open in W1, with smooth 
boundary dU. 

To find the absolute maximum and minimum of / on D: 

(i) Locate all critical points of / in U. 

(ii) Use the method of Lagrange multiplier to locate all the critical points of 
f\8U. 

(iii) Compute the values of / at all these critical points. 

(iv) Select the largest and the smallest. 

EXAMPLE 8 Find the absolute maximum and minimum of the function 
/ ( x , y, z) = x + y + z on the set D = {(x, y, z) | x2 + y2 + z 2 < 1}. 
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S O L U T I O N As in the previous examples, we know the absolute maximum and 
minimum exists. Now D = U U dU, where 

U = {(x, y, z) \ x2 + y2 + z2 < 1} 

and 

dU = {(x,y,z)\x2+y2+z2 = 1}. 

The gradient of / is Vf = ( 1, 1, 1 ), and so / has no critical points in U. Therefore, 
the maximum and minimum values of / must occur on 3 U. 

Let g(x, y, z) = x2 + y2 + z2. Then dU is the level set g(x, y, z) = 1. By the 
method of Lagrange multipliers, the maximum and minimum must occur at a critical 
point of f\dU, that is, at a point xo where Vf(xo) = AVg(xo) for some scalar k. 

Thus, 

(1, 1, 1) = k(2x,2y, 2z); that is, x = y = z = 

Because x2 + y2 + z 2 = 1, we obtain k = ±y/3/2 and so xo = =t(l/\/3, \/y/3, 
l / \ /3). Clearly, — ( l / \ /3 , l / \ /3 , l / \ /3) is the point where / assumes its absolute 
minimum (namely, - 7 3 ) and (1/V3, 1/73, 1^3), the point where / assumes its 
maximum value y/3. • 

T w o A d d i t i o n a l A p p l i c a t i o n s 

We now present two further applications of the mathematical techniques developed in 
this section to geometry and to economics. We shall begin wth a geometric example. 

E X A M P L E 9 Suppose we have a curve defined by the equation 

0(x, y) = Ax2 + 2Bxy + Cy2 - 1=0. 

Find the maximum and minimum distance of the curve to the origin. (These are the 
lengths of the semimajor and the semiminor axis of this quadric.) 

S O L U T I O N The problem is equivalent to finding the extreme values of f(x,y) = 
x2 + y2 subject to the constraining condition 0(x, y) = 0. Using the Lagrange mul-
tiplier method, we have the following equations: 

2x + k(2Ax + 2 By) = 0 (6) 

2 y + k(2Bx + 2 Cy) = 0 (7) 

Ax2 + 2Bxy + Cy2 = 1. (8) 
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Adding x times equation (6) to y times equation (7), we obtain 

2(x2 + y2) + 2X(Ax2 + 2 Bxy + Cy2) = 0. 

By equation (8), it follows that x2 + y2 + X = 0. Let t = -\/X = l / (x2 + y2) [the 
case X = 0 is impossible, because (0, 0) is not on the curve <p(x,y) = 0]. Then 
equations (6) and (7) can be written as follows: 

2(A - t)x +2By = Q 
(9) 

2Bx + 2(C - t)y = 0. 

If these two equations are to have a nontrivial solution [remember that (x, y) = (0, 0) 
is not on our curve and so is not a solution], it follows from a theorem of linear algebra 
that their determinant vanishes:13 

A-t B 
B C-t = 0. 

Because this equation is quadratic in t, there are two solutions, which we shall call 
t\ and t2. Because — X = x2 + y2, we have y/x2 + y2 = yf^X. Now y/x2 + y2 is the 
distance from the point (x, y) to the origin. Therefore, if (xi, y\) and (x2, y2) denote 
the nontrivial solutions to equation (9) corresponding to t\ and t2, and if t\ and t2 are 
positive, we get ^Jx\ + y2 — l/v^2 and y/x2 + y2 = 1 /y/t\. Consequently, if t\ > t2, 
the lengths of the semiminor and semimajor axes are 1/v^T and l/v^2, respectively. 
If the curve is an ellipse, both t\ and t2 are, in fact, real and positive. What happens 
with a hyperbola or a parabola? • 

Finally, we discuss an application to economics. 

E X A M P L E 10 Suppose that the output of a manufacturing firm is a quantity Q 
of a certain product, where Q is a function f(K, L), where K is the amount of capital 
equipment (or investment) and L is the amount of labor used. If the price of labor is 
p, the price of capital is q, and the firm can spend no more than B dollars, how can 
we find the amount of capital and labor to maximize the output Q1 

S O L U T I O N We would expect that if the amount of capital or labor is increased, 
then the output Q should also increase; that is, 

3 Q dO 
- ^ > 0 and — > 0. 
3 K ~ 3 L ~ 

13The matrix of coefficients of the equations cannot have an inverse, because this would imply that the solution is zero. 
Recall that a matrix that does not have an inverse has determinant zero. 
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We also expect that as more labor is added to a given amount of capital equipment, 
we get less additional output for our effort; that is, 

With these assumptions on Q, it is reasonable to expect the level curves of out-
put (called isoquants) Q(K, L) = c to look something like the curves sketched in 
Figure 3.4.5, with c\ < < C3. 

We can interpret the convexity of the isoquants as follows: As one moves to the 
right along a given isoquant, it takes more and more capital to replace a unit of labor 
and still produce the same output. The budget constraint means that we must stay 
inside the triangle bounded by the axes and the line pL -\-qK = B. Geometrically, it 
is clear that we produce the most by spending all our money in such a way as to pick 
the isoquant that just touches, but does not cross, the budget line. 

Because the maximum point lies on the boundary of our domain, we apply the 
method of Lagrange multipliers to find the maximum. To maximize Q — f(K, L) 
subject to the constraint pL + qK = B, we look for critical points of the auxiliary 
function, 

Similarly, 

Figure 3.4.5 What is the largest 
value of Q in the shaded triangle? 

B_ 
<1 

h(K,L,X) = f(K,L) — X(pL+qK — B). 
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Thus, we want 

dQ dQ 
SK = Xq' JZ = XjP' pL+qK = B. 

These are the conditions we must meet in order to maximize output. (The reader is 
asked to work out a specific case in Exercise 31.) • 

In the preceding example, X represents something interesting. Let k = qK and 
/ = pL, so that k is the dollar value of the capital used and / is the dollar value of the 
labor used. Then the first two equations become 

8Q = = 9 0 
dk qdK p dL dl ' 

Thus, at the optimum production point the marginal change in output per dollar's 
worth of additional capital investment is equal to the marginal change of output per 
dollar's worth of additional labor, and X is this common value. At the optimum point, 
the exchange of a dollar's worth of capital for a dollar's worth of labor does not change 
the output. Away from the optimum point the marginal outputs are different, and one 
exchange or the other will increase the output. 

A Second Derivative Test for Constrained Extrema 
In Section 3.3, we developed a second derivative test for extrema of functions of several 
variables by looking at the second-degree term in the Taylor series of / . If the Hessian 
matrix of second partial derivatives is either positive-definite or negative-definite at 
a critical point of / , this point is a relative minimum or maximum, respectively. 

The question naturally arises as to whether there is a second derivative test for 
maximum and minimum problems in the presence of constraints. The answer is yes 
and the test involves a matrix called a bordered Hessian. We will first discuss the test 
and how to apply it for the case of a function f(x,y) of two variables subject to the 
constraint g(x ,y) = c. 

T H E O R E M 10 Let / : U c M2 -> M and g: U c M2 R be smooth (at least 
C2) functions. Let v0 e U, g(vo) = c, and S be the level curve for g with value c. 
Assume that Vg(vo) / 0 and that there is a real number X such that V/(vo) = A.Vg(vo). 
Form the auxiliary function h = f — Xg and the bordered Hessian determinant 

\H\ = 

0 J A dg 0 
dx dy 

dg d2h d2h 
dx dx2 dx dy 

dg d2h d2h 
dy dx 3y 

evaluated at VQ. 
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(i) If \H\ > 0, then VQ is a local maximum point for f\S. 

(ii) If \H\ < 0, then vo is a local minimum point for f\S. 

(iii) If \H\ = 0, the test is inconclusive and v0 may be a minimum, a maximum, or 
neither. 

This theorem is proved in the Internet supplement for this section. 

y)n subject to the con-E X A M P L E 11 Find extreme points of f(x,y) = (x 
1, where n > 1. straint x2 +y2 

S O L U T I O N We set the first derivatives of the auxiliary function h defined by 
h(x,y, X) = (x - y)n - X(x2 + y2 - 1) equal to 0: 

n(x - yf~l - 2Xx = 0 

-n(x - y)n~x - 2Aj> = 0 

- ( x 2 + / - 1) = 0. 

From the first two equations we see that X(x + y) = O.IfA = 0,thenx — y — ±V2/2. 
If X ^ 0, then JC = — y. The four critical points are represented in Figure 3.4.6 and 
the corresponding values of f ( x , y) are listed below: 

:V2/2 y = V2/2 X = 0 

X = n(V2)n~2 

X = 0 

(A) x : 

(B) x = \ /2 /2 

(C) x = —yfl/2 

(D) x = -V2/2 

y = —V2/2 

y = —A/2/2 

y = V2/2 X = (-\)"-2n(V2)n - 2 

fix,)0 = 0 

fix,y) = iJ2f 

f(x,y) = 0 

f(x,y) = {-J2)". 

r 
ik 

\ 1 j ) Figure 3.4.6 The four critical points in Example 11. 

By inspection, we see that if n is even, then A and C are minimum points and B 
and D are maxima. If n is odd, then B is a maximum point, D is a minimum, and A and 
C are neither. Let us see whether Theorem 10 is consistent with these observations. 
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The bordered Hessian determinant is 

\H\ = 
0 

-2x n(n -
-2 y —n(n 

—2x 
1 )(X-yf-2. 

-l)(x-yT~2 

2X -n(n -
n(n 

-2 y 
1 ) ( x - y T - 2 

-l)(x-y)n-2 •2k 

-4n(n - l)(x - y)n~2(x + yf + 8À(xz - y6). 

If n = 1 or if n > 3, | i / | = 0 at A, B, C, and D. I f « = 2, then |J/| = 0 at B and D 
and — 16 at A and C. Thus, the second-derivative test picks up the minima at A and C, 
but is inconclusive in testing the maxima at B and D for n = 2. It is also inconclusive 
for all other values of n. • 

Just as in the unconstrained case, there is also a second-derivative test for functions 
of more than two variables. If we are to find extreme points for f(x ... ,xn) subject 
to a single constraint g ( x i , . . . , xn) = c, we first form the bordered Hessian for the 
auxiliary function h(x\,..., xn) = f(x\,..., xn) — X(g(x\,..., xn) — c) as follows: 

0 
-dg 

dx\ 
- 3 g 
3x2 

-dg 
dxn 

-dg d2h 3 2h d2h 
dx¡ fa2 3xi 3x2 dx\ dx, 

-dg d2h 3 2h d2h 
dx2 3xi 3x2 3 x | 3x2 3x, 

-dg 3 2h 3 2h d2h 
dx„ 3xi dxn 3x2 3xn 

Second, we examine the determinants of the diagonal submatrices of order >3 at the 
critical points of h. If they are all negative, that is, if 

0 
3XI 3X2 

0 
3xi 

3 2h 
3X2 

3 2h 

3X3 

3 2h 

dg 3 2h 3 2h 
< 0 , 

dx\ 3X] 3X2 3XI 3X3 

3XI ~dx{ 3XI 3X2 
< 0 , 

3 2h 3 2h 3 2h 

dg_ 3 2h 3 2h 3x2 3XI 3X2 dx2 3X2 3X3 

3X2 3XI 3X2 dx2 3 2h 3 2h 3 2h 
3X3 3XI 3X3 3X2 3X3 dx2 

then we are at a local minimum of f\S. If they start out with a positive 3 x 3 subde-
terminant and alternate in sign (that is, >0, <0, >0, <0 , . . . ) , then we are at a local 
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maximum. If they are all nonzero and do not fit one of these patterns, then the point 
is neither a maximum nor a minimum (it is said to be of the saddle type).14 

Study the local extreme points of f(x,y,z) = xyz on the surface 
of the unit sphere x2 + y2 + z2 = 1 using the second-derivative test. 

S O L U T I O N Setting the partial derivatives of the auxiliary function 
h(x, y, z, X) = xyz — X{x2 + y2 + z2 — 1) equal to zero gives 

yz = 2Xx 

xz = 2 Xy 

xy = 2 Xz 

x2+y2+z2 = 1. 

Thus, 3xyz = 2X(x2 + y2 + z2) = 2X. If X = 0, the solutions are (x, y, z, X) = 
(±1,0 , 0, 0), (0, ±1, 0, 0), and (0, 0, ±1, 0). If À ̂  0, then we have 2X = 3xyz = 
6Xz2 and so z2 = Similarly, x2 — y2 = Thus, the solutions are given by 
X — |xyz = ± \ / 3 / 6 . The critical points of h and the corresponding values of / 
are given in Table 3.1. From it, we see that points E, F, G, and K are minima. Points 
D, H, I, and J are maxima. To see whether this is in accord with the second-derivative 

Table 3.1 The critical points A, B, . . . , J, K of h and corresponding values o f f 

x y z A 

± A ±1 0 0 0 0 
±B 0 ±1 0 0 0 
± C 0 0 ±1 0 0 

D V3/3 V3/3 V3/3 v/3/6 v/3/9 
E —v/3/3 V3/3 V3/3 -v/3/6 —-v/3/9 
F V3/3 - V 3 / 3 \/3/3 -v/3/6 -V3/9 
G V3/3 V3/3 —v/3/3 -v/3/6 —v/3/9 
H V3/3 —v/3/3 -V3/3 -v/3/6 -v/3/9 
I - V 3 / 3 -v/3/3 -v/3/3 v/3/6 x/3/9 
J —s/3/3 —v/3/3 V3/3 -v/3/6 x/3/9 
K -V3/3 —v/3/3 -v/3/3 —v/3/6 -v/3/9 

14For a detailed discussion, see C. Caratheodory, Calculus of Variations and Partial Differential Equations, Holden-Day, 
San Francisco, 1965; Y. Murata, Mathematics for Stability and Optimization of Economic Systems, Academic Press, New 
York, 1977, pp. 263-271; or D. Spring, Am. Math. Mon. 92 (1985): 631-643. 
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test, we need to consider two determinants. First, we look at the following: 

0 -dg/dx -dg/dy 0 —2x -2y 
\H2\ = -dg/dx d2h/dx2 d2/dx dy = —2x -2k z 

-dg/dy d2h/dx dy d2h/dy2 -2 y z -2k 

= 8Xjc2 + Sky2 + Sxyz = 8 k(x2 + y2 + 2z2). 

Observe that sign (\H2\) = sign k = sign (.xyz), where the sign of a number is 1 if 
that number is positive, or is — 1 if that number is negative. Second, we consider 

0 —dg/dx — d g / d y —dg/dz 

- d g / d x d2h/dx2 d2h/dxdy d2h/dxdz 
17/3' ~ -dg/dy d2h/dx dy d2h/dy2 d2h/dydz 

-dg/dz d2h/dxdz d2h/dy dz d2h/dz2 

0 —2x —2 y —2 z 
—2x —2k z y 
—2 y z —2k x 
—2 z y x —2k 

which works out to be -1-4 at points =tA, d=B, and =tC and - j at the other eight 
points. At E, F, G, and K, we have \H2\ < 0 and | / /3 | < 0, and so the test indicates 
these are local minima. At D, H, I, and J we have \H2\ > 0 and < 0 , and so the 
test says these are local maxima. Finally, the second-derivative test shows that ±A, 
±B, and ±C are saddle points. A 

E X E R C I S E S 

In Exercises 1 to 5 find the extrema of f subject to the stated constraints. 

f ( x , y,z) — x — y + z, subject to x2 + y2 + z2 = 2 

2. f ( x , y) = x — y, subject to x2 — y2 — 2 

f ( x , y) = x, subject to x2 + 2y2 = 3 

4. f ( x , y, z) — JC + y + z, subject to x2 — y2 = 1, 2x + z = 1 

5. f ( x , y) = 3x + 2y , subject to 2x2 + 3y2 — 3 

Find the relative extrema of f\S in Exercises 6 to 9. 

6. / : R2 R, (jc, y) ^ x2 + y2, S = {(jc, 2) | jc e R] 

7. / : R2 R, (jc, y) i-> jc2 + y2, S = {(jc, y) \ y > 2} 
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8. / : R2 R, (x, y)v+ x2 - y2, S = {(x, cos x) \x eR] 

9. / : R3 R, (x, y, z) H> X2 + y2 + z2, 5 = {(JC, .y, z) | z > 2 + JC2 + y2} 

10. Use the method of Lagrange multipliers to find the absolute maximum and minimum 
values of /(JC, y) = x2 + y2 — x — y + 1 on the unit disk (see Example 10 of Section 3.3). 

11. Consider the function /(X, y) = JC2 + xy + y2 defined on the unit disk, namely, 
D = {(x, y) | x2 + y2 < 1}. Use the method of Lagrange multipliers to locate the maximum 
and minimum points for / on the unit circle. Use this to determine the absolute maximum 
and minimum values for / on D. 

12. A rectangular box with no top is to have a surface area of 16 m2. Find the dimensions 
that maximize its volume. 

13. Design a cylindrical can (with a lid) to contain 1 liter (= 1000 cm3) of water, using the 
minimum amount of metal. 

14. Show that solutions of equations (4) and (5) are in one-to-one correspondence with the 
critical points of 

h(xu - . . , x„ , A*) = f ( x u . . . , x „ ) - Ai[gi(xj, . . . , x „ ) - C ! ] 

A*[g*(xi , . . . ,x„) -c*] . 

15. Find the absolute maximum and minimum for the function f(x,y,z) = x-\-y — z on 
the ball B = {(x, y, z) | x2 + y2 + z2 < 1}. 

16. Repeat Exercise 15 for / ( x , y, z) = x + yz. 

17. A rectangular mirror with area A square feet is to have trim along the edges. If the trim 
along the horizontal edges costs p cents per foot and that for the vertical edges costs q cents 
per foot, find the dimensions that will minimize the total cost. 

18. An irrigation canal in Arizona has concrete sides and bottom with trapezoidal cross 
section of area A = y(x + y tan 6) and wetted perimeter P = x + 2 y j cos 6, where x = 
bottom width, y = water depth, 6 = side inclination, measured from vertical. The best design 
for a fixed inclination 0 is found by solving P = minimum subject to the condition 
A = constant. Show that;;2 = (A cos#)/(2 — sin6). 

19. Apply the second-derivative test to study the nature of the extrema in Exercises 1 and 5. 

20. A light ray travels from point A to point B crossing a boundary between two media (see 
Figure 3.4.7). In the first medium its speed is vu and in the second it is v2. Show that the trip 
is made in minimum time when Snells law holds: 

sin 6\ V\ 
sin 02 v2 
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Figure 3.4.7 Snell's law of refraction. 

21. A parcel delivery service requires that the dimensions of a rectangular box be such that 
the length plus twice the width plus twice the height be no more than 108 inches (/ + 2w+ 
2h < 108). What is the volume of the largest-volume box the company will deliver? 

22. Let P be a point on a surface S in R3 defined by the equation f{x,y,z) — 1, where / is 
of class C1. Suppose that P is a point where the distance from the origin to S is maximized. 
Show that the vector emanating from the origin and ending at P is perpendicular to S. 

23. Let A be a nonzero symmetric 3 x 3 matrix. Thus, its entries satisfy a^ = a^. Consider 
the function / (x ) = Ax) • x. 

(a) What is V /? 
(b) Consider the restriction of / to the unit sphere S = {(x,y,z) \x2 + y2 + z2 = 1} in 

R3. By Theorem 7 we know that / must have a maximum and a minimum on S. Show that 
there must be an x e S and a k 0 such that Ax = kx. (The vector x is called an eigenvector, 
while the scalar k is called an eigenvalue.) 

(c) What are the maxima and minima for / on B = {(x, y, z) \ x2 + y2 + z2 < 1}? 

24. Suppose that A in the function / defined in Exercise 23 is not necessarily symmetric. 

(a) What is V/? 
(b) Can one conclude the existence of an eigenvector and eigenvalues as in Exercise 23? 

25. (a) Find the critical points of x + y2 subject to the constraint 2x2 + y2 = 1. 
(b) Use the bordered Hessian to classify the critical points. 

26. Answer the question posed in the last line of Example 9. 

27. Try to find the extrema of xy -f yz among points satisfying xz = 1. 

28. A company's production function is Q(x, y) = xy. The cost of production is C(X, y) = 
2x + 3y. If this company can spend C(JC, y) — 10, what is the maximum quantity that can be 
produced? 

29. Find the point on the curve (cos t, sin t, sin(//2)) that is farthest from the origin. 
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30. A firm uses wool and cotton fiber to produce cloth. The amount of cloth produced is 
given by Q(x, y) = xy — x — y + 1, where x is the number of pounds of wool, y the number 
of pounds of cotton, x > 1, and y > 1. If wool costs p dollars per pound, and cotton q dollars 
per pound and the firm can spend B dollars on material, what should the ratio of cotton and 
wool be to produce the most cloth? 

31. Carry out the analysis of Example 10 for the production function Q(K, L) = A Ka Lx~a, 
where A and a are positive constants and 0 < a < 1. This is called a Cobb-Douglas 
production function and is sometimes used as a simple model for the national economy. 
Q is then the aggregate output of the economy for a given input of capital and labor. 

3.5 The Implicit Function Theorem 
In this section, we state two versions of the implicit function theorem, arguably the 
most important theorem in all of mathematical analysis. The entire theoretical basis 
of the idea of a surface as well as the method of Lagrange multipliers depends on 
it. Moreover, it is a cornerstone of several fields of mathematics, such as differential 
topology and geometry. 

T h e O n e - V a r i a b l e Imp l i c i t F u n c t i o n T h e o r e m 

In one-variable calculus, we learn the importance of the inversion process. For exam-
ple, x = \ny is the inverse of y = ex, and x = sin - 1 y is the inverse of y = sinx. The 
inversion process is also important for functions of several variables; for example, the 
switch between Cartesian and polar coordinates in the plane involves inverting two 
functions of two variables. 

Recall from one-variable calculus that if y = / ( x ) is a C1 function and f \ x 0) ^ 0, 
then locally near xo we can solve for x to give the inverse function: x = f~\y). We 
learn that ( . f ~ x ) \ y ) = 1/ / ' (*); that is, dx/dy = \/{dy/dx). That y = / ( x ) can be 
inverted is plausible because f'(xo) ^ 0 means that the slope of y = / ( x ) is nonzero, 
so that the graph is rising or falling near xo. Thus, if we reflect the graph across the line 
y = x, it is still a graph near (xo, ^o) where yo = f (xo). For example, in Figure 3.5.1, 
we can invert y = / ( x ) in the shaded box, so in this range, x = f~l(y) is defined. 

y - f ( x ) is invertible 
/near(x0,y0) 

Figure 3.5.1 If / ' ( x 0 ) ^ 0, then 
y = f ( x ) is locally invertible. 
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A Special Result 
We next turn to the situation for real-valued functions of variables x\,..., x„ and z. 

T H E O R E M 11: Special Impl ic i t F u n c t i o n T h e o r e m Suppose that 
F: Rn+l —• R has continuous partial derivatives. Denoting points in Rn+l by (x, z), 
where x e l " and z e R, assume that (xo, zo) satisfies 

8F 
F(x0, z0) = 0 and — (x0, z0) # 0. 

3 z 

Then there is a ball U containing xo in and a neighborhood V of zo in R such that 
there is a unique function z = g(x) defined for x in U and z in V that satisfies 

F(x,g(x)) = 0. 

Moreover, if x in U and z in V satisfy F(x, z) = 0, then z = g(x). Finally, z = g(x) 
is continuously differentiable, with the derivative given by 

Dg(x) = — ^ DxF(x,z) 
z) 

3z 

where DXF denotes the (partial) derivative of F with respect to the variable x, that 
is, we have DXF = [ d F / d x \ , . . . , 3F/3xM]; in other words, 

3 g dF/dXi — = , i = l , ( 1 ) dxj dF/dz W 

A proof of this theorem is given in the Internet supplement. 
Once it is known that z = g(x) exists and is differentiable, formula (1) may be 

checked by implicit differentiation; to see this, note that the chain rule applied to 
F(x, g(x)) = 0 gives 

D x F ( x , g ( x ) ) + | — (x,g(x)) 

which is equivalent to formula (1). 

[Dg(x)] = 0, 

¡gmffiflpfl] In the special implicit function theorem, it is important to recog-
nize the necessity of taking sufficiently small neighborhoods U and V. For example, 
consider the equation 

jt2 + z2 - 1 = 0, 

that is, F(x, z) = x2 + z2 — 1, with n = 1. Here (3F/3z)(x, z) = 2z, and so the spe-
cial implicit function theorem applies to a point (x0, zo) satisfying + z\ — 1 = 0 
and z0 # 0. Thus, near such points, z is a unique function of x. This function is 
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z — y/\ — x2 ifz0 > Oandz = —V1 — x2 if z0 < 0. Note that z is defined for \x\ < 1 
only (U must not be too big) and z is unique only if it is near zo (V must not be too 
big). These facts and the nonexistence of dz/dx at z0 = 0 are, of course, clear from 
the fact that x2 + z2 = 1 defines a circle in the xz plane (Figure 3.5.2). A 

^ does not exist here 

Figure 3.5.2 It is necessary to take small 
neighborhoods in the implicit function 
theorem. 

The Implicit Function Theorem and Surfaces 
Let us apply Theorem 11 to the study of surfaces. We are concerned with the level 
set of a function g: U C -> R, that is, with the surface S consisting of the set of 
x satisfying g(x) = Co, where Co = g(xo) and where xq is given. Let us take n = 3 
for concreteness. Thus, we are dealing with the level surface of a function g(x, y, z) 
through a given point (xo, yo, ZQ). As in the Lagrange multiplier theorem, assume 
that Vg(xo, yo,zo) # 0- This means that at least one of the partial derivatives of 
g is nonzero. For definiteness, suppose that (3g/3z)(xo, yo, ZQ) ^ 0. By applying 
Theorem 11 to the function (x, y, z) h^ y, z) — Co, we know there is a unique 
function z = k(x, y) satisfying g(x, y, k(x, y)) = CQ for (x, y) near (xo, Jo) and z near 
ZQ. Thus, near zo the surface S is the graph of the function k. Because k is continuously 
differentiate, this surface has a tangent plane at (XQ, VQ, Z0) given by 

z = z0 + 

But by formula (1), 

dkc ^ 
dx 

(x - x0) + 
3 k . 

(•̂ 0, Jo)j (y - yo). (2) 

dg 
d k

( x 3x 

3z 

(x0, yo,zo) 

(x0,yo,z0) 

3 k ä-(*o,yo,zo) 
and —(xo,yo) = • 

dy og 
3z 
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Substituting these two equations into the equation for the tangent plane gives this 
equivalent description: 

3 g 3 g 3 g 0 = (z - z0)—(xo, yo, z0) + (x - xo)—(xo, yo, z0) + (y- yo)—(xo, yo, z0); 3z 3x 3j> 

that is, 

(x -x0,y- yo, z - z0) • Vg(x0, yo, z0) = 0. 

Thus, the tangent plane to the level surface of g is the orthogonal complement to 
Vg(x0, yo, z0) through the point (xo, yo, zo). This agrees with our characterization of 
tangent planes to level sets from Chapter 2. 

We are now ready to complete the proof of the Lagrange multiplier theorem. To 
do this, we must show that every vector tangent to S at (XQ, yo, z0) is tangent to a curve 
in S. By Theorem 11, we need only show this for a graph of the form z — k(x, y). 
However, if v = (x — xo, y — yo, z — ZQ) is tangent to the graph [that is, if it satisfies 
equation (2)], then v is tangent to the path in S given by 

c(0 = (x0 + t(x - x0), yo + t(y - y0), £(x0 + t(x - x0), yo + t(y - yo))) 

at t = 0. This can be checked by using the chain rule. (See Figure 3.5.3.) 

(Wo'zo) S: z = k(x, y) 

Figure 3.5.3 The construction of 
a path c(i) in the surface S whose 
tangent vector is v. 

I ^ H i i i i J I Near what points may the surface 

x3 + 3y2 + 8xz2 - 3z3y = 1 

be represented as a graph of a differentiable function z = k(x, y)l 
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SOLUTION Here we take F(x, y, z) = x3 + 3y2 + 8xz2 - 3z3y - 1 and at-
tempt to solve F(x,y,z) = 0 for z as a function of (x,y) . By Theorem 11, this 
may be done near a point (xo, yo, z0) if (dF/dz)(xo, yo, zo) ^ 0, that is, if 

z0( 16xo ~ 9z0yo) # 0, 

which means, in turn, 

zo ^ 0 and 16.*o ^ 9zoyo- * 

G e n e r a l Impl i c i t F u n c t i o n T h e o r e m 

Next we shall state, without proof, the general implicitfunction theorem}5 Instead of 
attempting to solve one equation for one variable, we attempt to solve m equations 
for m variables z\,..., zm: 

Fi(*i, ...,xn,zi,...,zm) = 0 
F2(Xi, ...,xn,zi,...,zm) = 0 

. . . (3) 

Fm(xi,...,xn,zi,...,zm) = 0. 

In Theorem 11 we had the condition dF/dz ^ 0. The condition appropriate to the 
general implicit function theorem is that A ^ 0,16 where A is the determinant of the 
m x m matrix 

" dFi dFi ~ 

dz\ dzm 

dFm dFm 

dz 1 dzm _ 

15 For three different proofs of the general case, consult: 

(a) E. Goursat, A Course in Mathematical Analysis, I, Dover, New York, 1959, p. 45. (This proof derives the general 
theorem by successive application of Theorem 11.) 

(b) T. M. Apostol, Mathematical Analysis, 2d ed., Addison-Wesley, Reading, Mass., 1974. 

(c) J. E. Marsden and M. Hoffman, Elementary Classical Analysis, 2d ed., Freeman, New York, 1993. 

Of these sources, the last two use more sophisticated ideas that are usually not covered until a junior-level course in 
analysis. The first, however, is easily understood by the reader who has some knowledge of linear algebra. 
16For students who have had linear algebra: The condition A ± 0 has a simple interpretation in the case that F is linear, 
namely, A ^ 0 is equivalent to the rank of F being equal to m, which in turn is equivalent to the fact that the solution 
space of F — 0 is w-dimensional. 
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evaluated at the point (x0, zo); in the neighborhood of such a point, we can uniquely 
solve for z in terms of x. 

T H E O R E M 12: General Implicit Function Theorem If A # 0, then 
near the point (xo, zo), equation (3) defines unique (smooth) functions 

Zi =ki(x i , . . . , x w ) (i = 1 , . . . , r a ) . 

Their derivatives may be computed by implicit differentiation. 

Show that near the point (x, y, u, v) = (1, 1, 1, 1), we can solve 

xu + yvu2 = 2 

xu3 + y2v4 = 2 

uniquely for u and v as functions of x and y. Compute du/dx at the point (1, 1). 

S O L U T I O N To check solvability, we form the equations 

Fi(x, y, u, v) = xu + yvu2 — 2 

F2(X, y, U, v) = xu3 + y2v4 — 2 

and the determinant 

A = 

dFx dFx 

du dv 
dF2 3F2 

du dv 
x + 2 yuv yu2 

3 u2x Ay2v3 

3 1 
3 4 — 9. 

at 

at 

(1 ,1,1,1) 

(1 ,1 ,1 ,1) 

Because A ^ O , solvability is assured by the general implicit function theorem. To 
find du/dx, we implicitly differentiate the given equations in x using the chain 
rule: 

du dv 2 du x \-u+y — u +2 yvu— =0 dx dx dx 

, du 
3 xuz— + u* + 4yV— = 0 dv 

dx dx 
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Setting (.x, y, u, v) = (1, 1, 1, 1) gives 

3 u dv 
3 — + — = - 1 dx dx 
du dv 

3 — + 4 — = - 1 . dx dx 

Solving for du/dx by multiplying the first equation by 4 and subtracting gives 
du/dx = — A 

Inverse F u n c t i o n T h e o r e m 

A special case of the general implicit function theorem is the inversefunction theorem. 
Here we attempt to solve the n equations 

/i(*i, ...,xn) = yi 

fn {x J, ..., xn ) = yn 

(4) 

for x j 5 . . . , Xyi as functions of y\,..., yn\ that is, we are trying to invert the equa-
tions of system (4). This is analogous to forming the inverses of functions like 
sin x — y and ex = y, with which the reader should be familiar from elementary 
calculus. Now, however, we are concerned with functions of several variables. The 
question of solvability is answered by the general implicit function theorem applied 
to the functions y, — f](x\,..., xn) with the unknowns x\,..., xn (called z\,..., zn 

earlier). The condition for solvability in a neighborhood of a point x0 is A / 0, where 
A is the determinant of the matrix D/(XQ), and / = ( / I , . . . , fn). The quantity A is 
denoted by 3 ( / i , . . . , / „ ) / d ( x } , . . . , xn), or d(yx,..., yn)/3(*i, • • •, xn) or / ( / ) ( x 0 ) 
and is called the Jacobian determinant of / . Explicitly, 

3(/i >•••>/«) = J(f)(* o) 

9/. 
dx\ (xo) 

dxj 

9/i , , 
T - (xo) dx„ 

dx„ (Xo) 

(5) 

The reader should note that in the case when / is linear, for example f ( x ) = Ax, 
where A is an n x n matrix, the condition A ^ 0 is equivalent to the fact that the 
determinant of A, det A / 0, and from Section 1.5 we know that A, and therefore / , 
has an inverse. 

The Jacobian determinant will play an important role in our work on integration 
(see Chapter 5). The following theorem summarizes this discussion: 
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T H E O R E M 13: Inverse Funct ion T h e o r e m Let U c M " b e open and let 
f\\ U M , . . . , fn: U —> R have continuous partial derivatives. Consider the equa-
tions (4) near a given solution xo, yo- If J(f)(xo) [defined by equation (5)] is nonzero, 
then equation (4) can be solved uniquely as x = g(y) for x near x0 and y near y0. 
Moreover, the function g has continuous partial derivatives. 

E X A M P L E 4 Consider the equations 

= u, s i nx+cos y = v. 
x4+y4 

Near which points (x, y) can we solve for x, y in terms of u, vl 

SOLUTION Here the functions are u = / i(x, y) = (x4 + y4)/x and v = 
fi{x, y) = sin x + cos y. We want to know the points near which we can solve for x, y 
as functions of u and v. According to the inverse function theorem, we must first com-
pute the Jacobian determinant 3(/i , f2)/d{x, y). We take the domain of / = ( / i , f2) 
to be U = {(x, y) e M2 | x # 0}. Now 

Kfuh) 
3 (x,y) 

dA dA 3jc4 - / 4y3 

dx dy 
x 2 X 

dfi 9 /2 

dx dy cosx —sinj> 

sin y 4 
—r(y 

v z 
3x4) 

4y3 

•cosx. 

Therefore, at points where this does not vanish we can solve for x, y in terms of it 
and v. In other words, we can solve for x, y near those x,y for which x ^ 0 and 
(s iny)(y 4 — 3x4) ^ 4xy3 cosx. Such conditions generally cannot be solved explic-
itly. For example, if xo = n/2, yo = TT/2, we can solve for x, y near (xo, >>o) because 
there, d ( f u f2)/d(x, y) ^ 0. A 

E X E R C I S E S 

1. Let F(x, y) = 0 define a curve in the xy plane through the point (xo, yo), where F is C1 . 
Assume that ( d F / d y ) (x0, yo) 0. Show that this curve can be locally represented by the 
graph of a function y = g(x). Show that (i) the line orthogonal to VF(x0, yo) agrees with 
(ii) the tangent line to the graph of y = g(x). 

2. Show that xy + z + 3xz5 = 4 is solvable for z as a function of (x, y) near (1,0, 1). 
Compute dz/dx and dz/dy at (1, 0). 

3. (a) Check directly (i.e., without using Theorem 11) where we can solve the equation 
F(x, y) = y2 + y + 3x + 1 = 0 for y in terms of x. 

(b) Check that your answer in part (a) agrees with the answer you expect from the 
implicit function theorem. Compute dy/dx. 
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4. Repeat Exercise 3 with F{x, y) = xy2 — 2y + x2 + 2 = 0. 

5. Show that x3z2 — z3yx = 0 is solvable for z as a function of (x, y) near (1, 1, 1), but not 
near the origin. Compute dz/dx and dz/dy at (1, 1). 

6. Discuss the solvability in the system 

3x + 2y + z2 + u + v2 = 0 

4x + 3y + z + u2 + v + w + 2 = 0 

x+z + w + u2+ 2 = 0 

for u, v, w in terms of x, y, z near x=y = z = 0,u = v = 0, and w = —2. 

7. Discuss the solvability of 

y + x + uv = 0 
wxy + t> = 0 

for u, v in terms of x, y near x = y = u = v = 0 and check directly. 

8. Investigate whether or not the system 

u(x, y, z) = x + xyz 

v(x,y,z) = y + xy 

w(x, y, z) = z + 2x + 3z2 

can be solved for x, y, z in terms of w, v, w near (x, z) = (0, 0, 0). 

9. Consider / ( x , >0 = ((x2 - y2)/(x2 + y2), xy/(x2 + y2)). Does this map of M2\(0, 0) to 
M2 have a local inverse near (x,y) = (0, 1)? 

10. (a) Define x: IR2 R by x(r, 0) = r cos6 and define y: R2 R by y(r, 6) = rsin6. 
Show that 

d(x9y) 
d(r, 0) = fo-

Mo) 
(b) When can we form a smooth inverse function (r(x, y), 0(x, y))7 Check directly and 

with the inverse function theorem. 
(c) Consider the following transformations for spherical coordinates (see Section 1.4): 

x(p,(p,6) = p s in0cos0 

x(p, <p,6) = p sin0 sin0 

z(p, (¡>,0) = p cos 0 . 
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Show that the Jacobian determinant is given by 

d(x,y,z) 2 - . 
= p sin<£. 

d(p,4>,6) 
(d) When can we solve for (p, 6) in terms of (x, y, z)? 

11. Let (x0, yo, z0) be a point of the locus defined by z2 + xy — a = 0, z2 + x 2 — 
y2 — b = 0, where a and b are constants. 

(a) Under what conditions may the part of the locus near (x0, yo, z0) be represented in 
the form x = f(z),y = g(z)? 

(b) Compute f ( z ) and g'(z). 

12. Is it possible to solve the system of equations 

xy2 + xzu + yv2 = 3 

u3yz + 2xv — u2v2 = 2 

for w(x, y, z), v(x, y, z) near (x, y, z) = (1, 1, 1), (w, u) = (1, 1)? Compute dv/dy at 
(x9y9z) = (1 ,1,1) . 

13. The problem of factoring a polynomial x" + an-\xn~x H h flo into linear factors is, in 
a sense, an "inverse function" problem. The coefficients a t may be thought of as functions of 
the n roots r r We would like to find the roots as functions of the coefficients in some region. 
With n — 3, apply the inverse function theorem to this problem and state what it tells you 
about the possibility of doing this. 

R E V I E W E X E R C I S E S F O R C H A P T E R 3 

1. Analyze the behavior of the following functions at the indicated points. [Your answer in 
part (b) may depend on the constant C.] 

(a) z = x2-y2 + 3xy, (x, y) = (0, 0) 
(b) z = x2-y2 + Cxy, (x, y) = (0, 0) 

2. Find and classify the extreme values (if any) of the functions on IR2 defined by the 
following expressions: 

(a) y2 - x3 (b) (x - l)2 + (x - y)2 (C) x2 + xy2 + / 

3. (a) Find the minimum distance from the origin in M3 to the surface z = y/x2 — 1. 
(b) Repeat part (a) for the surface z = 6xy + 7. 

4. Find the first few terms in the Taylor expansion of f{x,y) = exy cosx about x = 0, 
.F = 0. 

5. Prove that 

3x4 — 4x3 — 12x2 + 18 
z = 

1 2 ( 1 + 4 y2) 
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has one local maximum, one local minimum, and one saddle point. (The graph is shown in 
Figure 3.R.I.) 

F i g u r e 3 .R .1 Graph of z = 
(3x4 - 4x3 - \2x2 + 18)/12(1 + Ay2). 

6. Find the maxima, minima, and saddles of the function z = (2 + cos 7Tx)(sm7Ty), which 
is graphed in Figure 3.R.2. 

7. Find and describe the critical points of f{x,y) = y sin (TTX) . (See Figure 3.R.3.) 

F i g u r e 3 .R.2 Graph of z = 
(2 + cos JTX) (sin7Tj;). 

F i g u r e 3 .R .3 Graph of z = y sin(nx). 

y axis 
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8. A graph of the function z — sin(7rx)/(l + y2) is shown in Figure 3.R.4. Verify that this 
function has alternating maxima and minima on the x axis, with no other critical points. 

Figure 3.R.4 Graph of 
z = sin(7rx)/(l + y2). 

In Exercises 9 to 14 find the extrema of the given functions subject to the given constraints. 

9. / ( x , y) = x2 - 2 x y + 2y2, subject to x2 + y2 = 1 

10. / ( x , y) = xy — y2, subject to x2 + y2 = 1 

11. f(x,y) = cos(x2 — y2), subject to x 2 + y2 = 1 

x2 — y2 

12. / ( x , y) = — - , subject to x + y = 1 

x -j- y 

13. z = xy, subject to the condition x + y = 1. 

14. z = cos2 x + cos2 y, subject to the condition x + y = 7r/4. 

15. Find the points on the surface z2 — xy = 1 nearest to the origin. 

16. Use the implicit function theorem to compute dy/dx for 
(a) x / y = 10 (b) x3 - siny + y4 = 4 (c) + y3 

= 0 

17. Find the shortest distance from the point (0, b) to the parabola x2 — 4y = 0. Solve this 
problem using the Lagrange multiplier method and also without using Lagrange's method. 

18. Solve the following geometric problems by Lagrange's method. 

(a) Find the shortest distance from the point {a\, a2, a3) in IR3 to the plane whose 
equation is given by ¿>1X1 + b2x2 + ¿3X3 + b0 = 0, where (b\, b2, ¿3) ^ (0, 0, 0). 

(b) Find the point on the line of intersection of the two planes a\X\ + a2x2 + «3X3 = 0 
and b\X\+ b2x2 + ¿?3x3 + b0 = 0 that is nearest to the origin. 

(c) Show that the volume of the largest rectangular parallelepiped that can be inscribed 
in the ellipsoid 

x2 y2 z2 _ 
a2 + b1+~c2-1 

is SabcßVl. 
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19. A particle moves in a potential V(x, y) = x3 — y2 + x2 + 3xjy. Determine whether (0,0) 
is a stable equilibrium point—that is, whether or not (0, 0) is a strict local minimum of V. 

20. Study the nature of the function f ( x , y) = x3 — 3xy2 near (0, 0). Show that the point 
(0, 0) is a degenerate critical point, that is, D = 0. This surface is called a monkey saddle. 

21. Find the maximum of f(x,y) = xy on the curve (x + l)2 + y2 = 1. 

22. Find the maximum and minimum of / ( x , y) = xy — y + x — 1 on the set x2 + y2 < 2. 

23. The Baraboo, Wisconsin, plant of International Widget Co., Inc., uses aluminium, 
iron, and magnesium to produce high-quality widgets. The quantity of widgets that may 
be produced using x tons of aluminum, y tons of iron, and z tons of magnesium is 
Q(x, y, z) = xyz. The cost of raw materials is aluminum, $6 per ton; iron, $4 per ton; and 
magnesium, $8 per ton. How many tons each of aluminum, iron, and magnesium should be 
used to manufacture 1000 widgets at the lowest possible cost? (HINT: Find an extreme value 
for what function subject to what constraint?) 

24. Let / : R -» R be of class C1 and let 

u = f{x) 
v = -y + x / (x) . 

If f'{x0) ± 0, show that this transformation of M2 to R2 is invertible near (x0, >>o) and its 
inverse is given by 

x = r\U) 
y = -V + uf~\u). 

25. Show that the pair of equations 

x2 - y2 - u3 + v2 + 4 = 0 

2xj> + y1 — 2u2 + 3v4 + 8 = 0 

determine functions w(x, y) and u(x, y) defined for (x, y) near x = 2 and y = — 1 such that 
u(2, - 1 ) = 2 and v(2, - 1 ) = 1. Compute du/dx at (2, - 1 ) . 

26. Show that there are positive numbers p and q and unique functions u and v from the 
interval (— 1 — /?, — 1 + p) into the interval (\ — q,\ + q) satisfying 

xe"(x) + u(x)ev(x) = 0 = xeu(x) + v(x)eu(x) 

for all x in the interval (— 1 — p, — 1 + p) with u{— 1) = 1 = t>(— 1). 

27. To work this exercise, the reader should be familiar with the technique of diagonalizing a 
2 x 2 matrix. Let a(x), b(x), and c(x) be three continuous functions defined on U U 3(7, 



Review Exercises 2 5 9 

where U is an open set and dU denotes its set of boundary points (see Section 2.2). Use the 
notation of Lemma 2 in Section 3.3, and assume that for each JC e U U dU the quadratic form 
defined by the matrix 

is positive-definite. For a C2 function v on U U 3 (7, we define a differential operator L by 
Lv — a(d2v/dx2) + 2b(d2v/dxdy) + c(d2v/dy2). With this positive-definite condition, such 
an operator is said to be elliptic. A function v is said to be strictly subharmonic relative to L 
if Lv > 0. Show that a strictly subharmonic function cannot have a maximum point in U. 

28. A function v is said to be in the kernel of the operator L described in Exercise 27 if 
Lv = 0 on U U dU. Arguing as in Exercise 37 of Section 3.3, show that if v achieves its 
maximum on U it also achieves it on dU. This is called the weak maximum principle for 
elliptic operators. 

29. Let L be an elliptic differential operator as in Exercises 27 and 28. 

(a) Define the notion of a strict superharmonic function. 
(b) Show that such functions cannot achieve a minimum on U. 
(c) If v is as in Exercise 28, show that if v achieves its minimum on U it also achieves it 

The following method of least squares should be applied to Exercises 30 to 35. 

It sometimes happens that the theory behind an experiment indicates that the 
experimental data should lie approximately along a straight line of the form y — mx + b. The 
actual results, of course, never match the theory exactly. We are then faced with the problem 
of finding the straight line that best fits some set of experimental data (JCI , y\),..., (x„, yn) as 
in Figure 3.R.5. If we guess at a straight line y = mx + b to fit the data, each point will 
deviate vertically from the line by an amount di = yt — (mx,- + b). 

on 3 U. 

Figure 3.R.5 The method of least squares 
tries to find a straight line that best 
approximates a set of data. 

We would like to choose m and b in such a way as to make the total effect of these 
deviations as small as possible. However, because some are negative and some positive, we 
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could get a lot of cancellations and still have a pretty bad fit. This leads us to suspect that a 
better measure of the total error might be the sum of the squares of these deviations. Thus, we 
are led to the problem of finding the m and b that minimize the function 

n 

i=1 

w h e r e x \ , . . . , x „ a n d y \ , . . . ,yn are the given data. 

30. For each set of three data points, plot the points, write down the function f(m,b) from 
the preceding equation, find m and b to give the best straight-line fit according to the method 
of least squares, and plot the straight line. 

(a) (xuyi) = (1,1) (b) (*i , j /0 = (0,0) 
(X2,J>2) = ( 2 , 3 ) (x2,yi) = ( 1 , 2 ) 

(* 3 ,y0 = (4,3) (X 3 ,^ ) = (2,3) 

31. Show that if only two data points (xj, y\) and (x2 , y2) are given, this method produces the 
line through (xi, j^i) and (x2, y2). 

32. Show that the equations for a critical point, ds/db = 0 and ds/dm = 0, are equivalent to 

= (X!^) and == (X^*)' 
where all the sums run from i = 1 to i = n. 

33. If y — mx + b is the best-fitting straight line to the data points (xi, y{),..., (x„, yn) 
according to the least-square method, show that 

n 

(yt mxi -b) = 0; 
/=l 

that is, the positive and negative deviations cancel (see Exercise 32). 

34. Use the second derivative test to show that the critical point of / is a minimum. 

35. Use the method of least squares to find the straight line that best fits the points 
(0, 1), (1, 3), (2, 2), (3, 4), and (4, 5). Plot the points and line.17 

17The method of least squares may be varied and generalized in a number of ways. The basic idea can be applied to 
equations of more complicated curves than the straight line. For example, this might be done to find the parabola that best 
fits a given set of data points. These ideas also formed part of the basis for the development of the science of cybernetics 
by Norbert Wiener. Another version of the data is the following problem of least-square approximation: Given a function 
/ defined and integrable on an interval [a, b], find a polynomial P of degree <n such that the mean square error 

fb \f(x)-P(x)\2dx Ja 
is as small as possible. 


