
Double and Triple 
Integrals 

It is to Archimedes himself (c. 225 B.C.) that we owe the nearest approach 
to actual integration to be found among the Greeks. His first noteworthy 
advance in this direction was concerned with his proof that the area of a 
parabolic segment is four thirds of the triangle with the same base and 
vertex, or two thirds of the circumscribed parallelogram. 

i). 8. Smith, History of Mathematics 

In this chapter and the next we study the integration of real-valued functions of 
several variables; this chapter treats integrals of functions of two and three variables, 

or double and triple integrals. The double integral has a basic geometric interpretation 
as volume, and can be defined rigorously as a limit of approximating sums. We shall 
present several techniques for evaluating double and triple integrals and consider 
some applications. 

5*1 Introduction 
This section discusses some geometric aspects of the double integral, deferring a 
more rigorous discussion in terms of Riemann sums until Section 5.2. 

Double Integrals as Volumes 
Consider a continuous function of two variables f'.R c M 2 - > R whose domain R is 
a rectangle with sides parallel to the coordinate axes. The rectangle R can be described 
in terms of the two closed intervals [a, b\ and [c, d], representing the sides of R along 
the x and y axes, respectively, as in Figure 5.1.1. In this case, we say that R is the 
Cartesian product of [«, b] and [c, d] and write R = [a, b] x [c, d]. 

3 1 7 
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Assume that / ( x , y) > 0 on R, so that the graph of z = fix, y) is a surface lying 
above the rectangle R. This surface, the rectangle R, and the four planes x = a, x = 
b,y = c, and y — d form the boundary of a region V in space (see Figure 5.1.1). 

Graph of 
z=f(x,y) 

Figure 5.1.1 The region V in space is bounded by 
the graph of / , the rectangle R, and the four 
vertical sides indicated. 

The problem of how to rigorously define the volume of V has to be faced, and 
we shall solve it in Section 5.2 by the classic method of exhaustion, or rather, in more 
modern terms, the method of Riemann sums. To gain an intuitive grasp of the double 
integral, we provisionally assume that the volume of a region has been defined. 

Double Integrals The volume of the region above R and under the graph of a 
nonnegative function / is called the (double) integral of / over R and is denoted 
by 

J J f(x,y)dA, or J J f(x,y)dxdy. 

E X A M P L E 1 (a) If / is defined by f(x,y) = k, where k is a positive constant, 
then 

f{x, y)dA = k(b — a)(d — c), 

because the integral is equal to the volume of a rectangular box with base R and 
height k. 

(b) If f ( x , y) = 1 - x and R = [0, 1] x [0, 1], then 

IL fix,y)dA = 
/R 

because the integral is equal to the volume of the triangular solid shown in Figure 
5.1.2. A 

I D M ^ I U H a f l Suppose z = f ( x , y) - x2 + j;2 and R = [ - 1 , 1] x [0, 1]. Then 
the integral ffRix2+y2)dxdy is equal to the volume of the solid sketched in 
Figure 5.1.3. We shall compute this integral in Example 3. A 
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Figure 5.1.2 Volume under the graph z = \ — x and 
over R = [0, 1] x [0, 1]. 
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Figure 5.1.3 Volume under z = x2 + y2 

and over R = [ - 1 , 1] x [0, 1]. 

These ideas are similar to those for a single integral f(x)dx, which represents 
the area under the graph of / if / > 0; see Figure 5.I.4.1 

Single integrals f(x)dx can be rigorously defined, without recourse to the 
area concept, as a limit of Riemann sums. The idea is to approximate f(x)dx 
by choosing a partition a = xo < x\ < • • • < xn = b of [a, b], selecting points ct e 
[xi,xi+1], and forming the Riemann sum 

n-1 pb 

1 - *«•) ^ / / c o d x 

1=0 J a 

1 Readers not already familiar with this idea should review the appropriate sections of their introductory calculus text. 
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x-b 

Figure 5.1.4 Area under the graph of a nonnegative 
continuous function / from x = a to x = b is / ( x ) dx. 

(see Figure 5.1.5). We examine the analogous process for double integrals in the next 
section. 

y =/U) 

Figure 5.1.5 The sum of the areas of the 
shaded rectangles is a Riemann sum, 
which approximates the area under / from 
x = a to x = b. 

a = x0 C0 XÌ Cj x2 c2 x3 c3 x4 = b 

Cavalieri's Principle 
There is a useful method for computing volumes, known as Cavalieri s principle. 
Suppose we have a solid body and we let A(x) denote its cross-sectional area in a 
plane Px measured at a distance x from a reference plane (Figure 5.1.6). 

A(x) = area of 
cross section 

Figure 5.1.6 A solid body with 
cross-sectional area A(x) at distance x 
from a reference plane. 

" Reference plane 
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According to Cavalieri's principle, the volume of the body is given by 

volume = I A(x)dx, 
a 

where a and b are the minimum and maximum distances from the reference plane. 
This can be made intuitively clear as follows. If we partition [a, b] into a = xo < 
xi < • • • < xn = b, then an approximating Riemann sum for the preceding inte-
gral is 

But this sum also approximates the volume of the body, because A(x) Ax is the vol-
ume of a slab with cross-sectional area A(x) and thickness Ax (Figure 5.1.7). There-
fore, it is reasonable to accept the preceding formula for the volume. A more 
careful justification of this method is given in the Internet supplement for Chap-
ter 5. 

Figure 5.1.7 Volume of a slab with cross-sectional area A(x) and thickness 
Ax equals A(x) Ax. The total volume of the body is J^ A(x)dx. 

T h e Slice Method — Cavalieri ' s Principle Let S be a solid and, for x sat-
isfying a < x < b, let Px be a family of parallel planes such that: 

1. S lies between Pa and P\y\ 

2. The area of the slice of S cut by Px is A(x). 

Then the volume of S is equal to 

fb 
I A(x)dx. 

n-1 
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c^Pt£Ùhc&âLé* c f â ï ù — 

Bonaventura Cavalieri (1598-1647) was a pupil of Galileo and a professor in 
Bologna. His investigations into area and volume were important building 
blocks of the foundations of calculus. Although his methods were criticized by 
his contemporaries, similar ideas had been used by Archimedes in antiquity, 
and were later taken up by the "fathers" of calculus, Newton and Leibniz. 

R e d u c t i o n to I t e ra t ed In tegra l s 

We now use Cavalieri's principle to evaluate double integrals. Consider the solid 
region under a graph z = fix, y) defined on the region [a, b] x [c,d], where / is 
continuous and greater than zero. There are two natural cross-sectional area functions: 
one obtained by using cutting planes perpendicular to the x axis, and the other obtained 
by using cutting planes perpendicular to the y axis. The cross section determined 
by a cutting plane x = xo, of the first sort, is the plane region under the graph of 
z = f(xo, y) from y = cioy = d (Figure 5.1.8). 

z=f(x,y) 

yo 
/ - y 

Figure 5.1.8 Two different cross 
sections sweeping out the volume under 
z = / ( * . >0-

When we fixx = xo, we obtain the functiony \-> f(xo,y), which is continuous on 
[C, d]. The cross-sectional area A(xO) is, therefore, equal to the integral f (JCQ, y) dy. 
Thus, the cross-sectional area function A has domain [a, b], and is given by the rule 
A:x h^ f f f ( x , y)dy. By Cavalieri's principle, the volume V of the region under 
z = f(x,y) must be equal to 

V = j A(x)dx = / [ / 

The integral [ f^ f (x, y) dy] dx is known as an iterated integral because it is 
obtained by integrating with respect to y and then integrating the result with respect 
to x. Because f f R f(x,y)dA is equal to the volume V, we get the following result. 
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Double and Iterated Integrals 

f(x,y)dy dx. 

If we use cutting planes perpendicular to the y axis, we obtain 

rd r rb 
jj^f(x,y)dA = jf [jf f(x,y)dx dy. 

(i) 

(2) 

The expression on the right of formula (2) is the iterated integral obtained by 
integrating with respect to x and then integrating the result with respect to y. 

Thus, if our intuition about volumes is correct, formulas (1) and (2) ought to be 
valid. This is in fact true when the concepts we are discussing are defined rigorously, 
and is known as Fubini s theorem. We give a proof of this theorem in the next section. 

As the following examples illustrate, the notion of the iterated integral and equa-
tions (1) and (2) provide a powerful method for computing the double integral of a 
function of two variables. 

E X A M P L E 3 Evaluate the integral 

fL (x2 +y2)dxdy, 

where R = [ - 1 , 1] x [0, 1]. 

S O L U T I O N By equation (2), 

IL (x2 y2)dxdy - m : (x2 + y2)dx dy. 

To find (x2 + y2)dx, we treat y as a constant and integrate with respect to x. 
Because x 3 /3 + y2x is an antiderivative of x2 + y2 with respect to x, we can integrate, 
using the fundamental theorem of calculus, to obtain 

(x2 +y2)dx = 
r x 3 

~ 3 + y = T + 2y2. 

Next, we integrate | + 2y2 with respect to y from 0 to 1, to obtain 

dy -y + - y 3 3 
4 
3" 

Hence, the volume of the solid we saw in Figure 5.1.3 is 4/3. 
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For completeness, let us evaluate ffR(x2 + y2)dx dy using equation (1)—that 
is, integrating with respect to y first and then with respect to x. We have 

/ / (x2+y2idxdy = Jl^j\x2+y2)dy]dx. 

Treating x as a constant in the y integration, we obtain 

f \ x 2 + y2)dy = ix2^ + =x2 + \ . 
Jo L J J>.=o J 

Next, we evaluate (x2 + dx to obtain 

f-Xx2 + l)dx = [ T X 
+ 3 

which agrees with our previous answer. 

E X A M P L E 4 Compute the double integral f f s cosx sin j; dx dy, where S is the 
square [0, n/2] x [0, n/2] (see Figure 5.1.9). 

z = cosx sinj; f (°-f - ') 

Figure 5.1.9 Volume under z = cosx sin;; 
and over the rectangle [0, n/2] x [0, n/2]. 

S O L U T I O N By equation (2), 

r r r*/2
 [~ r 

¡1 cos x sin ydxdy— I I 
J J s Jo L Jo 

rn/2 

cosx sin y dx dy 

-i siny[L r r ' 1 
I cosxJx II 

I Jo Jo 

otï/2 
sin ydy = 1. 
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In the next section, we shall use Riemann sums to rigorously define the double 
integral for a large class of functions of two variables without recourse to the notion 
of volume. Although we shall drop the requirement that f(x,y) > 0, equations (1) 
and (2) will remain valid. Therefore, the iterated integral will again provide the key to 
computing the double integral. In Section 5.3, we treat double integrals over regions 
more general than rectangles. 

Finally, we remark that it is common to delete the brackets in iterated integrals 
such as equations (1) and (2) and write 

nd nb r pd 
f(x,y)dydx in place of / / f ( x , y)dy \dx 

and 

nb nd r pb 

f(x,y)dxdy in place of / / 
Jc \_Ja 

f ( x , y ) dx dy. 

EXERCISES 

1. Evaluate the following iterated integrals: 

(a) /-1 fol(x*y + y2)dydx (c) fQ
l fQ

l (xye^) dy dx 
(b) fo/2 fo(ycosx +2)dydx (d) /-i fi(~x dydx 

2. Evaluate the integrals in Exercise 1 by integrating with respect to x and then with respect 
to y. [The solution to part (b) only is in the Study Guide to this text.] 

3. Use Cavalieri's principle to show that the volumes of two cylinders with the same base 
and height are equal (see Figure 5.1.10). 

Figure 5.1.10 Two cylinders 
with the same base and height 
have the same volume. 

4. Using Cavalieri's principle, compute the volume of the structure shown in Figure 5.1.11; 
each cross section is a rectangle of length 5 and width 3. 
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F i g u r e 5.1.11 Compute this volume. 

5. A lumberjack cuts out a wedge-shaped piece W of a cylindrical tree of radius r obtained 
by making two saw cuts to the tree's center, one horizontally and one at an angle 0. Compute 
the volume of the wedge W using Cavalieri's principle. (See Figure 5.1.12.) 

6. (a) Show that the volume of the solid of revolution shown in Figure 5.1.13(a) is 

[ f ( x ) f d x . n f \ 
Ja 

(b) Show that the volume of the region obtained by rotating the region under the graph 
of the parabola y — —x2 + 2x + 3, — 1 < x < 3, about the x axis is 5 \ 2 t t / \ 5 [see Figure 
5.1.13(b)]. 

y y 

F i g u r e 5.1.13 The solid of 
revolution (a) has volume 
t /< f [ / (* ) ] 2 dx. Part (b) shows 
the region between the graph of 
y = —x2 + 2x + 3 and the x 
axis rotated about the x axis. 
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Evaluate the double integrals in Exercises 7 to 9, where R is the rectangle [0, 2] x [— 1, 0]. 

7. j j (x2y2 +x)dydx 

8. j j ^\y\ cos ^nx^j dydx 

9. j j (^—xex sin ^jzy^j dydx 

10. Find the volume bounded by the graph of f(x,y) = 1 + 2x + 3y, the rectangle 
[1,2] x [0, 1], and the four vertical sides of the rectangle R, as in Figure 5.1.1. 

11. Repeat Exercise 10 for the function f ( x , y) = x4 + y2 and the rectangle 
[ - 1 , 1] x [ - 3 , - 2 ] . 

5.2 The Double Integral Over a Rectangle 
We are ready to give a rigorous definition of the double integral as the limit of a 
sequence of sums. This will then be used to define the volume of the region under 
the graph of a function /(JC, y). We shall not require that f(x,y)> 0; but if f(x,y) 
assumes negative values, we shall interpret the integral as a signed volume, just as for 
the area under the graph of a function of one variable. In addition, we shall discuss 
some of the fundamental algebraic properties of the double integral and prove Fubini's 
theorem, which states that the double integral can be calculated as an iterated integral. 
To begin, let us establish some notation for partitions and sums. 

Def in i t i on of the In t eg ra l 

Consider a closed rectangle R c l 2 ; that is, R is a Cartesian product of two inter-
vals: R = [a, b] x [c, d]. By a regular partition of R of order n we mean the two 
ordered collections of n + 1 equally spaced points {*/}"=0

 a n d b^J/Lo* 
points satisfying 

a = xo < x\ < • • • < xn = b, c = yo < y\ < • • • < yn = d 

and 

b — a d — c 
Xj+i - = , yk+1 -yk = 

(see Figure 5.2.1). 
A function f(x,y) is said to be bounded if there is a number M > 0 such that 

—M< f(x,y) < M for all (x, y) in the domain of / . A continuous function on a 
closed rectangle is always bounded, but, for example, f(x,y) = 1 /x on (0, 1 ] x [0, 1 ] 
is continuous but is not bounded, because 1/x becomes arbitrarily large for x near 0. 
The rectangle (0, 1] x [0, 1] is not closed, because the endpoint 0 is missing in the 
first factor. 
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y A 

d = y4 
ys 
yi 
y\ 

c = yo 

1 
Figure 5.2.1 A regular partition of a 
rectangle R, with n = 4. 

Û = x0 
— b 

JC 

Let be the rectangle [xy, xy+i] x [y^, j^+i], and let Cjk be any point in Rjjç. 
Suppose f : R M is a bounded real-valued function. Form the sum 

where 

and 

n-1 «-I 
«« = E Ax = E AA> 

j,k=0 j,k=0 

b — a d — c Ax = xy+i - Xj = , Ay = yk+i - yk = , 

(1) 

A A = Ax Ay. 

This sum is taken over all /'s and k's from 0 to n — 1, and so there are n2 terms. A 
sum of this type is called a Riemann sum for / . 

DEFINITION: Double Integral If the sequence {£„} converges to a limit 
S as n oo and if the limit S is the same for any choice of points cy¿ in the 
rectangles Rjk, then we say that / is integrable over R and we write 

// f(x,y)dA, // f(x,y)dxdy, or / / f dxdy 
JJR JJR JJR 

for the limit S. 

Thus, we can rewrite integrability in the following way: 

limit V f(cjk) Ax Ay = / / f dxdy n—>oo IIr, j,k=0 JJR 

for any choice of c¡k £ Rjk. 
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P r o p e r t i e s of t h e I n t e g r a l 

The proof of the following basic theorem is presented in the Internet supplement for 
Chapter 5. 

T H E O R E M 1 Any continuous function defined on a closed rectangle R is 
integrable. 

If f(x,y)> 0, the existence of limitsoo Sn has a straightforward geometric 
meaning. Consider the graph of z = f{x,y) as the top of a solid whose base is the 
rectangle R. If we take each c y* to be a point where f(x,y) has its minimum value2 

on Rjk, then / (c y¿) Ax Ay represents the volume of a rectangular box with base RJk. 
The sum Y^l k=o f(cjk) Ax Ay equals the volume of an inscribed solid, part of which 
is shown in Figure 5.2.2. 

f(*jk) 
Figure 5.2.2 The sum of inscribed boxes 
approximates the volume under the graph of 
z = f(x>y)-

Similarly, if Cy* is a point where f(x,y) has its maximum on Rjk, then the sum 
£r*=o/(<V*)Ax Ay is equal to the volume of a circumscribed solid (see Figure 
5.2.3). 

Therefore, if limit^oo Sn exists and is independent of Cjk e Rjk, it follows that 
the volumes of the inscribed and circumscribed solids approach the same limit as 
n ^ oo. It is therefore reasonable to call this limit the exact volume of the solid 
under the graph of / . Thus, the method of Riemann sums supports the concepts 
introduced on an intuitive basis in Section 5.1. 

There is a theorem guaranteeing the existence of the integral of certain discon-
tinuous functions as well. We shall need this result in the next section in order to 
discuss the integrals of functions over regions more general than rectangles. We shall 
be specifically interested in functions whose discontinuities lie on curves in the xy 
plane. Figure 5.2.4 shows two functions defined on a rectangle R whose discontinuities 

2Such cjk exist by virtue of the continuity of / on R; see Theorem 7 in Section 3.3. 
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/ M 

Figure 5.2.3 The volume of circumscribed boxes 
also approximates the volume under z = f(x,y). 

A "broken surface" 
z=f(x,y) 
i 
i 

Break in the 
surface 
z=f(x,y) 

Set of discontinuities of / 

-k-

Set of discontinuities o f / 

Figure 5.2.4 What the graphs of discontinuous functions of two variables might 
look like. 

lie along curves. In other words, / is continuous at each point that is in R, but not 
necessarily on the curve. 

Useful curves are graphs of functions such as y — (p(x), a < x < b,orx = i/r(y), 
c < y < d, or finite unions of such graphs. Some examples are shown in Figure 5.2.5. 

The next theorem provides an important criterion for determining whether a 
function is integrable. The proof is discussed in the Internet supplement. 

T H E O R E M 2: Integrability of Bounded Functions Let f : R ^ R 
be a bounded real-valued function on the rectangle R, and suppose that the set 
of points where / is discontinuous lies on a finite union of graphs of continuous 
functions. Then / is integrable over R. 
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Using Theorem 2 and the remarks preceding it, we see that the functions sketched 
in Figure 5.2.4 are integrable over R, because these functions are bounded and con-
tinuous except on graphs of continuous functions. 

From the definition of the integral as a limit of sums and the limit theorems, 
we can deduce some fundamental properties of the integral f f R f(x,y)dA; these 
properties are essentially the same as for the integral of a real-valued function of a 
single variable. 

Let / and g be integrable functions on the rectangle R, and let c be a constant. 
Then / + g and cf are integrable, and 

(i) Linearity 

ÍÍ [f(x,y) + g(x,y)]dA= f f f(x,y)dA+ f f g(x,y)dA. 
JJR JJR JJR 

(ii) Homogeneity 

JJ cf(x, y)dA = c f j f(x,y)dA. 

(iii) Monotonicity If f(x,y)> g(x,y)9 then 

jjRf(x,y)dA> JJ^g(x,y)dA. 

(iv) Additivity If Rhi = 1 , . . . , m, are pairwise disjoint rectangles such that / 
is bounded and integrable over each R¡ and if Q = R\ U R2 U • • • U Rm is a 
rectangle, then / : Q M is integrable over Q and 

f f f(x,y)dA = jr f f f(x,y)dA. 
J JQ i = l J JR¿ 
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Properties (i) and (ii) are a consequence of the definition of the integral as a limit 
of a sum and the following facts for convergent sequences {Sn} and {7^}, which are 
proved as with the limit theorems in Chapter 2: 

limit (Tn +Sn) = limit Tn + limit Sn 
n—^-oo n—>oo n^oo 

limit (cSn ) = c limit Sn. 
n—>oo n—>oo 

To demonstrate monotonicity, we first observe that if h(x, y) > 0 and {Sn} is a 
sequence of Riemann sums that converges to f f R h(x,y)dA, then S„ > 0 for all n, so 
that f f R h(x, y)dA = limits ̂ ooS« > 0. If f(x,y)> g(x,y) for all (x, y) e R, then 
( / — g)(x, y) > 0 for all (x, y), and, using properties (i) and (ii), we have 

i f f(x, y)dA — f f g(x,y)dA= f f [f(x, y) - g(x, y)] dA > 0. 
JJR J JR JjR 

This proves property (iii). The proof of property (iv) is more technical and a special 
case is proved in the Internet supplement. It should be intuitively obvious. 

Another important result is the inequality 

\JJfdA\< JJ\f\dA. (2) 

To see why formula (2) is true, note that, by the definition of absolute value, 

- l / l < / < l / l ; 

therefore, from the monotonicity and homogeneity of integration (with c = — 1), 

- f f \f\dA < f f fdA< f f | / | dA, 
JJR JJR JJR 

which is equivalent to formula (2). 

Fubini 's Theorem 
Although we have noted the integrability of a variety of functions, we have not yet 
established rigorously a general method of computing integrals. In the case of one 
variable, we avoid computing f(x)dx from its definition as a limit of a sum by 
using the fundamental theorem of integral calculus. This important theorem tells us 
that i f f is continuous, then 

f" f(x)dx = F(b)-F(a), 
J a 

where F is an antiderivative of f ; that is, F' — f . 
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This technique will not work as stated for functions f(x,y) of two variables. 
However, as we indicate in Section 5.1, we can often reduce a double integral over a 
rectangle to iterated single integrals; the fundamental theorem then applies to each 
of these single integrals. Fubini's theorem, which was mentioned in the last section, 
establishes this reduction to iterated integrals rigorously, by using Riemann sums. As 
we saw in Section 5.1, the reduction, 

iL^-iv: f(x,y)dy dx y)dx dy, 

is a consequence of Cavalieri's principle, at least if / ( x , y) > 0. In terms of Riemann 
sums, it corresponds to the following equality: 

n—1 n—1 In— 1 \ n—1 / n—l 

J2 f(cjk) Ax Ay = J2(J2 A x = E E f ^ Ax 

j,k=0 j=0 \k=0 / k=0 \y=0 

) Ay, 

which may be proved more generally as follows: Let [ajk] be an n x n matrix, 
where 0 < j < n — 1 and 0 < k < n — 1. Let Y^j~k=o ajk be the sum of the n2 matrix 
entries. Then 

n-1 n-1 /n—1 \ n-1 /n-1 ^ 

E = E ( Efl;* J = E ( Ea;* 
y,i=0 y=o \/t=0 / i=0 \j=0 j 

(3) 

In the first equality, the right-hand side represents summing the matrix entries 
first by rows and then adding the results: 

_a{n-1)0 Ct{n-\)\ 

«00 «01 Ö02 ' ' aok «0(A2-1) 

ajo aji • ajk 
aj(n-\) 

V 
Q-{n—\)k 

- y^flpk 
k=0 

k=0 

a(n-\)(n-\)_ n-1 

k=o 
i)* 

A2 — 1 /« - l ^ 

E 
y=o \ h=o y 

Clearly, this is equal to YTj~k=oajk> tha t is* the s u m of aH the ajk• Similarly, the 
sum Ylk=o ( S /=o ajk) represents a summing of the matrix entries by columns. This 
establishes equation (3) and makes the reduction to iterated integrals quite plausible 
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if we remember that integrals can be approximated by the corresponding Riemann 
sums. The actual proof of Fubini's theorem exploits this idea. 

T H E O R E M 3: F u b i n i ' s T h e o r e m Let / be a continuous function with 
a rectangular domain R = [a, b] x [c, d]. Then 

i ' I" f(x,y)dydx = f f b f(x,y)dxdy= f f f(x,y)dA. (4) 
Ja Jc J c J a J J R 

PROOF We shall first show that 

rb rd 
f f f(x,y)dydx = f f f(x, y)dA. 
J a Je J J R 

Let c = yo < y\ < • • • < yn = d be a partition of [c, d] into n equal parts. Define 

F(x) = J" f(x,y)dy. 

Then 

n~l ryk+1 
F(x) = T / f(x,y)dy. 

k=o Jyk 

Using the integral version of the mean-value theorem,3 for each fixed x and for each 
k we have 

ryk+i 
/ f{x ,y)dy = f(x, Yk(x))(yk+1 - yk) 

Jyu 

(see Figure 5.2.6), where the point Yk(x) belongs to [yk, yk+1] and may depend on 
x, k, and n. 

We have thus shown that 

n—1 
FM = E Yk(x))(yk+1 - (5) 

k=0 

3This states that if is continuous on [a, b], then f^ g(x) dx = g(c)(b — a) for some point c e [a, b]. The more general 
second mean-value theorem was proved in Section 3.2. 
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Z 

z=f(x,y) 

yc=y0yl y2 4 p %— 

/(Cij) 

Y3(X) 

yi\ y a ys ye yi d=y8 
• • • §—•—•—p *-y 

/ / / / / 

Figure 5.2.6 The notation 
needed in the proof of 
Fubini's theorem; n = 8. 

/ / / 
/ / A . ™ / / / 

WF 
/ / / / 

By the definition of the integral in one variable as a limit of Riemann sums, 

c c r r 
/ F(x)dx = \ f(x,y)dy\dx = l i m i t F ( p j ) ( x j + X -x y ) , 

Ja Ja L Je J /2_>0° y=0 

where a —xo < xi < • • • < x„ = & is a partition of the interval [a, b] into n equal 
parts and pj is any point in [xy, xy+i]. Setting cJk — ( p j , Yk(pj)) e Rjk, we have 
[substituting p j for x in equation (5)] 

n-1 
F(Pj) = f(cJk)(yk+1 - yk). 

k=0 

n-1 

Therefore, 

nd rb 

fix, y)dy dx = / F(x) dx = limit F(/?y)(xy+i - Xy) 
- ^a j=0 

n — 1 «-1 
= E E _ - Xj) 

j=0 &=0 

= JJ f(x, y)dA. 
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Thus, we have proved that 

nf(x,y)dydx = f f f(x,y)dA. 
J J R 

By the same reasoning we can show that 

(" f" f(x,y)dxdy = f f f(x,y) dA. 
Jc J a J J R 

These two conclusions are exactly what we wanted to prove. • 

Fubini's theorem can be generalized to the case where / is not necessarily contin-
uous. Although we shall not present a proof, we state here this more general version. 

main a rectangle R = [a, b] x [c, d], and suppose the discontinuities of / lie on a 
finite union of graphs of continuous functions. If the integral f^ f(x,y) dy exists for 

T H E O R E M 3': F u b i n i ' s T h e o r e m Let / be a bounded function with do-
main a rectangle R = 
finite union of graphs 
each JC e [a, b], then 

/ [ / f ( x > y ) d y ^ d x 

exists and 

rb rd 
f f f(x,y)dydx= f f f(x,y)dA. 
J a Jc J J R 

Similarly, if j^ f ( x , y) dx exists for each y e [c, d], then 

f[f f(x,y)dx dy 

exists and 

rd rb 
f f f(x,y)dxdy= f f f(x,y)dA. 
Jc J a JJR 

Thus, if all these conditions hold simultaneously, 

nd nd fib fi p 

f(x,y)dydx=l / f(x,y)dxdy= f(x,y)dA. _ Jc J a JJr 
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The assumptions made for this version of Fubini's theorem are more complicated 
than those we made in Theorem 3. They are necessary because if / is not continuous 
everywhere, for example, there is no guarantee that / ( x , y) dy will exist for each x. 

J ^ J J E S E i ! Compute f f R (x2 + y)dA, where R is the square [0, 1] x [0, 1]. 

S O L U T I O N By Fubini's theorem, 

If {x2+y)dA= f f (x2+y)dxdy= f I f (x2+y)dx 
J J R JO JO JO L JO 

dy. 

By the fundamental theorem of calculus, the x integration may be performed: 

^ (x2 +y)dx = j^y + j;x 
x = 0 

Thus, 

fk"2+>",A=iï[l+>]d>i=[y+ 
What we have done is hold y fixed, integrate with respect to x, and then evaluate the 
result between the given limits for the x variable. Next, we integrated the remaining 
function (of y alone) with respect to y to obtain the final answer. A 

E X A M P L E 2 A consequence of Fubini's theorem is that interchanging the order 
of integration in the iterated integrals does not change the answer. Verify this for 
Example 1. 

S O L U T I O N We carry out the integration in the other order: 

Jo Jo 
(x + y) dy dx -J. K 

f x 3 Jtl1 5 

dx 

We have seen that when f(x,y) > 0 on R = [a,b]x [c, d], the integral 
f f R f ( x , y)dA can be interpreted as a volume. If the function also takes on nega-
tive values, then the double integral can be thought of as the sum of all volumes 
lying between the surface z = f(x,y) and the plane z = 0, bounded by the planes 
x = a, x = b,y = c, and y = d\ here the volumes above z = 0 are counted as posi-
tive and those below as negative. However, Fubini's theorem as stated remains valid in 
the case where f(x,y) is negative or changes sign on R; that is, there is no restriction 
on the sign of / in the hypotheses of the theorem. 
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E X A M P L E 3 Let R be the rectangle [—2, 1] x [0, 1] and let / be defined by 
f(x,y) = y(x3 — 1 2 x ) ; f ( x , y ) takes on both positive and negative values on R. 
Evaluate the integral f f R f (x, y) dx dy = f f R y(x3 — I2x) dx dy. 

S O L U T I O N By Fubini's theorem, we may write 

IL y(x — 12x)dx dy y(x — 12 x)dx dy 
57 r 
~4Jo 

1 w 5 7 
ydy = ~7T' 

Alternatively, integrating first with respect to y, we find 

j j y(x3 - \2x)dydx = j j^jf (x3 -

=\L ' 
(xJ 

12 x)ydy 

12x)dx = ' 3 - - - 1 

dx 

r x 4 

6x >V = 57 
J —2 8 ' 

The Riemann Integral 
The first time most mathematics students encounter the name of Bernhard 
Riemann is in their calculus courses, where they read about the Riemann 
integral. Leibniz had thought of the integral of a function of one variable as 
an infinite sum (the f standing for a sum) of infinitesimal areas f(x)dx, 
where dx is an "infinitesimal width" and / ( x ) is the height of the 
corresponding "infinitesimally thin" rectangle. This intuitive approach 
sufficed for most purposes because the fundamental theorem 

b 
f(x)dx — F(b) — F(a) 

showed how to evaluate this (nebulously defined) integral when one knows 
the antiderivative F of / . 

However, Riemann was interested in applying integration to functions 
of one variable where the antiderivative was not known, and to functions in 
number theory or in general to those functions that "one need not find in 
nature." 

Cauchy had already known that all continuous functions could be 
integrated and that the fundamental theorem was valid—that is, every 
continuous function had an antiderivative. However, his proofs were not 
entirely rigorous. For applications to number theory and to certain series 

L 
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(called Fourier series), Riemann needed a clear, precise definition of the 
integral, which he presented in a paper in 1854. In this paper he defines his 
integral and gives necessary and sufficient conditions for a bounded function 
/ to be integrable over an interval [a, b]. 

In 1876, the German mathematician Karl J. Thomae generalized 
Riemann's integral to apply to functions of several variables, as we do in this 
chapter. We further develop this approach in the Internet supplement. 

In the first half of the nineteenth century, Cauchy had observed that for 
continuous function of two variables, Fubini's theorem was valid. But 
Cauchy also gave an example of an unbounded function of two variables for 
which the iterated integrals were not equal. In 1878, Thomae gave the first 
example of a bounded function of two variables where one iterated integral 
exists and the other does not. In these examples, the functions were not 
"Riemann integrable" in the sense described in this section. Cauchy and 
Thomae's examples demonstrated that one must apply caution and not 
necessarily assume that iterated integrals are always equal. 

In 1902, the French mathematician Henri Lebesgue developed a truly 
sweeping generalization of the Riemann integral. Lebesgue's theory allowed 
integration of vastly more functions than did Riemann's approach. Perhaps, 
unforeseen by Lebesgue, his theory was to have a profound impact on the 
development of many areas of mathematics in the twentieth century—in 
particular the theory of partial differential equations. Mathematics students 
go into more depth about the Lebesgue integral in their first year of graduate 
study. 

In 1907, the Italian mathematician Guido Fubini used the Lebesgue 
integral to state the most general form of the theorem on the equality of 
iterated integrals, the form that is studied today and used by working 
mathematicians and scientists in their research. 

E X E R C I S E S 

1. Evaluate each of the following integrals if R = [0, 1] x [0, 1]. 

2. Evaluate each of the following integrals if R = [0, 1] x [0, 1]. 



32 I Double and Triple Integrals 

3. Compute the volume of the region over the rectangle [0, 1] x [0, 1] and under the graph 
of z = xy. 

4. Compute the volume of the solid bounded by the xz plane, the yz plane, the xy plane, 
the planes x = I and y = 1, and the surface z = x2 -j- y4. 

5. Let / be continuous on [a, b] and g continuous on [c, d]. Show that 

[ [ [f(x)g(y)] dx dy = f f i x ) dx [d g(y) dy 
J J R J a Jc 

where R = [a, b] x [c,d]. 

6. Compute the volume of the solid bounded by the surface z = sin the planes x = 1, 
x = 0, y = 0, and y = 7r/2, and the xy plane. 

7. Compute the volume of the solid bounded by the graph z = x2 + y, the rectangle 
R = [0, 1] x [1, 2], and the "vertical sides" of R. 

8. Let / be continuous on R = [a, b] x [c, d]; for a < x < b,c < y < d, define 

F(x,y)= ( f f(u,v)dv du. 
J a Jc 

Show that d2F/dx dy = d2F/dy dx = / ( x , y). Use this example to discuss the relationship 
between Fubini's theorem and the equality of mixed partial derivatives. 

9. Let / : [0, 1] x [0, 1] R be defined by 

/(*. y) = 
1 x rational 

2y x irrational. 

Show that the iterated integral / J / J f(x,y) dyJ dx exists but that / is not integrable. 

10. Express f f R cosh xy dx dy as a convergent sequence, where R = [0, 1] x [0, 1]. 

11. Although Fubini's theorem holds for most functions met in practice, one must still 
exercise some caution. This exercise gives a function for which it fails. By using a 
substitution involving the tangent function, show that 

nX2 — y2 it fl fl X2-y2
 J J IT 

— — — — — dydx = y e t ^ ^ = „ 
Why does this not contradict Theorem 3 or 3'? 

12. Let / be continuous, / > 0, on the rectangle R. If f f R f d A = 0, prove that / = 0 on R. 
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5*3 The Double Integral Over More General Regions 
Our goal in this section is twofold: First, we wish to define the double integral of a 
function f(x,y) over regions D more general than rectangles; second, we want to 
develop a technique for evaluating this type of integral. To accomplish this, we shall 
define three special types of subsets of the xy plane, and then extend the notion of 
the double integral to them. 

E l e m e n t a r y Reg ions 

Suppose we are given two continuous real-valued functions (j)\\ [a, b] R and 
<p2- [tf, b] -> M that satisfy <p\(x) < <p2(x) for all x e [<a, b]. Let D be the set of 
all points (x,y) such that* e [a, b] and0i(x) <y < <p2(x). This region D is said to 
bey-simple. Figure 5.3.1 shows various examples of jy-simple regions. The curves 
and straight-line segments that bound the region together constitute the boundary 
of D, denoted 3D. We use the phrase jy-simple because the region is described in a 
relatively simple way, using y as a function of x. 

y = 02 (*) 

ay = <Pi(x) b 

Figure 5.3.1 Some ^-simple regions. 

We say that a region D is x-simple if there are continuous functions \¡/\ and 
defined on [c, d] such that D is the set of points (x, y) satisfying 

y e [c, d ] and f ^ y ) < x < f2(y) 

where \jr\(y) < ^ ( y ) for all y e [c,d]. Again, the curves that bound the region 
D constitute its boundary 3D. Some examples of x-simple regions are shown in 
Figure 5.3.2. In this situation, x is the distinguished variable, given as a function of 
y. Thus, the phrase x-simple is appropriate. 

Finally, a simple region is one that is both x - and jF-simple; that is, a simple region 
can be described as both an x-simple region and a jy-simple region. An example of a 
simple region is a unit disk (see Figure 5.3.3). 

Sometimes we will refer to any of the regions as elementary regions. Note that 
the boundary 3 D of an elementary region is the type of set of discontinuities of a 
function allowed in Theorem 2. 
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} tl(y) D r = *2<y) x = fo(y) 

-x = ifiiy) 

Figure 5.3.2 Some x-simple regions. 

y = <foix) = V\ -x2 

X 

(a) 

y 
M x = ir \{y) 

D x = i/f2(y) 

je 

y> 
x = ylf2(y) = V\ -

i 

1 X = \jfi(y) 

= -V\-y2 

(b) 

Figure 5.3.3 The unit disk, a simple region: (a) as a jy-simple region, and (b) as an 
x-simple region. 

The Integral over an Elementary Region 
We can now use an interesting "trick" to extend the definition of the integral from 
rectangles to elementary regions. 

DEFINITION: Integral over an Elementary Region If D is an elementary 
region in the plane, choose a rectangle R that contains D. Given / : D R, 
where / is continuous (and hence bounded), define f f D f ( x , y)dA, the integral 
of f over the set D as follows: Extend / to a function / * defined on all of 
R by 

r(x,y) = 
f(x, y) if ix,y)eD 
0 if (x, y) çjL D and (x, y) e R. 

Note that / * is bounded (because / is) and continuous except possibly on the 
boundary of D (see Figure 5.3.4). The boundary of D consists of graphs of 
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continuous functions, and so / * is integrable over R by Theorem 2, Section 5.2. 
Therefore, we can define 

JJ f(x,y)dA = JJf*(x,y)dA. 

When f(x,y)>0onD, we can interpret the integral f f D f(x,y)dA as the volume 
of the three-dimensional region between the graph of / and D, as is evident from 
Figure 5.3.4. 

. Graph of z=f (x, y) 

Y 

1 / ^ ^ 

Elementary region 

Graph of f* 

y 

(a) (b) 

Figure 5.3.4 (a) Graph of z = f(x,y) over an elementary region D. (b) Shaded 
region shows graph of z = f*(x,y) on some rectangle R containing D. From this 
picture we see that boundary points of D may be points of discontinuity of / * , 
because the graph of z = f*(x, y) can be broken at these points. 

We have defined f f D f ( x , y)dx dy by choosing a rectangle R that encloses D. 
It should be intuitively clear that the value of f f D f ( x , y) dx dy does not depend on 
the particular R we select; we shall demonstrate this fact at the end of this section. 

R e d u c t i o n to I t e r a t e d In t eg ra l s 

If R = [«, b] x [c, d] is a rectangle containing Z), we can use the results on iterated 
integrals in Section 5.2 to obtain 

f f f(x,y)dA= f f f*(x, y) dA = f" f 
JJD JJR J a Jc 

-if 
Je J a 

d 
f*(x, y) dydx 

b 
f*(x,y) dx dy, 

where / * equals / in D and zero outside D, as before. Assume that D is a 
j-simple region determined by functions <p\:[a,b] ^ R and <p2'.[a,b] ^ R. 
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Consider the iterated integral 

f" f f*(x,y)dydx 
J a Jc 

and, in particular, the inner integral j^ /*(x, y)dy for some fixed x (Figure 5.3.5). 
By definition, /*(x, y) = 0 if y < <p\(x) or y > foix), so we obtain 

pd r<Pi{x) rfcix) 

/ r(x*y)dy= f*(x,y)dy= f(x9y)dy. 
Jc J<p\(x) J<p\(x) 

Figure 5.3.5 The region between two graphs—a jy-simple 
region. 

We summarize what we have obtained in the following. 

T H E O R E M 4: Reduct ion to Iterated Integrals If D is a ^-simple 
region, as shown in Figure 5.3.5, then 

r r rb rfcix) 
// f(x,y)dA= / / f(x,y)dydx. 

JJD J a Jó\(x) 
(i) 

In the case / ( x , y) = 1 for all (x, y) e D, f f D f ( x , y ) d A is the area of D. On 
the other hand, in this case, the right-hand side of formula (1) becomes: 

n(p2(x) çb 
fix, y) dy dx = / [fcix) - 0i(x)]Jx = AiD), 

'ifx) J a 
which is the formula for the area of D learned in one-variable calculus. Thus, formula 
(1) checks in this case. 
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E X A M P L E 1 Find f f T (x3 y + c o s x ) d A , where T is the triangle consisting of 
all points (x, y) such that 0 < x < 7r/2, 0 < y < x. 

SOLUTION Referring to Figure 5.3.6 and formula (1), we have 

(( * r'2 r % 
Il (x y+ cosx)dA = I I ( x y + c o s x ) d y d x 

J J T JO Jo 
r'2\x3y2 r J r / 2 fx5 \ = J \~2 l">;C0S-x:J dx = J +xcosxJ t ì fx 

[ 6-I7T/2 rn/2 

» 1
 +l < 

_ 7r" 71 

~ 768 + 2 ~ 

(x cosx)dx = TT" 
(12X64) 

+ [x sinx + COSX]Q/2 

02 ( x ) = x 

(I !) 

01 W = » (*,.) 

Figure 5.3.6 A triangle T represented as a jy-simple 
region. 

In the next example, we use formula (1) to find the volume of a solid whose base 
is a nonrectangular region D. 

E X A M P L E 2 Find the volume of the tetrahedron bounded by the planes 
y = 0, z = 0, x = 0, andy — x + z = 1 (Figure 5.3.7). 

SOLUTION We first note that the given tetrahedron has a triangular base D whose 
points (x, y) satisfy — 1 < x < 0 and 0 < y < 1 + x; hence, D is a jy-simple region. 
In fact, D is a simple region; see Figure 5.3.8. 

For any point (x, y) in D, the height of the surface z above (x, y) is 1 — y + x. 
Thus, the volume we seek is given by the integral 

jj (I — y + x)dA. 
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,(0,0,1) 

Figure 5.3.7 A tetrahedron bounded by the planes 
y — 0, z = 0, x = 0, and y — x + z = 1. 

(0,1,0) 

Figure 5.3.8 The base of the tetrahedron in Figure 5.3.7 
represented as a jy-simple region. 

Using formula (1) with <j>\(x) = 0 and 0200 = x + 1, we have 

p p p0 p\+x 

// (1 - y +x)dA = / / (1 -y +x)dy dx 
J JD J-1 Jo -/>**-C 

dx ( 1 + x 

dx 

E X A M P L E 3 
Riemann sums. 

Let D be a jy-simple region. Describe its area A(D) as a limit of 

SOLUTION If we recall the definition, A(D) = f f D dx dy is the integral over 
a containing rectangle R of the function f = 1. A Riemann sum S„ for this in-
tegral is obtained by dividing R into subrectangles and forming the sum Sn = 
Y^j~k=o /*(cyA:)Ax Ay, as in formula (1) of Section 5.2. Now f*(cjk) is 1 or 0, de-
pending on whether or not cjk is in D. Consider those subrectangles Rjk that have 
nonvoid intersection with D, and choose c ^ in D Pi Rjk. Thus, Sn is the sum of the 
areas of the subrectangles that meet D and A(D) is the limit of these as n oo. 



5.3 The Double Integral Over More General Regions 3 4 7 

Thus, A(D) is the limit of the areas of the rectangles "circumscribing" D. The reader 
should draw a figure to accompany this discussion. • 

The methods for treating x-simple regions are entirely analogous. Specifically, 
we have the following. 

T H E O R E M 4': Iterated Integrals for x -S imple R e g i o n s Suppose 
that D is the set of points (x, y) such that y e [c, d] and \Js\(y) < x < foiy). If 
/ is continuous on D, then 

r r pd r rfoiy) ~| 
// / ( x , y ) d A = / / f(x,y)dx\dy. (2) 

J J D JC LJIFAIY) J 

To find the area of D, we substitute / = 1 in formula (2); this yields 

rd 
(fi(y)-f\(y))dy. 

Again, this result for area agrees with the results of single-variable calculus for the 
area of a region between two curves. 

Either the method for jy-simple or the method for x-simple regions can be used 
for integrals over simple regions. 

It follows from formulas (1) and (2) that J f D f d A is independent of the choice 
of the rectangle R enclosing D used in the definition of f f D f d A, because, if we had 
picked another rectangle enclosing D, we would have arrived at the same formula (1). 

E X E R C I S E S 

1. Evaluate the following iterated integrals and draw the regions D determined by the 
limits. State whether the regions are x-simple, ^-simple, or simple. 

(a) f f dydx (c) f f (x+y)dydx 
Jo Jo Jo J1 n3x+i ni r 

dydx (d) / / ydydx 
X Jo Jx3 

2. Evaluate the following integrals and sketch the corresponding regions. 
o2 py2 pit/2 p cos* 

(a) / I py'- pTi 12. pcosx 
I (x2 + y)dx dy (d) / / y sinx dy dx 

-3 Jo Jo Jo r 1 r 1*1 /•! ry 
(b) / / ex+y dy dx (e) / / (xn +ym)dx dy, m,n> 0 

J-l J—2\x\ Jo J y2 

p\ p(l-x2)1/2 pO />2(1—x2)1/2 

(c) I l dydx (f) I f xdydx 
Jo Jo J-1 Jo 
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3. Use double integrals to compute the area of a circle of radius r . 

4. Using double integrals, determine the area of an ellipse with semiaxes of length a and b. 

5. What is the volume of a barn that has a rectangular base 20 ft by 40 ft, vertical walls 30 ft 
high at the front (which we assume is on the 20-ft side of the barn), and 40 fi high at the rear? 
The barn has a flat roof. Use double integrals to compute the volume. 

6. Let D be the region bounded by the positive x and y axes and the line 3x + 4y = 10. 
Compute 

IL (x 2+y2)d A. 
D 

7. Let D be the region bounded by the y axis and the parabola x — —4y2 + 3. Compute 

x3ydx dy. fL 
8. Evaluate / / ( x + xy — y ) dy dx. Describe this iterated integral as an integral over 

Jo Jo 
a certain region D in the xy plane. 

9. Let D be the region given as the set of (x, y) where 1 < x2 + y2 < 2 and y > 0. Is D an 
elementary region? Evaluate f f D f ( x , y) dA where f(x,y) = 1 + xy. 

10. Use the formula A(D) = f f D dx dy to find the area enclosed by one period of the sine 
function sin x, for 0 < x < 2:r, and the x axis. 

11. Find the volume of the region inside the surface z = x2 + y2 and between z = 0 and 
z = 10. 

12. Set up the integral required to calculate the volume of a cone of base radius r and 
height h. 

13. Evaluate f f D y d A where D is the set of points (x, y) such that 0 < 2X/TC < y, y < sinx. 

14. From Exercise 5, Section 5.2, j j f(x)g(y)dydx = ^ j f ( x ) d x ^ ^ j g{y)dy^. 

Orb \ / n<t>2{b) \ 
' /(x)dxjl I g(y) dy ) for j/-simple regions? 
a J \J<t>\(a) J 

15. Let D be a region given as the set of (x, y) with — 0(x) < y < 0(x) and a < x < b, 
where 0 is a nonnegative continuous function on the interval [a, b]. Let / ( x , y) be a function 
on D such that / ( x , y) = — f ( x , —y) for all (x, y) e D. Argue that f f D / ( x , y)dA = 0. 
16. Use the methods of this section to show that the area of the parallelogram D determined 
by two planar vectors a and b is \a\b2 — a2b\ |, where a = a\\ + a2\ and b = b\\ + b2j. 

17. Describe the area A(D) of a region as a limit of areas of inscribed rectangles, as in 
Example 3. 
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5.4 Changing the Order of Integration 
Suppose that D is a simple region—that is, it is both x-simple and jy-simple. Thus, it 
can be given as the set of points (x, y) such that 

a < x < b, 0i (x) < y < <p2(x), 

and also as the set of points (x, y) such that 

c <y <d, TAICJO < x < fi{y). 

Hence, we have the formulas 

rr rb r<h(x) rd r f 2 { y ) 

// f(x,y)dA= I / f(x,y)dydx= / f(x,y)dxdy. 
JJD J a J(f) I(JC) Jc Jifo(y) 

If we are required to compute one of the preceding iterated integrals, we may 
do so by evaluating the other iterated integral; this technique is called changing the 
order of integration. It can be useful to make such a change when evaluating iterated 
integrals, because one of the iterated integrals may be more difficult to compute than 
the other. 

E X A M P L E 1 By changing the order of integration, evaluate 

ra r(a2-x2)x'2 no 
_ 

(a2 -y2)1/2dydx. 

S O L U T I O N Note that x varies between 0 and a, and for each such fixed x, we have 
0 < y < {a2 — x2)1 /2 . Thus, the iterated integral is equivalent to the double integral 

ff.*-y2)l/2dydx, 

where D is the set of points (x, y) such that 0 < x < a and 0 < y < {a2 — x2)1 /2 . But 
this is the representation of one quarter (the positive quadrant portion) of the disk of 
radius a; hence, D can also be described as the set of points (x, y) satisfying 

0 <y <a, 0 < x <(a2-y2)l/2 

(see Figure 5.4.1). Thus, 

« r{a2-x2)x/2 

if 
Jo Jo 

(a2-y2)l/2dydx = ji ^ji 

-Ï ' Jo - f 

Jo 

a |- f i a 2 - / ) " 2 

(a2 - y2)1'2 dx 

[x(a2 - y2)1'2]^'1 dy 

dy 

(a ~ y ) dy — 2 y 
ay 

y 3 

3n 2a3 
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y 

(0 ,a) 

Figure 5.4.1 The positive-quadrant portion of a disk of 
radius a. 

(a, 0) 

We could have evaluated the initial iterated integral directly, but, as the reader can 
easily verify, changing the order of integration makes the problem simpler. The next 
example shows that it may not be obvious how to evaluate an iterated integral, and 
yet it may be relatively simple to evaluate the iterated integral obtained by changing 
the order of integration. 

S O L U T I O N It will simplify matters if we first interchange the order of integration. 
First notice that the integral is equal to f f D (x — 1)V 1 + e2ydA, where D is the set 
of(x,j^) such that 

Evaluate 

\<x<2 and 0 < y < log*. 

The region D is simple (see Figure 5.4.2) and can also be described by 

0 < y < log 2 and ey<x<2. 

Figure 5.4.2 D is the region of integration for Example 2. 
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Thus, the given iterated integral is equal to 

rloê2 r2 , g2 r r2 

/ (x- 1)V 1 + & dx dy = I VI + ^ / (x - 1 )dx 
Jo Jey Jo L Jey 

dy 

dy 
rlog2 r 2 

- L 
/•l0g2 / 2 y \ 

= "./o 
1 /»log2 Wog2 

= — / e 2 V l + e?y dy + / e V 1 + ^ dy. 
2 Jo Jo 

(i) 

In the first integral in expression (1), we substitute u — e2y, and in the second, v = ey. 
Hence, we obtain 

j p4 p2 
— — J y/l + U dll + j y/l + V2 dv. (2) 

Both integrals in expression (2) are easily found with techniques of one-variable 
calculus (or by consulting the table of integrals at the back of the book). For the first 
integral, we get 

1 fA 

4 J, ^ 
du ¿ ( 1 + « ) 3 / 2 = i [ ( i + 4)3/2 - 2 3 / 2 ] = - [ 5 3 / 2 - 23 /2]. (3) 

6 6 

The second integral is 

j^ y/l + V2 dv = i |W 1 + V2 + log ( \ / l + V2 + 

= [2 V5 + log ( V5 + 2)] - X- [ V2 + log ( V2 + 1)] (4) 

(see formula 43 in the table of integrals at the back of the book). Finally, we subtract 
equation (3) from equation (4) to obtain the answer 



3 5 2 Double and Triple Integrals 

M e a n Value I n e q u a l i t y 

We conclude with an inequality that helps us estimate integrals. Suppose there are 
numbers m and M such that forali (JC, y) e D,andm < f(x,y) < M, then integrating 
over D, we get 

m-A(D) < j j f(x,y)dA < M - A(D), (5) 

where A(D) is the area of the region D. Even though this inequality is obvious, it can 
help us estimate integrals that we cannot easily evaluate exactly. 

E X A M P L E 3 Consider the integral 

1 fL D y/\ +X6 + y 
: dx dy, 

where D is the unit square [0, 1] x [0, 1]. Because the integrand satisfies, for x and 
y between 0 and 1, 

1 1 
V3 y r r ^ + 7 

and because the square has area 1, we get: 

1 -L < ( ( 
n/3 JJD 

dxdy < 1. • 
x/3 JJD y/\ + x 6 + ; 

M e a n Value E q u a l i t y 

The mean value inequality can be turned into an equality when / is continuous. Here 
is the formal statement. 

T H E O R E M 5: Mean Value Theorem: Double Integrals Suppose 
/: D — M is continuous and D is an elementary region. Then for some point 
(*o» yo) in D we have 

SSD
 f { x ' y ) d A = f(x^yo)MD), 

where A(D) denotes the area of D. 

PROOF We cannot prove this theorem with complete rigor, because it requires 
some concepts about continuous functions not proved in this course; but we can 
sketch the main ideas that underlie the proof. 

Because / is continuous on D, it has a maximum value M and a minimum 
value m. Thus, m < f ( x , y) < M for all (x,y) e D. Furthermore, f(x\, y\) = m 
and / ( x 2 , y2) = M for some pairs (jti, y\) and yi) in D. 
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Dividing through inequality (5) by A(D), we get 

n s m S S D
f ^ y ) d A - M - ( 6 ) 

Because a continuous function on D takes on every value between its max-
imum and minimum values (this is the two-variable intermediate value theorem 
proved in advanced calculus; see also Review Exercise 32), and because the number 
[1 /A^D)] f f D f ( x , y ) dA is, by inequality (6), between these values, there must be a 
point (jto, yo) e D with 

f(xo,yo) = :^-)llDf(x,y)dA, 

which is precisely the conclusion of Theorem 5. • 

EXERCISES 

1. In the following integrals, change the order of integration, sketch the corresponding 
regions, and evaluate the integral both ways. 

(a) J J xydy dx 
nit ¡2 pcosQ 

(b) / / cos OdrdO 
Jo Jo 

(c) £ J* '(x+yfdxdy ny 
f(x,y) dx dy (express your answer in terms of antiderivatives). 

2. Find 

(a) / / (x+yfdxdy (c) / / exl dxdy 
J-1 J\y\ Jo Jy/2 

r 1 r<s/(9-y2) rl pn/4 pi /*i rn 
(b) I I Jt2 dxdy (d) / / (sec5 x) dxdy 

J-3 J-<y/(9-y2) Jo J tan"1 y 
3. If f{x, y) = and D = [—TT, TT] X [-TT, TT], show that 

Z<^ffDf(*>y)dA<e-
1 1 
- < — 

e 47T2 J J D 

4. Show that 

1 f f sin x 
- ( l - c o s l ) < / / dxdy<\. 
2 Mo.i]xpu] 1 + (*J;) 

5. If D = [ -1 , 1] x [-1,2], show that 

<-IL 
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dA 1 
< 

6. Using the mean value inequality, show that 

6 - J L y - x + 3 ~ 4 ' 

where D is the triangle with vertices (0, 0), (1, 1), and (1,0). 

7. Compute the volume of an ellipsoid with semiaxes a, b, and c. (HINT: Use symmetry and 
first find the volume of one half of the ellipsoid.) 

8. Compute j j f(x,y)dA, where f(x,y) = y2y/x and D is the set of (x, y) where x > 0, 

y > x2, and y < 10 — x2. 

9. Find the volume of the region determined by x2 + y2 + z2 < 10, z > 2. Use the disk 
method from one-variable calculus and state how the method is related to Cavalieri's principle. 

10. Evaluate j j ex~y dx dy, where D is the interior of the triangle with vertices (0, 0), 

(1,3), and (2, 2\ 

11. Evaluate j j y3(x2 + y2)~3/2 dx dy, where D is the region determined by the conditions 

\ < y < 1 andx 2 +y2 < 1. 

12. Given that the double integral J j f(x,y)dx dy of a positive continuous function / 

equals the iterated integral j | J f i x , y) dyj dx, sketch the region D and interchange the 

order of integration. 

13. Given that the double integral j j f (x, y) dx dy of a positive continuous function / 

/•I [ fV^1? 1 

equals the iterated integral / / f(x,y)dx I dy, sketch the region D and 

interchange the order of integration. 
14. Prove that 2 J I J I f ( x ) f ( y ) d y d x = ^ f(x)dx^ . [HINT: Notice that 

( [bf(x)dx] = f[ 
\Ja / J J[a.b]x[a,b] 

f(x)f(y)dxdy.] 

15. Show that (see Exercise 27, Section 2.5) 
çj px pd pd px pd 

dx nd pd nx pd 

f(x,y,z)dzdy = f{x,y,z)dz-\-j / fx(x, y, z)dz dy. 
Je Ja Jc 

5.5 The Triple Integral 
Triple integrals are needed for many physical problems. For example, if the temper-
ature inside an oven is not uniform, determining the average temperature involves 
" summing" the values of the temperature function at all points in the solid region 
enclosed by the oven walls and then dividing the answer by the total volume of the 
oven. Such a sum is expressed mathematically as a triple integral. 
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Definition of the Triple Integral 
Our objective now is to define the triple integral of a function f(x,y, z) over a box 
(rectangular parallelepiped) B = [a, b] x [c, d] x [p,q]. Proceeding as in double 
integrals, we partition the three sides of B into n equal parts and form the sum 

n — 1 n— 1 n — 1 

i=0 y=0 k=0 

where c ^ is a point in B^k, the ijkth rectangular parallelepiped (or box) in the 
partition of B, and A F is the volume of 2?/,-* (see Figure 5.5.1). 

DEFINITION: Triple Integrals Let / be a bounded function of three vari-
ables defined on B. If limit^oo S„ = S exists and is independent of any choice 
of c w e call / integrable and call S the triple integral (or simply the integral) 
of / over B and denote it by 

ÍJL f d V ' SSSB f ( x > y > z ) d v o r jjjB KX^Y^)DXDYDZ-

Properties of Triple Integrals 
As before, one can prove that continuous functions defined on B are integrable. More-
over, bounded functions whose discontinuities are confined to graphs of continuous 
functions [such as x = a(y, z), y = z), orz = y(x,y)] are integrable. The other 
basic properties (such as the fact that the integral of a sum is the sum of the integrals) 
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for double integrals also hold for triple integrals. Especially important is the reduction 
to iterated integrals: 

Reduction to Iterated Integrals Let f(x, y, z) be integrable on the box B = 
1a,b] x [c, d] x [p,q]. Then any iterated integral that exists is equal to the triple 
integral; that is, 

rrr M r<* rt> 
III f(x> y> z)dx dy dz = j I I f(x,y,z)dxdydz 

JJJB Jp Jc J a 
! 
f(x,y, z)dydx dz 

p Jc 

q nb nd 

r nq f 
r> Jc 

f(x,y, z)dydz dx, 

and so on. (There are six possible orders altogether.) 

E X A M P L E 1 (a) Let B be the box [0, 1] x 0] x [0, Evaluate 

(x +2y + 3z)2 dx dy dz. 

(b) Verify that we get the same answer if the integration is done in the order y first, 
then z, and then x. 

SOLUTION (a) According to the principle of reduction to iterated integrals, this 
integral may be evaluated as 

»1/3 r0 r \ 
(x + 2y + 3z)2 dx dy dz rw* ru r 

Jo J-1/2 Jo 

- n (x + 2y + 3z)3 

-1/2 

r 1/3 / - O í r n 

= Jo J 1/2 n ( l + 2 y + 3z)3 ~(2y + 3z)3idy dz 

/•1/3 I r -||0 

r 1/3 i r -, 

= J [(3Z + 1)4 " 2(32)4 + (3Z ~ 1)4J dz 

= 2 4 1 T 5 [ ( 3 Z + 1 ) 5 - 2 ( 3 Z ) 5 +

 (3Z-1)5]C 

x=0 
dy dz 

_ ! _ ( 2 5 _ 2 ) = 1 . 
24-15 ' 12 
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(b) 

IfL (x + 2y + 3z)2 dy dz dx 

l r\ß ro 
(x + 2y + 3z)2 dy dz dx ni/5 n J-

-ff 
J 0 J 0 

1/2 

1 M/3 " \(x +2y + 3z)3 0 

L 6 y=-1/2_ 
dz dx 

= Io Io + 3Z)3 ~ + 3z ~ I)3] Jz 

" (x + 3z)4 (x + 3z — l)4 

12 12 Li 

= --["(* + l)5 + (x - l)5 - 2x5]1 = —. 
72 5 L ' V ; J*=o 12 

I s ^ i B W I ^ Integrate e*4*4* over the box [0, 1] x [0, 1] x [0, 1]. 

S O L U T I O N We perform the integrations in the standard order: 

m1 ex+y+zdxdydz = fl [\ex+y+z\l
x=0)dydz 

Jo Jo 

= jf * j\e1+y+z ~ ey+z)dydz = f* [el+y+z - ey+z^_^dz 

= jT1 [e2+z - 2el+z + ezJ dz = [e2+z - 2el+z + ez^ 
= e3-3e2 + 3e-l = (e - I f . A 

As in the two-variable case, we define the integral of a function / over a bounded 
region W by defining a new function / * , equal to / on W and zero outside W, and 
then setting 

j j j f(x,y,z)dxdydz = j j j f*(x, y, z) dx dy dz, 

where B is any box containing the region W. 

Elementary Regions 
As before, we restrict our attention to particularly simple regions. An elementary re-
gion in three-dimensional space is one defined by restricting one of the variables to be 
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between two functions of the remaining variables, the domains of these functions be-
ing an elementary (i.e., an x-simple or a jy-simple) region in the plane. For example, if 
D is an elementary region in the xy plane and if y\ (x, y) and Yi(x,y)are t w o functions 
with YI(X ,y)>Y\(x, y), an elementary region consists of all (x, y, z) such that (x, y) 
lies in D and Yi(x, y) < z < Yi(x,y). Figure 5.5.2 shows two elementary regions. 

z z 

Figure 5.5.2 Two elementary regions in space. The domain D in the figure on the 
left is jy-simple, while on the right it is x-simple. 

Describe the unit ball x2 + y2 + z2 < 1 as an elementary region. 

S O L U T I O N This can be done in several ways. One, in which D is ^-simple, is: 

- 1 < x < 1, 

-A/I -X2 < y < V/L - X 2 , 

- s j \ - x 2 - y 2 < z < y/l — x2 — y2. 

In doing this, we first write the top and bottom hemispheres as z = y/l — x2 — y2 

and z = —y/l — x2 — y2, respectively, where x and y vary over the unit disk (that is, 
—\/l — x2 < y < y/l — x2 and x varies between —1 and 1). (See Figure 5.5.3.) We 
can describe the region in other ways by interchanging the roles of x, y, and z in the 
defining inequalities. • 

y = (p i M = - V1 Figure 5.5.3 The unit ball as an 
elementary region in space. 
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Integrals over Elementary Regions 
As with integrals in the plane, any function of three variables that is continuous over 
an elementary region is integrable on that region. An argument like that for double 
integrals shows that a triple integral over an elementary region can be rewritten as 
an iterated integral in which the limits of integration are functions. The formulas for 
such iterated integrals are given in the following box. 

Triple Integrals by I terated Integrat ion Suppose that W is an elementary 
region described by bounding z between two functions of x and y. Then either 

rrr ço r<P2i.x) rmx>y) 
I I I f(xi);iz)dxdydz=¡ I I /(x, y, z)dz dy dx 

JJJw J a J(fo(x) Jyi(x,y) 

[see Figure 5.5.2 (left)] or 
rrr rd rfc(y) ryi(x,y) 
I I I f(x,y,z)dxdydz=l I I f(x,y,z)dzdxdy 

JJJw Jc Jilri(y) J Vi (x, y ) 

rd rfiiy) rY2(x,y) 

!w Jc Jiln(y) Jyi(x,y) 

[see Figure 5.5.2 (right)]. 

If / = 1, we get the integral f f f w dx dy dz, which is the volume of the region W. 

Verify the volume formula for the ball of radius 1: EXAMPLE 4 

dx dy dz = —jr, 

where W is the set of (x, y, z) with x2 + y2 + z2 < 1. 

S O L U T I O N We use the description of the unit ball from Example 3. From the 
first formula in the preceding box, the integral is 

1 r^\-x2 p^/\-x2 

/ I /» V I —X* P 
. 1 J-

dzdydx. 
/\-x2 J-^/\-x2-y^ 

Holding y and x fixed and integrating with respect to z yields 

-x¿-yA 
dydx <[f: (1 -x2-y2)l/2dy dx. 

Because x is fixed in the y-integral, it can be expressed as fla(a2 — y2)1 / 2 dy, 
where a = (I — x2)l/2. This integral is the area of a semicircular region of radius 
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a, so that 

f j ^ - ^ d y ^ n . 

(We could also have used a trigonometric substitution or a table of integrals.) Thus, 

and so 

/
I ny/\-X2 I — X

2 

/ (1 -x2-y2)l/2dydx = 2 / n dx 
.1 J-yr^ J-1 2 

= 7T j ( 1 — X 2 ) dx — 7T^X — = -7T. A 

Other types of elementary regions are shown in Figure 5.5.4. For instance, in the 
second region, (y, z) lies in an elementary region in the yz plane and x lies between 
two graphs: 

P\(y,z) < x < p2(y,z). 

Top and bottom are 
surfaces z =y(x,y) 

Front and rear are 
surfaces x = p(y, z) 

Left and right are 
surfaces y = 8(x, z) 

Figure 5.5.4 Types of elementary regions in space. 

As shown in Figure 5.5.5, some elementary regions can be simultaneously described 
in all three ways. We shall call these regions symmetric elementary regions. 

Corresponding to each description of a region as an elementary region is an 
integration formula. For instance, if W is expressed as the set of all (x, y, z) such that 

c <y <d, t\(y)<z < (y), P\(y, z) < x < p2(j, z), 
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Z 

¿_ ^ y Figure 5.5.5 A symmetric 

/

elementary region can be 
described in three overall ways. 

JC 

then 

f(x,y, z)dx dydz 
d rtiiy) rPi(y,z) n¥2{y) r 

/iO) Jpi(y,z) 

/(x, jy, z)dx dzdy. 

E X A M P L E 5 Let W be the region bounded by the planes x = 0, y = 0, and 
z = 2, and the surface z = x2 + y2 and lying in the quadrant x > 0, y > 0. Compute 

j j j x dx dy dz and sketch the region. 

S O L U T I O N Method 1. The region W is sketched in Figure 5.5.6. As indicated 
in the figure, we may describe this region by the inequalities 

0 < x < V2, 0 <y < \/2 — x2, x2+y2<z< 2. 

Therefore, 

I I I x dx dy dz = I j II x dz\ dy 
JJJw Jo l Jo \Jx2+y2 ) 

=n 
Jo Jo 

dx 

x(2 — x2 — y2) dy dx 

x 2 ? / 2 _ (2 — x2)3 /2 n 

dx 

= j^22j.(2-x2)y2dx = 

25/2 sV2 

-2(2 - X2)5'2 

15 
V2 

0 

= 2- 15 15 
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Figure 5.5.6 W is the region below the plane z = 2, 
above the paraboloid z = x2 + y2, and on the positive 
sides of the planes x = 0, y = 0. 

Method 2. We can also place limits on x first and describe W by 0 < x < 
(z — y2)1/2 and (y,z) in D, where D is the subset of the yz plane with 0 < z < 2 
and 0 < y < z1/2 (see Figure 5.5.7). 

Figure 5.5.7 A different description of the region in 
Example 5. 

Therefore, 

j j j xdxdydz = j j ^ j xdx^dydz 

z"2 / r{z-y2)x'2 

f r f ( rz~y ) \ 
=1 II (l x'"•)"> 

= R I Z V 2 L 2
 = l 2 5 / 2 = 8 V 2 

" L i s J 0 i s i s ' 

which agrees with our previous answer. 
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I • I Eva lua te 

nl dzdydx. 
. Jx2+y2 

Sketch the region W of integration and interpret. 

SOLUTION 

ml pi px 
dzdydx = / / (2 -x2-y2)dydx 

2-hy2 JO Jo 
fl ( * *3\ 1 1 2 

= [2x — x ——\dx = \ — - — -— = -. 

Jo \ 3 J 4 12 3 

This integral is the volume of the region sketched in Figure 5.5.8. A 

rx 

z = 2 (1,1, 

/ z=x2+y2 

z= 1 y " 

I jL 
(1,0,0) J (1,1,0) 

Figure 5.5.8 The region W lies between the 
paraboloid z = x2 + y2 and the plane z = 2, 
and above the region D. 

EXERCISES 

In Exercises 1 to 4, perform the indicated integration over the given box. 

1. JJJ x2 dx dydz, B = [0, 1] x [0, 1] x [0, 1] 

2. j j j e~xy ydx dydz, B = [0, 1] x [0, 1] x [0, 1] 

3. j j j ( 2 x + 3y + z)dxdydz, B = [0, 2] x [ - 1 , 1] x [0, 1] 

4 . J j j zex+ydxdydz, B = [0, 1] x [0, 1] x [0, 1] 

In Exercises 5 to 8, describe the given region as an elementary region. 

5. The region between the cone z = y/x2 + y2 and the paraboloid z = x2 + y2. 
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6. The region cut out of the ball x2 + y2 4- z2 < 4 by the elliptic cylinder 2x2 + z2 = 1, 
that is, the region inside the cylinder and the ball. 

7. The region inside the sphere x2 -f y2 + z2 = 1 and above the plane z = 0. 

8. The region bounded by the planes x = 0, y = 0, z = 0, x + y = 4, and x = z — y — 1. 

Find the volume of the region in Exercises 9 to 12. 

9. The region bounded by z = x2 + y2 and z = 10 — x2 — 2y2 . 

10. The solid bounded by x2 + 2^2 = 2, z = 0, and x + y + 2z = 2. 

11. The solid bounded by x = y, z = 0, y = 0, x = 1, and x + y 4- z = 0. 

12. The region common to the intersecting cylinders x2 + y2 < a2 and x2 + z2 < a2. 

Evaluate the integrals in Exercises 13 to 21. 

r» 1 r2 /*3 

Io li fi 

14. i i i (y + xz)dzdydx 
Jo Jo Jo 

cos [7r(x + y + z)] dx dy dz 

1 px py 

15. J J J (x2 + y2 + z2) dx dy dz; W is the region bounded by x + y + z = a (where 

a > 0), x = 0, y = 0, and z = 0. 

16. J J J z dx dy dz; W is the region bounded by the planes x = 0, y = 0, z = 0, z = 1, 

and the cylinder x2 + y2 = 1, with x > 0, y > 0. 

»• f i t 
x cos z dx dy dz\ W is the region bounded by z = 0, z = n, y = 0, 

y = l, x = 0, and x + y = 1 • mx+y 

dzdydx 

19. j j j (1 — z2) dx dy dz; W is the pyramid with top vertex at (0, 0, 1) and base vertices 

at (0, 0, OX (1, 0, 0), (0, 1, 0), and (1, 1, 0). 

20. JJJ (x2 + y2) dx dy dz\ W is the same pyramid as in Exercise 19. 

pl plx nx+y 

21. / / / dzdydx. 
Jo Jo Jx

2

+y
2 my 

f ( x , y, z)dzdydx. 
(b) Write the integral with the integration order dxdydz. 
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For the regions in Exercises 23 to 26, find the appropriate limits <p\(x), <fe(x), y\(x, y), and 
Y2(X, y), and write the triple integral over the region W as an iterated integral in the form 

rrr pb ( r<t>i(x) pni*,. 

/// fdV= / / / 
JJJw Ja yj<f) i(x) Jy\(x,y) 

f(x,y,z)dz dy dx. 

23. W = {(x,y,z) | y/x2 +y2 < z < 1} 

24. W = l(x,y,z) | \ < z < 1 and x2 +y2 + z2 < 1} 

25. W = l(x,y,z)\x2 +y2 < 1, z > 0 and x2 + y2 + z2 < 4 } 

26. PF = {(x,y,z) | \x\ < 1, < l , z > Oandx2 +y2 + z 2 < 1} 

27. Show that the formula using triple integrals for the volume under the graph of a positive 
function f ( x , y), on an elementary region D in the plane, reduces to the double integral of / 
over D. 

28. Let W be the region bounded by the planes x = 0 , ^ = 0, z = 0 , x + j > = 1, and 
z = x + y. 

(a) Find the volume of W. 
(b) Evalute f f f ^ x d x d y d z . 
(c) Evalute f f f w y dx dy dz. 

29. Let / be continuous and let Be be the ball of radius e centered at the point (x0, yo, z0). 
Let vol (Be) be the volume of Be. Prove that 

- o ^ ï k ) IIL/(x'z) = / ( X 0 , zo)-

REVIEW EXERCISES F O R C H A P T E R 5 

Evaluate the integrals in Exercises 1 to 4. 

/*3 rx
2

 + \ M ~e
2x 

1. / / xydydx 3. / / xXnydydx 
J0 J-x2 +1 Jo Jex 

2- f f (x+y)2dydx 4. f f f cos [TT(x + y + z)]dx dy dz. 
JO Jyfc JO J 1 Jl 

Reverse the order of integration of the integrals in Exercises 5 to 8 and evaluate. 

5. The integral in Exercise 1. 

6. The integral in Exercise 2. 

7. The integral in Exercise 3. 

8. The integral in Exercise 4. 
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9. Evaluate the integral / J f* f*(y + xz) dz dy dx. 

10. Evaluate / J f f dx dy. 

11. Evaluate / J J^aTCSmy)/y y COs xy dx dy. 

12. Change the order of integration and evaluate 

[2 f (x+yfdxdy. 
J0 Jy/2 

13. Show that evaluating f f D dx dy, where D is a y-simple region, reproduces the formula 
from one-variable calculus for the area between two curves. 

14. Change the order of integration and evaluate 

n(x2 +y3x)dxdy. 
1/2 

15. Let D be the region in the xy plane inside the unit circle x2 + y2 = 1. Evaluate 
f f D f(x,y) dx dy in each of the following cases: 

(a) / ( * , y) = xy (b) f ( x , y) = x2y2 (c) f{x, y) = 

16. Find f f D y [1 — cos (nx/4)] dx dy, where D is the region in Figure 5.R. 1. 

Figure 5.R.1 The region of integration for Exercise 16. 

JC 

Evaluate the integrals in Exercises 17 to 24. Sketch and identify the type of the region 
(corresponding to the way the integral is written). 

nit />3sinx 
17. / / Jt(l +y)dydx 

Jo J sin* nx cos (nx/2) 

(x2 +xy+ \)dydx 
-l 

n3 ( V ^ ) / 2 / c x 

J dydx 
-3(V4^)/2 \V2 / 

21. f f (x2 +xy-y2)dydx 
Jo Jo 

22. f f 3 dx dy 
J 2 Jy2-1 
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23. J J (x+yfdydx 

r i ply 
24. / / ex+y dx dy 

Jo Jo 

In Exercises 25 to 27, integrate the given function f over the given region D. 

25. f ( x , y) = x - y; D is the triangle with vertices (0, 0), (1, 0), and (2, 1). 

26. f ( x , y) = x3y + cosx; D is the triangle defined by 0 < jc < n/2, 0 < y < x. 

27. f(x,y) = x1 + 2xy2 + 2; D is the region bounded by the graph of y = —x2 + x, the x 
axis, and the lines x = 0 and x = 2. 

In Exercises 28 and 29, sketch the region of integration, interchange the order, and evaluate. 

(x2 +y2)dydx 

r 1 /»I 
29. I I (x+y2)dxdy ff 

Jo J1-
îat 

f f 
J J[l,3]x[2,4] 

30. Show that 

4e5 < II ex2+y2dA < 4e25. 

31. Show that 

4TC < / / (x2 + / + 1)Î/X < 20tt, 
J D 

where D is the disk of radius 2 centered at the origin. 
IL 

32. Suppose W is a path-connected region, that is, given any two points of FF there is a 
continuous path joining them. If / is a continuous function on W, use the intermediate-value 
theorem to show that there is at least one point in W at which the value of / is equal to the 
average of / over W, that is, the integral of / over W divided by the volume of W. (Compare 
this with the mean-value theorem for double integrals.) What happens if W is not connected? 

33. Prove: /0*[/0' F(u)du]dt = /*(x - u)F(u)du. 

Evaluate the integrals in Exercises 34 to 36. 

-1 rz ny iff 
Jo Jo Jo 

34. I I I xy2z3 dx dy dz 

mx/y/3 x 
— dz dx dy 
x 2 + z 2 

36. f f f yz2 dx dy dz 
J1 J1 Jl/y 

37. Write the iterated integral / J fl_x f^ f(x,y, z) dz dy dx as an integral over a region in 
E3 and then rewrite it in five other possible orders of integration. 


