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Integrals Over Paths 
and Surfaces 

I hold in fact: (1) That small portions of space are of a nature analogous 
to little hills on a surface which is on the average flat. (2) That this 
property of being curved or distorted is continually passed on from one 
portion of space to another after the manner of a wave. (3) That this 
variation of curvature of space is really what happens in that phenomenon 
which we call the motion of matter whether ponderable or ethereal. (4) 
That in this physical world nothing else takes place but this variation, 
subject, possibly, to the law of continuity. 

W. JC. Clifford (1870) 

In Chapter 5, we studied integration over regions in R2 and R3. In this chapter, 
we study integration over paths and surfaces. This is basic to an understanding of 

Chapter 8, in which we discuss the basic relation between vector differential calculus 
(Chapter 4) and vector integral calculus (this chapter), a relation that generalizes the 
fundamental theorem of calculus to several variables. This generalization is summa-
rized in the theorems of Green, Gauss, and Stokes. 

7.1 The Path Integral 
This section introduces the concept of a path integral; this is one of the several ways in 
which integrals of functions of one variable can be generalized to functions of several 
variables. Besides those in Chapter 5, there are other generalizations, to be discussed 
in later sections. 

Suppose we are given a scalar function / : R3 R, so that / sends points in R3 

to real numbers. It will be useful to define the integral of such a function / along a path 

421 
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c: I = [a, b] R3, where c(t) = (x(t), y(t), z(t)). To relate this notion to something 
tangible, suppose that the image of c represents a wire. We can let / ( x , y, z) denote 
the mass density at (x, y, z) and the integral of / will be the total mass of the wire. 
By letting f(x,y,z) indicate temperature, we can also use the integral to determine 
the average temperature along the wire. We first give the formal definition of the path 
integral and then, after the following example, further motivate it. 

D E F I N I T I O N : Path Integrals The path integral, or the integral of 
f(x,y,z) along the path c, is defined when c: I = [a, b] —> R3 is of class C1 

and when the composite function t / (x( i ) , y(t), z(t)) is continuous on / . We 
define this integral by the equation 

f f ds = f f(x(t),y(t),z(t))\Wmdt. 
J c J a 

Sometimes fc f ds is denoted 

f ( x , y, z) ds 

f mmw(t)\\dt. 
J a 

If c(i) is only piecewise C1 or /(c(Y)) is piecewise continuous, we define 
fe f ds by breaking [a, b] into pieces over which /(c(i))l|c'(OII i s continuous, 
and summing the integrals over the pieces. 

L 

When / = 1, we recover the definition of the arc length of c. Also note that / need 
only be defined on the image curve C of c and not necessarily on the whole space in 
order for the preceding definition to make sense. 

E X A M P L E 1 Let c be the helix c: [0, 2n] R3 , t (cos t, sin t, t) (see Fig-
ure 2.4.9), and let / ( x , y, z) = x2 + y2 + z2. Evaluate the integral f c f ( x , y, z)ds. 

S O L U T I O N First we compute || c'(01|: 

l|c'(OII = 
J (cosO n 2 

dt 

Next, we substitute for x, y, and z in terms of t to obtain 

sin21 + cos21 + 1 = V2. 

f ( x , y , z) = x 2 + y2 + z2 = cos21 + sin21 + t2 = 1 + t2 
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along c. Inserting this information into the definition of the path integral yields 

r p2n r /3~|27r 2A/27T 
/ f i x , y, z)ds= \ (1 + t2)V2dt = V2 t + - = —-—(3 + 4 t t 

J e Jo L 3 Jo 3 
2) . A 

To motivate the definition of the path integral, we shall consider "Riemann-like" 
sums Sn in the same general way we did to define arc length in Section 4.2. For 
simplicity, let c be of class C1 on I. Subdivide the interval I = [a, b] by means of a 
partition 

a = to < t\ < • • • < tjv = b. 

This leads to a decomposition of c into paths c( (Figure 7.1.1) defined on [tt, ti+1] for 
0 < i < N — \. Denote the arc length of c,- by As(; thus, 

Asi= f1+l \W(t)\\dt. 
hi 

Figure 7.1.1 Breaking c into smaller c 

When N is large, the arc length Ast is small and / ( x , y, z) is approximately constant 
for points on c¿. We consider the sums 

N-l 

/=0 

where {xi,yi, zt) = c(t) for some t e [//, ti+1]. By the mean-value theorem we know 
that A Si = Hc'e/OIIAf;, where tt < t* < ti+\ and A t( = ti+\ — tt. From the theory of 
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Riemann sums, it can be shown that 

N-\ f 

limit = limit V / f e ^ ^ z O H c ^ D H A i , = / f(x(t),y(t),z(t))\W(t)\\dt 
N^-oo N^oo J j 

= J f(x,y,z)ds. 

The Path Integral for Planar Curves 
An important special case of the path integral occurs when the path c describes a 
plane curve. Suppose that all points c( t ) lie in the xy plane and / is a real-valued 
function of two variables. The path integral of / along c is 

f f ( x , y ) d s = f" f(x(t),y(t)Wx'(t?+?(t?dt. 
J c J a 

When f(x,y) > 0, this integral has a geometric interpretation as the "area of a fence." 
We can construct a "fence" with base the image of c and with height f(x,y) at (x, y) 
(Figure 7.1.2). If c moves only once along the image of c, the integral fcf(x,y)ds 
represents the area of a side of this fence. Readers should try to justify this interpre-
tation for themselves, using an argument like the one used to justify the arc-length 
formula. 

z 

Tom Sawyer's aunt has asked him to whitewash both sides of the 
old fence shown in Figure 7.1.3. Tom estimates that for each 25 ft2 of whitewashing 
he lets someone do for him, the willing victim will pay 5 cents. How much can Tom 
hope to earn, assuming his aunt will provide whitewash free of charge? 

S O L U T I O N From Figure 7.1.3, the base of the fence in the first quadrant is the path 
c: [0, JT/2] M2, t i-> (30 cos31, 30 sin31\ and the height of the fence at (x, y) is 
f(x,y)= 1 + ^ / 3 . The area of one side of the half of the fence is equal to the integral 
fcf(x^y)ds = fc( 1 + y/3) ds. Because c'(t) = ( - 9 0 cos2 t sin t, 90 sin2 t cos t)9 we 



7.1 The Path Integral 425 

Z 

have ||c'(OII = 90 sin t cos t. Thus, the integral is 

K x r7t/2 / 30 sin3 A . 
1 + ^)ds = J ( l + 190 sm t cost dt 

= 90 (sin t + 10 sin41) cos t dt 
Jo 

= 9 0 [ ^ + 2 sin5 t j ^ = 9 OQ + 2 ) = 2 2 5 ' 

which is the area in the first quadrant. Hence, the area of one side of the fence is 
450 ft2. Because both sides are to be whitewashed, we must multiply by 2 to find the 
total area, which is 900 ft2. Dividing by 25 and then multiplying by 5, we find that 
Tom could realize as much as $ 1.80 for the job. A 

This concludes our study of integration of scalar functions over paths. In the 
next section we shall turn our attention to the integration of vector fields over paths, 
and we shall see many further applications of the path integral in Chapter 8, when we 
study vector analysis. 

Supplement to Section 7.1: The Total Curvature of a Curve 

Exercises 12 to 17 of Section 4.2 described the notions of curvature k and torsion r 
of a smooth curve C in space. If c: [a, b] -> C C M3 is a unit-speed parametrization of 
C, so that ||c'(i)|| = 1, then the curvature k(p) at p e C is defined by k(p) = ||c"(OII, 
where p = c(t). A result of differential geometry is that two unit-speed curves with 
the same curvature and torsion can be obtained from one another by a rigid rotation, 
translation, or reflection. 
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The curvature k: C R is a real-valued function on the set C, so we define the 
total curvature as its path integral over C: fc k ds. There are some surprising facts 
that mathematicians have been able to prove about the total curvature. For one thing, 
if C is a closed [that is, c(a) = c(6)] planar curve, then 

L k ds > 27r, 

and equals 2n only when C is a circle. If C is a closed space curve with 

k ds < 4n, I 
then C is "unknotted"; that is, C can be continuously deformed (without ever inter-
secting itself) into a planar circle. Therefore, for knotted curves, 

L k ds > 4tc. 

See Figure 7.1.4. 

Figure 7.1.4 A knotted curve in ] 

The formal statement of this fact is known as the Fary-Milnor theorem. Legend 
has it that John Milnor, a contemporary of John Nash's1 at Princeton University, was 
asleep in a math class as the professor wrote three unsolved knot theory problems 
on the blackboard. At the end of the class, Milnor (still an undergraduate) woke up 
and, thinking the blackboard problems were assigned as homework, quickly wrote 

1 John Nash is the subject of Sylvia Nasar's best-selling biography, A Beautiful Mind, a fictionalized version of which was 
made into a movie in 2001. 
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them down. The following week he turned in the solution to all three problems— 
one of which was a proof of the Fary-Milnor theorem! Some years later, he was 
appointed a professor at Princeton, and in 1962 he was awarded (albeit for other work) 
a Fields medal, mathematics' highest honor, generally regarded as the mathematical 
Nobel Prize. 

E X E R C I S E S 

1. Let fix, y,z) = y and c(i) = (0, 0, t), 0 < t < 1. Prove that f c f d s = 0. 

2. Evaluate the following path integrals fc fix, y, z) ds, where 

(a) f(x,y, z) = x + y + z and c: t i-> (sin t, cos t, t), t e [0, 2n] 
(b) fix, y, z) = cos z, c as in part (a) 

3. Evaluate the following path integrals f f(x,y,z)ds, where 

(a) fix, y,z) = exp -\/z, and c: t i-> (1,2, t2),t e [0, 1] 
(b) fix,y,z) = yz, and c: t it,3t,2t),t e [1,3] 

4. Evaluate the integral of fix, y,z) along the path c, where 

(a) fix, y,z) — x cos z, c: t i-> ti + t2 j, t e [0, 1] 
(b) fix, y, z) = ix+ y)/iy + z), and c: t (t, \P'2, f ) , t e [1, 2] 

5. Let / : R3\{xz plane} E be defined by fix, y, z) = l/y3. Evaluate fc fix, y, z) ds, 
where c: [1, e] R3 is given by c(/) = (log/)i + tj + 2k. 

6. (a) Show that the path integral of fix, y) along a path given in polar coordinates by 
r = r(0), 6>! <6 < 02, is 

(b) Compute the arc length of the path r = 1 + cos 0 <0 <2n. 

7. Let fix,y) = 2x—y, and consider the path x = t4,y = t4, — 1 </< 1. 

(a) Compute the integral of / along this path and interpret the answer geometrically. 
(b) Evaluate the arc-length function sit) and redo part (a) in terms of 5 (you may wish to 

consult Exercise 2, Section 4.2). 

Exercises 8 to 11 are concerned with the application of the path integral to the problem of 
defining the average value of a scalar function along a path. Define the number 

fcf(x,y,z)ds 
/(c) 
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to be the average value of f along c. Here /(c) is the length of the path: 

/(c) = jjwmdt. 

(This is analogous to the average of a function over a region defined in Section 6.3.) 

8. (a) Justify the formula [/c / ( x , y, z) ds]/1(c) for the average value of / along c using 
Riemann sums. 

(b) Show that the average value of / along c in Example 1 is (1 4- \tc2). 
(c) In Exercise 2(a) and (b) above, find the average value of / over the given curves. 

9. Find the average y coordinate of the points on the semicircle parametrized by 
c: [0, jr] R3,6> I-> (0, a sin6>, a cos6>);a > 0. 

10. Suppose the semicircle in Exercise 9 is made of a wire with a uniform density of 2 grams 
per unit length. 

(a) What is the total mass of the wire? 
(b) Where is the center of mass of this configuration of wire? (Consult Section 6.3.) 

11. Let c be the path given by c(/) = (i2, t, 3) for t e [0, 1]. 

(a) Find /(c), the length of the path. 
(b) Find the average y coordinate along the path c. 

12. If / : [a, b] ^ R is piecewise continuously differentiable, let the length of the graph of 
/ on [a, b] be defined as the length of the path t i-> (t, f(t)) for t e [a, b]. 

(a) Show that the length of the graph of / on [a, b] is 

(b) Find the length of the graph of y = logx from x = 1 to x = 2. 

13. Find the mass of a wire formed by the intersection of the sphere x2 + y2 + z2 = 1 and 
the plane x + y + z = 0 if the density at (x, y, z) is given by p(x, y, z) = x2 grams per unit 
length of wire. 

14. Evaluate fc f ds where f(x,y,z) — z and c ( t ) = (t cos t, t sini, t) for 0 < t < tQ. 

15. Write the following limit as a path integral of f(x,y,z) = xy over some path c on [0, 1] 
and evaluate: 

b 

N-1 

where t\,..., tN is a partition of [0, 1]. 
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16. Consider paths that connect the points A = (0, 1) and B = (1, 0) in the xy plane, as in 
Figure 7.1.5.2 

Galileo contemplated the following question: does a bead falling under the influence of 
gravity from a point A to a point B along a curve do so in the least possible time if that curve 
is a circular arc? For any given path, the time of transit T is a path integral 

where the bead's velocity is v = yflgy, where g is the gravitational constant. In 1697, 
Johann Bernoulli challenged the mathematical world to find the path in which the bead 
would roll from A to B in the least time. This solution would determine whether Galileo's 
considerations had been correct. 

(a) Calculate T for the straight-line path y = 1 — x. 
(b) Write a formula for T for Galileo's circular path, given by (x — l)2 + (y — l)2 = 1. 

Incidentally, Newton was the first to send his solution [which turned out to be a cycloid—the 
same curve (inverted) that we studied in Example 2.4.4], but he did so anonymously. 
Bernoulli was not fooled, however. When he received the solution, he immediately knew its 
author, exclaiming, "I know the Lion from his paw." While the solution of this problem is a 
cycloid, it is known in the literature as the brachistrochrone. This was the beginning of the 
important field called the calculus of variations. 

7.2 Line Integrals 
We now consider the problem of integrating a vector field along a path. We will begin 
by considering the notion of work to motivate the general definition. 

Work Done by Force Fields 
If F is a force field in space, then a test particle (for example, a small unit charge in an 
electric force field or a unit mass in a gravitational field) will experience the force F. 

2 We thank Tanya Leise for suggesting this exercise. 
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Suppose the particle moves along the image of a path c while being acted upon by 
F. A fundamental concept is the work done by F on the particle as it traces out the 
path c. If c is a straight-line displacement given by the vector d and if F is a constant 
force, then the work done by F in moving the particle along the path is the dot 
product F • d: 

F • d = (magnitude of force) x (displacement in direction of force). 

If the path is curved, we can imagine that it is made up of a succession of infinitesimal 
straight-line displacements or that it is approximated by a finite number of straight-
line displacements. Then (as in our derivation of the formulas for the path integral in 
the preceding section) we are led to the following formula for the work done by the 
force field F on a particle moving along a path c: [a, b] R3: 

work done by F = f F(c(t)) • c'(t)dt. 
J a 

We can further justify this derivation as follows. As t ranges over a small interval 
t to t + At, the particle moves from c ( t ) to c(t + At), a vector displacement of 
As = c(t + At) - c(t) (see Figure 7.2.1). 

Figure 7.2.1 For small At, As = c(t + At) - c ( t ) % c ' (0At . 

From the definition of the derivative, we get the approximation As ^ c'(t)At. 
The work done in going from c ( t ) to c(t + At) is therefore approximately 

F(c(0) • As % F(c(0) • c'(t)At. 
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If we subdivide the interval [a, b] into n equal parts a = to < h < • • • < tn = b, with 
At = ti+1 — ti, then the work done by F is approximately 

n—1 n—1 
I ] F(c(i,)) • As « W ' » • 
i=0 z = 0 

As n —> oo, this approximation becomes better and better, and so it is reasonable to 
take as our definition of work to be the limit of the sum just given as n oo. This 
limit is given by the integral 

f F(c(i)) • c'(t)dt. 
J a 

Definition of the Line Integral 
The previous discussion of work motivates the following definition. 

DEFINITION: Line Integrals Let F be a vector field on R3 that is con-
tinuous on the C1 path c: [a, b] R3. We define / c F • ds, the line integral of 
F along c, by the formula 

f¥-ds= f ¥(c(t))-c\t)dt; 
J c J a 

that is, we integrate the dot product of F with c' over the interval [a, b]. 
As is the case with scalar functions, we can also define fcF-ds if 

F(c(/)) • c'(0 is only piecewise continuous. 

For paths c that satisfy c \ t ) / 0, there is another useful formula for the line 
integral: Namely, if T(i) = cXO/II^COII denotes the unit tangent vector, we have 

J F - ds = j F(c(0) • c'(0 dt (by definition) 

F(C<„). " m 

r w i 

= / [F(c<0) - T(r)]||c'(i)|| rfi. 
Ja 

¿(Oll dt (canceling ||c'(OII) ( 0 
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This formula says that fc F • ds is equal to something that looks like the path integral of 
the tangential component F(c(i)) • T(i) of F along c. In fact, the last part of formula (1) 
is analogous to the path integral of a scalar function / along c.3 

To compute a line integral in any particular case, one can either use the origi-
nal definition or integrate the tangential component of F along c, as prescribed by 
formula (1), whichever is easier or more appropriate. 

Let c(0 = (sin t, cos t, t) with 0 < t < 2TT. Let the vector field F 
be defined by F(x, y, z) = xi + y\+ zk. Compute fc F • ds. 

S O L U T I O N Here, F(c(0) = F(sin t, cos t, t) = (sin i)i + (cos t)j + tk, andc'(0 = 
(cos f)i — (sin i)j + k. Therefore, 

F(c(t)) • c'(i) = sin t cos t — cos t sin t + t = t, 

and so 

r2jr 

Lr-*-L tdt = 2n2. A 

Another common way of writing line integrals is 

J f • ds = J^Fi dx + F2 dy + F3 dz, 

where F\, and F3 are the components of the vector field F. We call the expression 
F\ dx + F2dy + F3 dz a differentialform.4 By definition, the integral of a differential 
form along a path c, where c ( t ) = (.x(t), y(t), z(t)), is 

J^Fidx + F2 dy + F?)dz = j^ ^Fj ^ + F2^ + dt = J f . ds. 

Note that we may think of ds as the differential form ds = dxi + dy\ + dzk. 
Thus, the differential form F\ dx + F2 dy + F3 dz may be written as the dot product 
F • ds. 

E X A M P L E 2 Evaluate the line integral 

x2 dx + xy dy + dz, 

where c: [0, 1] R3 is given by c(t) = (t, t2, 1) = (x(t), y(t), z(t)). 

I' 
3If c does not intersect itself (that is, if c(ii) = c(i2> implies t\ = ^2), then each point P on C (the image curve of c) can 
be written uniquely as c(t) for some t. If we define / ( P ) = f(c(t)) = F(c) • T(i), / is a function on C; by definition, its 
path integral along c is given by formula (1) and there is no difficulty in literally interpreting / c F • ds as a path integral. 
If c intersects itself, we cannot define / as a function on C as before (why?); however, in this case it is still useful to think 
of the right side of formula (1) as a path integral. 
4 See Section 8.6 for a brief discussion of the general theory of differential forms. 
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S O L U T I O N We compute dx/dt = 1, dy/dt = It, rfz/rfr = 0; therefore, 

dx I x dx + xy dy + dz 

-jf (t2+2t*)dt = 1 3 2 5 
- r - I — r 
3 5 

V = l i . 
Jo 15 

6 Evaluate the line integral 

J cos zdx + ex dy + ey dz, 

where the path c is defined by c ( t ) = (1, t, e*) and 0 < t < 2. 

S O L U T I O N We compute dx/dt = 0, dy/dt = 1, dz/dt = e\ and so 

J*̂  c o s z d x + ex dy + ey dz = (0 + e + e2t)dt 

Let c be the path 

x = cos3 G, y = sin3 6, z = G, 0 <0 < 
In 

(see Figure 7.2.2). Evaluate the integral / c ( s i n z d x + c o s z d y — (xy)l/3 dz). 

Figure 7.2.2 The image of the path 
X = cos3 0, y = sin3 6, z = 6; 0 < 0 < 7TT/2. 
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S O L U T I O N In this case, we have 

dx o . ^ dy ^ . 7 ^ „ dz 
— = —3cos 0sin#, — = 3 s i n #cos#, — = 1, 
d6 dO dO 

so the integral is 

sin zdx + cosz dy - (.xy)l/3 dz 

fin ¡2 h -J 
JO 

( - 3 cos2 e sin2 e + 3 sin2 6 cos2 e - cos 6 sin 6) de. 

The first two terms cancel, and so we get 

r77T/2 

- / 
Jo 

cos 6 sin 0 de = — 
n i77r/2 

- sin2 0 
Jo 

Suppose F is the force vector field F(x, y, z) = x3i + y\ + zk. 
Parametrize the circle of radius a in the yz plane by letting c(0) have components 

x = 0, y = acos0, z = as'm0, 0 < 6 < 2n. 

Because F(c(0)) • c'(0) = 0, the force field F is normal to the circle at every point 
on the circle, so F will not do any work on a particle moving along the circle 
(Figure 7.2.3). 

Figure 7.2.3 A vector field F normal to a circle in the 
y yz plane. 

We can verify by direct computation that the work done by F is zero: 

w = = fc*3dx + ydy + zdz 

= 1 < 
(0 - a2 cos# sine + a2 cosO s'm0)d0 = 0. 
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If we consider the field and curve of Example 4, we see that the 
work done by the field is — a negative quantity. This means that the field impedes 
movement along the path. A 

Reparametrizations 
The line integral fc F • ds depends not only on the field F but also on the path 
c: [a, b] -> R3. In general, if Ci and C2 are two different paths in R3, /Cj F • ds / 
jC2 F • ds. On the other hand, we shall see that it is true that /Cj F • ds = ± f F • ds for 
every vector field F if Ci is what we call a reparametrization of C2; roughly speaking, 
this means that Cj and C2 are different descriptions of the same geometric curve. 

D E F I N I T I O N Let h\ I I\ be a C1 real-valued function that is a one-to-one 
map of an interval I = [a, b] onto another interval I\ = [a\, b\\. Let c: I\ R3 be 
a piecewise C1 path. Then we call the composition 

a reparametrization of c. 

This means that p(7) = c(h(t)) , and so h changes the variable; alternatively, one 
can think of h as changing the speed at which a point moves along the path. Indeed, 
observe that p'(0 = c \ h ( t ) ) h \ t ) , so that the velocity vector for p equals that for c 
but is multiplied by the scalar factor h\t). 

It is implicit in the definition that h must carry endpoints to endpoints; that is, 
either h(a) = a\ and h(b) = b\9 or h(a) = b\ and h(b) = a\. We thus distinguish two 
types of reparametrizations. If c o h is a reparametrization of c, then either 

(c o h){a) = c(fli) and (c o h)(b) = c(6i) 

or 

(c o h)(a) = c(b\) and (c o h)(b) — c(«i). 

In the first case, the reparametrization is said to be orientation-preserving, and a 
particle tracing the path c oh moves in the same direction as a particle tracing c. In 
the second case, the reparametrization is described as orientation-reversing, and a 
particle tracing the path c o h moves in the opposite direction to that of a particle 
tracing c (Figure 7.2.4). 

For example, if C is the image of a path c, as shown in Figure 7.2.5, that is, 
C = c([oi, b1]), and if h is orientation-preserving, then c o h(t) will go from c(a\) 
to c(fri) as t goes from a to b; and if h is orientation-reversing, c o h(t) will go from 
c(6i) to c(fli) as t goes from a to b. 
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Graph of h 

bx £2] •Ò, 
h preserves orientation 

(a) 
h reverses orientation 

(b) 

Figure 7.2.4 Illustrating (a) an orientation-preserving reparametrization, and (b) an 
orientation-reversing reparametrization. 
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Let c: [a, b] R3 be a piecewise C1 path. Then: 

(a) The path cop: [a, b] R3, t c(a + b — t), is reparametrization of c corre-
sponding to the map h: [a, b] —> [a, 6], t \-> a+ b — t; we call cop the opposite 
path to c. This reparametrization is orientation-reversing. 

(b) The path p: [0, 1] -» R3,11-> c(a + {b — a)t), is an orientation-preserving 
reparametrization of c corresponding to a change of coordinates /z: [0, 1] — 
[a,b\,t h> a + (b-a)t. A 

T H E O R E M 1: C h a n g e of P a r a m e t r i z a t i o n for L i n e In tegra ls 
Let F be a vector field continuous on the C1 path c: [a\, b\] R3, and let 
p: [a, b] R3 be a reparametrization of c. If p is orientation-preserving, then 

PROOF By hypothesis, we have a map h such that p = c o h. By the chain rule, 

and if p is orientation-reversing, then 

p'(0 = c \ h ( t ) ) h \ t ) , 

and so 

>b 
F • ds = / [F(c(h(t)))-c'(h(t))]h'(t)dt. 

Changing variables with s = h(t), this becomes 

f 1 ¥(c(s))-c\s)ds = f F-F - d s - ds if p is orientation-
preserving 

F • ds if p is orientation-
reversing. • 
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Theorem 1 also holds for piecewise C1 paths, as may be seen by breaking up the 
intervals into segments on which the paths are of class C1 and summing the integrals 
over the separate intervals. 

Thus, if it is convenient to reparametrize a path when evaluating an integral, 
Theorem 1 assures us that the value of the integral will not be affected, except possibly 
for the sign, depending on the orientation. 

Let F(x, y, z) = yz\ + xzj + xyk and c: [—5, 10] ^ R3 be de-
t2, t3). Evaluate f' F • ds and f F - ds. 

7 J C J Cop 

S O L U T I O N For the path c, we have dx/dt = 1, dy/dt = 2t, dz/dt = 3t2 , and 
F(c(0) = t5i + t4j + t3k. Therefore, 

J^F *ds = j ( f ^ + F2
d-^ + dt = j (t5 + 2t5 + 3t5)dt = [¿6]1°5 = 984, 375. 

On the other hand, for 

cop: [ - 5 , 10] R3, t c(5 - t ) = (5-t,(5- t)2, (5 - t)3), 

we have dx/dt = - 1 , dy/dt = - 1 0 + It — -2(5 t), dz/dt = - 7 5 + 30/ -
312 = -3 (5 - t)2, and F(cop(0) = (5 - t)H + (5 - tf j + (5 - 0 3 k. Therefore, 

f F-ds= ( [—(5 — ¿)5 — 2(5 — /)5 — 3(5 — /)5] dt = [(5 — /)6]-°5 — —984, 375. A 
J cop J-5 

We are interested in reparametrizations, because if the image of a particular c can 
be represented in many ways, we want to be sure that path and line integrals depend 
only on the image curve and not on the particular parametrization. For example, for 
some problems the unit circle may be conveniently represented by the map p given 
by 

x (0 = cos2i, y(t) = sin 2/, 0<t<n. 

Theorem 1 guarantees that any integral computed for this representation will be the 
same as when we represent the circle by the map c given by 

x(t) = cost, y(i) = sin/, 0 < t < 27T, 

E X A M P L E 
fined by t (t, 
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because p = c o h , where h(t) = 2t, and thus p is an orientation-preserving 
reparametrization of c. However, notice that the map y given by 

y (t) = (cos i, sin t), 0 < t < 4n 

is not a reparametrization of c. Although it traces out the same image (the circle), it 
does so twice. (Why does this imply that y is not a reparametrization of c?) 

The line integral is an oriented integral, in that a change of sign occurs (as 
we have seen in Theorem 1) if the orientation of the curve is reversed. The path 
integral does not have this property. This follows from the fact that changing t to — t 
(reversing orientation) just changes the sign of c'(0> n o t i*s length. This is one of the 
differences between line and path integrals. The following theorem, which is proved 
by the same method as Theorem 1, shows that path integrals are unchanged under 
reparametrizations—even orientation-reversing ones. 

T H E O R E M 2: Change of Parametrization for Path Integrals 
Let c be piecewise C1, let / be a continuous (real-valued) function on the image 
of c, and let p be any reparametrization of c. Then 

/ f(x,y, z)ds = / /(x, y, z)ds. (2) 
J C «/p 

Line Integrals of Gradient Fields 
We next consider a useful technique for evaluating certain types of line integrals. 
Recall that a vector field F is a gradient vector field if F = V / for some real-valued 
function / . Thus, 

a / a / a / 
F = —- i H—— j + k. 

ax dy oz 

Suppose g and G are real-valued continuous functions defined on a closed interval 
1a, b], that G is differentiable on (a, b), and that G' — g. Then by the fundamental 
theorem of calculus 

I 
b 

g(x)dx = G(b) - G(a). 

Thus, the value of the integral of g depends only on the value of G at the endpoints 
of the interval [a, b]. Because V / represents the derivative of / , one can ask whether 
f V / • ds is completely determined by the value of / at the endpoints c(a) and c(6). 
The answer is contained in the following generalization of the fundamental theorem 
of calculus. 
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T H E O R E M 3: L i n e In tegra l s of G r a d i e n t Vec to r Fie lds Suppose 
that / : R3 ^ R is of class C1 and that c: [a, b] R3 is a piecewise C1 path. 
Then 

J v f - d s = / ( c (6 ) ) - / ( c ( f l ) ) . 

PROOF Apply the chain rule to the composite function 

F: t / ( c (0 ) 

to obtain 

F\t) = {f oc ) ' ( i ) = V / ( c ( i ) ) - c ' ( i ) . 

The function F is a real-valued function of the variable t, and so, by the fundamental 
theorem of single-variable calculus, 

fb F'(t)dt = F(b) - F(a) = f(c(b)) - f(c(a)). 
Ja 

Therefore, 

n nb pb 
/ V / . ds = / v / (c (0 ) • c'(0 dt= F'(t) dt = F(b) - F(a) 

Jc Ja Ja 

= / (c (6 ) ) - / ( c ( f l ) ) . • 

Let c be the path c(7) = (t4/4, sin3(i7r/2), 0), t e [0, 1]. Evaluate 

y dx + x dy 

EXAMPLE 9 

b (which means fc y dx + x dy + 0 dz). 

SOLUTION We recognize y dx -f x dy, or equivalently, the vector field yi + 
xj + Ok, as the gradient of the function f(x,y,z) = xy. Thus, 

I y dx + x dy — / ( c(l)) - /(c(0)) = ^ - 1 - 0 = ^ . 

Obviously, if one can recognize the integrand as a gradient, then evaluation of 
the integral becomes much easier. For example, the reader should try to work out the 
integral in Example 9 directly. In one-variable calculus, every integral is, in principle, 
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obtainable by finding an antiderivative. For vector fields, however, this is not always 
true, because a given vector field need not be a gradient. This point will be examined 
in detail in Section 8.3, where we derive a test to determine when a vector field F is 
a gradient; that is, when F = V / for some / . 

Line Integrals Over Geometric Curves 
We have seen how to define path integrals (integrals of scalar functions) and line 
integrals (integrals of vector functions) over parametrized curves. We have also seen 
that our work is simplified if we make a judicious choice of parametrization. Because 
these integrals are independent of the parametrization (except possibly for the sign), it 
seems natural to express the theory in a way that is independent of the parametrization, 
and that is thereby more "geometric." We do this briefly and somewhat informally in 
the following discussion. 

DEFINITION We define a simple curve C to be the image of a piecewise C1 map 
c: / -> R3 that is one-to-one on an interval / ; c is called a parametrization of C. Thus, 
a simple curve is one that does not intersect itself (Figure 7.2.6). If I = [a, b], we 
call c(a) and c(b) endpoints of the curve. 

Simple curve Not a simple curve 

Figure 7.2.6 A simple curve that has no self-intersections is shown on the left. On 
the right is a curve with a self-intersection, so it is not simple. 

Each simple curve C has two orientations or directions associated with it. If P and Q 
are the endpoints of the curve, then we can consider C as directed either from P to 
Q or from Q to P. The simple curve C together with a sense of direction is called an 
oriented simple curve or directed simple curve (Figure 7.2.7). 

Figure 7.2.7 There are two possible senses of direction 
on a curve joining P and Q. 
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Figure 7.2.9 Two possible orientations for a 
simple closed curve C. 

If C is an oriented simple curve or an oriented simple closed curve, we may 
unambiguously define line integrals along them. 

Line Integrals and Path Integrals Over Oriented Simple Curves and 
Simple Closed Curves C: 

j F - d s = J f - d s and J f d s = j f d s , 

where c is any orientation-preserving parametrization of C. 

(3) 

These integrals do not depend on the choice of c as long as c is one-to-one 
(except possibly at the endpoints) by virtue of Theorems 1 and 2.5 The point we want 
to make here is that although a curve must be parametrized to make integration along 
it tractable, it is not necessary to include the parametrization in our notation for the 
integral. 

5 We have not proved that any two one-to-one paths c and p with the same image must be reparametrizations of each other, 
but this technical point will be omitted. 
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E X A M P L E 10 If I = [a, b] is a closed interval on the x axis, th'en / , as a curve, 
has two orientations: one corresponding to motion from a to b (left to right) and the 
other corresponding to motion from b to a (right to left). If / is a real-valued function 
continuous on / , then denoting I with the first orientation by I + and I with the second 
orientation by / " , we have 

f f(x)dx=[ f(x)dx = - [ f(x)dx = - [ f(x)dx. A 
JI+ Ja Jb JI-

A given simple closed curve can be parametrized in many different ways. Figure 
7.2.10 shows C represented as the image of a map p, with p(i) progressing in a 
prescribed direction around an oriented curve C as t ranges from a to b. Note that 
p ' (0 points in this direction also. The speed with which we traverse C may vary from 
parametrization to parametrization, but as long as the orientation is preserved, the 
integral will not, according to Theorems 1 and 2. 

a tQ tx t2 t3 b 

Figure 7.2.10 As t goes from a to b, p(i) 
moves around the curve C in some fixed 
direction. 

The following precaution should be noted in regard to these remarks. It is possible 
to have two mappings c and p with the same image, and inducing the same orientation 
on the image, such that 

F - ds ^ £ F - J s . 
J P 

For an example, let c(t) = (cos t, sini, 0) and p ( t ) = (cos2i, sin2i, 0), 0 < t < 2n, 
with F(x, y, z) = (y, 0, 0). Then Fx(x, y, z) = y, F2(x, y, z) = 0, and F3(x, y, z) = 0, 
so 

f r 2 n dx r 2 n 

F ds= / Fi(c(i)) — dt = — I sin2 t dt = - j r . 
J C Jo dt Jo 

But / p F-£ /s = — 2 /Q27r sin2 21 dt = —2jt. Clearly, c and p have the same image, 
namely, the unit circle in the xy plane. Moreover, they traverse the unit circle in 
the same direction; yet fc F • ds / / F • ds. The reason for this is that c is one-to-one, 
but p is not (p traverses the unit circle twice in a counterclockwise direction); there-
fore, p is not a parametrization of the unit circle as a simple closed curve. 

L 
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As a consequence of Theorem 1 and generalizing the notation in Example 10, 
we introduce the following convention: 

Line Integrals Over Curves with Opposite Orientations Let C be the 
same curve as C, but with the opposite orientation. Then 

F - d s . 

We also have: 

Line Integrals Over Curves Consisting of Several Components Let C be 
an oriented curve that is made up of several oriented component curves Q, i = 
1 , . . . , k, as in Figure 7.2.11. Then we shall write C = C\ + C2 H 
Because we can parametrize C by parametrizing the pieces C\,..., C* separately, 
one can prove that 

/ F d s = / F • ds + I 
Jc JCi Jc 

F - ds + I F - d s H h i F - ds. (4) 
Ci Jc2 Jck 

C2 Figure 7.2.11 A curve can be made up of several 
components. 

One reason for writing a curve as a sum of components is that it may be easier to 
parametrize the components Q individually than it is to parametrize C as a whole. If 
that is the case, formula (4) provides a convenient way of evaluating fc F • ds. 

The d r Notation for Line Integrals 
Sometimes one writes, as we occasionally do later, the line integral using the notation 

L F • dr. 

The reason is that we think of describing a C1 path c in terms of a moving position 
vector based at the origin and ending at the point c(¿) at time t. Position vectors are 
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often denoted by r= xi + y\ + zk, and so the curve is described using the notation 
r(i) = x(t)i + + z(t)k in place of c(t) . By definition, the line integral is given by 

/ 
Ja 

Formally canceling the df s, and using the parametrization independence to replace 
the limits of integration with the geometric curve C, we arrive at the notation 

fcF-dr-

E X A M P L E 11 Consider C, the perimeter of the unit square in R , oriented in 
the counterclockwise sense (see Figure 7.2.12). Evaluate the line integral 

L x2 dx + xy dy. 

Figure 7.2.12 The perimeter of the unit square, 
parametrized in four pieces. 

S O L U T I O N We evaluate the integral using a convenient parametrization of C 
that induces the given orientation. For example: 

c: [0, 4] —> t (-> 

0 < t < 1 (¿ ,0) 

( U -
( 3 - i 
(0, 4 - 0 3 < t < 4. 

( M - l ) \<t<2 
(3 - M ) 2 < t < 3 

Then 

L = I ( t2+°)dt + 1 x dx + xydy = / (r+0)dt+ / [0 + ( ? - l ) ] J ? 

+ j [ - ( 3 - t)2 + 0] dt + jT (0 + 0) dt 

1 1 / 1 

= 3 + 2 + ( - 3 j + ° = 2 -
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Now let us reevaluate this line integral, using formula (4) and parametrizing the 
Ci separately. Notice that C = C\ + + C3 + C4, where Ct are the oriented curves 
pictured in Figure 7.2.12. These can be parametrized as follows: 

Cx: Ci(O = (* ,0 ) ,0 <t < 1 

C2: c2(O = ( l , O . 0 < ^ < 1 

C3: c3(O = ( l - M ) , 0 < f < 1 

C4: C4(O = (0, 1 -0.0 </ < 1, 

and so 

Thus, again, 

t2dt = -
3 

/ x2 dx + xy dy = / 
J C\ Jo 

f x2dx+xydy= f tdt = \-
Jc2 Jo 2 

I x2dx+xydy= I — (1 — 
Jc3 Jo 

f x2dx+xydy= f 0dt = 0. 
Jc4 Jo 

9 1 

L 2 , 1 1 1 ^ 1 
x2dx+xydy = - + - - - + 0 = - . 

3 2 3 2 

E X A M P L E 12 An interesting application of the line integral is the mathematical 
formulation of Ampère's law, which relates electric currents to their magnetic effects.6 

Suppose H denotes a magnetic field in R3, and let C be a closed oriented curve in 
R3. In appropriate physical units, Ampère's law states that 

L H • ds = / , 

where / is the net current that passes through any surface bounded by C (see 
Figure 7.2.13). A 

Finally, let us mention that the line integral has another important physical mean-
ing, specifically, the interpretation of fc V • ds as circulation, where V is the velocity 

6The discovery that electric currents produce magnetic effects was made by Haas Christian Oersted circa 1820. See any 
elementary physics text for discussions of the physical basis of these ideas. 
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Current 1 

F i g u r e 7.2.13 The magnetic field H surrounding a 
wire carrying a current / satisfies Ampère's law: 
fc H. ds = I. 

field of a fluid, as we shall discuss in Section 8.2. Thus, a wide variety of physical 
concepts, from the notion of work to electromagnetic fields and the motions of fluids, 
can be analyzed with the help of line integrals. 

1. Let F(x, y, z) = x\ + x j + zk. Evaluate the integral of F along each of the following 

(b) c(i) = (cos t, sin t, 0), 0 < t < lit (d) c(t) = (t2, 31, 2t3), - 1 < t < 2 

2. Evaluate each of the following line integrals: 

(a) fcxdy - ydx, c(t) = (cost, sint), 0 < t < 2n 
(b) fcxdx + y dy, c(t) = (cosnt, sinnt), 0 < t < 2 
(c) fc yz dx +xzdy + Jz, where c consists of straight-line segments joining 

(1,0, 0) to°(0, 1,0) to (0, 0, 1) 
(d) /c x2 dx — xydy + ¿/z, where c is the parabola z = x2, y = 0 from (—1,0, 1) to 

3. Consider the force field F(x, y, z) = xi + x j + zk. Compute the work done in moving a 
particle along the parabola y = x2, z = 0, from x = — 1 to x = 2. 

4. Let c be a smooth path. 

(a) Suppose F is perpendicular to c ;(0 at the point c(/). Show that 

E X E R C I S E S 

paths: 

(a) c(0 = (t, t,t), 0 < t < 1 (c) c(t) = (sin t, 0, cos i), 0 < t < In 

(1,0, 1). 

(b) If F is parallel to c r(0 at c(t), show that 

[By parallel to c r(0 we mean that F(c(/)) = X(t)c'(t), where k(t) > 0.] 
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5. Suppose the path c has length /, and ||F|| < M. Prove that 

1/ F . ds < Ml. 

6. Evaluate fc F • ds where F(x, y, z) — yi-\- 2xj + yk and the path c is defined by 
c(/) = ti + /2j + t3k, 0 < t < 1. 

7. Evaluate 

ydx + (3y3 — x)dy z dz h for each of the paths c(i) = (/, i", 0), 0 < t < 1, where n = 1, 2, 3,. 

8. This exercise refers to Example 12. Let L be a very long wire, a planar section of 
which (with the plane perpendicular to the wire) is shown in Figure 7.2.14. Suppose this 
plane is the xy plane. Experiments show that H is tangent to every circle in the xy plane 
whose center is the axis of L, and that the magnitude of H is constant on every such circle 
C. Thus, H = HT, where T is a unit tangent vector to C and H is some scalar. Using this 
information, show that H = I/Ircr, where r is the radius of circle C and / is the current 
flowing in the wire. 

H 

Figure 7.2.14 A planar section of a long wire and a 
curve C about the wire. 

9. The image of the path / i-> (cos3 /, sin3 /), 0 < t < 27T in the plane is shown in Figure 
7.2.15. Evaluate the integral of the vector field F(x, y) = xi + around this curve. 

10. Suppose Ci and C2 are two paths with the same endpoints and F is a vector field. Show 
that /c j F • ds = f F • ds is equivalent to fc F • ds = 0, where C is the closed curve obtained 
by first moving along Cj and then moving along c2 in the opposite direction. 

11. Let c(/) be a path and T the unit tangent vector. What is fc T • ds? 

12. Let F = (z3 + 2x^)i + x2\ + 3xz2k. Show that the integral of F around the 
circumference of the unit square with vertices (±1, ±1) is zero. 
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( 0 , D = c ( § ) 

( - l , 0 ) = c(7t) 

\2-J2 2-J2S 

(1,0) = c(0) = C(2tt) 

Figure 7.2.15 The hypocycloid 
c(t) = (cos31, sin31) (Exercise 9). 

l ( 0 , - l ) = c ( f ) 

13. Using the path in Exercise 9, observe that a C1 map c: [a, b] R3 can have an image 
that does not "look smooth Do you think this could happen if c'(0 were always nonzero? 

14. What is the value of the integral of a gradient field around a closed curve C? 

15. Evaluate the line integral 

2 xyz dx + x2z dy + x2y dz, L 
where C is an oriented simple curve connecting (1, 1, 1) to (1, 2,4). 

16. Suppose V/(x, y, z) = 2xyzexl\ + ze*2j + yex\. I f / ( 0 , 0, 0) = 5, find / ( 1 , 1 , 2). 

17. Consider the gravitational force field (with G = m = M = 1) defined [for (x, y, z) / 
(0, 0, 0)] by 

F (x,y,z) = -
1 

c x 2 + y 2 + z 2 f l 2 (xi + y]+ zk). 

Show that the work done by the gravitational force as a particle moves from (xi, y\,z\) 
to (*2, y2, zi) along any path depends only on the radii R\ — y/x2 + y\ + z\ and 

Rl = + yl + z2-

18. A cyclist rides up a mountain along the path shown in Figure 7.2.16. She makes one 
complete revolution around the mountain in reaching the top, while her vertical rate of climb 
is constant. Throughout the trip she exerts a force described by the vector field 

F(x, y, z) = + xj + k. 

What is'the work done by the cyclist in traveling from A to B? What is unrealistic about this 
model of a cyclist? 
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z 

B 

x2 +y2 + z = 2n Figure 7.2.16 How much work is done in 
cycling up this mountain? 

19. Let c: [a, b] -> R3 be a path such that c'(0 ^ 0. Recall from Section 4.1 that when 
this condition holds, c is said to be regular. Let the function / be defined by the formula 
f ( x ) = fx

a\W(t)\\dt. 

(a) What is df/dxl 
(b) Using the answer to part (a), prove that f : [a, b] [0, L], where L is the length of 

c, has a differentiable inverse g: [0, L] [a, b\ satisfying / o g(s) = s,g o f ( x ) = x. (You 
may use the one-variable inverse function theorem stated at the beginning of Section 3.5.) 

(c) Compute dg/ds. 
(d) Recall that a path s b(s) is said to be of unit speed, or parametrized by arc length, 

if ||b'(s)|| = 1. Show that the reparametrization of c given by b(s) = c o g(s) is of unit speed. 
Conclude that any regular path can be reparametrized by arc length. (Thus, for example, the 
Frenet formulas in Exercise 17 of Section 4.2 can be applied to the reparametrization b.) 

20. Along a "thermodynamic path" C in ( V , T, P) space, 

(i) The heat gained is fc Ay dV + Kv dT, where A v , Kv are functions of (V, T, P), 
depending on the particular physical system. 

(ii) The work done is fc P dV. 

For a van der Waals gas, we have 

^R. T & ^ j1 

P(V, T) = - , JAv = , and Kv = constant, V ; V - b V2 V - b 

where R,b, a, and J are known constants. Initially the gas is at a temperature Tq and volume 

(a) An adiabatic process is a thermodynamic motion (F(t), T(/), P(t)) for which 

If the van der Waals gas undergoes an adiabatic process in which the volume doubles to 2 V0, 
compute 

(1) the heat gained; 
(2) the work done; and 
(3) the final volume, temperature, and pressure. 

dT _ dT/dt _ Av 

~dV ~ dV/dt ~ ~Y~V 
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(b) After the process indicated in part (a), the gas is cooled (or heated) at constant 
volume until the original temperature T0 is achieved. Compute 

(1) the heat gained; 
(2) the work done; and 
(3) the final volume, temperature, and pressure. 

(c) After the process indicated in part (b), the gas is compressed until the gas returns to 
its original volume Vq. The temperature is held constant throughout the process. Compute 

(1) the heat gained; 
(2) the work done; and 
(3) the final volume, temperature, and pressure. 

(d) For the cyclic process described in parts (a), (b), (c), compute 

(1) the total heat gained; and 
(2) the total work done. 

In Sections 7.1 and 7.2, we studied integrals of scalar and vector functions along 
curves. Now we turn to integrals over surfaces and begin by studying the geometry 
of surfaces themselves. 

We are already used to one kind of surface, namely, the graph of a function f ( x , y). 
Graphs were extensively studied in Chapter 2, and we know how to compute their 
tangent planes. However, it would be unduly limiting to restrict ourselves to this case. 
For example, many surfaces arise as level surfaces of functions. Suppose our surface 
S is the set of points (x, y, z) where x — z + z3 = 0. Here S is a sheet that (relative 
to the xy plane) doubles back on itself (see Figure 7.3.1). Obviously, we want to 

7,3 Parametrized Surfaces 

Graphs Are Too Restrictive 

z 

X 

Figure 7.3.1 A surface that is not the 
graph of a function z = f(x9y). 
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call S a surface, because it is just a plane with a wrinkle. However, S is not the graph 
of some function z = f ( x , y), because this means that for each (x0, yo) e R2 there 
must be one zo with (xo,yo,zo) £ S- As Figure 7.3.1 illustrates, this condition is 
violated. 

Another example is the torus, or surface of a doughnut, which is depicted in 
Figure 7.3.2. Anyone would call a torus a surface; yet, by the same reasoning as 
before, a torus cannot be the graph of a differentiable function of two variables. These 
observations encourage us to extend our definition of a surface. 

Figure 7.3.2 The torus is not the graph of a 
function of the form z = f(x,y). 

The motivation for the extended definition that follows is partly that a surface can 
be thought of as being obtained from the plane by "rolling," "bending," and "pushing." 
For example, to get a torus, we take a portion of the plane and roll it (see Figure 7.3.3), 
then take the two "ends" and bring them together until they meet (Figure 7.3.4). 

D 
Figure 7.3.3 The first step in obtaining a torus from a rectangle is to make a 
cylinder. 

D - 2 ) 

Ends glued 

Figure 7.3.4 Bend the cylinder and glue the ends to get a torus. 
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Parametrized Surfaces as Mappings 
In our study of differential calculus we dealt with mappings / : A C Mw Rm . Taking 
n = 2 and m — 3 corresponds to the case of a two-dimensional surface in 3-space. 
With surfaces, just as with curves, we want to distinguish a map (a parametrization) 
from its image (a geometric object). This leads us to the following definition. 

DEFINITION: Parametrized Surfaces A parametrization of a surface is 
a function D c M2 M3, where D is some domain in R2. The surface S 
corresponding to the function <I> is its image: S = We can write 

<$>(u, v) = (x(w, v), y(u, v), z(u, i;)). 

If is differentiable or is of class C1 [which is the same as saying that 
x(u, v), y(u, i;), and z(u, i;) are differentiable or C1 functions of (w, i;)], we call 
S a differentiable or a C1 surface. 

We can think of as twisting or bending the region D in the plane to yield the 
surface S (see Figure 7.3.5). Thus, each point (u, v) in D becomes a label for a point 
(x(w, v), y(u, v), z(w, i;)) on S. 

Of course, surfaces need not bend or twist at all. In fact, planes are flat, as shown in 
our first, and simplest, example. 

n i ^ i t « : 1 Section 1.3 we studied the equation of a plane P. We did so in 
terms of graphs and level sets. Now we examine the same notion using a parametri-
zation. 

E X A M P L E 1 
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Let P be a plane that is parallel to two vectors a. and (3 and that passes through 
the tip of another vector 7 , as in Figure 7.3.6. 

Our goal in this example is to find a parametrization of this plane. Notice that 
the vector ot x (3 = N, which we also write as A\ + B\ + Ck, is normal to P . If the 
tip of 7 is the point (x0, yo, X then the equation of P as a level set (as discussed in 
Section 1.3) is given by: 

A(x - x0) + B(y - y0) + C(z - z0) = 0. 

However, the set of all points on the plane P can also be described by the set of all 
vectors that are 7 plus a linear combination of ex. and (3. Using our preferred choice 
of real parameters u and v, we arrive at the parametric equation of the plane P: 

<F>(u, v) = OLU + (3v + 7 . A 

Tangent Vectors to Parametrized Surfaces 
Suppose that is a parametrized surface that is differentiable at (uq, vo) g R2 . Fixing 
u at uo, we get a map R —> R3 given by t <&(uo, t), whose image is a curve on the 
surface (Figure 7.3.7). From Chapters 2 and 4 we know that the vector tangent to this 
curve at the point <&(uo, vo), which we denote by TUs is given by 

9<I> dx 3 y dz 
T„ = — = — (wo, v0)i + — (u0, vo)} + — (wo, v0)k. 

dv dv dv 0 V 

Similarly, if we fix v and consider the curve t <&(t, Vo), we obtain the tangent 
vector to this curve at &(uo, vo), given by 

dx 3 y dz 
TM = — = — (wo, uo)i + tt{u0, v0)i + —(wo, v0)k. 

ou ou ou du 
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Z 

Figure 7.3.7 The tangent vectors Tu and Tv that are tangent to the curve on a 
surface S, and hence tangent to S. 

Regular Surfaces 
Because the vectors TM and T,, are tangent to two curves on the surface at a given 
point, the vector TM x T^ ought to be normal to the surface at the same point. 

We say that the surface S is regular or smooth1 at v0), provided that 
TH x T , ^ 0 at (uo, vo). The surface is called regular if it is regular at all points 

Vo) e S. The nonzero vector TMx T^ is normal to S (recall that the vector 
product of Tu and T„ is perpendicular to the plane spanned by TM and Tv); the fact 
that it is nonzero ensures that there will be a tangent plane. Intuitively, a smooth 
surface has no "corners."8 

Consider the surface given by the equations 

x = u cosv, y — u sini;, z = u, u > 0. 

Is this surface differentiable? Is it regular? 

S O L U T I O N These equations describe the surface z = y/x2 + y2 (square the 
equations for x, y, and z to check this), which is shown in Figure 7.3.8. This sur-
face is a cone with a "point" at (0, 0, 0); it is a differentiable surface because each 
component function is differentiable as a function of u and v. However, the surface 

7 Strictly speaking, regularity depends on the parametrization and not just on its image S. Therefore, this terminology 
is somewhat imprecise; however, it is descriptive and should not cause confusion. (See Exercise 15.) 
8In Section 3.5, we showed that level surfaces f ( x , y, z) = 0 were in fact graphs of functions of two variables in some 
neighborhood of a point (xo, ^o. ^o) satisfying V f(xo, >>o, zo) 0. This united two concepts of a surface—graphs and 
level sets. Again, using the implicit function theorem, it is likewise possible to show that the image of a parametrized 
surface $ in the neighborhood of a point (uq, i>o) where Tu x T„ ^ 0 is also the graph of a function of two variables. 
Thus, all definitions of a surface are consistent. (See Exercise 16.) 
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Figure 7.3.8 The surface z = -yjx2 + y2 is a cone. It is not 
regular at its tip. 

is not regular at (0, 0, 0). To see this, compute Tu and at (0, 0) e M2: 

d® dx dy dz 
T« = ir = ^ + -r(°> °)i+ = i008®)1 + (sin0)i + k = * + k> 

du du du du 

and similarly, 

d® 
T, = — = 0(—sin 0)i + 0(cos 0)j + 0k = 0. 

dv 

Thus, T„ x T„ = 0, and so, by definition, the surface is not regular at (0, 0, 0). • 

Tangent Plane to a Parametrized Surface 
We can use the fact that n = Tu x T„ is normal to the surface to both formally define 
the tangent plane and to compute it. 

DEFINITION: The Tangent Plane to a Surface If a parametrized surface 
D C M2 M3 is regular at vo), that is, if Tw x / 0 at (u0, v0), we 

define the tangent plane of the surface at Vo) to be the plane determined 
by the vectors TM and TV Thus, n = Tu x T^ is a normal vector, and an equation 
of the tangent plane at (xo, yo, z0) on the surface is given by 

(x - x0, y - yo, z - z0) • n = 0, (1) 

where n is evaluated at (w0, v0); that is, the tangent plane is the set of (x,y, z) 
satisfying (1). If n = (n\, n2, n3) = n ii + n2\ + «3k, then formula (1) becomes 

n\(x - x0) + n2(y - yo) + n3(z - z0) = 0. (1') 
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HsjfJABWttJEl Let R2 ^ R3 be given by 

x = ucosv, y = u sint>, z = u2 + v2. 

Where does a tangent plane exist? Find the tangent plane at <I>(1, 0). 

SOLUTION We compute 

Tm = (cos v)i + (sin v)j + 2uk and Tv = —w(sin i>)i + w(cos i;)j + 2vk, 

so the tangent plane at the point 3>(wo, vo) is the set of vectors through 3>(wo, wo) 
perpendicular to 

(T„ x Tv)(uo, vo) = (—2UQ COS V0 + 2v0 sin v0, —2U\ sin vo — 2v0 cos vo, u0) 

if this vector is nonzero. Because Tw x T^ is equal to 0 at (w0, VQ) = (0, 0), we cannot 
find a tangent plane at 3>(0, 0) = (0,0, 0). However, we can find an equation of the tan-
gent plane at all the other points, where Tu x T^ / 0. At the point <I>(1, 0) = (1, 0, 1), 

n = (T„ x T„)(l, 0) = ( - 2 , 0, 1) = - 2 i + k. 

Because we have the vector n normal to the surface and a point (1,0, 1 ) on the surface, 
we can use formula (1') to obtain an equation of the tangent plane: 

-2(x - 1) + (z - 1) = 0; that is, z = 2x - 1. A 

E X A M P L E 4 Suppose a surface S is the graph of a differentiable function 
g: R2 —• R. Write S in parametric form and show that the surface is smooth at 
all points (w0, VQ, g(uo, VQ)) e R3. 

SOLUTION Write S in parametric form as follows: 

x = u, y = v, z = g(u, v), 

which is the same as z = g(x, y). Then at the point (UQ, vo), 

dg d g 
Tw = i + —(u0, v0)k and Tv = j + — (u0, v0)k, 

au av 

and for (w0, VQ) € 

dg 
n = Tu x T„ = - - ^ ( « o , v0)i - i*>)j + k # 0. (2) 

du av 
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This is nonzero because the coefficient of k is 1; consequently, the parametrization 
(w, v) h-> (w, v,g(u, v)) is regular at all points. Moreover, the tangent plane at the point 
(x0, yo, z0) = (u0, v0, g(u0, v0)) is given, by formula (1), as 

(x - x0, y - yo Ï ( d8 Ä N 

where the partial derivatives are evaluated at (w0, f0). Remembering that x = u and 
y = v, we can write this as 

Z - z0 = (̂f ~ x°) + ~ 
where dg/dx and dg/dy are evaluated at (x0, .yo)- A 

This example also shows that the definition of the tangent plane for parametrized 
surfaces agrees with the one for surfaces obtained as graphs, because equation (3) is 
the same formula we derived (in Chapter 2) for the plane tangent to S at the point 
(x0 ,y0 ,z0) e S. 

It is also useful to consider piecewise smooth surfaces, that is, surfaces com-
posed of a certain number of images of smooth parametrized surfaces. For exam-
ple, the surface of a cube in R3 is such a surface. These surfaces are considered in 
Section 7.4. 

E 
Find a parametrization for the hyperboloid of one sheet: 

x2+y2_z2 = L 

SOLUTION Because x and y appear in the combination x2 + y2, the surface is 
invariant under rotation about the z axis, and so it is natural to write 

x = r c o s # , y = rs in#. 

Then x2 + y2 — z2 = 1 becomes r2 — z2 = 1. This we can conveniently parametrize 
by9 

r = cosh u, z = sinh u. 

Thus, a parametrization is 

x = (cosh w)(cos#), y = (cosh w)(sin#), z = sinh u, 

where 0 < 6 < 2n, —oo < u < oo. A 

9Recall from one-variable calculus that cosh u = (eu + e u)/2 and sinh u = (eu — e ")/2. One easily verifies from these 
definitions that cosh2 u — sinh2 u = 1. 
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EXERCISES 

In Exercises 1 to 3, find an equation for the plane tangent to the given surface at the specified 
point. 

1. x=2u, y = u2 + v, z = v2, at (0 ,1 ,1) 

l . x = u2-v2, y = u + v, Z = u2+ 4v, at(-\,\, 2) 

3. x = u2, y = usinev, z = jucosev, at( 1 3 , - 2 , 1 ) 

4. At what points are the surfaces in Exercises 1 and 2 regular? 

5. Find an expression for a unit vector normal to the surface 

jt = cost* sinw, y = sinvsinu, z = cosu 

at the image of a point (w, t>) for u in [0, n] and v in [0, 2n]. Identify this surface. 

6. Repeat Exercise 5 for the surface 

x = 3 cos0 s in0, j; = 2 s i n 0 s i n 0 , z = cos0 

for 6 in [0, 2jt] and 0 in [0, n]. 

7. Repeat Exercise 5 for the surface 

x = sin v, y = u, z = cos v 

for 0 < t; < 27r and - 1 < u < 3. 

8. Repeat Exercise 5 for the surface 

x = (2 — cos v)cosu, y = (2 — cosv)sinu, z = sint; 

for — 7i < u < 7r, — 7r < v < 7 r . I s this surface regular? 

9. (a) Develop a formula for the plane tangent to the surface x = h(y, z). 
(b) Obtain a similar formula for y = k(x, z). 

10. Find the equation of the plane tangent to the surface x = u2, y = v2, z = u2 + v2 at the 
point u = I, v = I. 

11. Find a parametrization of the surface z = 3x2 + 8 x y and use it to find the tangent plane 
atjc = 1, y = 0, z = 3. Compare your answer with that using graphs. 

12. Find a parametrization of the surface x3 + 3xy + z2 = 2, z > 0, and use it to find the 
tangent plane at the point x = \,y = \/3,z = 0. Compare your answer with that using level 
sets. 

13. Consider the surface in R3 parametrized by 

0) = (r cos#, r sin0, 6), 0 < r < l and 0 < 0 < 4n. 
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(a) Sketch and describe the surface. 
(b) Find an expression for a unit normal to the surface. 
(c) Find an equation for the plane tangent to the surface at the point (x0, yo, zo)-
(d) If (x0, yo, z0) is a point on the surface, show that the horizontal line segment of unit 

length from the z axis through (x0, yo, z0) is contained in the surface and in the plane tangent 
to the surface at (x0, yo, z0). 

14. Given a sphere of radius 2 centered at the origin, find the equation for the plane that is 
tangent to it at the point (1,1, V2) by considering the sphere as: 

(a) a surface parametrized by 0) = (2 cos 0 sin 0, 2 sin6 sin0, 2 cos 0); 
(b) a level surface of f ( x , y, z) = x2 + y2 + z2; and 
(c) the graph of g(x, y) = y/4 — x2 — y2. 

15. (a) Find a parametrization for the hyperboloid x2 -h y2 — z2 = 25. 
(b) Find an expression for a unit normal to this surface. 
(c) Find an equation for the plane tangent to the surface at (x0, y0, 0), where 

x2+y2 = 25. 
(d) Show that the lines (x0, yo, 0) + t(—yo, x0, 5) and (x0, yo, 0) + t(y0, —x0, 5) lie in 

the surface and in the tangent plane found in part (c). 

16. A parametrized surface is described by a differentiable function <E>: M2 M3. 
According to Chapter 2, the derivative should give a linear approximation that yields a 
representation of the tangent plane. This exercise demonstrates that this is indeed the case. 

(a) Assuming TM x T„ / 0, show that the range of the linear transformation D<E>(w0, v0) 
is the plane spanned by TM and Tv. [Here TM and T„ are evaluated at (w0, t;o).] 

(b) Show that w _L (T„ x T„) if and only if w is in the range of D<I>(wo> vo)-
(c) Show that the tangent plane as defined in this section is the same as the 

"parametrized plane" 

(u, v) H* &(u0, vo) + vo)\U U° . 
[i; — i;0J 

17. Consider the surfaces v) = (u, v, 0) and v) = (u3, v3, 0). 

(a) Show that the image of 3>i and of 3>2 is the xy plane. 
(b) Show that describes a regular surface, yet <E>2 does not. Conclude that the notion 

of regularity of a surface S depends on the existence of at least one regular parametrization 
for 

(c) Prove that the tangent plane of S is well defined independently of the regular 
(one-to-one) parametrization (you will need to use the inverse function theorem from 
Section 3.5). 

(d) After these remarks, do you think you can find a regular parametrization of the cone 
of Figure 7.3.7? 

18. Let # be a regular surface at (uo,vo); that is, # is of class C1 and TM x T^ ^ 0 at (u0,v 0). 

(a) Use the implicit function theorem (Section 3.5) to show that the image of <I> near 
(UQ, VO) is the graph of a C1 function of two variables. If the z component of Tu x T„ is 
nonzero, we can write it as z = f ( x , y). 

(b) Show that the tangent plane at <&(u0, v0) defined by the plane spanned by Tu and T„ 
coincides with the tangent plane of the graph of z = f ( x , y) at this point. 
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7,4 Area of a Surface 
Before proceeding to general surface integrals, let us first consider the problem of 
computing the area of a surface, just as we considered the problem of finding the arc 
length of a curve before discussing path integrals. 

Definition of Surface Area 
In Section 7.3, we defined a parametrized surface S to be the image of a function 

D C l 2 ^ R3, written as v) = (.x(u, v), y(u, v), z(u, v)). The map <I> was 
called the parametrization of S and S was said to be regular at v) e S provided 
that Tu x T„ / 0, where 

dx dy dz 
Tu = —(w, v)i + — (u, v)i + —(m, v)k 

au au au 

and 

dx dy dz 
Tv = —(u, + — + 

d v d v av 

Recall that a regular surface (loosely speaking) is one that has no corners or breaks. 
In the rest of this chapter and in the next one, we shall consider only piecewise 

regular surfaces that are unions of images of parametrized surfaces : A R3 for 
which: 

(i) Di is an elementary region in the plane; 

(ii) is of class C1 and one-to-one, except possibly on the boundary of A ; and 

(iii) Si, the image of is regular, except possibly at a finite number of points. 

DEFINITION: Area of a Parametrized Surface We define the surface 
area10 A(S) of a parametrized surface by 

A(S) = f f ¡¡TuxTJdudv (1) 

where \\TU x TJI is the norm of Tu x T„. If S is a union of surfaces Si, its area 
is the sum of the areas of the S(. 

10 As we have not yet discussed the independence of parametrization, it may seem that A(S ) depends on the parametrization 
3>. We shall discuss independence of parametrization in Section 7.6; the use of this notation here should not cause 
confusion. 
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As the reader can easily verify, we have 

l|T„ x T J = 

where 

+ 
_d(u, v) 

+ 
d(u,v)\ 

dx dx 
d(x,y) du dv 
3(u, v) dy dy 

du dv 

and so on. Thus, formula (1) becomes 

Justification of the Area Formula 

(2) 

u r n ] ® 
We can justify the definition of surface area by analyzing the integral f f D ||TM x 
Tv || du dv in terms of Riemann sums. For simplicity, suppose D is a rectangle; con-
sider the «th regular partition of D, and let Rij be the ijth rectangle in the partition, 
with vertices (w,-, vj), (w/+i, vj), (w;, vj+1), and (ui+\, Vj+1), 0 < i < n — 1, 0 < 
j < n — 1. Denote the values of TM and T^ at (ut, Vj) by Tu. and TUy. We can think of 
the vectors AuTUi and AvTVj as tangent to the surface at Vj) = (x/y, z/7-), 
where Au = ui+\ — ut, Av = Vj+\ Then these vectors form a parallelogram 
P t j that lies in the plane tangent to the surface at (x/7, zz-y) (see Figure 7.4.1). 

À u 

(U i . V j ) R, | A D 

UQ 

y 

Figure 7.4.1 ||TMj. x Tv; || A u Av is equal to the area of a parallelogram that 
approximates the area of a patch on a surface S = <1>(D). 
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We thus have a "patchwork cover" of the surface by the Pij. For n large, the area 
of P^ is a good approximation to the area of (/?//). Because the area of the par-
allelogram spanned by two vectors vi and is ||vi x V2II (see Chapter 1), we see 
that 

A(P0) = \\AuTUi x AvTVj || = ||TM/ X TVJ \\AU AV. 

Therefore, the area of the patchwork cover is 

n—1 n — 1 n—1 n—1 

^ = = E E x tVJ ii 
i=0 7=0 i=0 j=0 

As « oo, the sums converge to the integral 

||TW x Tv\\ dud v. fi 
Because An should approximate the surface area better and better as n —> oo, we are 
led to formula (1) as a reasonable definition of A(S). 

E X A M P L E 1 Let D be the region determined b y 0 < # < 2 7 T , 0 < r < 1 and let 
the function <I>: D R3, defined by 

x = r c o s # , y = rsm0, z — r 

be a parametrization of a cone S (see Figure 7.3.8). Find its surface area. 

S O L U T I O N In formula (3), 

3(r, 0) 

s(r, 0) 

cos 0 
sin0 

1 

—r sin 6 
r cos 6 = r, 

sin 6 reos 6 
0 

= —r cos 6, 

and 

3(x, z) cost 
1 

—r sin# 
0 

= r sin#, 
3 ( r , 0 ) 

so the area integrand is 

||TR x TE|| = y/r2 + r2 cos2 6 + r2 sin2 6 = rV2. 
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Clearly, ||Tr x Te\\ vanishes for r = 0, but $(0 , 6) = (0, 0, 0) for any 0. Thus, 
(0, 0, 0) is the only point where the surface is not regular. We have 

n n p27T pi p2n j 
/ / ||TR x T0 | | dr dG = / / V 2 r d r d G = -V2dG = V27t. 

J J D JO Jo Jo ^ 

To confirm that this is the area of we must verify that is one-
to-one (for points not on the boundary of D). Let D° be the set of (r, 0) with 
0 < r < 1 and 0 < 6 < 2TC. Hence, D° is D without its boundary. To see that 

D° R3 is one-to-one, assume that 6) = 6') for (r, 0) and (rr, 6') e 
D°. Then 

From these equations it follows that cos0 = cos#r and sin 0 = sinfl'. Thus, either 
0 = 0' or 6 = 6' + 2nn. But the second case is impossible for n a nonzero integer, 
because both 6 and 6r belong to the open interval (0, 2n), and thus cannot be more than 
2tc radians apart. This proves that off the boundary, is one-to-one. (Is D —> R3 

one-to-one?) In future examples, we shall not usually verify that the parametrization 
is one-to-one when it is intuitively clear. A 

and D is the region where 0 < 6 < 2n and 0 < r < 1 (Figure 7.4.2). Find its area. 

r cos0 = r 'costf ' , r sin# = r' sinör, r=rf. 

A helicoid is defined by D R3 , where 

x=rcos6, y = rsm6, z = 0 

z 

2 n 

2" 

Figure 7.4.2 The helicoid 
x — r cos 0, y = r sin6, z — 6. 

y 
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S O L U T I O N We compute 3(x, y)/d(r, 6) = r as in Example 1, and 

d(r, 0) 

d(r, 0) 

sin u r cos t 
0 1 

= sin6>, 

cos 6 —r sin 6 
0 1 = cost/. 

The area integrand is therefore Vr 2 + 1, which never vanishes, so the surface is 
regular. The area of the helicoid is 

i f ||Tr x Tall dr d6 = f f Jr2 + 1 drdO = 2n f yjr2 + 1 dr. 
J JD JO JO Jo 

After a little computation (using the table of integrals), we find that this integral is 
equal to 

7T[V2 + l o g ( l + V 2 ) ] . 

Surface Area of a Graph 
A surface S given in the form z = g(x, y), where ( x , y ) e D, admits the parametri-
zation 

x = u, y = v, z = g(u, i;) 

for (u, v) e D. When g is of class C1 , this parametrization is smooth, and the formula 
for surface area reduces to 

after applying the formulas 

and 

ÔU ÓV 

T„ x T„ = — — i — — j + k = — — i — — j + k, 
3 u av ox ay 

as noted in Example 4 of Section 7.3. 
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Surfaces of Revolution 
In most books on one-variable calculus, it is shown that the lateral surface area 
generated by revolving the graph of a function y — / ( x ) about the x axis is given by 

A = 2tt A | / ( * ) i y i + [ / ' ( * ) ] V x . (5) 
J a 

If the graph is revolved about the y axis, the surface area is 

rb 
A =2n (IXIVTTLTW)dx. (6) 

J a 

We shall derive formula (5) by using the methods just developed; one can obtain 
formula (6) in a similar fashion (Exercise 10). 

To derive formula (5) from formula (3), we must give a parametrization of S. 
Define the parametrization by 

x = u, y = f(u) cosv, z — f(u) sinu 

over the region D given by 

a <u <b, 0 < v < 2n. 

This is indeed a parametrization of S, because for fixed u, the point 

(w, /(w)cosv, f{u) sin v) 

traces out a circle of radius \f(u)\ with the center (u, 0, 0) (Figure 7.4.3). 

t . 
I/Ml / 

\ 

T I 
J C 1 b 

Circumference = 2n\f(x)\ 

Figure 7.4.3 The curve y = f ( x ) rotated 
about the x axis. 

We calculate 

d(w, v) 
= —f(u) sini;, 

d(u9 v) = m f \ u \ d(u, v) 
— f ( u ) cosv, 
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and so by formula (3) 

= f f 7 [ / (» ) ] 2 sin2 w + [f(u)Y[f'(u)f + [f(u)f cos2 v du dv 

= JJ \f(u)Wl + Lf'(u)]2dudv 

= r r Uiu^yfT+lrWdvdu 
Ja JO 

= 2TZ F | / ( « ) l V l + [ / ' ( « ) ] 2 ^ , 
Ja 

which is formula (5). 
If S is the surface of revolution, then 2jt | / (x) | is the circumference of the vertical 

cross section to S at the point x (Figure 7.4.3). Observe that we can write 

2TT fb\f(x)\Jl + [f'(x)]2dx = f2n\f(x)\ds, 
Ja J c 

where the expression on the right is the path integral of 2jt \f(x)\ along the path given 
bye: [a, b] R2, t i-> (t, f (t)). Therefore, the lateral surface of a solid of revolution 
is obtained by integrating the cross-sectional circumference along the path that is the 
graph of the given function. 

t^/Sk 

The most famous mathematician in ancient times was Archimedes. In 
addition to being an extraordinarily gifted mathematician, he was also an 
engineering genius on a scale never before seen and was greatly admired by 
his contemporaries and by later writers for his insights into mechanics. It was 
these talents that helped the people of the city of Syracuse in 214 B.C. to 
defend their city against the onslaught of the Roman legions under their 
commander Marcellus. 

When the Romans besieged the city, they encountered an enemy whom 
Archimedes had supplied—totally unexpectedly—with powerful weapons, 
including artillery and burning mirrors, which, as legend has it, incinerated 
the Roman fleet. 

The siege of Syracuse lasted two years, and the city finally fell as a result 
of acts of treason. In the aftermath of the assault, the old scientist was slain 
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by a Roman soldier, even though the commander had asked his men to spare 
Archimedes' life. As the story goes, Archimedes was sitting in front of his 
house studying some geometric figures he had drawn in the sand. When a 
Roman soldier approached, Archimedes shouted out, "Don't disturb my 
figures!" The ruffian, feeling insulted, slew Archimedes. 

To honor this great man, Marcellus erected a tomb for Archimedes on 
which, according to Archimedes'sown wishes, were depicted a cone, a 
sphere, and a cylinder (Figure 7.4.4). 

1:2:3= : 

Figure 7.4,4 Archimedes' theorem: The ratios of the volumes of a cone, a 
half ball, and a cylinder, all of the same height and radius, are 1:2:3. 

Archimedes was incredibly proud of his calculation of the volume and 
surface area of the sphere, which justifiably were seen as truly outstanding 
accomplishments for their time. As in his works on centers of gravity, for 
which he provided no clear definition, Archimedes was able to compute the 
surface area of the sphere without having a clear definition of precisely what 
it was. However, as with many mathematical works, one knows the answer 
long before a proof or even the correct definition can be found. 

The problem of properly defining surface areas is a difficult one. To 
Archimedes' credit, a careful theory of surface areas was not achieved until 
the twentieth century, after a long development that began in the seventeenth 
century with the discovery of calculus. 

Christiaan Huygens (1629-1695) was the first person since Archimedes 
to give results on the areas of special surfaces beyond the sphere, and he 
obtained the areas of portions of surfaces of revolution, such as the 
paraboloid and hyperboloid. 

The brilliant and prolific mathematician Leonhard Euler (1707-1783) 
presented the first fundamental work on the theory of surfaces in 1760 
with Recherches sur la courbure des surfaces. However, it was in 1728, in a 
paper on shortest paths on surfaces, that Euler defined a surface as a graph 
z — f (x,y). Euler was interested in studying the curvature of surfaces, and in 
1771 he introduced the notion of the parametric surfaces that are described in 
this section. 

After the rapid development of calculus in the early eighteenth century, 
formulas for the lengths of curves and areas of surfaces were developed. 
Although we do not know when all the area formulas presented in this section 



7.4 Area of a Surface 469 

first appeared, they were certainly common by the end of the eighteenth 
century. The underlying concepts of the length of a curve and the area of a 
surface were understood intuitively before this time, and the use of formulas 
from calculus to compute areas was considered a great achievement. 

Augustin-Louis Cauchy (1789-1857) was the first to take the step of 
defining the quantities of length and surface areas by integrals as we have 
presented in this book. The question of defining surface area independent of 
integrals was taken up somewhat later, but this posed many difficult 
problems that were not properly resolved until this century. 

We end this section by describing the fascinating classic area problem 
of Plateau, which has enjoyed a long history in mathematics. The Belgian 
physicist Joseph Plateau (1801-1883) carried out many experiments from 
1830 to 1869 on surface tension and capillary phenomena, experiments that 
had enormous impact at the time and were repeated by notable nineteenth-
century physicists, such as Michael Faraday (1791-1867). The 
corresponding collection of mathematical problems relating to soap 
films was named in 1904 after Plateau by the great French mathematician 
Henri Lebesgue (1875-1941). 

If a wire is dipped into a soap or glycerine solution, then one usually 
withdraws a soap film spanning the wire. Some examples are given in 
Figure 7.4.5, although readers might like to perform the experiment for 
themselves. Plateau raised the mathematical question: For a given boundary 
(wire), how does one prove the existence of such a surface (soap film) and 
how many surfaces can there be? The underlying physical principle is that 
nature tends to minimize area; that is, the surface that forms should be a 
surface of least area among all possible surfaces that have the given curve as 
their boundary. This again is another example of the action principle of 
Maupertuis and Leibniz (c.f. Section 3.3). 

Figure 7.4.5 Two soap films spanning wires. 
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For soap film surfaces that are disklike, the problem can be formulated 
in the following way. Let D C R2 be the unit disk defined to be the set 
{(x, 3/) | x2 + y2 < 1} and let 3D be its boundary. Furthermore, suppose that 
the image F of c: [0, 2n] R 3 is a simple closed curve, V representing a 
wire in R3 . 

Let S be the set of all maps D R 3 such that $(3D) = T, <I> is of 
class C1 , and is one-to-one on 3D. Each $ e S represents a parametric C1 

"disklike" surface "spanning" the wire T. 
The soap films in Figure 7.4.5 are not disklike, but represent a system of 

multiple disklike surfaces. Figure 7.4.6 shows a contour that bounds two 
disklike surfaces and one nondisklike surface. 

(a) (b) (c) 

F igure 7.4*6 Soap film surfaces; (b) and (c) are disklike surfaces, but (a) 
is not. 

For each $ e S, consider the area of the image surface, namely, A(<£) = 
f f D | |Tu x T^ || du dv. This area is a function that assigns to each parametric 
surface its area. Plateau asked whether A has a minimum on S; that is, does 
there exist a 3>0 such that A(3>0) < for all Unfortunately, the 
methods of this book are not adequate to solve this problem. We can tackle 
questions of finding minima of real-valued functions of several variables, but 
in no way can the set § be thought of as a region in Rn for any n\ 

In his own study of surfaces of least area, Weierstrass showed that if a 
minimum 

3>0(u, v) = (x(u, v), y(u, v), z(u, i>)) 

existed at all, it would have to satisfy (after suitable normalizations) the 
partial differential equations 

(i) V23>O = 0 

.... 33>o 33>o n (11) 0 
du dv 

(iü) 33>o II 3$o 
du I dv 
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where | |w| | denotes the " n o r m " o r length of the vector w . T h i s example 
illustrates the in t imate connect ions be tween p rob lems of m a x i m a and 
m i n i m a (the calculus of variations) and the subject of part ial differential 
equat ions. 

For well over 70 years, mathemat ic ians such as R iemann , Weierstrass , 
H . A . Schwarz, Da rboux , and Lebesgue puzzled over the challenge posed by 
Plateau. In 1931 the ques t ion was f inal ly settled w h e n Jesse Douglas showed 
tha t such a <I>o existed. However , m a n y ques t ions about soap f i lms r emain 
unsolved, and th is area of research is still active today.1 1 

E X E R C I S E S 

1. Find the surface area of the unit sphere S represented parametrically by <I>: D —• 
S C M3, where D is the rectangle 0 < 0 < 2IT, 0 < 0 < 7r and <I> is given by the 
equations 

Jt = cos0s in0 , j> = s in0sin0, z = cos0. 

Note that we can represent the entire sphere parametrically, but we cannot represent it in the 
form z = f(jt, y). 

2. In Exercise 1, what happens if we allow 0 to vary from —jt/2 to ir/27 From 0 to 2n? 
Why do we obtain different answers? 

3. Find the area of the helicoid in Example 2 if the domain D is 0 < r < 1 and 0 <6 <3n. 

4. The torus T can be represented parametrically by the function D R3, where # is 
given by the coordinate functions x = (R + cos 0) cos 0, y = (R + cos 0) sin0, z = sin0; D 
is the rectangle [0, 27R] X [0, 27r], that is, 0 < 0 < 2rc, 0 < 0 < 2n; and R > 1 is fixed (see 
Figure 7.4.7). Show that A(T) = (2n) 2 R , first by using formula (3) and then by using 
formula (6). 

5. Let <I>(w, v) = (u — v, u + v, uv) and let D be the unit disk in the uv plane. Find the area 
of $(£>). 

6. Find the area of the portion of the unit sphere that is cut out by the cone z > jx2 + y2 

(see Exercise 1). 

7. Show that the surface x = 1 /y/y2 + z2, where 1 < x < oo, can be filled but not painted! 

8. Find a parametrization of the surface x2 — y2 = 1, where JC > 0 , - 1 < y < 1 and 
0 < z < 1. Use your answer to express the area of the surface as an integral. 

11 For more information on this fascinating subject, the reader may consult The Parsimonious Universe: Shape and Form 
in the Natural World, by S. Hildebrandt and A. Tromba, Springer-Verlag, New York/Heidelberg, 1995. 
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Figure 7.4.7 A cross section of a torus. 

9. Represent the ellipsoid E: 

x2 y2 z2
 i 1- — H = 1 

a2 b2 c2 

parametrically and write out the integral for its surface area A(E). (Do not evaluate the 
integral.) 

10. Let the curve y = f (x), a < x < b, be rotated about the y axis. Show that the area of the 
surface swept out is given by equation (6); that is, 

nb 
A =271 J \x\y/\ + [f'(x)]2dx. 

Interpret the formula geometrically using arc length and slant height. 

11. Find the area of the surface obtained by rotating the curve .y = x2, 0 < x < 1, about the 
y axis. 

12. Use formula (4) to compute the surface area of the cone in Example 1. 

13. Find the area of the surface defined by x + + z = 1, x2 + 2y2 < 1. 

14. Show that for the vectors Tu and TJ;, we have the formula 

15. Compute the area of the surface given by 

x = r cos0, y = 2r cos0, z = 6, 0 < r < 1, 0 < 6 < 2TC. 

Sketch. 

16. Prove Pappus' theorem: Let c: [a, b] R2 be a C1 path whose image lies in the right 
half plane and is a simple closed curve. The area of the lateral surface generated by rotating 



7.4 Area of a Surface 473 

the image of c about the y axis is equal to 2TCXI(C), where x is the average value of the x 
coordinates of points on c and /(c) is the length of c. (See Exercises 8 to 11, Section 7.1, 
for a discussion of average values.) 

17. The cylinder x2 + y2 = x divides the unit sphere S into two regions Si and S2, where S\ 
is inside the cylinder and S2 outside. Find the ratio of areas A(S2)/ A(Si). 

18. Suppose a surface S that is the graph of a function z = f(x,y), where (x, y) e D c M2 

can also be described as the set o f ( x , j ; , z ) e E 3 with F(x, y, z) = 0 (a level surface). Derive 
a formula for A(S) that involves only F. 

19. Calculate the area of the frustum shown in Figure 7.4.8 using (a) geometry alone and, 
second, (b) a surface area formula. 

20. A cylindrical hole of radius 1 is bored through a solid ball of radius 2 to form a ring 
coupler, as shown in Figure 7.4.9. Find the volume and outer surface area of this coupler. 

y = mx + q 

Figure 7.4.8 A line segment revolved around the y axis 
becomes a frustum of a cone. 

X 

a b 

z a 

Figure 7.4.9 Find the outer surface area and volume of 
the shaded region. 
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21. Find the area of the graph of the function f(x,y) = | (x 3 / 2 + y3/2) that lies over the 
domain [0, 1] x [0, 1]. 

22. Express the surface area of the following graphs over the indicated region D as a double 
integral. Do not evaluate. 

(a) (x + 2y)2; £> = [— 1, 2] x [0, 2] 
(b) xy + x/(y + l);D = [l,4\x[h2] 
(c) xy3ex y ; D = unit circle centered at the origin 
(d) y3 cos2 x; D = triangle with vertices (— 1, 1), (0, 2), and (1,1) 

23. Show that the surface area of the upper hemisphere of radius R,z = y/R2 — x2 — y2, 
can be computed by formula (4), evaluated as an improper integral. 

7.5 Integrals of Scalar Functions Over Surfaces 
Now we are ready to define the integral of a scalar function / over a surface S. 
This concept is a natural generalization of the area of a surface, which corresponds 
to the integral over S of the scalar function f(x,y,z) = 1. This is quite analogous to 
considering the path integral as a generalization of arc length. In the next section we 
shall deal with the integral of a vector function F over a surface. These concepts will 
play a crucial role in the vector analysis treated in the final chapter. 

Let us start with a surface S parametrized by a mapping D S C M3, where 
D is an elementary region, which we write as <&(u, v) = (x(u, v), y(u, v), z(u, v)). 

DEFINITION: The Integral of a Scalar Function Over a Surface If 
f(x,y, z) is a real-valued continuous function defined on a parametrized surface 
S, we define the integral of f over S to be 

f f f(x,y,z)dS= f f fdS= f f f(*(u,v))\\TuxTv\\dudv. (1) 
JJs JJs JJD 

Written out, equation (1) becomes 

Iis ̂  JJD fix (u, v), y(u, v), z(u, v)) - d(u, v)_ + 
~d(y,z) 
_d(u, i;) H d(x,z) 

d(u, v)_ 

n2 
dud v. (2) 



7.5 Integrals of Scalar Functions Over Surfaces 475 

Thus, if / is identically 1, we recover the area formula (3) of Section 7.4. Like 
surface area, the surface integral is independent of the particular parametrization used. 
This will be discussed in Section 7.6. 

We can gain some intuitive knowledge about this integral by considering it as 
a limit of sums. Let D be a rectangle partitioned into n2 rectangles Rtj with areas 
A u Av. Let Sij = <1K ŷ) be the portion of the surface <1>(D) corresponding to Ry 
(see Figure 7.5.1), and let A(Sij) be the area of this portion of the surface. For large 
n, f will be approximately constant on S tj, and we form the sum 

n—1 n—1 
(3) 

I = 0 Y = 0 

where (w/, vj) e Rij. From Section 7.4 we have a formula for A(Sij): 

A(Sij) = j j ^ ||TW x T̂ H dudv, 

which, by the mean-value theorem for integrals, equals ||TW/* x || Au Av for some 
point (w*, v*) in Rij. Hence, our sum becomes 

n-1 n-1 
Sn = E E V j ) ) \ \ T u J X Tv* \\Au Av, 

i= 0 y"=0 

which is an approximating sum for the last integral in formula (1). Therefore, 

limits* = i f fdS. 
JJs 

D 
O 

Rij 

Figure 7.5.1 takes a portion Rof D to a portion of S. 
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Note that each term in the sum in formula (3) is the value of / at some point 
<&(U[, vj) times the area of Sy. Compare this with the Riemann-sum interpretation of 
the path integral in Section 7.1. 

If S is a union of parametrized surfaces Si, i = 1 , . . . , N, that do not intersect 
except possibly along curves defining their boundaries, then the integral of / over S 
is defined by 

as we should expect. For example, the integral over the surface of a cube may be 
expressed as the sum of the integrals over the six sides. 

E X A M P L E 1 Suppose a helicoid is described as in Example 2, Section 7.4, and 
let / be given by f ( x , y, z) = 7 x 2 + . y 2 + 1. Find f f s f d S . 

S O L U T I O N As in Examples 1 and 2 of Section 7.4, 

d(x>y) 9(>,z) . . d(x,z) = r, = sin 6, = cos d(r, 0) d(r, 0) d(r, 6) 

Also, f(r cos 0, r sin#, 6) = Vr 2 + 1. Therefore, 

j j f(x,y,z)dS = j J f(*(r,0))\\Tr xTe\\ drdO 

n 2TT n 1 n 
= I / y/r2 + \Jr2 + IdrdO = 

Jo Jo Jo 
• de = -ir. A 

S u r f a c e I n t e g r a l s O v e r G r a p h s 

Suppose S is the graph of a C1 function z = g(x, y). Recall from Section 7.4 that we 
can parametrize S by 

x = u, y = v, z = g(u, v), 

and that in this case 
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so 

JJsf(x,y,z)dS = JJDf(x,y,g(x,y))J 1 + ( j j f ) + dxdy. (4) 

E X A M P L E 2 Let S be the surface defined by z = x2 + y, where D is the region 
0 < x < 1, - 1 < y < 1. Evaluate ffsxdS. 

S O L U T I O N If we let z = g(x, y) = x2 + y, formula (4) gives 

///dS=//W1 + G?) +(l) ""-LI 
= j f ' t \ f \ 2 + 4x

2)'l\Sxdx)\dy= | • Ì f'l(2 + 4x'y"H!,,ly 

= / _ V ! - 2"")./v = i (6"> - 2 « , = V6 - ^ 

= V 2 ( V 3 - I ) . . 

E X A M P L E 3 Evaluate ffsz2dS, where S is the unit sphere x2 + y2 + z2 = 1. 

S O L U T I O N For this problem, it is convenient to use spherical coordinates 
and to represent the sphere parametrically by the equations x = cos 0 sin 0, y — 
sin# sin0, z = cos0, over the region D in the 0(f) plane given by the inequalities 
O < 0 < 7 T , 0 <6 < 2n. From equation (1) we get 

jj^z2dS = J£(cos0)2||T0 xT^dOd^. 

A little computation [use formula (2) of Section 7.4; see Exercise 6] shows that 

\\Te x T 0 | | = s i n 0 . 

(Note that for 0 < 0 < n, we have sin0 > 0). Thus, 

r>2n pit n n rill nn 
z2dS= / cos20sin0i/0J0 

J Js Jo Jo 
1 f271 2 C2jl 

= 3 jf [ - c o s a l o d e = = 2 j 0
 d 6 = 
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This example also shows that on a sphere of radius R, 

n p nilT n7Z 
fds= / / ( 0 , G)R2 sin0 ¿ 0 ¿0, 

J Js Jo Jo 

or, for short, the area element on the sphere is given by 

dS = R2 sin (p dip dO. 

Integrals Over Graphs 
We now develop another formula for surface integrals when the surface can be repre-
sented as a graph. To do so, we let S be the graph of z = g(x, y) and consider formula 
(4). We claim that 

ft 
where 0 is the angle the normal to the surface makes with the unit vector k at the point 
(x, y, g(x, y)) (see Figure 7.5.2). Describing the surface by the equation 0(x, y, z) = 
z — g(x, y) = 0, a normal vector N is V0; that is, 

N = + k (6) 
ox oy 

Figure 7.5.2 The area of a patch of area AS 
over a patch A A is AS = A A/cos 0, where 6 
is the angle the unit normal n makes with k. 
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[see Example 4 of Section 7.3, or recall that the normal to a surface with equation 
g(x,y, z) = constant is given by Vg]. Thus, 

N k 1 
cos 6 = 

J(dgldxY + (dg/dyY+\ 

Substitution of this formula into equation (4) gives equation (5). Note that 
cos 6 = n • k, where n = N/||N|| is the unit normal. Thus, we can write 

dxdy 
d S = — 

n - k 

The result is, in fact, obvious geometrically, for if a small rectangle in the xy plane 
has area A A, then the area of the portion above it on the surface is AS = AA/ cos 6 
(Figure 7.5.2). This intuitive approach can help us to remember formula (5) and to 
apply it in problems. 

Compute f f s x dS, where S is the triangle with vertices (1, 0, 0), 
(0, 1, 0), (0, 0, 1) (see Figure 7.5.3). 

(0, 0,1) K 6 

'i D (0,1,0) 
y 

Figure 7.5.3 In computing a specific surface integral, 
one finds a formula for the unit normal n and computes 
the angle 0 in preparation for formula (5). 

(1,0, 0) 

S O L U T I O N This surface is the plane described by the equation x + y + z = 1. 
Because the surface is a plane, the angle 6 is constant and a unit normal vector is 
n = (1/V3, 1 / \ /3 , 1 / \ /3). Thus, cos 6 = n • k = 1 / 7 3 , and by equation (5), 

J J x dS = y/3 J J xdxdy, 

where D is the domain in the xy plane. But 

y/3 if x dx dy = V3 f f xdydx = V^f x(l —x)dx — ^~. A 
J J D Jo Jo Jo 6 

Integrals of functions over surfaces are useful for computing the mass of a surface 
when the mass density function m is known. The total mass of a surface with mass 
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density (per unit area) m is given by 

M(S) = j j m(x,y,z)dS. (7) 

l S t f f f f W f ¥ B f ° F Let D ^ R3 be the parametrization of the helicoid S = 
of Example 2 of Section 7.4. Recall that 3>(r, 6) = (r cos 0, r sin#, 6), where 0 < 
6 < 2n, and 0 < r < 1. Suppose S has a mass density at (x, y, z) e S equal to twice 
the distance of (x, y, z) from the central axis (see Figure 7.4.2), that is, m(x,y, z) = 
2y/x2 + y2 =2r, in the cylindrical coordinate system. Find the total mass of the 
surface. 

S O L U T I O N Applying formula (7), 

M(S)= f f 2y/x2 + y2 dS = f f 2 rdS= f f 2r\\Tr x T0|| dr d0. 
J J S J JD J J D 

From Example 2 of Section 7.4, we see that ||Tr x Te || = y/\ + r 2 . Thus, 

M(S)= f f 2r>J\+r2drd6 = f f 2r>J\+r2drd6 
J JD JO Jo 

= + r2)3/2]^ dO = 2- (23/2 - 1 )dG = - 1). A 

E X E R C I S E S 

1. Compute f f s xy dS, where S is the surface of the tetrahedron with sides z = 0, y = 0, 
x + z = 1, and* = y. 

2. Evaluate f f s xyz dS, where S is the triangle with vertices (1,0, 0), (0, 2, 0), and (0, 1,1). 

3. Evaluate ffszdS, where S is the upper hemisphere of radius a, that is, the set of (x, y, z) 
with z = y/a2 — x2 — y2. 

4. Evaluate Jfs(x + y + z)dS, where S is the boundary of the unit ball B \ that is, S is the 
set of (X, y, z) with x2 + y2 + z2 = 1. (HINT: Use the symmetry of the problem.) 

5. (a) Compute the area of the portion of the cone x2 + y2 = z2 with z > 0 that is inside 
the sphere x2 + y2 + z2 = 2Rz, where R is a positive constant. 

(b) What is the area of that portion of the sphere that is inside the cone? 

6. Verify that in spherical coordinates, on a sphere of radius R, 

||T0 x Tell d(pd6 = R2 sin0 d<j) dO. 

7. Evaluate ffszdS, where S is the surface z = x2 + y2, x2 + y2 < 1. 
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8. Evaluate the surface integral f f s z2 dS, where S is the boundary of the cube 
C = [— 1, 1] x [— 1, 1] x [—1,1]. (HINT: Do each face separately and add the results.) 

9. Find the mass of a spherical surface S of radius R such that at each point (x ,y,z) e S 
the mass density is equal to the distance of (x, y, z) to some fixed point (x0, yo, z0) € S. 

10. A metallic surface S is in the shape of a hemisphere z = yjR2 —x2 —y2, where (x, y) 
satisfies 0 < x2 +y2 < R2. The mass density at (x, y, z) e S is given by m(x, y, z) = 
x 2 + y2. Find the total mass of S. 

11. Let S be the sphere of radius R. 

(a) Argue by symmetry that 

f f x2 dS = f f y2dS= f f z2 dS. 
J Js J Js J Js 

(b) Use this fact and some clever thinking to evaluate, with very little computation, the 
integral if/* 

(c) Does this help in Exercise 10? 

12. (a) Use Riemann sums to justify the formula 

W)IfsAx'y'z)ds 

for the average value of / over the surface S. 
(b) In Example 3 of this section, show that the average of f ( x , y, z) = z1 over the 

sphere is 1/3. 
(c) Define the center of gravity (x, y, z) of a surface S to be such that x, y, and z are the 

average values of the x, y, and z coordinates on S. Show that the center of gravity of the 
triangle in Example 4 of this section is 

13. Find the x, y, and z coordinates of the center of gravity of the octant of the solid sphere 
of radius R and centered at the origin determined by x > 0, y > 0, z > 0. (HINT: Write this 
octant as a parametrized surface—see Example 3 of this section and Exercise 12.) 

14. Find the z coordinate of the center of gravity (the average z coordinate) of the surface of 
a hemisphere (z < 0) with radius r (see Exercise 12). Argue by symmetry that the average x 
and y coordinates are both zero. 

15. Let D c M2 R3 be a parametrization of a surface S defined by 

x = x(w, v), y = y(u, v), z = z(u, v). 
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(a) Let 

_ /dx dy dz \ and _ /dx dy az \ 
du \ du' du' du J dv \ dv ' dv ' dv 1 ' 

that is, d®/du = Tu and d&/dv = Tw, and set 

E = 
du 

F_d$ d® 
du dv —, G = ~dv\ 

Show that 

y/EG - F* = ||TW x T J 

and that the surface area of S is 

A(S) -IL^ F2 dudv. 

In this notation, how can we express f f s f d S for a general function o f / ? 
(b) What does the formula for A(S) become if the vectors 9<I>/du and d$>/dv are 

orthogonal? 
(c) Use parts (a) and (b) to compute the surface area of a sphere of radius a. 

16. Dirichlet's functional for a parametrized surface D is defined by12 

-na d$> I 
du 

+ d<f> 
dv 

Idu dv. 

Use Exercise 15 to argue that the area A(Q>) < and equality holds if 

1 \ \ 2 

II du II dv || du dv 

Compare these equations with Exercise 15 and the remarks at the end of Section 7.4. A 
parametrization <I> that satisfies conditions (a) and (b) is said to be conformal. 

17. Let Del 2 and D R2 be a smooth function v) = (x(u, v), y(u, v)) 
satisfying conditions (a) and (b) of Exercise 16 and assume that 

det 

dx dx 
du 
8y dy 
du dv 

> 0. 

12 Dirichlet's functional played a major role in the mathematics of the nineteenth century. The mathematician Georg 
Friedrich Bernhard Riemann (1826-1866) used it to develop his complex function theory and to give a proof of the 
famous Riemann mapping theorem. Today it is still used extensively as a tool in the study of partial differential equations. 
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Show thatx and y satisfy the Cauchy-Riemann equations dx/du = dy/dv, dx/dv = 
—dy/du. Conclude that V2<I> = 0 (i.e., each component of <I> is harmonic). 

18. Let S be a sphere of radius r and p be a point inside or outside the sphere (but not on it). 
Show that 

f f ^ dS — ^ Pls $ 
JJS ||x-p|| ~~ \4nr2/d if p is outside S, 

where d is the distance from p to the center of the sphere and the integration is over the sphere. 

19. Find the surface area of that part of the cylinder x2 + z2 = a2 that is inside the cylinder 
x2 y2 = lay and also in the positive octant (x > 0, y > 0, z > 0). Assume a > 0. 

20. Let a surface S be defined implicitly by F(x, y, z) = 0 for (x, y) in a domain D of R2. 
Show that 

mi'i-fLMW^f*»-
Compare with Exercise 18 of Section 7.4. 

7.6 Surface Integrals of Vector Fields 
The goal of this section is to develop the notion of the integral of a vector field over a 
surface. Recall that the definition of the line integral of a vector field was motivated 
by the fundamental physical notion of work. Similarly, there is a basic physical notion 
of flux that motivates the definition of the surface integral of a vector field. 

For example, if the vector field is the velocity field of a fluid (perhaps the velocity 
field of a flowing river), and one puts an imagined mathematical surface into the fluid, 
one can ask: "What is the rate at which fluid is crossing the given surface (measured 
in, say, cubic meters per second)?" The answer is given by the surface integral of the 
fluid velocity vector field over the surface. 

We shall come back to the physical interpretation shortly and reconcile it with 
the formal definition that we give first. 

Definition of the Surface Integral 
We now define the integral of a vector field, denoted F over a surface S. We first 
give the definition and later in this section give its physical interpretation. This can 
also be used as a motivation for the definition if the reader so desires. Also, we shall 
start with a parametrized surface <I> and later study the question of independence of 
parametrization. 
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D E F I N I T I O N : The Surface Integral of Vector Fields Let F be a vector 
field defined on S, the image of a parametrized surface The surface integral 
of F over denoted by 

is defined by (see Figure 7.6.1)) 

i f F • dS = i f F-(Tm x Tv)du dv. 
J J® J J D 

D 

F.(T„ X T„) 
Zi I I T M X T J 

Figure 7.6.1 The geometric significance of F • (TW x Tv). 

Let D be the rectangle in the 60 plane defined by 

0 < 0 < 2n, 0 < 0 < 7r, 

and let the surface S be defined by the parametrization <I>: D R3 given by 

x = cos0s in0 , j = s in0s in0 , z = cos0. 

(Thus, 6 and 0 are the angles of spherical coordinates, and S is the unit sphere 
parametrized by 3>.) Let r be the position vector r(x, y, z) = xi + y\ + zk. Compute 
ff$>r • dS. 

S O L U T I O N First we find 

T^ = (—sin 0 sin 0)i + (sin 0 cos 6)j 

Tff, = (cos 0 cos 0)i + (sin 0 cos 0) j — (sin 0)k, 

and hence 

Te xT<p = (—sin20 cos 0)i — (sin2 0 sin0)j — (sin 0 cos 0)k. 
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Then we evaluate 

r-CT* x T 0 ) = (xi + x j + z k ) . ( T e x T 0 ) 

= [(cos 6 sin 0)i + (sin 6 sin 0) j + (cos 0)k] 

• (—sin 0)[(sin 0 cos #)i + (sin 0 sin + (cos 0)k] 

= (—sin0)(sin2 0 cos2 6 + sin2 0 sin2 6 + cos2 0) = —sin0. 

Thus, 

f f r-dS = f f —sin0 J0 dO = f (-2)d0 = -4 jr . 
J J® J JD JO 

O r i e n t a t i o n 

An analogy can be drawn between the surface integral f f ^ F • dS and the line integral 
/ c F • ds. Recall that the line integral is an oriented integral. We needed the notion of 
orientation of a curve to extend the definition of fc F • ds to line integrals fc F • ds over 
oriented curves. We extend the definition of f f ^ F • dS to oriented surfaces in a similar 
fashion; that is, given a surface S parametrized by a mapping we want to define 
f f s F • dS = f f ^ F-dS and show that it is independent of the parametrization, except 
possibly for the sign. To accomplish this, we need the notion of orientation of a surface. 

D E F I N I T I O N : Oriented Surfaces An oriented surface is a two-sided sur-
face with one side specified as the outside or positive side; we call the other 
side the inside or negative side.13 At each point (x, y, z) e S there are two unit 
normal vectors ni and n2, where ni = —n2 (see Figure 7.6.2). Each of these two 
normals can be associated with one side of the surface. Thus, to specify a side 
of a surface S, at each point we choose a unit normal vector n that points away 
from the positive side of S at that point. 

t 
n 2 

Figure 7.6.2 The two possible unit normals to a 
surface at a point. 

13 We use the term "side" in an intuitive sense. This concept can be developed rigorously, but this will not be done here. 
Also, the choice of the side to be named the "outside" is often dictated by the surface itself, as, for example, is the case 
with a sphere. In other cases, the naming is somewhat arbitrary (see the piece of surface depicted in Figure 7.6.2, for 
instance). 
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This definition assumes that our surface does have two sides. In fact, this is nec-
essary, because there are examples of surfaces with only one side! The first known 
example of such a surface was the Möbius strip (named after the German mathemati-
cian and astronomer A. F. Möbius, who, along with the mathematician J. B. Listing, 
discovered it in 1858). Pictures of such a surface are given in Figures 7.6.3 and 7.6.4. 
At each point of M there are two unit normals, nj and n2. However, ni does not 
determine a unique side of M, and neither does n2. To see this intuitively, we can 
slide n2 around the closed curve C (Figure 7.6.3). When n2 returns to a fixed point p 
on C it will coincide with ni, showing that both ni and n2 point away from the same 
side of M and, consequently, that M has only one side. 

Figure 7.6.4 is a Möbius strip as drawn by the well-known twentieth-century 
mathematician and artist M. C. Escher. It depicts ants crawling along the Möbius 
band. After one trip around the band (without crossing an edge) they end up on the 
"opposite side" of the surface. 

Figure 7.6.4 Ants walking on a Möbius strip. 

Let <I>: D R3 be a parametrization of an oriented surface S and suppose 
S is regular at $(w0, vo), (u0j v0) e D\ thus, the vector (TWo x TUo)/||TMo x 1 \ J | 
is defined. If n(<£(wo» uo)) denotes the unit normal to S at <£(wo> VQ), it follows 

i 
Figure 7.6.3 The Möbius strip: Slide n2 around C once; 
when n2 returns to its initial point, it will coincide with 
ni = —n2. 
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(T„0 x TUO)/I|TMo x TVo 

The parametrization <I> is said to be orientation-preserving if we have the + 
sign; that is, if (T„ x TV)/\\TU x T J = n($(w, v)) at all (u, v) e D for which S is 
smooth at v). In other words, is orientation-preserving if the vector TM x T^ 
points to the outside of the surface. If TM x T^ points to the inside of the surface at all 
points (u,v) e D for which S is regular at <&(u, v), then <I> is said to be orientation-
reversing. Using the preceding notation, this condition corresponds to the choice 
(Tm x TV)/\\TU x T J = -n(*(u, v)). 

It follows from this discussion that the Mobius band M cannot be parametrized 
by a single parametrization for which n = T„ x T^ / 0 and n is continuous over 
the whole surface14 (if there were such a parameterization, then M would indeed 
have two sides, one determined by n and one determined by —n). The sphere in 
Example 1 can be parametrized by a single parametrization, but not by one that is 
everywhere one-to-one—see the discussion at the beginning of Section 7.4. 

Thus, any one-to-one parametrized surfacefor which Tu 
x Tv never vanishes can 

be considered as an oriented surface with a positive side determined by the direction 
ofJu x Tv. 

m 

H S ^ M K W Q We can give the unit sphere x2 + y2 + z2 = 1 in M3 (Figure 7.6.5) 
an orientation by selecting the unit vector n(x, y, z) = r, where r = xi + y\ + zk, 
which points to the outside of the surface. This choice corresponds to our intuitive 
notion of outside for the sphere. 

Now that the sphere S is an oriented surface, consider the parametrization <I> of 
S given in Example 1. The cross product of the tangent vectors and T^—that is, 

l4There is a single parametrization obtained by cutting a strip of paper, twisting it, and gluing the ends, but it produces a 
discontinuous n on the surface. 
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a normal to S is given by 
(—sin0)[(cos# sin0)i + (sin 6 sin0)j + (cos0)k] = —rsin0. 

Because—sin 0 < 0 for 0 < 0 < n , this normal vector points inward from the sphere. 
Thus, the given parametrization <I> is orientation-reversing. By swapping the order of 
6 and 0, we would get an orientation-preserving parametrization. A 

Orientation and the Vector Surface Element of a Sphere 
Consider the sphere of radius R, namely, x2 + y2 + z2 = R2. It is standard practice 
to orient the sphere with the outward unit normal. In terms of the position vector r = 
x i + x j + zk, the outward unit normal is given by 

r 
n = —. R 

The order of spherical coordinates that goes along with this orientation, as is evident 
from Example 2, is given by the order (0, 6). The computation in Example 2 shows 
that the surface-area element is then given by 

dS = n - (T 0 x Te) d(j) dG = rR sin 0 J 0 dG = nR2 sin 0 J 0 dO. 

The Orientation of Graphs 
The next example discusses the orientation conventions for graphs. We shall compute 
the area element on graphs later in this section. 

E X A M P L E 3 Let S be a surface described by z = g(x, y). As in equation (6), 
Section 7.5, there are two unit normal vectors to S at (xo, yo, g(xo, j>o))* namely, ±n, 
where 

.ÈK 
dx 

dg 
dy 

Oo, yo)i + k 

'[sH +[ (*o, yo) + 1 

We can orient all such surfaces by taking the positive side of S to be the side 
away from which n points (Figure 7.6.6). Thus, the positive side of such a surface is 

outside 

/ 

Figure 7.6.6 n points away from the outside 
of the surface. 
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determined by the unit normal n with positive k component—that is, it is upward-
pointing. If we parametrize this surface by <&(u, v) = (u, v, g(u, v)), then <I> will be 
orientation-nreservine. A 

Independence of Parametrization 
We now state without proof a theorem showing that the integral over an oriented 
surface is independent of the parametrization. The proof of this theorem is analogous 
to that of Theorem 1 (Section 7.2); the heart of the proof is again the change of 
variables formula—this time applied to double integrals. 

T H E O R E M 4: Independence of Surface Integrals on Parame-
t r iza t ions Let S be an oriented surface and let 3>i and 3>2 be two regular 
orientation-preserving parametrizations, with F a continuous vector field defined 
on S. Then 

f f F-dS= f f F• dS. 
J J <$> i J J <I>2 J& 2 

If i is orientation-preserving and 3>2 orientation-reversing, then 

f f F - dS = - ( f F-dS. 
J J <I>, J J & 2 

If / is a real-valued continuous function defined on S, and if 3>i and 3>2 are 
parametrizations of S, then 

//, - fi fdS. 
<I>2 

Note that if / = 1, we obtain 

A(S)= f f dS= f f dS, 
J J$1 J J$2 

thus showing that area is independent of parametrization. 
We can therefore unambiguously use the notation 

(or a sum of such integrals, if S is a union of parametrized surfaces that intersect only 
along their boundary curves) where is an orientation-preserving parametrization. 
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Theorem 4 guarantees that the value of the integral does not depend on the selection 
o f $ . 

Relation with Scalar Integrals 
Recall from formula (1) of Section 7.2 that a line integral fc F • ds can be thought of 
as the path integral of the tangential component of F along c (although for the case 
in which c intersects itself, the integral obtained is technically not a path integral). 
A similar situation holds for surface integrals, because we are assuming that the 
mappings defining the surface S are one-to-one except perhaps on the boundary of 
D, which can be ignored for the purposes of integration. Thus, in defining integrals 
over surfaces, we assume in this book that the surfaces are nonintersecting. 

For an oriented smooth surface S and an orientation-preserving parametrization 
of S, we can express f f s F • dS as an integral of a real-valued function / over the 

surface. Let n = (TM x TV)/\\TU x Tv || be the unit normal pointing to the outside of 
S. Then 

f f F -dS = f f F-dS = f f F- (T t t xTv)dudv 
J JS J J<f> J JD 

- J h ' i i O T ) l | T " * T J < w " 

= i f (F-n) | |T, • T„|| </fi dv = ff(F«)dS = i f f d S , 
J JD JJS JJs 

where / = F • n. We have thus proved the following theorem. 
THEOREM 5 f f s F • JS, the surface integral of F over S, is equal to the integral 
of the normal component of F over the surface. In short, 

f l F . r f S = / / s F . „ « U . 

The observation in Theorem 5 can often save computational effort, as Example 4 
demonstrates. 

T h e Physical Interpretat ion of Surface Integrals 
The geometric and physical significance of the surface integral can be understood by 
expressing it as a limit of Riemann sums. For simplicity, we assume D is a rectangle. 
Fix a parametrization of S that preserves orientation and partition the region D 
into n2 pieces Ay, 0 < / < n — 1, 0 < j < n — 1. We let Au denote the length of the 
horizontal side of DtJ and Av denote the length of the vertical side of Let (w, v) 
be a point in Djj, and (x, y, z) = v) the corresponding point on the surface. We 
consider the parallelogram with sides Au Tw and AvTv lying in the plane tangent to 
S at (x, y, z) and the parallelepiped formed by F, Au Tu, and AvTv. The volume of 
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the parallelepiped is the absolute value of the triple product 

F • (Au Tu x Av Tu) = F • (Tu x Tv) Au Av. 

The vector Tu x is normal to the surface at (x, y, z) and points away from the out-
side of the surface. Thus, the number F • (TM x Tv) is positive when the parallelepiped 
lies on the outside of the surface (Figure 7.6.7). 

Figure 7.6.7 F • (Tw x Tv) > 0 when the parallelpiped formed by Av Tv, Au Tu, 
and F lies to the "outside" of the surface S. 

In general, the parallelepiped lies on that side of the surface away from which F 
is pointing. If we think of F as the velocity field of a fluid, F(x, y, z) is pointing in 
the direction in which fluid is moving across the surface near (x, y, z). Moreover, the 
number 

| F - ( T M A u X T „ AV)\ 

measures the amount of fluid that passes through the tangent parallelogram per unit 
time. Because the sign of F • (A u Tu x Av T^) is positive if the vector F is pointing 
outward at (x, y, z) and negative if F is pointing inward, y F • (TM x T^) Au Av 
is an approximate measure of the net quantity of fluid to flow outward across the 
surface per unit time. (Remember that "outward" or "inward" depends on our choice 
of parametrization. Figure 7.6.8 illustrates F directed outward and inward, given Tu 

and T,,.) Hence, the integral f f s F • dS is the net quantity offluid to flow across the 
surface per unit time, that is, the rate of fluidflow. This integral is also called the flux 
of F across the surface. 

In the case where F represents an electric or a magnetic field, f f s F • dS is also 
commonly known as the flux. The reader may be familiar with physical laws (such 
as Faraday s law) that relate flux of a vector field to a circulation (or current) in a 
bounding loop. This is the historical and physical basis of Stokes's theorem, which 
we will discuss in Section 8.2. The corresponding principle in fluid mechanics is 
called Kelvin s circulation theorem. 
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Tv 

4 

Tu 
Figure 7.6.8 When F • (Tw x Tv) > 0 
(left), F points outward; when 
F • (Tm x Tv) < 0 (right), F points 
inward. 

Surface integrals also apply to the study of heat flow. Let T(x, y, z) be the temper-
ature at a point (x, y, z) e W C R3, where W is some region and T is a C1 function. 
Then 

dT dT dT VT = —i+ —j + —k dx dy dz 

represents the temperature gradient, and heat "flows" with the vector field —kVT = F, 
where A: is a positive constant (see Section 8.5). Therefore, ffsF -dS is the total rate 
of heat flow or flux across the surface S. 

Suppose a temperature function is given in R3 by the formula 
T(x, y, z) = x2 + y2 + z2, and let S be the unit sphere x2 + y2 + z2 = 1 oriented 
with the outward normal (see Example 2). Find the heat flux across the surface S if 
k = 1. 

SOLUTION We have 

F = - V r ( x , y, z) = —2xi - 2y\ - 2zk. 

On S, the vector n(x, y, z) = xi + y] + zk is the unit "outward" normal to S at 
(x, y, z), and / ( x , y, z) = F • n = —2x2 — 2y2 — 2z2 = —2 is the normal component 
of F. From Theorem 5 we can see that the surface integral of F is equal to the integral 
of its normal component / = F • n over S. Thus, 

iL F . dS = j j fdS = ~ 2 f f d S = ~2A(S) : -2(4TT) = - 8 7T. 

The flux of heat is directed toward the center of the sphere (why toward?). Clearly, 
our observation that ffsF- dS = J f s f d S has saved us considerable computational 
time. 

In this example, F(x, y, z) = — 2xi — 2yj — 2zk could also represent an electric 
field, in which case f f s F • dS = — 87T would be the electric flux across S. A 
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E X A M P L E 5 Gauss' Law There is an important physical law, due to the great 
mathematician and physicist K. F. Gauss, that relates the flux of an electric field E 
over a "closed" surface S (for example, a sphere or an ellipsoid) to the net charge Q 
enclosed by the surface, namely (in suitable units), 

W E- dS — Q (1) 

(see Figure 7.6.9). Gauss' law will be discussed in detail in Chapter 8. This law is 
analogous to Ampere's law (see Example 12, Section 7.2). 

S = closed surface 

E = electric field 

Figure 7.6.9 Gauss' law: JfsE-dS = Q, 
where Q is the net charge inside S. 

Suppose that E = En; that is, E is a constant scalar multiple of the unit normal 
to S. Then Gauss' law, equation (1) in Example 5, becomes 

Js 

because E = E • n. Thus. 

f f E-dS = f f EdS = E f f dS= Q 
J J s J J s J J s 

E = (2) 
A(S) K 

In the case where S is the sphere of radius R, equation (2) becomes 

(see Figure 7.6.10). 

Now suppose that E arises from an isolated point charge, Q. From symmetry it is reasonable that E = En, where n is the unit normal to any sphere centered at Q. Hence, equation (3) holds. Consider a second point charge, Qo, located at a distance 
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/ 
Figure 7.6.10 The field E due to a point charge Q is 
E = Qn/4jtR2. 

R from Q. The force F that acts on this second charge, Qo, is given by 

QQo 

If F is the magnitude of F, we have 

4jtR2 ' 

which is Coulomb's law for the force between two point charges.15 A 

Surface Integrals Over Graphs 
Finally, let us derive the surface-integral formulas for vector fields F over surfaces S 
that are graphs of functions. Consider the surface S described by z = g(x, y), where 
(x, y) e D, where S is oriented with the upward pointing unit normal: 

dg. dg. 
1 j + k 

9x dy 
n = m+m 2 

+ 1 

We have seen that we can parametrize S by 3>: D R3 given by 3>(x,>>) = 
(x, y, g(x, y)). In this case, ffsF-c/S can be written in a particularly simple form. 
We have 

T x = i + — k, T y = j + — k. 
3x y J dy 

15Sometimes one sees the formula F = (\/Ajz£q)QQq/R2. The extra constant s0 appears when MKS units are used for 
measuring charge. We are using CGS, or Gaussian, units. 
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Thus, Tx xTy = -(dg/dx)i - (dg/dy)j + k. If F = Fii + F2j + F3k is a continu-
ous vector field, then we get 

T h e Surface Integral of a Vector Field Over a G r a p h S 

J J F • dS = j j F-(TX xTy)dxdy 

-/¿K-ëM-SH (4) 
dx dy. 

E X A M P L E 6 The equations 

z = 12, X 2 + / < 2 5 

describe a disk of radius 5 lying in the plane z = 12. Suppose r is the vector field 

r(x, y, z) = xi + y\ + zk. 

Compute f f s r - d S . 

S O L U T I O N We shall do this in three ways. First, we have dz/dx = dz/dy = 0, 
because z = 12 is constant on the disk, so 

r(x, y, z) - (Tx x Ty) = r(x, y, z)-(ixj) = r(x,y, z) - k = z. 

Using the original definition at the beginning of this section, the integral becomes 

f f r-dS= f f zdxdy= f f 12dx dy = 12(area of D) = 300n. 
J JS J JD J JD 

A second solution: Because the disk is parallel to the xy plane, the outward unit 
normal is k. Hence, n(x, y,z) = k and r • n = z. However, \\TX xT^f = ||k|| = 1, 
and so we know from the discussion preceding Theorem 5 that 

f f r-dS= f f r n dS = f f z d S = f f 12 dx dy = 300tt. 
J Js J Js J Js J JD 
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Third, we may solve this problem by using formula (4) directly, with g(x, y) 
and D the disk x2 + y2 < 25: 

JJr-dS = f f (x-0+y0 + 12) dx dy = 12(areaofD) = 300TT. A 

Summary: Formulas for Surface Integrals 
1. Parametrized Surface: v) 

(a) Integral of a scalar function / : 

f(®(u,v))\\Tu xTJ dudv 
D 11/ fh 

(b) Scalar surface element: 

dS= \\TU x T J dudv 

(c) Integral of a vector field F: 
J j F -dS = j j F-(TM xTv)dudv 

(d) Vector surface element: 

dS = (Tm x T V ) d u d v = n dS 

2. Graph :z = g(x,y) 

(a) Integral of a scalar function / : 

lis ̂  iL 
(b) Scalar surface element: 

dx dy 

f(X'y>8(X>y))dXdy 
cos 6 

dS = 

-m
 +(i) cos 6 

where cos 0 = n • k, and n is a unit normal vector to the surface. 
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(c) Integral of a vector field F: 

(d) Vector surface element: 

dS = n • dS = ( ^ dx dy 

3. Sphere : x2+y2+z2 = R2 

(a) Scalar surface element: 

dS = R2 sin <pd<j)d6 

(b) Vector surface element: 

dS = (xi + y\ + zV)R sin (pd^dO = rR sin <pd(pdO = nR2 sin 0 d(p dO 

E X E R C I S E S 

1. Let the temperature of a point in R3 be given by T(x, y, z) = 3x2 + 3z2. Compute the 
heat flux across the surface x2 + z2 = 2,0 < y < 2, \fk= 1. 

2. Compute the heat flux across the unit sphere S if T(x, y,z) = x. Can you interpret your 
answer physically? 

3. Let S be the closed surface that consists of the hemisphere x2 + y2 + z2 = 1, z > 0, 
and its base x2 + y2 < 1, z = 0. Let E be the electric field defined by E(x, y, z) = 
2xi + 2y] + 2zk. Find the electric flux across S. (HINT: Break S into two pieces S\ and 
S2 and evaluate f f S i E • dS and E • dS separately.) 

4. Let the velocity field of a fluid be described by F = «Jy\ (measured in meters per 
second). Compute how many cubic meters of fluid per second are crossing the surface 
x2-hz2 = 1,0 < y < 1,0 < x < 1. 

5. Evaluate f f s (V x F) • dS, where S is the surface x2 + y2 + 3z2 = 1, z < 0, and F is the 
vector field F = yi — xj + zjt3j>2k. (Let n, the unit normal, be upward pointing.) 

6. Evaluate f f s ( y x F) • dS where F = (x2 + y - 4)i + 3xy] + (2xz + z2)k and S is the 
surface x2 + _y2 + z2 = 1 6 , z > 0 . (Let n, the unit normal, be upward pointing.) 
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7. Calculate the integral f f s F • dS, where S is the entire surface of the solid half ball 
X2 + y2 + z2 < 1, z > 0, and F = (JC + 3y5)i + (y + 10xz)j + (z - xy)k. (Let S be oriented 
by the outward pointing normal.) 

8. * A restaurant is being built on the side of a mountain. The architect's plans are shown in 
Figure 7.6.11. 

Top view 

Figure 7.6.11 Restaurant plans. 

x2+y2 + z = 4R2 

— Restaurant x2+ 

(a) The vertical curved wall of the restaurant is to be built of glass. What will be the 
surface area of this wall? 

(b) To be large enough to be profitable, the consulting engineer informs the developer 
that the volume of the interior must exceed JTR4/2. For what R does the proposed structure 
satisfy this requirement? 

(c) During a typical summer day, the environs of the restaurant are subject to a 
temperature field given by 

T(x, y, z) = 3x2 + ( y - R)2 + 16z2. 

A heat flux density V = —k V T (k is a constant depending on the grade of insulation to be 
used) through all sides of the restaurant (including the top and the contact with the hill) 
produces a heat flux. What is this total heat flux? (Your answer will depend on R and k.) 

9. Find the flux of the vector field V(x, y, z) = 3xy2i + 3x2y\ + z3k out of the unit sphere. 

10. Evaluate the surface integral ffsF*ndA, where F(x, y,z) = i + j + z(x2 + j>2)2k and S 
is the surface of the cylinder x2 + y2 < l , 0 < z < 1. 

*The solution to this problem may be somewhat time-consuming. 
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11. Let S be the surface of the unit sphere. Let F be a vector field and Fr its radial 
component. Prove that 

What is the corresponding formula for real-valued functions / ? 

12. Prove the following mean-value theorem for surface integrals: If F is a continuous vector 
field, then 

for some point Q e S, where A(S) is the area of S. [HINT: Prove it for real functions first, by 
reducing the problem to one of a double integral: Show that if g > 0, then 

for some Q e D (do it by considering ( f f D fgdA)/(ffDgdA) and using the intermediate 
value theorem).] 

13. Work out a formula like that in Exercise 11 for integration over the surface of a cylinder. 

14. Let S be a surface in R3 that is actually a subset D of the xy plane. Show that the integral 
of a scalar function f(x,y,z) over S reduces to the double integral of f(x,y,z) over D. 
What does the surface integral of a vector field over S become? (Make sure your answer is 
compatible with Example 6.) 

15. Let the velocity field of a fluid be described by F = i + xj + zk (measured in meters per 
second). Compute how many cubic meters of fluid per second are crossing the surface 
described by x2 + y2 -h z2 = 1, z > 0. 

16. (a) A uniform fluid that flows vertically downward (heavy rain) is described by the 
vector field F(x, y, z) — (0, 0, — 1). Find the total flux through the cone z = (x2 + y2)l/2, 
x2 +y2 < 1. 

(b) The rain is driven sideways by a strong wind so that it falls at a 45° angle, and it is 
described by F(x, y, z) = - ( A / 2 /2 , 0, A/2/2). Now what is the flux through the cone? 

17. For a > 0, b > 0, c > 0, let S be the upper half ellipsoid 

p2jr pir 
F-dS= / Frsin<pd<pd0. s Je=o J(p=o '0=0 J 0=0 

5 = 

with orientation determined by the upward normal. Compute f f s F • dS where F(x, y,z) = (x\ 0, 0). 
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18. If S is the upper hemisphere {(*, y, z) \ x2 + y2 + z2 = 1, z > 0} oriented by the normal 
pointing out of the sphere, compute f f s F • dS for parts (a) and (b). 

(a) F(x,y,z) = xi + y] 
(b) F(x,y,z) =yi + x] 
(c) For each of these vector fields, compute jfjfs (V x F) • dS and fc F • ds where C is 

the unit circle in the xy plane traversed in the counterclockwise direction (as viewed from the 
positive z axis). (Notice that C is the boundary of S. The phenomenon illustrated here will be 
studied more thoroughly in the next chapter, using Stokes' theorem.) 

7.7 Applications to Differential Geometry, Physics, and 
Forms of Life* 

In the first half of the nineteenth century, the great German mathematician Karl 
Friedrich Gauss developed a theory of curved surfaces in R3 . More than a century 
earlier, Isaac Newton had defined a measure of the curvature of a space curve, and 
Gauss was able to find extensions of this idea of curvature that would apply to surfaces. 
In so doing, Gauss made several remarkable discoveries. 

Curvature of Surfaces 
For paths c: [a, b] ^ R3 that have unit speed—that is, ||c'(i)ll = 1—the curvature K 
of the image curve *c(c(i)) at the point c (t) is defined to be the length of the acceleration 
vector. That is, || || = x(c(t)). For paths c in space, the curvature is a true measure 
of the curvature of the geometric image curve C. As we saw at the end of Section 
7.1, the "total curvature" f K ds over C has "topological" implications. The same, 
and even more, will hold for Gauss' definition of the total curvature of a surface. We 
begin with some definitions. 

Let D —> R3 be a smooth parametrized surface. Then, as we know, 

Tu = — and 
ÔU 

T„ = 
8(D 
~dv 

are tangent vectors to the image surface S = at the point v). We will also 
assume that there is a well-defined normal vector; that is, we assume the surface is 
regular: T „ x T „ ^ 0 . 

Let 

du du 

In Exercise 15 of Section 7.5, we saw that 

G 
\~dv 

IIT« x T J 2 = EG F2. 

"This section can be skipped on a first reading without loss of continuity. 
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For notational reasons, we denote EG - F2 by W. Furthermore, we let 

Tu x T^ Tm x Tj; 
~ ii Tm x t j ~ YW 

denote the unit normal vector to the image surface at p = , v). Next we will define 
two new measures of the curvature of a surface at p—the "Gauss curvature," K(p), 
and the "mean curvature," H(p). Both of these curvatures have deep connections to 
the curvature of space curves, which illuminate the meaning of their definitions, but 
we do not explore these here. 

To define these two curvatures, we first define three new functions I, m, n on S 
as follows: 

L(p) = N(k, V) • ̂  = N(u, v) • $ UU 

d2$ 
m(p) = N(u, v) • —— = N(k, V) • <f>uv (1) 

duo v 
d2& 

n(p) = N(u, v) • —— = N(u, v) • <&vv. 
dvz 

The Gauss curvature K(p) of S at p is given by 

K(P) 
in — m2 

W (2) 

and the mean curvature H(p) of S at p is defined by 16 

Hip) 
Gt + En- 2Fm 

2W (3) 

where the right-hand sides of both expressions are calculated at the point p = <&(u, v). 

EXAMPLE 1 Planes Have Zero Curvature Let v) = OLU + (3v + 7 , 

(u,v) e l 2 , where ct, (3,7 are vectors in R3. According to Example 1 of Section 
7.3, this determines a parametrized plane in R3. Show that at every point, both the 
Gauss and mean curvatures are zero, and hence K and H vanish identically. 

SOLUTION Because <&uu = &uv = <&vv = 0, the functions £, m,n vanish 
everywhere, and so do H and K. Thus, a plane has "zero" curvature. Hence, at 
least in this example, we ought to be convinced that H and K actually do measure 
the flatness of the plane. Conversely, one can show that if H and K vanish identically, 
then S is part of a plane (see Exercise 10). A 

1 technically speaking, K(p) and H(p) could, in principle, depend on the parametrization of S, but one can show that 
they are, in fact, independent of 
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EXAMPLE 2 Curvature of a Hemisphere Let 

v) = (w, v,g(u, u)), 

where u) 2 U 2 u2 is a parametrization of the "upper hemisphere" of 
radius R. Show that the Gauss curvature at every point is 1 /R2 and the mean curvature 
is Ì/R. 

SOLUTION We must first calculate the following quantities: 

TM» Ty, T u X Tv, M̂UJ E, G, , ¿72, ti. 

First of all, we have 

^ w = T u = 1 . k 
Vi?2 - U 2 - V 2 

V = Ti; = j 7== ^ .k 
V R 2 - v 2 - V 2 

From formula (2) in Section 7.3, we have 

T x T — ——i — — i-I-k 
LU * 1 V ^ 1 ^ J I ^ 

du d v 
u • I v , I 

l H— j + k ^R2 -u2 -v2 VR2 -u2 -V2 

Therefore, 

? u2 R2 - v2 

E = \\®u\\2 = l + R2 — u2 — v2 R2 — u2 — v2 

G = II*« 2 R2 - u2 

R2 — u2 — v2 

uv F = , - $ u V R2 — u2 — v2 

From Exercise 15 of Section 7.5, we know that 

9 _ 9 (R2 - v2)(R2 - u2) - u2v2 

| |TMXTJ| 2 = EG-F2 v a ; (R2 -u2 - v2)2 

R4 - R 2 U 2 - R2V2 R2 

W 
(R2 -u2 - i;2)2 (R2 -u2- v2) 
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Now a direct calculation shows that 

^MM - - ^ 
R2- V2 

(R2 — u2 -- D2)3/2 

R2- U2 

~ (R2 — u2 -- U2)3/2 

uv 

— - - - - - k 

?uv — - - _ _ k 
(R2 -u2- v2)3/2 

Furthermore, 

jy Tm x T^ Tu x 
" II Tm x T J = y w 

SRI _ -»'2 _ „2 W — v / u v 
. . i H—. j + k 

R \y/R2 - u2 - v2 JR2 -u2 - v2 

1 
R 

(u\ + f j -f — u2 — f 2 k 

Thus, 

£ = N • uv 

n = N • <I> 

m = N- <I> uv 

i j ( R l 

-v2 

R 1 [R2 - u2 — V2 

( R2 u2 

R * u2 — V2 

i | f uv 
I R 2 - u2 — V2 

Therefore, 

9 1 / (R2 - v2)(R2 - u2) - u2 v2 

In — m R2 V (R2 -u2- v2)2 

1 
R2 — u2 — v2 

Dividing this by W yields K = 1 / R2. Thus, the Gauss curvature does not change 
from point to point on the hemisphere; that is, it is constant. This conforms to our 
intuition that the sphere is perfectly symmetrical and that its curvature is everywhere 
equal.-Hence, the mean curvature should also be constant. This is verified by the 
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following calculation: 

Gi +En- 2Fm 
H = 2W 

I f / R2 - u2 \ 1 / R2 - v2 \ 
~ 2W | \R2 — u1 — v1 J R \R2 -u2 - v2 J 

/ R2-v2 \ 1 / R 2 - U 2
 \ u2v2 ) 

+ \R2-u2-v2) R — t/2 — î;2/ ~ 2 - w2 - i;2)2 J 

1 | | _ 1 
~ TF [ R 2 - U 2 - V 2 \ ~ ~ R' 

Surfaces of Constant Curvature 
Surfaces of constant Gauss and mean curvature are of great interest to mathematicians. 
It was known in the nineteenth century that the only closed and bounded smooth 
surfaces with "no boundary" and with constant Gauss curvature were spheres. In the 
twentieth century, the Russian mathematician Alexandrov showed that the only closed 
and bounded smooth surfaces without a boundary that do not intersect themselves 
and that have constant mean curvature must also be spheres. Mathematicians believed 
that Alexandrov's result held even if the surface was allowed to i ntersect itself, but no 
one could find a proof. In 1984, Professor Henry Wente (Toledo, Ohio) startled the 
world by finding a self-intersecting torus of constant mean curvature. 

Surfaces of constant mean curvature are physically relevant and occur throughout 
nature. Soap bubble formations have constant nonzero mean curvature (see Figure 
7.7.1), and soap film formations (containing no air) have constant mean curvature 
zero (see Figures 7.7.2 and 7.7.3). 

Figure 7.7.1 Soap bubble formation; H = constant. 
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Figure 7.7.2 Ahelicoid, 
H = 0. 

Figure 7.7.3 film, H = 0, spanning two 
circular wires; this one is the catenoid. 

In the early nineteenth century, the French mathematician Delaunay discovered 
all surfaces of revolution that have constant mean curvature. They are the cylinder, 
sphere, catenoid, unduloid, and nodoid. The catenoid exists as a soap film surface 
spanning two circular contours. 

Optimal Shapes in Nature 
Throughout the ages, people have speculated on why things are shaped the way they 
are. Why are the earth and the stars "round" and not cubical? Why are life forms 
shaped the way they are? 

In 1917, the British natural philosopher D'Arcy Thompson published a provoca-
tive work entitled On Growth and Form, in which he investigated the forces behind 
the creation of living forms in nature. He wrote: 

In an organism, great or small, it is not merely the nature of the motions of 
the living substance which we must interpret in terms of force (according 
to kinetics), but also the conformation of the organism itself, whose 
permanence or equilibrium is explained by the interaction or balance of 
forces, as described in statics. 

Surprisingly, Thompson discovered all of Delaunay's surfaces in the form of unicel-
lular organisms (see Figure 7.7.4). The constant mean curvature of these organisms 
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can be explained by minimum principles similar to those described in the Historical 
Note in Section 3.3. In 1952, Watson and Crick determined that the structure of DNA 
is that of a double helix, a discovery that set the stage for the genetic revolution. We 
know from soap films, as in Figure 7.2.2, that nature likes helicoid forms, and nature 
tends to repeat patterns. A better understanding of the scientific principles underly-
ing life may ultimately help mathematics play a more prominent role in this area of 
theoretical biology. 

Figure 7.7.4 Surfaces of revolution of 
constant mean curvature as unicellulars. 

Curvature and Physics 
The theory of curved surfaces, initiated by Gauss, has had a profound effect on 
physics. Gauss realized that the Gauss curvature K of a surface depended only on the 
measure of distance on the surface itself that is, curvature was intrinsic to the surface. 
This is not true of the mean curvature H. Thus, beings "living" on the surface would 
be able to tell that the surface was curving, without any reference to an "external" 
world. Gauss himself found this mathematical result to be so striking that he named it 
theorema egregium, or "remarkable theorem." Gauss' theory was generalized by his 
student Bernhard Riemann to n -dimensional surfaces for which one could describe a 
notion of curvature. 

Recall that Newton created the idea of a gravitational force acting over vast 
galactic distances, pulling galaxies together as well as pushing them apart (see 
Figure 7.7.5). In the early 1900s, Albert Einstein used Riemann's ideas to develop 
the general theory of relativity, a theory of gravitation that eliminated the need to 
consider forces (as Newton did) acting over great distances. Einstein's theory 
explained the bending of light by the sun, black holes, the expansion of the uni-
verse, the formation of galaxies, and the Big Bang itself. For most applications, 
including the dynamics of our solar system, Newton's theory suffices and is com-
monly used today by NASA to plan space missions, as we saw in Section 4.1. But for 
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Figure 7.7.5 The Andromeda Galaxy. It will collide with the Milky Way in roughly 
2 billion years. 

cosmological applications on the grand scale, Einstein's theory replaced that of Isaac 
Newton, published in his Principia in 1687. 

As a testament to his genius, and despite the astounding success of this theory, 
Newton was nevertheless disturbed by questions about how this gravitational force 
acted. He could give no other explanation than to say, "I have not been able to de-
duce from phenomena the reason for these properties of gravitation, and I do not 
invent hypotheses; for anything which cannot be deduced from phenomena should 
be called an hypothesis." Moreover, in a letter to his friend, Richard Bentley, Newton 
wrote: 

That gravity should be innate, inherent and essential to matter, so that one 
body may act upon another at a distance, through which their action may be 
conveyed from one to another, is to me so great an absurdity that I believe 
no man, who has in philosophical matters a competent faculty of thinking, 
can ever fall into it. 

Newton coined the term action at a distance (which means "force acting at a 
distance") to describe the mysterious effect of gravitation over large distances. This 
effect is as difficult to understand today as it was in Newton's time. 

Johann Bernoulli found it difficult to believe in the concept of a force that acts 
through a vacuum of space over distances of even hundreds of millions of miles. 
He viewed this force as a concept revolting to minds unaccustomed to accepting 
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Figure 7.7.6 Albert Einstein (1879-
1955) at his desk in the Patent Office, 
Bern, 1905. 

any principle in physics, save those that are incontestable and evident. Additionally, 
Leibniz considered gravitation to be an incorporeal and inexplicable power, philo-
sophically void. 

It was perhaps Albert Einstein's greatest inspiration (see Figure 7.7.6) to re-
place Newton's model of gravitation with a model that would have thrilled the early 
Greeks—a geometric model ofgravitation. In Einstein's theory, the concept of a force 
acting through great distances has been replaced by the curvature of a space-time17 

world. As the quote at the beginning of the chapter illustrates, W. K. Clifford had 
a premonition of events to come! In order to elucidate Einstein's scheme, we shall 
present an oversimplified model that conveys some of his basic ideas. 

We represent space by a surface that we imagine as an originally flat trampoline 
(the vacuum state), which is at some point strongly deformed by the weight of a 
gigantic steel ball (the sun). A tiny steel ball rolling on the trampoline is our planet 
Earth (see Figure 7.7.7) 

If we roll the small steel ball across the flat trampoline, it will travel in a straight-
line path. However, if we now place the gigantic steel ball in the center, it will cause 
the trampoline to bend, or "curve," even "far away" from the large ball. If we then 
give our little ball a push, it will no longer travel in a straight line but in a curved 

17 Space-time is locally like 1R4 with three space coordinates and one time coordinate. 
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(a) (b) (c) 

Figure 7.7.7 (a) A particle on a taut trampoline moves in a straight line, (b) A 
heavy steel ball distorts the trampoline, (c) A particle on the distorted trampoline 
follows a curved path. 

path. The big ball affects the trajectory of the little ball by curving the space around 
it. With just the right push, the little ball might even orbit the big one for a while. 
This trampoline model explains how a large body could, by curving space, influence 
a small one over great distance. 

Einstein stated that space-time is curved by matter and energy. In this curved 
space-time, even light rays are bent as they pass near massive objects like our sun. 
Thanks to Gauss and Riemann, the curvature of space-time requires no external 
"universe" in which it curves. 

The equations that tell one how much space and time are curved by matter and 
energy are known as Einstein s field equations. A description of them is beyond the 
scope of this book, but the mathematical kernel from which these equations arise is 
not; this kernel is based on another remarkable result of the research of Gauss and 
Bonnet. 

Gauss-Bonnet Theorem 
In Example 2, we computed the Gauss curvature K of the sphere x2 + y2 + z2 = R2 

of radius R and found it to be the constant l/R2. The Gauss curvature K is a scalar-
valued function over the surface, and as such we can integrate it over the surface. We 
wish to consider a constant times this surface integral, namely, 

1 
K dA. 

2 7t 

For the sphere of radius R, this quantity becomes 

1 PC An R2 

dA = r = 2 2nR2 I J C 2n R2 
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What Gauss and Bonnet discovered was that if S is any "sphere-like" closed surface 
(closed and bounded, but with no boundary, as in Figure 7.7.8), then 

1 
Iti 

KdA 2 

still holds.18 

s 
Figure 7.7.8 A deformed sphere. 1/2n JfsKdA = 2 

Thus, the integral 

1 KdA 
2 71 

always equals the integer 2, and is therefore a topological invariant of the surface. 
That the integral of curvature should be an interesting quantity should be already 
clear from the discussion at the end of Section 7.1. 

Now consider a torus, or doughnut. The torus can be considered as coming from 
the sphere by cutting out two disks and gluing in a handle (see Figure 7.7.9). 

Moreover, we can continue this process adding 1, 2, 3, . . . , g handles to the 
sphere. If g handles are attached, we call the resulting surface a surface of genus g, 
as in Figure 7.7.10. Notice that the torus has genus 1. 

If two surfaces have a different genus, they are topologically distinct, and thus 
cannot be obtained from one another by bending or stretching. Interestingly, even two 
surfaces with the same genus can sit in space in quite different and complex ways, 
as in Figure 7.7.11. Astonishingly, even though the integral (or total curvature) given 
by (1 /2n) f f s KdA depends on the genus, it does not depend on how the surface sits 
in space (and thus not on K). 

18Roughly speaking, this means that S can be obtained from the sphere by bending and stretching (like with a balloon) 
but not tearing (the balloon bursts!) 
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Handle 

Torus 

Figure 7.7.9 Gluing a handle to a sphere to obtain a torus. 

Figure 7.7.10 A sphere 
with 0, 1, 2, 3 handles 
attached. 

Gauss and Bonnet proved that 

1 
2 71 

KdA 2 2 g 
s 

Thus, for the sphere (g = 0), it is always 2 (already verified); for the torus, it is always 
0 (see Exercise 8). 

There is something even more remarkable connected to the theorem of Gauss-
Bonnet, observed by the great German mathematician David Hilbert (Figure 
7.7.12). 
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Simple double doughnut 

Baker's pretzel 

Figure 7.7.11 Two manifestations of a surface S in R3 of genus 2. 

Figure 7.7.12 David Hilbert (1862-1943) was a leading 
mathematician of his time. 

Hilbert observed that the Gauss-Bonnet theorem is, in effect, a two-dimensional 
version of Einstein's field equations. In the physics literature, this fact is known as 
Hilberts action principle in general relativity.19 Not surprisingly, similar geometric 
ideas are being employed by contemporary researchers in an effort to unify gravity 
and quantum mechanics—to "quantize" gravity, so to speak. 

19See C. Misner, K. Thorne, and A. Wheeler, Gravitation, Freeman, New York, 1972. 
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EXERCISES 
1. The helicoid can be described by 

v) = (u cos v, u sin v, bv), where b / 0. 

Show that H = 0 and that K = —b2/(b2 + u2)2. In Figures 7.7.1 and 7.7.5, we see that the 
helicoid is actually a soap film surface. Surfaces in which H = 0 are called minimal surfaces, 

2. Consider the saddle surface z = xy. Show that 

1 
K (1+JC 2 + v2)2' 

and that 

/ / (l+Jt2 + v2)3/2 

3. Show that v) = (u, v, log cos v — log cos u) has mean curvature zero (and is thus a 
minimal surface; see Exercise 1). 

4. Find the Gauss curvature of the elliptic paraboloid 

2 2 x y 

5. Find the Gauss curvature of the hyperbolic paraboloid 

2 2 - _ _ 
Z~ a2 b2 

6. Compute the Gauss curvature of the ellipsoid 

2 2 2 x y zz 

\- -—f— = 1 
ö2 b2 c2 

7. Show that Enneper's surface 

u3 v3 

v) = ( u —— + uv2j v —— + u2v, u2 — v2 

is a minimal surface (H = 0). 

8. Consider the torus T given in Exercise 4, Section 7.4. Compute its Gauss curvature and 
verify the theorem of Gauss-Bonnet. [HINT: Show that \\Te x 7̂ ||2 = (R + cos 0 ) 2 and 
K = cos <p/(R + cos 0).] 

9. Let v) = (u, h(u) cos v, h{u) sin v), h > 0, be a surface of revolution. Show that 
K = -h"/h{\+(h')2}2. 
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10. A parametrization $ of a surface S is said to be conformal (see Section 7.4), provided 
that E = G, F = 0. Assume that conformally parametrizes S20 Show that if H and K 
vanish identically, then S must be part of a plane in R3. 

REVIEW EXERCISES FOR CHAPTER 7 

1. Integrate f(x, y, z) = xyz along the following paths: 

(a) c(t) = (e* cos t, el sin t, 3), 0 < t < 2tv 
(b) c(0 = (cos t, sin t, t), 0 < t < 2n 
(c) c(0 = \t2\ + 2t2j + ¿k, 0 < t < 1 
(d) c(0 = ti + (1/V2)r2j + |*3k, 0 < t < 1 

2. Compute the integral of / along the path c in each of the following cases: 

(a) f(x,y, z) = x + y + yz;c(t) = (sint, cost, t), 0 < t <2tc 
(b) /(x, y, z) = x 4- cos2 z; c(f) = (sini, cos t,t),0 < t < 2̂ " 
(c) f(x, y,z) = x + y + z;c(t) = (t,t2,lt3),0 < t < 1 

3. Compute each of the following line integrals: 

(a) /c(sin tix) dy — (cos tcy) dz, where C is the triangle whose vertices are (1, 0,0), 
(0, 1, 0), and (0,0,1), in that order 

(b) /c(sinz) dx + (cos z) dy — (xy)l/3 Jz, where C is the path c(0) = (cos3 6, sin3 6,0), 
0 < 6> < 7tt/2 

4. If F(x) is orthogonal to c'(0 at each point on the curve x = c(t), what can you say about 
fe F * 

5. Find the work done by the force F(x, y) = (x2 — y2)i + 2xyj in moving a particle 
counterclockwise around the square with corners (0, 0), (a, 0), (a, a), (0, a), a > 0. 

6. A ring in the shape of the curve x2 + y2 = a2 is formed of thin wire weighing |x| + |>'| 
grams per unit length at (x, y). Find the mass of the ring. 

7. Find a parametrization for each of the following surfaces; 

(a) x2 + y2 + z2 - 4x - 6y = 12 
(b) 2jc2 + y2 + z2 - 8x = 1 
(c) 4x2 + 9y2 - 2z2 = 8 

8. Find the area of the surface defined by (u, v) i-> (x, y, z), where 

x — h(u, v) = u + v, y — g(u, v) — u, z = f(u, v) = v; 

0 < u < 1,0 < v < 1. Sketch. 

20 Gauss proved that conformal parametrization of a surface always exists. The result of this exercise remains valid even 
if is not conformal, but the proof is more difficult. 
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9. Write a formula for the surface area of (r, 6) i-> (x, v, z), where 

x=rcos6, y = 2rsin6, z = r; 

0 < r < l ,O<0 < 27t. Describe the surface. 

10. Suppose z — fix, y) and (d f fdx)2 + (9//3>')2 = c, c > 0. Show that the area of the 
graph of / lying over a region D in the xy plane is Vi + c times the area of D. 

11. Compute the integral of /(x, y, z) = x2 + y2 + z2 over the surface in Review 
Exercise 8. 

12. Find f f s f dS in each of the following cases: 

(a) f{x, y, z) = x; S is the part of the plane x + y + z = 1 in the positive octant 
defined by x > 0, y > 0, z > 0 

(b) f(x, y,z) = x2;S is the part of the plane x = z inside the cylinder x2 + y2 = 1 
(c) f(x,y,z) = x;S is the part of the cylinder x2 + y2 — 2x with 0 < z < y/x2 + y2 

13. Compute the integral of f(x, y, z) = xyz over the rectangle with vertices (1,0, 1), 
(2, 0, 0), (1,1,1), and (2,1,0). 

14. Compute the integral of x + y over the surface of the unit sphere. 

15. Compute the surface integral of x over the triangle with vertices (1, 1, 1), (2, 1,1), and 
(2, 0, 3). 

16. A paraboloid of revolution S is parametrized by 4>(u, v) = (u cos v, u sin v, u2), 
0 < u < 2, 0 < v < 2n. 

(a) Find an equation in x,y, and z describing the surface. 
(b) What are the geometric meanings of the parameters u and i;? 
(c) Find a unit vector orthogonal to the surface at v). 
(d) Find the equation for the tangent plane at <f>(w0, vo) = (1,1, 2) and express your 

answer in the following two ways: 
(i) parametrized by u and v; and 
(ii) in terms of x, y, and z. 

(e) Find the area of S. 

17. Let fix,y,z) = xey cos nz. 

(a) Compute F = V/. 
(b) Evaluate fc F • ds where c(t) = (3 cos41, 5 sin71, 0), 0 < t < it 

18. Let F(x, >', z) = xi + >'j + zk. Evaluate f f s F • dS where S is the upper hemisphere of 
the unit sphere x2 + y2 + z2 = 1. 

19. Lét F(x, y, z) = xi + y} + zk. Evaluate / F • ds where c(t) = (e', t, t2), 0 < t < 1. 
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20. Let F = V/ for a given scalar function. Let c(t) be a closed curve, that is, c(b) = c(a) 
Show that f' F • ds = 0. 

21. Consider the surface v) = (u2 cos v, u2 sin v, u). Compute the unit normal at 
u — 1, u = 0. Compute the equation of the tangent plane at this point. 

22. Let S be the part of the cone z2 = x2 +y2 with z between 1 and 2 oriented by the normal 
pointing out of the cone. Compute f f s F • dS where F(x, y, z) = (x2, y2, z2). 

23. Let F = xi + x2j 4- yzk represent the velocity field of a fluid (velocity measured in 
meters per second). Compute how many cubic meters of fluid per second are crossing the xy 
plane through the square 0 < x < 1, 0 < >' < I. 

24. Show that the surface area of the part of the sphere x2 + y2 + z2 = 1 lying above the 
rectangle [—a, a] x [—a, a], where la2 < 1, in the xy plane is 

a A = 2 I sin 1 I I dx. 
a J \ - X 2 

25. Let S be a surface and C a closed curve bounding S. Verify the equality 

( V x F W S = If ¥ *ds 
c 

if F is a gradient field (use Review Exercise 20). 

26. Calculate f f s F • dS where F(x, y, z) — (x, y, —y) and S is the cylindrical surface 
defined by x2 + y2 — 1,0 < z < 1, with normal pointing out of the cylinder. 

27. Let S be the portion of the cylinder x2 + y2 =4 between the planes z = 0 and 
z = x + 3. Compute the following: 

(a) ffsx2dS (b) f f s y2dS (c) f f s z2 dS 

28. Let T be the curve of intersection of the plane z = ax + by with the cylinder 
x2 -hy2 = 1. Find all values of the real numbers a and b such that a2 + b2 = 1 

j y dx (z — x) dy — y dz = 0. 

29. A circular helix that lies on the cylinder x2 + y2 = R2 with pitch p may be described 
parametrically by 

x = R cos6, y — R sin0, z = p6, 6 > 0. 
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A particle slides under the action of gravity (which acts parallel to the z axis) without friction 
along the helix. If the particle starts out at the height z0 > 0, then when it reaches the height 
z, 0 < z < z0, along the helix, its speed is given by 

J - = V - Z)2g, 

where s is arc length along the helix, g is the constant of gravity, and t is time. 

(a) Find the length of the part of the helix between the planes z = z0 and z = z i, 
0 < Z\ < Zq. 

(b) Compute the time r0 it takes the particle to reach the plane z = 0. 


