Answers to Odd-Numbered

Exercises

Some solutions requiringproofs may be incomplete or be omitted.

Chapter 1

Section 1.1
1. 4;17 3. (—104 + 16a, —24 — 4b, —22 + 26¢)

3. 1.

V+ W

V+W

V—W
9. x 0,z O,veR;x 0,y 0,zek:v=0,x,zeR;x=0,y,ze€R

11. {(25,7s+2t,7t) | s € R, t € R) 13. 1) i+(¢ 1) k

15. 1) (¢t Di—j+Gt Dk 17. {si+3sk—2ti|0<s<1,0<t<1)

19. If (x, y,z) hesonthe line,thenx =2 +41¢,y 2+t,and z 1 + ¢. Theretore,

2x 3v+z—2 442t+6 3t 1 2 7, which 1s not zero. Hence, no (x, y, z)
satisfies both conditions.

21. Yes.
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23. The set of vectors of the form
Vv pa+gb+rc

where0<p 1,0 g 1l,and 0 <r < 1.
25. All points of the form

(xo + t(x1 — x0) + s(x2 — x0), Yo +1(y1 — y0) + ()2 — W), 20 + t(z1 — z0) + S(22 — 20))

for real numbers ¢ and

27. If one vertex 1s placed at the origin and the two adjacent sides are u and v, the new
triangle has sides bu, bv, and b(u — v).

29. (1,0,1)+(0,2,1) =(0,2,0)+ (1,0, 2)

31. Two such lines (there are many others)arex 1,y ¢,z tandx 1,y ¢,z

Section 1.2

1. 6

3. 99°

S. No, 1t 1s 75.7; 1t would be zero only if the vectors were parallel.

7. lu| 5, 0v] ~2,u-v 3 9. |[u| /11, v| «~o02,u-v 14
11. llu| V14, ||v| +26,u-v 17

13. In Exercise 9. cos™! (—14/+/114/62); in Exercise 10, 7r/2; and in 11,
cos ! (—17/4/14+/26).

15. 4(—-i+j+k)/3 17. Any(x,y,z)withx+y+2z O0;
for example, (1, —1,0) and (0, 1, —1)

19. 14 4j, 60 = 0.24 radian east of north 21. (a) 12:03 pMm. (b) 4.95 km
23. 25. (4.9,4.9,4.9)and (—4.9, —4.9,49) N
Y
F=501b
50 sin (50°) 1b
. - X

4

Fx=50 cos (50°) 1b

27. (a) F = (3+2i+3+/2j)  (b) =~0.322 radian or 18.4° (c) 18+/2
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Section 1.3
1 2 1: 3 0 1
1. 13 0 1} = -8, ] 2 1 8
2 0 2 2 0 2
3. 3i+j+5k 5. /35
7. 10 9. +k

11. +(113i+ 17j — 103Kk)/~/23, 667
13. u+v=3i—3)+3Kk;u v=06;|u|l = V6: IVl = 3:u x v=—3i+ 3K

15. @) x+v+z 1 O (c) 5x +2z — 25
(b) x+2y+3z—6 0 (dx+2y- 3z 13

17. (a) The parallel planes Ax + By + Cz+ D = 0and 0Ax + oBy +0Cz+ D" 0 are
identical when D’ = oD and otherwise never intersect.
(b) In a line.

19. Thelinex ¢,y 2tz St.

21. (a) Do the first by working out each side in coordinates, and then use that and
a X (b x c) (b x ¢) x a to get the second.
(b) Use the identities in part (a) to write the quantity in terms of inner products.
(c) Use the identities in part (a) and collect terms.

23. Compute the results of Cramer’s rule and check that they satisty the equation

25. x —2v+3z+12 -0 27. 4x 6y 10z 14

29. 10x —17v+2z+4+25 O

31. For Exercise 19, note that (2, —3, 1)- (1, 1, 1) = 0, and so the line and plane are parallel
and (2, —2, —1) does not lie in the plane. For Exercise 20, the line and plane are parallel and
(1, —1, 2) does lie 1n the plane.

33. /2/13
35. (a) Show that M satisfies the geometric properties of R X F (b) 24/3
37. Show that n;(N x a) and n,(N x b) have the same magnitude and direction.

39. One method is to write out all terms in the left-hand side and see that the terms involving
A all cancel. Another method 1s to first observe that the determinant is linear in each row or
column and that if any row or column is repeated, the answer 1s zero. Then

d b Ci a, b ¢ ay b ¢ ar b1 c
a + Aa by + c, +Ac| — | by o a b a|—|a b o
aj b3 C3 as / C3 aj / C3 | a3 / C3
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Section 1.4

1. (a)
Cylindrical Rectangular Spherical
Y Z X y Z p 0 B
| | 45 1 V2/2 | 2)2 o V2 | 45° 45°
2 | w/2 | —4 0 2 | -4 235 | m — arccos (2+/5/5)
0/ 4 (10, | o | o [10] | 10 | 45 | 0
3| w/6 | 4| |3v32| 32 | 4 5 | a6 arccos 4
1 | /6 0 V3/2 ; 0 | /6 /2
2 | 37 /4 2| | —~/2 | V2 | =2 2v | 3m/4
(b)
Rectangular Spherical Cylindrical
X y Z P 6 o r 6 Z
-2 1 | =2 3 arctan -;- | 7t — arccos (2/3) l V5 arctan % | —2
0 | 3 j 4 d ﬂ /2 |  arccos (4/5) 3 1 /2 | 4—-~
V2 1 1 ﬂ 2 | arctan (+/2/2) | /3 V3 ] arctan (\/2/2)j 1
l—:“/:; —2 3 5 arccos 3 4 3

3. (a) Rotation by 7t around the z axis (c) Rotation by 7r/2 about the z axis together
(b) Reflection across the xy plane with a radial expansion by a factor of 2

S. No; (p,0,¢)and (—p, 0 + m, m — ¢) represent the same point.

7. (a) e, = (xi+ yj+zK)/yx2 + y2 + 22 = (xi+ yj + zK)/p
eg = (—yi+xj)//x2+ y* = (—yi+xj)/r
ey = (xzi+ yzj — (x* + y*)K)/rp
(b) ey x j=—yk/\/x2+y2 e, xj=(xz/rp)k+ (r/p)i

9. (a) The length of xi+ yj + zkis (x? +y?* +zH)2 = p
(b) cos¢ = z/(x2 + y? + z2)1/2 (c) cosf = x/(x% + y?)I12

11. 0 <r <a,0 <6 <2 means that (r, 6, z) 1s inside the cylinder with radius a centered
on the z axis, and |z| < b means that it 1s no more than a distance b from the xy plane.

13. —d/(6cosdp) < p <d/2,0<60 <2m, and 7 — cos“'(:}) <¢p<m

15. This 1s a surface whose cross section with each surface z = c 1s four-petaled rose. The
petals shrink to zero as |c| changes from 0 to 1.
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Section 1.5

3. Ix-yl 10 /520 |Ix|lllyll, so |x-y| < [Ix[l[ly]l is true
x+yll  3v/5 = Ixll + llyll, so x4+ yll < [Ix]| + llyll is true.

5. |x-y| =5 <465 =|x|lyll, so |x-y| < [[x]l|ly]l 1s true.
X+yl 28 </S+13  |x||+ lyll,so lIx +y|l < lIx]| + |ly]l is true

1 -1 3
7. AB 1 11 3|,det A4 5, det B 24,
6 5 &

det AB = 120(=det A4 det B), det (4 + B) 61(# det A + det B)

9. HinT: For £ = 2 use the triangle inequality to show that ||x; + x5 || < [[x; ]| + [|x2]]; then
fork i+ 1 notethat ||x; + X +---+ X || < [[x1 +X2+4--- + x| + [[Xip1l-

11. (a) Check n = 1 and n = 2 directly. Then reduce an n x n determinant to a sum of

(n 1) x (n — 1) determinants and use induction.
(b) The argument is similar to that for part (a). Suppose the first row 1s multiplied by A.

The first term of the sum will be Aa;; timesan(n 1) x (n 1) determinant with no factors
of A. The other terms obtained (by expanding across the first row) are similar.

0 1

1 O
OOandB | I

0 O

13. Not necessarily. Try 4 |

15. (a) The sum of two continuous functions and a scalar multiple of a continuous function
are continuous.

() () (af +Bg)-h = [, (af + Bg)(x)h(x)dx
I F@R(x)dx + B [, g(x)h(x)dx
af -h+ Bg-h.
(i) f-g= [, f(X)gx)dx = [, gx)f(x)dx g-f

In conditions (1i1) and (1v), the integrand i1s a perfect square. Therefore, the integral 1n

nonnegative and can be 0 only 1f the integrand 1s 0 everywhere. It f(x) # 0 for some x, then
it would be positive in a neighborhood of x by continuity, and the integral would be positive.

17. Compute the matrix product in both orders and check that you get the identity

19. (det A)(det A=) =det(447") det(]) 1

Review Exercises for Chapter 1

1. v+w=4i+4+3j+6k;3v =91+ 12+ 15Kk; 6v + 8w = 26i + 16j + 38K; —2v =
—6i — 8 —10k; v-w = 4; v x w = 91 + 2] — 7K. Your sketch should display v, w, 3v, 6v,
8w, 6v+ 8w, v - w as the projection of v along w and v X w as a vector perpendicular to both
v and w.
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3. @ 1) i+Q+1j Kk ©) —2x+y+2z 9
b)Y Ir) Bt 3i+@¢+Di tk

5. (a) 0 (b) 5 (c) 10

7. @ /2 (b) 5/2V15) () 10/(\6v1T)

9. {sta+s(l —¢t)b|0<t<landO0 s <1}

11. Letv = (a,, a3, a3), w = (v, by, b3), and apply the CBS 1nequality.

13. The area 1s the absolute value of

| aj a)
by + by + |

ay ap

b, b

(A multiple of one row of a determinant can be added to another row without changing its
value.) Your sketch should show two parallelograms with the same base and height.

15. The cosines of the two parts of the angle are equal, because
a-v/lalllvl] = (a-b+ [a]llibl)/lIv]l = b-v/|[blv]

17. 1 X}

19. (a) HiInT: The length of the projection of the vector connecting any pair of points, one
on each line, onto (a; X ay)/||a; X a,|| 1sd.

(b) V2

21. (a) Note that

1 1 1 l 0 0
1 | lx, — x; X1
2 [ BT 2 2T 1T 20w 3oy
yi )2 )3 Yl Y2 — ) Y3 — N
(b) 3
23. Rectangular Spherical (plot omitted)

(@) (V2/2,2/2,1) (a) (V2,7/4,7/4)
(b) (3+3/2,3/2,—4) (b) (5, /6, arccos (—4/5))

(c) (0,0, 1) c) (1,7m/4,0)
(d) (0,—-2,1) (d) (5, 37/2, arccos (+/5/5))
e) (0,2.1) (e) (+/5,m/2, arceos (+/5/5))

25. z =r2co0s26;cos¢ = psin® ¢ cos 26
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27. |x-y| =6 <98 =|x|llyl; Ix+yl =33 <14+ V7 x| + |yl

29. (a) The associative law for matrix multiplication may be checked as follows

[(AB)Cl;; Y (AB)uCii =Y Y AyBuyCy;
k=1 k=1 =1

b Ai(BC);j = [A(BC)];;.
/=1

Use this with C taken to be a column vector.
(b) The matrix for the composition 1s the product matrix

31. R” 1s spanned by the vectors e, e;, ..., e,. If v e R", then

v 1

Let ajj = (Te]- . e,»), so that

Then
n
Tv- E (V-e;)ay
i=1
That 1s, 1f
Uj an - Aip U1
\Y then Tv
U, Apt - Unn Un
as desired.

33. (a) 70cos6 +20sin6  (b) (214/3 4+ 6) ft- Ib

35. Each side equals 2xy — 7yz 4 5z — 48x + 54y 5z  96. (Or switch the first two
columns and then subtract the first row from the second.)

37. Add the last row to the first and subtract it from the second.

iay dy Qdj

39. (a) é'bl bz b3 (b) 1/3




616 Answers to Odd-Numbered Exercises

41. Use the fact that la|* a-a, expand both sides, and use the definition of ¢
43. (1/+/38)i — (6//38)j + (1/+/38)k 45. (2//5)i (1/V/5)j

47. (V/3/2)i+ (1/2+/2)j + (1/24/2)k

Chapter 2

Section 2.1

1. The level curves and graphs are sketched below. The graph in part (c) 1s a hyperbolic
paraboloid like that of Example 4, but rotated 45° and vertically compressed by a factor of
1/4. To see this, use the variablesu =x + yandv=x —y.Thenz (v u?)/4.

Y Intersection
with xy plane
Intersection
with xz plane
Intersection g
with zy plane =
X
(a)
y
Section
z=4y,
x=0
Section
x2,
T T - I X — O
_+ y

(b)
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A section x = -y

|

| section x = v

() z=—xy

3. For Example 2, z = r(cos 8 + sin 6) + 2, shape depends on 6; for Example 3, z = r*
shape is independent of 8; for Example 4, z = r?(cos? 6 — sin” 6), shape depends on 6.

5. The level curves are circles x* + y* = 100 — ¢ when ¢ < 10. The graph is the upper
hemisphere of x* + y* + z? = 100.

O N KL DN O

“ 10

7. The level curves are circles, and the graph is a paraboloid of revolution. See Example 3
of this section.

9. It ¢ — O, the level curve 1s the straight line y = —x together with the line x = 0. If
then y = —x + (¢/x). The level curve 1s a hyperbola with the y axis and the line
y — —x as asymptotes. The graph is a hyperbolic paraboloid. Sections along the line y = ax

are the parabolas z = (1 + a)x?.
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11. Ific > 0, the level surface f(x, y, z) = c 1s empty. If ¢ = 0, the level surface 1s the point
(0, 0, 0). If ¢ < 0, the level surface is the sphere of radius ./ —c centered at (0, 0, 0). A section
of the graph determined by z = g is given by t = —x? — y? — a?, which is a paraboloid of
revolution opening down 1n xyt space.

13. If ¢ < 0, the level surface 1s empty. If ¢ = 0, the level surface 1s the z axis. If ¢ > 0, 1t 1s
the right-circular cylinder x? + y? = ¢ of radius +/c whose axis is the z axis. A section of the
graph determined by z = a is the paraboloid of revolution t = x* + y*. A section determined
by x = b is a “trough” with parabolic cross section #(y, z) = y* + b*.

15. Setting u = (x — z)/+/2 and v = (x + z)/+/2 gives the u and v axes rotated 45° around
the y axis from the x and z axes. Because f = vy+/2, the level surfaces f = c are
“cylinders” perpendicular to the vy plane (z = —x) whose cross sections are the hyperbolas
vy = ¢/+/2, so the section S,_, N graph f is the hyperbolic paraboloid ¢ = (z + a)y in yzt
space [see Exercise 1(c)]. The section §,_, N graph f 1s the plane ¢t = bx + bz 1 xzt space.
The section S,_, N graph f 1s the hyperbolic paraboloid ¢t = y(x + b) in xyt space.

17. If ¢ < 0, the level curve 1s empty. If ¢ = 0, the level curve 1s the x axis. If ¢ > 0, 1t 1s the
pair of parallel lines |y] = c. The sections of graph with x constant are V-shaped curves
z = |y| 1n yz space. The graph is shown 1n the accompanying figure.

(Exercise 17)
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19. The value of z does not matter, so we get a “cylinder” of elliptic cross section parallel
to the z axis and intersecting the xy plane in the ellipse 4x* + y*  16.

ll
E

21. The value of x does not matter, so we get a “cylinder’” parallel to the x axis of hyberbolic
cross section intersecting the yz plane in the hyperbola z° — y? = 4.

23. An elliptic paraboloid with axis along the x axis.

25. The value of y does not matter, so we get a “cylinder” of parabolic cross section
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27. This 1s a saddle surface similar to that of Example 4, but the hyperbolas, which are level
curves, no longer have perpendicular asymptotes.

[ evel curves

29. A double cone with axis along the y axis and elliptical cross sections

3 =4x2 + 272

6 =2x2%+ 2z

~

31. Complete the square to get (x + 2)* + (y — b/2)* + (z + 3)* = (b* + 4b + 97)/4. This
1s an ellipsoid with center at (—2, b/2, — -g) and axes parallel to the coordinate axes.
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33. Level curves are described by cos 20 = cr?. If ¢ > 0, then —7/4 <0 < /4 or
3n/4 6 Sm/4.lftc <O,thenm/4 6 3n/4orSn/4 <6 < 7Tn/4. In either case

you get a figure-eight shape, called a lemniscate, through the origin. (Such shapes were first
studied by Jacques Bernoulli and are sometimes called Bernoulli’s lemniscates.)

Section 2.2

1. It (xo, yo) € 4, then |xo| < 1and Ival < 1. Letr mun(l |x¢|, 1 |yo]). Prove that
D, (xo, yo) C A either analytically or by drawing a figure.

3. Letr min(2  x, + Vi, VXE+ Y, V2).
5. A0 (b) 1/2 (c) 1

7. )5 ()0  (c) 2x

9. )0 (b) 1/2 ()0

11. (a) Compose f(x, y) = xy with g(¢) = (sint)/t fort # 0 and g(0) 1
(b) 0 (c) O

13. (a1 (b) lIxell  (c) (1, )
(d) Limit doesn’t exist (look at the limits for x = 0 and y = 0 separately)

15. Use parts (11) and (111) of Theorem 4.

17. (a) Let the value of the function be 1 at (0, 0). (b) No.

19. For|x 2| <68 Je+4—2,wehave|x* 4 |x 2|lx+2]<8B+4) € By
Theorem 3(iii), limitx?  (limitx)> 2% 4.

x—2 x—2

21. Letr [x—yl|l/2 yl f(@) llz—=yll/r yli /e 1
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23. (a) lmt'f(x) L ifforeverye > Othereisad > Osuchthatx >band0 x b 4§
imply | f(x) — L

(b) limit (1/x) 0o, limit ¢ 0, and so limite!* 0. Hence
x—0— I— o0 x—>0"
limit 1/(1 4 e'/*) 1. The other limit is 0.
(¢)
Y

25. If & > 0 and x, are given, let § = (¢/K)'/®. Then || f(x) — f(x0)|| < K8 = & whenever
X — Xg|| < 6. Notice that the choice of 6 does not depend on x,. This means that f 1s

uniformly continuous.

27. (a) Choosed 1/500. (b) Choose § < 0.002.

Section 2.3

1. (a) df/dx y;df/dy «x
(b) af/ox ye?;df/dy xe¥
(c) df/0x cosxcosy —xsinxcosy;df/dy  -xcCOSxsSIny

(d) af/8x  2x[1 +log(x*+ y»)]; 3f/dy  2v[l +log(x* + y*)]; (x, y) # (0, 0)

3. (@) du/dx (14 2x%)exp(x?+ y?);0w/dy = 2xy exp (x% + y?)
(b) dw/dx  4xy*/(x* — y*)*;0w/dy = dyx?/(x* y*)
(c) dw/dx = ye™” log (x* + y?) + 2xe™” /(x* + y*);
dw/dy = xe™” log (x* + y?) + 2ye™” /(x? + v?)
(d) 6w/éx 1/y;0w/dy x/y*
(e) du/dx —y?e” sinye™” sinx + cos ye*” cosx;
Jw/dy (xye*r + e”)(— sin ye*” sinx)

S. z o6x+3y 11

1 0 l 1
7. @ o 1| ©) 2xy x2 OI
e’ xe¥ sy (y + xy*)e” (x + x°y)e™”
(b) | 1 0 (d) ' X COS Yy
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9. Atz 1. 11. Both are xye™”.

_2

13. (a) Vf (e "‘2“3’2_2‘(——2x2 + 1), —2xye‘x2_y2_z 2xze * Y )
(b) Vf =(*+y* +2) 4 (yz(y* +2° — x%), xz2(x* +2° — y*), xy(x* + y*  2°))
(c) Vf =(z*¢*cosv,— % siny, 2ze" cosy)

15. 2x +6v—2z 5 17. 2k

19. They are constant. Show that the derivative 1s the zero matrix

Section 2.4

1. This curve is the ellipse (y%/16) + x* 1

3. This curve 1s the straight line through (—1, 2, 0) with direction (2, 1, 1):

(-1, 2, 0)

Ty
5. 6i 4 6tj + 3tk 7. (—2costsint,3 3t%, 1)
9. ¢/(t) = (€', —sint) 11. ¢/(t) = (¢t cost + sint, 4)

13. Horizontal when ¢t = (R /v)nm, n an integer; speed 1s zero if n 1s even; speed 1s 2v if »
1S odd.

15. (sin3,co0s3,2)+ (3cos3,—3smn3,5)(¢ 1)

17. (8,8, 0) 19. (8,0, 1)
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Section 2.5
1. Use parts (1), (11), and (111) of Theorem 10. The derivative at x 1s 2( f(x) + 1)Df(x)

3. () h(x,y)="f(x,u(x,y)) =f(p(x), u(x, v)). We use p here solely as notation
p(x)

I

dh of d Jaf o 0 af d d d
Wirritten out: — f P + —[-—%l— —1 + f Y because _p A

dx OJdpdx Ouodx Op Oudx dx dx

JUSTIFICATION: Call ( p, u) the variables of f. To use the chain rule we must express / as a
composition of tfunctions; that 1s, first find g such that 2(x, y) = 'f(g(x, y)). Let g(x, y)
(p(x), u(x, v)). Therefore, DA = (Df)(Dg). Then

0g1  0gi "1 0
ox Jdy Jdp du 082 0% op Ou ouou
ox  dy dx
of N df du d0f ou
dp  Ju ox du dy |
oh 0 df o doh 0 df o
and so — —ji +- / ou . YOU may see — —f + / du as an answer. This requires
0x dp  Ju Ox 0Xx 0xX  Ju 0x

careful interpretation because of possible ambiguity about the meaning of df/dx, which 1s

why the name p was used.

o/ Jof Of du dof dv o/ J0f du d0f dv Jof dw
b) —— el e ST S
(0) 0x 0x T ou dx ov dx (c) 0x ou ox " 0V 0Xx * ow dx

5. Compute each in two ways; the answers are
(A) (foc)(t)=¢€'(cost sint)
(b) (f oc)(t) = 15t exp (3¢°)
© (foe)(®) (e e *)[1+logle” ~*
(d) (foc)@®) = (1 +4t%)exp(2t?)

7. Use Theorem 10(111) and replace matrices by vectors.

9. (fog)x,y) (tan(e"”> 1) (x — v)?) and
D(feg D) |y

1
11. > cos(1l)cos(log V2)
13. 2costsinte™ 4 sin® ¢ 4 cos? tes™* — 3 cos? ¢ sin” ¢ for both (a) and (b).

15. (2, 0)
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oG  0G d
17. (a) G(x,y(x)) O andso — 2%
0X v dx
“dy "G, 3G,77' 4G,
(b) ;yz ; élz ; 2);22 3G, where ~! means the inverse matrix
_dx _ 0y1 dy2 1 L Ox _

The first component of this equation reads

0G; dG, 0G;, 0G,

dy, dx 0y,  Ox 0w
dx dG, 0Gy G, 8G1
dy;r 0w A%,
(©) 2x
C S— B
dx + e
19. Apply the chain rule to 0G /0T where G(¢(T, P), p(T, P), V(T, P))
PV — - — RT 1sidentically O; t(7T, P) = T; and p(T, P) = P.
21. Define 1(h) — f(X() + h) [Df(X())]h

23. Let g and g, be C! functions from R? to R such that g;(x) = 1 for ||x|| +/2/3;
g1(x) O for 2\/2/3 1 for ||x — (1, 1, 0)| < \/2/3 0 for
x — (1, 1,0)|| > 2+/2/3

1 0 O] |x; 1 0 0 —11|x
nxx)— {0 —1 O x| + 11 and h(x) =10 O 0 X7
0 0 O X3 0 0 O 1 X3

and put f(x) = g1(x)h1(x) + g2(x)h2(x)

25. Proof of rule (111) follows:

|1(x) — h(xo) — [ f (x0)Dg(X0) + g(x0)Df (X0)](x  Xo)|

X — Xp|

g(x) — g(xo) — Dg(Xo)(x — xo)|
X —Xp

| f(x) — f(X0) — Df(X0)(x — Xop)|

X — Xol|

N | f(x) — f(Xo)| |g(x) — g(x0)|

X — Xo X Xo

| f (Xo)

+ |2(Xo)|

[x — Xo)|l

As X — Xg, the first two terms go to 0 by the differentiability of f and g. The third does so
because | f(x) — f(Xo)|/||Ix — xol| and |g(x) — g(x¢)|/||IX — Xo|| are bounded by a constant,
say M, on some ball D,(x¢). To see this, choose » small enough that [ f(x) — f(X0)]/

X — Xg|| 1s within 1 of Df (xo)(x — X¢)/||x — X¢|| 1f ||x — X¢|| < . Then we have
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| f(x) — f(Xo)|/lIx — Xoll <1+ [Df(x0)(x —x0)|/]Ix —Xoll = 1+ [Vf(X0) « (X — X0)|/
X —xg| <14+ ||Vf(Xp)| by the Cauchy—Schwarz inequality.

The proof of rule (1v) follows from rule (111) and the special case of the quotient rule,
with £ identically 1; that is, D(1/g)(x¢) = [—1/g(x¢)*]Dg(x). To obtain this answer, note
that on some small ball D, (xy), g(x) > m > 0. Use the triangle inequality and the Schwarz
inequality to show that

1 1
g0 209 gy

|X — Xo]|

Dg(x0)(x — xo)

1 1 |g(x) — g(x0) — Dg(x0)(x — x¢)|
lg(x)| |g(x0) 1x — x|

g(x) — g(Xo)| [Dg(Xo)(x — Xo)|
g(x)1g(xo)? Ix — ol
I |g(x) — g(x0) — Dg(x0)(x — x0)| | [[Vg(Xo)ll

—2 " |g(x) — g(x
3 X — o +— 3 g(x) — g(Xo)|

These last two terms both go to 0, because g 1s differentiable and continuous.

27. First find formula for (d/0x)(F(x, x)), using the chain rule. Let F(x, z) = f(x f(z, y)dy
and use the fundamental theorem of calculus.

29. By Exercise 26 and Theorem 10(111) (Exercise 25), each component of k 1s differentiable
and Dk;(xg) = f(x0)Dg; (x¢) + g:(x0)Df (Xg). Because [Dg, (x¢)]y 1s the ith component of
[Dg(x0)]y and [Df (Xo)]y 1s the number Vf(xo) - y, we get [Dk(xo)]y = f(Xo)[Dg(x0)]y +
[Df (x0)]y[g(x0)] = f(x0)[Dg (x0)]y + [V/f(X0) - y]g(X0).

Section 2.6
1. VA(1,1,2)-v=(4,3,4)-(1/4/5,2/+/5,0) = 2+/5
3. (a) 17¢¢/13 (b) e//3  (©) 0

5. () z4+9x =6y — 6 (b) z4+y=m/2 (c) z=1

L. C o
7. (a) —3—\/3(1+J—|—k) (b) 2i+2j+2k  (c) —s(i+j+Kk)

9. kK

11. The graph of f 1s the level surtace 0 = F(x, y, z) = f(x, y) — z. Therefore, the tangent
plane 1s given by

0 = VF(anJ)OaZO)'(x — X0, )V — Yo, < — Zp)
of of

_(.X(), yO)s _——(X(), yO)a —1 ' ) ()C — X0,V — )o,< _ZO)
oX 0y
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Because zg = f(xo, yo), this 1s z = f(xo, yo) + (3f/9x)(x0, yo)(x  x0) +
(0f/0y) (X0, Yo)(y — ¥o)-

13. ) Vf =G+ y,z+ x,x + v),g@{) = (e, —sint, cost),
(fog)(l)=2ecos1 + cos?1 sin”1
(b) Vf = (yze™?, xze*?, xye™?), g (t) = (6, 6t,3t?), (f o g)(1) 108e'®
(c) Vf =[1 +log(x* + y* + z9)]|(xi + yj + zKk), g’ 1),
(fog)(l)=[1+log(e’+e*+ D]’ e +1)

15. Let f(x,v,z) 1/r (x*+ v*+2z%)"Y%;r=(x,v,z). Then we calculate
Vf @+ yP+2)3(x,y,2)  (1/rd)r.

17. Vf = (g'(x), 0).

19. Df(0,0,...,0)

[0, ..., 0]

21. d, = [—(003 + 2by1)/2a]i + ylj, d, = [—(003 + 2by2)/2a]i + yzj, where Y1 and Y2

2
are the solutions of (a2 + 52)y* +0.03by + 1 093° 2 ¢,

...-----%- ------ \ ve/b
X
A X+ Xx X X0 . ] |
23. V¥ 2 - 2 © 42y 2 2 4
2mwey | 1 r ry  Fj

25. Crosses at (2, 2, 0), +/5/10 seconds later.

Review Exercises for Chapter 2

1. (a) Elliptic paraboloid.
(b) Let y’ = y 4+ 3 and write z = xy’. This 1s a (shifted) hyperbolic paraboloid

2xy x?

ye xe 7

3. (a) Df(x, y) l () Df(x, v, z)] e’ €]

1 1 0 0
(b) Df(x) l | I (d) Df(x,y,2z) |0 1 O
0 0 1

S. The plane tangent to a sphere at (xo, ), zo) 18 normal to the line from the center to

(X0, Y0, Z0).
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7. @A) z=x—y+2 (d) I0x+6y —4z=6—m

b) z=4x — 8y —8  (e) 2z = +/2x + /2y
Cc)x+y+z=-1 ) x+2py—z=2

9. (a) The level curves are hyperbolas xy = 1/c:

Y
2
1 + /5
(b) ¢ =x% —xy — y” X +2-\—/—y X
Y

11. (a) O (b) Limit does not exist

13. (1 +2xH)exp(l + x% 4+ y?%)
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15. (a) The line L(¢) = (x¢, Yo, f(x0, Y0)) + t(a, b, c) lies in the plane z = 'f(xg, yo) if
¢ 0 and is perpendicular to Vf(xg, yo) if a(df/0x)(xg, yo) + b(3b/3y)(x¢, yo) = 0. On L,
we have

0 0
f(x0, yo) + I —af o) |[(x  x0) + l—'f (x0, Y0) |y — yo)
X ay
f(x()a yO) + alt 'gf (x()a VO) + btl (xO
X dy

f(x0,y0) =z

Theretfore, LL lies 1n the tangent plane. An upward unit normal to the tangent plane i1s

p  (1+IVAI~*(—=(3f/3x)(x0, y0), —(3f/3y)(x0, ¥o), 1). Therefore, cosé p-k
(1 + [IVA1)""/2, and tan 6 = s 6/ cos 6 = ([[VLI2/(1 + IVLIDN2/(1 + VS|P~
IV /| as claimed.

(b) The tangent plane contains the horizontal line through (1, 0, 2) perpendicular to

Vf(1,0) = (5, 0), that 1s, parallel to the y axis. It makes an angle of arctan (|| Vf (1, 0)||)
arctan 5 ~ 78.7° with respect to the xy plane.

17. (1/4/2, 1//2) or (—=1/4/2, =1//2)
19. A unit normal is (+/2/10)(3, 5, 4). The tangent plane is 3x + 5y + 4z  18.
21. 4i+ 16j

23. (a) Because g 1sthe composition A Ax  f(Ax), the chain rule gives

X1
g'(A) Df(Ax)
Xn
Thus,
X1
g(l) Df(x) Vf(x)-x

But also g(A) = A? f(x), s0 g'(A) = pA?~"'f(x)and g'(1)  pf(x)
(b) p 1.

25. Difterentiate directly using the chain rule, or use Exercise 23(a) with p 0.

27. (a) If (x,y) # (0, 0), then one calculates for (i) that af/ox (3>  yx?)/(x? + y?)°
and af/9y (x* xy?)/(x*+y*)?. Ifx y 0, use the definition directly to find that both
partial derivatives are 0. For (ii), if (x, y) # (0, 0), then 9f/9x = 2xy°/(x? + y*)? and

af/oy  (2x*y — 2x?y°)/(x* + y*)?. The partials at the origin are zero.
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(b) The function (1) 1s not continuous at (0, 0); the function (11) 1s differentiable, but the
derivative 1s not continuous.

29. (a) +/27/8 (b) —sin~/2 (c) —2+/2¢e7?

31. (—4e7 1, 0)
33. (a) See Theorem 11.
(b) g(u) = (sin 3u)? + cos 8u Vf =(2x, 1)
g'(u) = 6sin3u cos 3u — 8 sin 8u V/(h(0)) =V'f(0,1)=(0,1)
g(0)=20 h'(u) = (3 cos 3u, —8 sin 8u)

g'(0) = V/(h(0)) - W(0) = (0,1)-(3,0) =0

35. t = +/14(=3 + +/359)/70 = (=3 + /359)/5+/14

3. 0z/0x = e XTIHIIY(1 + y)/(e T — V)
az/ay — 4(6—2y—2x+2xy)(] 4 x)/(e—Zx—Zy . ery)Z

39. Notice that y = x?. so that if v is constant, x cannot be a variable

41. [f'(1)g(t) + f(0)g ()] exp [f(1)g(?)]

43. d[f(c(t))]l/dt = 2t/[(1 + t* 4+ 2cos® £)(2 — 2t* + 1*)]
4t(t2 — l)ln(l + 12 + 2 cos? t)/(2 i P¥ 4 t4)2
4costsint/[(1 4 t* + 2cos? £)(2 — 2% + )]

45. Letx = f(t), y = t, and use the chain rule to differentiate u(x, v) with respect to ¢.

47. (@) n=PV/RT;P —nRT/V;T = PV/nR;V =nRT/P.
(b) 3V /0T =nR/P;0T/0P =V /nR;0P/0V = —nRT/V?*. Multiply.
that PV = nRT.

49. (a) One can solve for any. of the variables in terms of the other two
(b) 9T/dP = (V — B)/R;
OP/OV = —RT/(V — B)* 4+ 2a/ V?3;
V[T = R/[(V — BYRT/(V — B)* —2a/ V)]
(c) Multiply and cancel factors.

51. () (1/+/2,1/3/2)

(b) The directional derivative 1s O 1n the direction

(xoi + yoj)/Vx% + 2.

(¢) The level curve through (xg, y¢) must be tangent to the line through (0, 0) and
(x0, ¥o)- The level curves are lines or half-lines emanating from the origin.

3. G(x,y)=x—y
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Chapter 3
Section 3.1
32 3., 3 82 3 3
TR VL ks A A VR s
Iy 2 (x2 + y2)* 9y (x2 + 2
0% f 0% f 6x* + 36x%y?  6v*
dxdy  O0yox (x? + y?)?
i ik ,
3. / y* cos(xy?), / 2x sin (xy?) — 4x%y* cos (xy?),
dx? dy?
02 0*
/ / 2y sin (xy*) — 2xv’ cos (xv?)
ox dy  0dyox
5 2(cos’x + e 7 1cos2x + 2 sin” 2x
- Ox? (cos?x + e V)3
0% f e cos’ x
dv:  e’(cos?x + e)
92f  9f 2 sin 2x

dx dy dydx  e’(cos’x + e*;’?

7. (@) 3%z/3x?  6,8%z/3y* 4,  (b) 3%z/9x? =0, 3%z/dy* = 4x/3y°,
0%z/dx dy = 0%z/dy dx O 0%z/0x 0y = 0%z/0y 0x 2/3v?

9. ﬂy 2)( + 2y, _f; 22, f;x Os ﬁryz 0

11. Because 'f and df/0dz are both of class C?, we have

0> f 3% of 3’ df 9  9*f 3  0%f 0 f
0x 0ydz 0x0dy dz 0Oydx 0z 0y \ Ox 0z 0y \ 0z 0x 0y 0z 0x

13. fow  fowx €77[2xycos(xw) + x?y°zcos(xw) — x?yw sin (xw)]

0
15. (a) —£ arctan > + zxy
0x y x*4y’
of x°
dy  x?+y?
2v? 0% f 2x%y
O x 2 (xz 4 y2)2’ ayz (xz +y2)2
0% f 0% f —2xy”

dx 0y Ix  (x?+ v?)’
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af xsiny/x2+y? df —ysin/x2 + )2

() ox 2 2 9 2 2
A X<+ V xX“+y
0°f  x%siny/x243p?  x?cos /xZ+v?  siny/x%+ )?
0x? (x2 + y2)3/2 x2 + 12 (x2 + v2)1/2
2f  yPsiny/x2+y2  yrcosx2+y?  siny/x?+)2
av2 (x2 + y2)3/2 x4 + y ()C2 + v2)l/2
o°f o°f sin/x2 4+ y2  cos/x2 + y?
XV . S
0x 0V dy 0x (x2 + v2)3/2 x2 4+ y2
0 0
(C) —l 2x exp (—x*  y?), —f 2y exp(—x” :
0Xx ay
azf 2 2 2 azf 2 g g
%2 (4x°  2)exp(—x"—y7), — (4y° 2)exp(—x" y°),
0°f o°f
—  dxyexp(—x°® *
ox dv 0y dx xyexp(=x= )

- 31 f ? *f dxdy 3% *afdix  of d¥y
- Ox? ox 0y dt dt  0)? Ox dt2 ' Qdy dt?’

where ¢(t) = (x(1), y(¢))

19. Evaluate the derivatives 9°u/dx? and 3°u/dy* and add.

21. (a) Evaluate the derivatives and compare.

(b) )

23. V GmM/r GmM(x*+v?  ?)7!/2 Check that
Rl N L N L 4
0

0y’  0z°

Sty sy GmME 4+ 2) B =307+ ) 4y +2) ]

0
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Section 3.2
1. f(hy, hy) = h% + 2h1hy + k5 [R,(0, h) = 0 in this case]

h? h?
3. f(hi,h)=1+h +h2+7+h1h2+ 7 + R»(0, h)

7. (a) Show that |Ri(x, a)| < AB**!/(k + 1)! for constants A4, B, and x in a fixed interval
[a, b]. Prove that R, — 0Oask — co. (Use convergence of the series » ¢ /k! = e° and use
Taylor’s theorem.)

(b) The only possible trouble 1s at x = 0. Use L’ Hopital’s rule to show that

limit p(¢)e’ = oo
[— OC

for every polynomial p(t). Using this, establish that limitp(x)e™!/*

x— 071

function p(x), and conclude that f®)(0) = 0 for every .
(¢) f:R" — IR s analytic at x; 1f the series

= 0 for every rational

converges to f(xo + h) forall h = (h,, ..., A,) in some sufficiently small disk ||h|| < ¢. The
function f is analytic if for every R > 0 there is a constant M such that |[(3* f/dx;, - - - 9x;,)
(x)| < M* for each kth-order derivative at every x satisfying ||x|| < R.

1 AN
(d) f(xay)=1+x+y+-1—(x2+2xy+y2)+---+——Z(j)xfy"“f+

Section 3.3

1. (0, 0); saddle point.

3. The critical points are on the line y — —x; they are local minima, because f(x, y) =
(x + y)* > 0, equaling zero only when x = —y.

S. (0, 0); saddle point.
7. (—=. —3): local minimum.

9. (0, 0); local maximum. (The tests fail, but use the fact that cosz < 1.)
(V7/2, /7 /2), local minimum
(0, \/7r), local minimum.
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11. No critical points. 13. (1, 1) 1s a local minimum

15. (0, nm); cntical points, no local maxima or minima.
17. Minimum at (0, 0) and maxima at (0, £=1) [and saddles at (x1, 0)].

19. (a) df/0dx and df/dy vanish at (0, 0).

(b) Show that f(g(t)) = 0 att = 0 and that f(g(t)) > 0if |t| < |b|/3a°.

(c) f is negative on the parabola y = 2x?2.
21. The critical points are on the line y = x and they are local minima (see Exercise 3)
23. Minimize S = 2xy + 2yz + 2xz withz = V' /xy, V the constant volume.

25. 40, 40, 40

27. The only critical point 1s (0, 0, 0). It 1s a minimum, because

1
f(x,y,2)> +zz+xy=5(x+y)2+zz>0

29. (1, 2) is a saddle point; (5, =) is a local minimum.

31. % 1s the absolute maximum and 0 1s the absolute minimum

33. —2 1s the absolute mimnimum; 2 1s the absolute maximum.

35. (5,4) is a local minimum.

37. Ifu,(x,y) = u(x, y)+ (1/n)e*, then Vu,, = (1/n)e* > 0. Thus, u,, is strictly
subharmonic and can have its maximum only on d D, say, at p,, = (x,, V). It (x9, yo) € D
check that this implies u(x,,, y,) > u(xg, yo) — e/n. Thus, there must be a point q = (X0, Voo)

on d D such that arbitrarily close to q we can find an (x,, y,) for n as large as we like.
Conclude from the continuity of u that u(x, yso) > u(xg, yo)-

39. Follow the methods of Exercise 37.

41. (a) If there were an x; with f(x;) < f(xp), then the maximum of f on the interval
between x( and x would be another critical point.

(b) Verity (1) by the second derivative test; for (1), f goes to —oc as y — o¢ and
X = —Yy.
Section 3.4

1. Maximum at ‘/§(1, —1, 1), minimum at \/%(—1, 1, —-1)

3. Maximum at (\/ 3, 0), minimum at (— Vv 3, 0)
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5. Maximum at (%, —= ), minimum at (— %, —

7. The minmimum value 4 1s attained at (0, 2). Use a geometric picture rather than Lagrange
multipliers.

9. (0,0, 2)1sammimum of 'f.
11. % 1S the absolute maximum and 0O 1s the absolute minimum.

13. The diameter should equal the height, 20//27 cm.

15. Maximum value /3 at (—-\}——3— R - ~/,) and minimum value —/3at(— = J1_3 ,l -\-}-5\

17. Horizontal length is ./q A/ p, vertical length is \/pA4/q.

19. For Exercise 1, the bordered Hessians required are

0 2x 2y|
|[Hy|  2x —2A 0 8A(x* + y?),
0 -2
0 2x 2z |
—-2)
;; 0 _ (3) y 16A(x* + y* + z%)

At ./ %(1, —1, 1) the Lagrange multiplier is A = +/6/4 > 0, indicating a maximum at

%(1, —1,1),and A = —4/6/4 < 0 indicates a minimum at 1/%—(——1, 1, —1). In Exercise 5,

H  24M(4x? +6y*),andso A +/70/12 0 indicates a maximum at (9/+/70, 4/+/70)
and A +v/70/12 < 0 indicates a minimum at (—9/4/70, —4/4/70).

21. 11,664 in

23. (a) Vf(x) Ax
(b) S 1s defined by the constraint function g(x) = x; +x, - x; 1. Because
Vg(x) 2x1snot 0, Theorem 9 applies. At an x where 'f 1s extreme, there 1s a A /2 such that

Vi(kx) (A/2)/Vg(x). Thatis, AXx AX.

25. Minimum is (—1/4/2, 0) maximum is ( =, ++/7/8), local minimum at (1/ V2, 0).
27. No critical points; no maximum or minimum
29. (—1,0,1)

31. The point (K, L) = (a«B/q, (1 — a)B/p) optimizes the profit
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Section 3.5

1. Use the special implicit function theorem with n = 1. (See Example 1.) Line (1) 1s given

by 0 = (x — X0, ¥ — y0) - VF (x0, y0) = (x — x0)(dF/9x)(x0, yo) + (¥ = yo)(3F/dy)(x0, yo)-
For line (11), Theorem 11 gives dy/dx = —(0F /0ox)/(dF /0y), and so the lines agree and are

given by
~ (9F /0x)(x0, yo)
(0F/0y)(x0, Vo)

Y =Y (x — Xo).

3. (a) Ifx < —i, we can solve for y in terms of x using the quadratic formula.
(b) 0F/0y =2y + 11snonzero for{y | y < —ztand {y | > —=z}. These regions
correspond to the upper and lower halves of a horizontal parabola with vertex at (— % , —
and to the choice of sign in the quadratic formula. The derivative dy/dx = —3/(2y + 1) 1s

negative on the top half of the parabola, positive on the bottom.

5. Let F(x,y,2) =x22 — 2’yx;0F/0z = 2x3z — 3z%yx # 0 at (1, 1, 1). Near the origin,
with x = y # 0, we get solutions z = 0 and z = x, and so there 1s no unique solution. At
(1,1),0z/0x =2 and dz/dy = —1.

7. With Fi = y + x 4+ uv and F, = uxy + v, the determinant in the general implicit
function theorem 1s

81ﬁ/8u 81%/8U
dF,/du 0F,/dv]

U —uUxy,

which 1s 0 at (0, 0, 0, 0). Thus, the implicit function theorem does not apply. If we try directly,
we find that v = —uxy, so x + y = u~xy. For a particular choice of (x, y) near (0, 0), either
there are no solutions for (u, v) or else there are two.

9. No. f(x, y) = (—1, 0) has infinitely many solutions, namely, (x, y) = (0, y) for any y

11. (@) x; + ys #0.
(b) f'(z) = —z(x +2v)/(x* +v?);  g'(2) = z(y — 2x)/(x* + V?).

13. Multiply and equate coeflicients to get aq, a;, and a, as functions of ry, r,, and 3. Then
compute the Jacobian determinant d(ay, ai, a;)/0(ry, r2,r3) = (r3 — r2))(r1 — r2)(r1 — r3).
This 1S not zero 1if the roots are distinct. Thus, the inverse function theorem shows that the
roots may be found as functions of the coefficients in some neighborhood of any point at
which the roots are distinct. That is, if the roots 7y, 7, 73 of x> + a,x? + ayx + ay are all
different, then there are neighborhoods V of (ry, 2, ¥3) and W of (ay, a;, a;) such that the
roots in ¥ are smooth functions of the coefficients in W'

Review Exercises for Chapter 3

1. (a) Saddle point.
(b) Saddle point for any C.

3. a) 1  (b) +/83/6
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5. Use the second derivative test; (0, 0) 1s a local maximum;
(—1, 0) 1s a saddle point; (2, 0) 1s a local minumum.

7. Saddle points at (n, 0), n = integer.

9. Maximum =~ 2.618, minimum = 0.382.
11. Maximum 1, mimimum cos 1|
13. z=1/4

15. (0,0, +1)

17. Ifb > 2, the minimum distance is 2+/b — 1; if b < 2, the minimum distance is ||
19. Not stable.

21. f(—2,—+/3/2) =34/3/4

23. x = (20/3)/3;y = 10/3;z = 5v/3

25. The determinant required in the general implicit function theorem 1s not zero, and so we
can solve for # and v; (du/dx)(2, —1) = 13/32.

27. A new orthonormal basis may be found with respect to which the quadratic form given
by the matrix

a b
b c

A

takes diagonal form. This change of basis defines new variables & and n, which are linear
functions of x and y. Manipulations of linear algebra and the chain rule show that

Lv = AM0°v/3&%) 4+ w(9°v/dn?). The numbers A and u are the eigenvalues of 4 and are
positive, because the quadratic form 1s positive-definite. At a maximum, dv/0§ = dv/dn

0. Moreover, 0?v/9é* < 0 and 8%v/dn* < 0, because if either were greater than 0, the cross
section of the graph 1n that direction would have a minimum. Then Lv < 0, thus

contradicting strict subharmonicity.

29. Reverse the inequalities 1n Exercises 27 and 28.

31. The equations for a critical point, ds/dm = ds/db = 0, when solved for m and b give
m = (y1 —»2)/(x1 —x2)and b = (y,x1 — y1x2)/(x1 — x2). The line y = mx + b then goes
through (x;, v;) and (x3, 1»).

33. Ata mmimum of s, wehave 0 = ds/db — —2> 7 .(vi — mx; — b)

35. y — =x +
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Chapter 4

Section 4.1

1. Y'(t) = —(sint)i + 2(cos 2¢)j, ' (0) = 2j, a(t) = —(cost)i — 4(sin 2¢t)j, a(0) = —i
I(¢) =i+ 2ti

3. (1) =V2i+e€j—e 'k r0)=+2i+j—k,alt) =ei+e 'k al0)=j+k, 1(?)
V2ti+ (1 +0)j+ (1 — 1k

5. (¢! —e *.cost —sint, —3t%)

7. [-3t?*(2sint 4 cost) — t>(2cost — sint)]i + [3t2(2e’ +e7') + > (2e' — e™)]j
+ [é'(cost —sint) — e ‘t—sint + cost)]k

9. m(0, 6, 0)
11. —24nw?(cos(2rt/5), sin (27t /5))/25

d d d
13. —(|v[|)) = —(v-v)=2v- _v =2v-a=10(
at at at

15. 6129 seconds

- t3
17. C(t)= ( —;,e’—-—6,—;+l

19. (a) c(t) = (t,€'), —o0 < t < 00. The image of this path is the graph y = ¢*.
(b) ¢(t) = (5 cost, sint), 0 < ¢t < 27w, an ellipse.
(c) c(t) = (at, bt, ct)
(d) ¢(t) = (%cost, ssint),0 <t < 2m, an ellipse.

21. c(t) x ¢/(¢t) 1s normal to the plane of the orbit at time ¢. As 1n Exercise 20, 1ts derivative 1s
0, and so the orbital plane 1s constant.

Section 4.2
1. 24/57 3. 2242 1)
6—+3 1 242 + 3
S. 4+ - 10 - 7. 27r\/5+\/2
/2 7 O V2 + /3 ( )
9. 3+ 1log2

11. (a) Because « is strictly increasing, it maps [a, b] one-to-one onto [a(a), a(b)]. By
definition, v 1s the image of ¢ if and only if there 1s a ¢ 1n [a, b] with ¢(¢) = v. There 1s one
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point s in [a(a), (o)} withs = a(t), sod(s) c¢(¢) v. Therefore, the image of ¢ 1s
contained in that of d. Use o~! similarly for the opposite inclusion.

(b) a(b) s=a(b)
lq d'(s)| ds (x(@)lla’(t) dt
a(a) s=a(a)
t=>b b
1A’ (x(2))e (2) I 2 () de L.

a

(¢) Differentiate d using the chain rule.

13. @) L= [ |I<@)llds ['ds b a

(b) T(s) = c'(s)/lIc’(s)l| = c'(s), 80 T'(s) =¢"(s). Thenk  [[T']|  [[¢"(s)I].

(c) Show thatif vand w are in R?, ||v x w|| = ||[w — (v w/||v||?)v||-||v]|. Use this to
show that if p(¢) — (x(z), y(¢), z(¢)) 1s never (0, 0, 0) and f(¢) = p(¢)/|| p(2)]|, then

Ly 00|y A 1000
dt  |lp()ll dt lo()11%

With o(t) = ¢'(¢), this gives

c’(2)

Ic'(2) x ¢"(2)|
(1)) (1) )

I/ (£)]12

T'(¢) U and T’(Z‘)”

If s 1s the arc length of ¢, ds/dt = ||¢'(¢)]|, and therefore

dT ds

kllc'(¢
T i e’ ()]

dT
¢

Thus,

L 4T [ x @)
IOl dr (D)l

(This result 1s useful in Exercise 15.)

(d) 1/+/2

15. (a) Because ¢ 1s parametrized by arc length, T(s) = ¢'(s), and N(s) = ¢"(s)/]|c"(s)|
Use Exercise 13 to show that

dB c/l c//l c/l . cl/l
o C” % + C, > _c//
ds e’ | e’ 1”3
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and

dB N (cl x cl/l) . cll (cl x cll) . c”/
ds ¢ 112 le”]|2

(b) Obtain T'(¢) and ||T'(¢)|| as in Exercise 13. B 1s a unit vector in the direction of
¢ xXT =(c xc")/]|c|, soB = (¢ x ¢")/||¢’ x ¢”||. Use the solution of Exercise 13 with

p ¢ x c¢”toobtain
dB/dt (¢ x ¢")/llc' x ¢"|| = {[(¢' x ")+ (¢' x )]/l x ¢"[I’}(c’ x ¢"),
and the values of T' and ||T’|| to get
N (I<] e xe")e” = xe)/e]?)
Finally, use the chain rule and the inner product of these to obtain

dB B (cl W c”) . c/”

—— .N
ds /dt| dt ¢/ x ¢”h2

T ’ -c-i—E(s(t)) N(s(t))
ds

(c) v2/2

17. (@A) Nisdefinedas T'/||T'||, so T’ || T'|IN AN.Because T-T' =0, T, N, and B are

an orthonormal basis for R’. Differentiating B(s) - B(s) = 1 and B(s) - T(s) = 0 shows that

B-B=0andB'- T+B-T'"=0.ButT'-B=||T'||[N-B=0,s0B - T = 0 also. Thus,

B=B- -T)T+B - -NN+ B -B)B= (B -N)N TN. Also, N’ - N = 0, because

N:N=1.Thus, N = (N'-T)T + (N - B)B. But differentiating N- T =0and N-B 0

givesN'«T —N-T kand N'-B N - B’ = 1, and so the middle equation follows.
(b) w T+ kB

19. Follow the hint 1n the text.

Section 4.3

1. 3.

/ / L 4
/ X
N
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5. F 2y, x): 7.

9. The flow lines are concentric circles:

11. The flow lines for ¢t > 0:

13. ¢'(t) = (2e*, 1/t, —1/t%) = F(c(t))

15. ¢/(t) = (cost, —sint, e') = F(¢(t))
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17. Compare -;-m v? for the escape velocity v, = +/2g R, and the velocity in an orbit of radius
Ry given 1n Section 4.1. (Ignore the rotation of the earth.)

19. Use the fact that —V T 1s perpendicular to the surface 7 = constant.

Section 4.4
1. yeV — xe*’ + ye” 3. 3

5. divV > 0 1n the first and third quadrants,
div V < 0 1n the second and fourth quadrants.

7. V-F = 0; if F represents a fluid, there 1s neither expansion nor compression; the area of
a small rectangle remains the same.

1

9. 3x% — x%cos(xy) 11. ycos(xy)+ x?sin(x?y)
13. 0

15. (10y — 82)i + (6z — 10x)j + (8x — 6y)K

17. —sinx 19. x
21. VX Vf =0 23. VxVf =0
25. VX F#0

27. LetF = Fii+ F,j + F3k and compute both sides of the identity.

29. (a) 2xyi+ x?j (©) (—y’zx3, 2x%y*z, 2x32% — 2xy)
(b) By*xz,4xz — y’z, 0) (d) 4x°yz* + x?
31. No.

33. Separate each expression into its real and imaginary parts an<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>