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Aims and Objectives

Representing a practical situation by means of a functional
model.
Applying mathematical models to solving practical
application problems.
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Revenue Functions
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Example of Revenue Function

A mathematical model is a mathematical representation
of a practical situation

Example
A retailer assumes that the price p, in cents, per unit
of a certain commodity when x units are sold satisfies the relation

5
6p − 35x = 15.

Express the generated revenue as a function of x .
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Example of Revenue Function. (Continued)

Solution. . .
The revenue R generated by selling x units of the commodity
for a price p is

R = px .

To express R as a function of x alone, express p as a function of x :

5
6p − 35x = 15

5
6p = 35x + 15

p =
6
5 (35x + 15)

p = 42x + 18
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Example of Revenue Function. (Continued)

. . . Solution.
Substitute the obtained expression for p in the formula for R:

R(x) = (42x + 18)x = 42x2 + 18x .
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Proportionality

Proportionality
A quantity Q is said to be:

directly proportional to x if

Q = kx

for some constant k;
inversely proportional to x if

Q =
k
x

for some constant k.
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Example of Total Cost Function

Example
At a certain factory, fixed production cost is directly proportional
to the number of machines used and variable cost is inversely
proportional
to the number of machines used.
Express the total cost as a function of the number of machines
used.
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Example of Total Cost Function. (Continued)

Solution.
Denote by x the number of machines used
and by C(x) the total production cost.

[Fixed Cost] = k1x , [Variable cost] =
k2
x ,

where k1 and k2 are constants.
Hence,

C(x) = k1x +
k2
x .

The graph of such a function is sketched in the following
figure.
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The Graph of a Total Cost Function

x (units)

C (euros)

C(x) = k1x + k2
x

Figure: The total cost as a function of the number of machines used.
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Example of Profit Function

Example
A manufacturer can produce blank video tape
at a cost of 2 C per cassette.
The cassettes have been selling for 3 C apiece, and at that price,
consumers have been buying 4, 000 cassettes a month.
The manufacturer is planning to raise the price of cassettes
and estimates that for each 1 C increase in the price
400 fewer cassettes will be sold each month.

1 Express the manufacturer’s monthly profit
as a function of the price at which the cassettes are sold.

2 Sketch the graph of the profit function.
What price corresponds to maximum profit?
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Example of Profit Function. (Continued)

Solution. . .
1 State the desired relationship in words:

[Profit] = [Revenue]− [Total cost].

Denote by p the price at which each cassette will be sold
and by P(p) the corresponding monthly profit.
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Example of Profit Function. (Continued)

. . . Solution. . .
Express the number x of cassettes sold in terms of p.
Since the rate of change is constant
(m = −400 cassettes for 1 C increase),
the function relating x to p is linear.
Since for p = 3 we have x = 4,000,
the line passes through (3, 4,000).
The point-slope form of the equation of the line:

x − x0 = m(p − p0)

x − 4,000 = −400(p − 3)
[Number of cassettes sold] = x = 5,200− 400p
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Example of Profit Function. (Continued)

. . . Solution. . .

[Revenue] = R(p)

= p · [Number of cassettes sold] = p(5, 200− 400p).

[Total cost] = C(p)

= 2 · [Number of cassettes sold] = 2(5, 200− 400p).

Hence, the total profit is

P(p) = R(p)− C(p) = p(5, 200− 400p)− 2(5, 200− 400p)

= (5, 200− 400p)(p − 2) = −400(p − 13)(p − 2)
= −400p2 + 6, 000p − 10, 400.
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The Graph of the Profit Function
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Figure: The profit function P(p) = −400(p − 13)(p − 2).
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Optimization of Profit

. . . Solution.
2 Maximum profit will occur at the value of p

corresponding to the vertex of the parabola:

p =
−b
2a =

−6, 000
2 · (−400) = 7.5

euros.
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Law of Supply and Demand
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Figure: Market equilibrium: the intersection of supply and demand.
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Example of Market Equilibrium

Example
Find the equilibrium price if the supply function
for a certain commodity is S(p) = p2 + 3p − 70
and the demand function is D(p) = 410− p.
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Example of Market Equilibrium. (Continued)

Solution.
Set S(p) equal to D(p) and solve the equation for p:

S(p) = D(p)

p2 + 3p − 70 = 410− p
p2 + 4p − 480 = 0

p1/2 =
−4±

√
42 − 4 · 1 · (−480)

2 · 1 ,

p1 = 20, p2 = −24.

In the application, only the positive values of p are meaningful;
hence, we conclude that the equilibrium price is 20 C.
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For Further Reading

http://fberisha.netfirms.com

Homework: Exercises from teaching materials
L. D. Hofmann, G. L. Bradley, Calculus – for business,
economics and life sciences, pp. 46–61
F. M. Berisha, M. Q. Berisha, Matematikë – për biznes
dhe ekonomiks, pp. 133–143

Functional Models 20

http://fberisha.netfirms.com


Mathematical Models of Business Quantities
Applying Mathematical Models

Summary

Summary

Mathematical models
Models of business functions

Revenue function
Total cost function
Profit function
Functions of supply and demand

Applying functional models for solving practical problems:
Optimization
Low of supply and demand
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