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Aims and Objectives

Introducing a technique for integrating certain products
f (x)g(x).
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Integration by Parts

Integration by Parts
If G is an antiderivative of g , then∫

f (x)g(x) dx = f (x)G(x)−
∫

f ′(x)G(x) dx .
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Why Integration by Parts Works

Use the product rule for differentiation:

d
dx [f (x)G(x)] = f ′(x)G(x)+f (x)G ′(x) = f ′(x)G(x)+f (x)g(x).

Express in terms of integrals:

f (x)G(x) =

∫
f ′(x)G(x) dx +

∫
f (x)g(x) dx .

Herefrom∫
f (x)g(x) dx = f (x)G(x)−

∫
f ′(x)G(x) dx ,

which is precisely the formula for integration by parts.
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When to Use Integration by Parts

Use intgration by parts to integrate products f (x)g(x),
in which:

one of the factors, say g(x), can be easily integrated
and the other, f (x), becomes simplier when differentiated.
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How to Use Integration by Parts

How to Use Integration by Parts
1 Select one of the factors to be integrated

and the other to be differentiated.
2 Integrate dhe designated factor and multiply it

by the other factor.
3 Differentiate the designated factor,

multiply it by the integrated factor from step 2,
and subtract the integral of this product from the result
of step 2.

4 Complete the procedure by finding the new integral
that was formed in step 3.
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Examples

Example
Find

∫
xe2xdx .

Solution. . .
The process of differentiation simplifies x :

g(x) = e2x and f (x) = x .

Then
G(x) =

1
2e

2x and f ′(x) = 1.
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Examples. (Continued)

. . . Solution.
So∫

xe2xdx = x
(1
2e

2x
)
−
∫

1 ·
(1
2e

2x
)
dx

=
1
2xe

2x − 1
2

∫
e2xdx

=
1
2xe

2x − 1
4e

2x + C =
1
2

(
x − 1

2

)
e2x + C .
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Examples. (Continued)

Example
Find

∫
x
√
x + 5 dx .

Solution. . .

g(x) =
√
x + 5 and f (x) = x .

Then

G(x) =

∫ √
x + 5 dx =

∫
(x+5)

1
2 dx =

2
3(x+5)

3
2 and f ′(x) = 1.
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Examples. (Continued)

. . . Solution.
So∫

x
√
x + 5 dx =

2
3x(x + 5)

3
2 − 2

3

∫
(x + 5)

3
2 dx

=
2
3x(x + 5)

3
2 − 2

3 ·
2
5(x + 5)

5
2 + C .
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Examples. (Continued)

Example
Find

∫
ln x dx .

Solution. . .
Write ln x as the product 1 · ln x , where 1 is easy to integrate
and ln x is simplified by differentiation:

g(x) = 1 and f (x) = ln x .

Then
G(x) = x and f ′(x) =

1
x .
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Examples. (Continued)

. . . Solution.
So∫

ln x dx =

∫
1 · ln x dx = x ln x −

∫
x 1x dx

= x ln x −
∫

dx = x ln x − x + C = x(ln x − 1) + C .
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Examples. (Continued)

Example
Find the particular solution of the differential equation

dy
dx = xex−y

that satisfies the condition y = ln 2 when x = 0.

Solution. . .
Separate the variables:

dy
dx =

xex

ey

eydy = xexdx
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Examples. (Continued)

. . . Solution. . .

∫
eydy =

∫
xexdx

ey =

∫
xexdx

Integrate by parts:

g(x) = ex and f (x) = x .

Then
G(x) = ex and f ′(x) = 1.
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Examples. (Continued)

. . . Solution.
So∫

xexdx = xex −
∫

1 · exdx

= xex − ex + C = (x − 1)ex + C .

The general solution of the differential equation:

ey = (x − 1)ex + C
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Examples. (Continued)

. . . Solution.
Determine C :

y(0) = ln 2
eln 2 = (0− 1)e0 + C

2 = −1 · 1 + C
C = 3

The particular solution:

ey = (x − 1)ex + 3.
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For Further Reading

http://fberisha.netfirms.com

Homework: Exercises from teaching materials
L. D. Hofmann, G. L. Bradley, Calculus – for business,
economics and life sciences, pp. 410–418.
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Integration by parts: If G is an antiderivative of g , then∫
f (x)g(x) dx = f (x)G(x)−

∫
f ′(x)G(x) dx .
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