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Simple
Linear
Regression
Analysis

Chapter Outline

After mastering the material in this chapter, you will be able to:

LO14-6 Calculate and interpret the simple
coefficients of determination and
correlation.

LO14-7 Test hypotheses about the population
correlation coefficient.

LO14-8 Test the significance of a simple linear
regression model by using an F-test.

LO14-9 Use residual analysis to check the
assumptions of simple linear regression. 

Learning Objectives

LO14-1 Explain the simple linear regression model.

LO14-2 Find the least squares point estimates of
the slope and y-intercept.

LO14-3 Describe the assumptions behind simple
linear regression and calculate the
standard error.

LO14-4 Test the significance of the slope and
y-intercept.

LO14-5 Calculate and interpret a confidence
interval for a mean value and a prediction
interval for an individual value.
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expenditures made to promote the product, the
company might use regression analysis to develop an
equation to predict demand on the basis of price and
advertising expenditure. Predictions of demand for
various price–advertising expenditure combinations
can then be used to evaluate potential changes in
the company’s marketing strategies.

In the next two chapters we give a thorough
presentation of regression analysis. We begin in this
chapter by presenting simple linear regression
analysis. Using this technique is appropriate when
we are relating a dependent variable to a single
independent variable and when a straight-line
model describes the relationship between these two
variables. We explain many of the methods of this
chapter in the context of two new cases:

The Tasty Sub Shop Case: A business entrepreneur
uses simple linear regression analysis to predict
the yearly revenue for a potential restaurant site
on the basis of the number of residents living
near the site. The entrepreneur then uses the
prediction to assess the profitability of the
potential restaurant site.

The QHIC Case: The marketing department at
Quality Home Improvement Center (QHIC) uses
simple linear regression analysis to predict home
upkeep expenditure on the basis of home value.
Predictions of home upkeep expenditures are
used to help determine which homes should be
sent advertising brochures promoting QHIC’s
products and services.

14.1 The Simple Linear Regression Model and the Least
Squares Point Estimates 

The simple linear regression model The simple linear regression model assumes that the
relationship between the dependent variable, which is denoted y, and the independent vari-
able, denoted x, can be approximated by a straight line. We can tentatively decide whether there
is an approximate straight-line relationship between y and x by making a scatter diagram, or
scatter plot, of y versus x. First, data concerning the two variables are observed in pairs. To con-
struct the scatter plot, each value of y is plotted against its corresponding value of x. If the y val-
ues tend to increase or decrease in a straight-line fashion as the x values increase, and if there is a
scattering of the (x, y) points around the straight line, then it is reasonable to describe the relation-
ship between y and x by using the simple linear regression model. We illustrate this in the follow-
ing case study. 

anagers often make decisions by studying
the relationships between variables, and
process improvements can often be made

by understanding how changes in one or more
variables affect the process output. Regression
analysis is a statistical technique in which we use
observed data to relate a variable of interest, which
is called the dependent (or response) variable, to one
or more independent (or predictor) variables. The
objective is to build a regression model, or prediction
equation, that can be used to describe, predict, and
control the dependent variable on the basis of the
independent variables. For example, a company
might wish to improve its marketing process. After
collecting data concerning the demand for a
product, the product’s price, and the advertising

M

EXAMPLE 14.1 The Tasty Sub Shop Case: Predicting Yearly 
Revenue for a Potential Restaurant Site

Part 1: Purchasing a Tasty Sub Shop franchise The Tasty Sub Shop is a restaurant chain
that sells franchises to business entrepreneurs. Like Quiznos and Subway, the Tasty Sub Shop
does not construct a standard, recognizable building to house each of its restaurants. Instead, the
entrepreneur wishing to purchase a Tasty Sub franchise finds a suitable site, which consists of a
suitable geographical location and suitable store space to rent. Then, when Tasty Sub approves
the site, an architect and a contractor are hired to remodel the store rental space and thus “build”
the Tasty Sub Shop restaurant. Franchise regulations allow Tasty Sub (and other chains) to help
entrepreneurs understand the factors that affect restaurant profitability and to provide basic
guidance in evaluating potential restaurant sites. However, in order to prevent restaurant chains
from overpredicting profits and thus misleading potential franchise owners, these regulations

C

C

Explain the
simple

linear regression
model.

LO14-1
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make each individual entrepreneur responsible for predicting the profits of his or her potential
restaurant sites.

In this case study we consider a business entrepreneur who has found several potential sites
for a Tasty Sub Shop restaurant. Similar to most existing Tasty Sub restaurant sites, each of the
entrepreneur’s sites is a store rental space located in an outdoor shopping area that is close to one
or more residential areas. For a Tasty Sub restaurant built on such a site, yearly revenue is known
to partially depend on (1) the number of residents living near the site and (2) the amount of busi-
ness and shopping near the site. Referring to the number of residents living near a site as popu-
lation size and to the yearly revenue for a Tasty Sub restaurant built on the site as yearly revenue,
the entrepreneur will—in this chapter—try to predict the dependent (response) variable yearly
revenue (y) on the basis of the independent (predictor) variable population size (x). (In the next
chapter the entrepreneur will also use the amount of business and shopping near a site to help pre-
dict yearly revenue.) To predict yearly revenue on the basis of population size, the entrepreneur
randomly selects 10 existing Tasty Sub restaurants that are built on sites similar to the sites that
the entrepreneur is considering. The entrepreneur then asks the owner of each existing restaurant
what the restaurant’s revenue y was last year and estimates—with the help of the owner and pub-
lished demographic information—the number of residents, or population size x, living near the
site. The values of y (measured in thousands of dollars) and x (measured in thousands of residents)
that are obtained are given in Table 14.1. In Figure 14.1 we give an Excel output of a scatter plot
of y versus x. This plot shows (1) a tendency for the yearly revenues to increase in a straight-line
fashion as the population sizes increase and (2) a scattering of points around the straight line. A
regression model describing the relationship between y and x must represent these two charac-
teristics. We now develop such a model.

Part 2: The simple linear regression model The simple linear regression model relating
y to x can be expressed as follows:

This model says that the values of y can be represented by a mean level ( ) that
changes in a straight line fashion as x changes, combined with random fluctuations (described by
the error term ) that cause the values of y to deviate from the mean level. Here:

1 The mean level is the mean yearly revenue corresponding to a particular
population size x. That is, noting that different Tasty Sub restaurants could potentially be
built near different populations of the same size x, the mean level is the
mean of the yearly revenues that would be obtained by all such restaurants. In addition,
because is the equation of a straight line, the mean yearly revenues that
correspond to increasing values of the population size x lie on a straight line. For example,

my � b0 � b1x

my � b0 � b1x

my � b0 � b1x

e

my � b0 � b1x

y � b0 � b1x � e

488 Chapter 14 Simple Linear Regression Analysis

T A B L E 1 4 . 1 The Tasty Sub Shop
Revenue Data

TastySub1DS

Population Yearly
Size, x Revenue, y
(Thousands (Thousands

Restaurant of Residents) of Dollars)
1 20.8 527.1
2 27.5 548.7
3 32.3 767.2
4 37.2 722.9
5 39.6 826.3
6 45.1 810.5
7 49.9 1040.7
8 55.4 1033.6
9 61.7 1090.3

10 64.6 1235.8

Population Revenue1

13
12
11
10
9
8
7
6
5
4
3
2 20.8

55.4
49.9

61.7
64.6

45.1
39.6
37.2
32.3
27.5

527.1

1033.6
1090.3
1235.8

1040.7
810.5
826.3
722.9
767.2
548.7

A B C D E F G H I

0 302010 40 50 60 70

1400

1200

1000

800

600

400

200

0

Population

R
ev

en
u

e

F I G U R E 1 4 . 1 Excel Output of a Scatter Plot of y versus x
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14.1 The Simple Linear Regression Model and the Least Squares Point Estimates 489
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810.5 � The observed yearly revenue for restaurant 6

Mean yearly revenue when x is 45.1 � �0 � �1(45.1)

The error term for restaurant 6 (a negative error term)

The y-intercept �0

The line of means: �y � �0 � �1x

The slope �1

One-unit
increase in x

�1

767.2 � The observed yearly revenue for restaurant 3

Mean yearly revenue when x is 32.3 � �0 � �1(32.3)

The error term for restaurant 3 (a positive error term)

F I G U R E 1 4 . 2 The Simple Linear Regression Model Relating Yearly Revenue (y) to Population (x)

Table 14.1 tells us that 32,300 residents live near restaurant 3 and 45,100 residents live near
restaurant 6. It follows that the mean yearly revenue for all Tasty Sub restaurants that could
potentially be built near populations of 32,300 residents is Similarly, the
mean yearly revenue for all Tasty Sub restaurants that could potentially be built near popu-
lations of 45,100 residents is Figure 14.2 depicts these two mean yearly
revenues as triangles that lie on the straight line which we call the line of
means. The unknown parameters and are the y-intercept and the slope of the line
of means. When we estimate and in the next subsection, we will be able to estimate
mean yearly revenue on the basis of the population size x.

2 The y-intercept of the line of means can be understood by considering Figure 14.2. As
illustrated in this figure, the y-intercept is the mean yearly revenue for all Tasty Sub
restaurants that could potentially be built near populations of zero residents. However,
because it is unlikely that a Tasty Sub restaurant would be built near a population of zero
residents, this interpretation of is of dubious practical value. There are many regression
situations where the y-intercept lacks a practical interpretation. In spite of this, statisti-
cians have found that is almost always an important component of the line of means and
thus of the simple linear regression model.

3 The slope of the line of means can also be understood by considering Figure 14.2. As
illustrated in this figure, the slope is the change in mean yearly revenue that is associated
with a one-unit increase (that is, a 1,000 resident increase) in the population size x.

4 The error term of the simple linear regression model accounts for any factors affecting
yearly revenue other than the population size x. Such factors would include the amount of
business and shopping near a restaurant and the skill of the owner as an operator of the
restaurant. For example, Figure 14.2 shows that the error term for restaurant 3 is positive.
Therefore, the observed yearly revenue y � 767.2 for restaurant 3 is above the correspond-
ing mean yearly revenue for all restaurants that have x � 32.3. As another example, Fig-
ure 14.2 also shows that the error term for restaurant 6 is negative. Therefore, the observed
yearly revenue y � 810.5 for restaurant 6 is below the corresponding mean yearly revenue for
all restaurants that have x � 45.1. Of course, because we do not know the true values of 
and the relative positions of the quantities pictured in Figure 14.2 are only hypothetical.b1,

b0

e

b1

b1

b0

b0

b0

b0

b0

my

b1b0

b1b0

my � b0 � b1x,
b0 � b1 (45.1).

b0 � b1 (32.3).
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With the Tasty Sub Shop example as background, we are ready to define the simple linear
regression model relating the dependent variable y to the independent variable x. We sup-
pose that we have gathered n observations—each observation consists of an observed value of x
and its corresponding value of y. Then:

490 Chapter 14 Simple Linear Regression Analysis

y

x

y-intercept

One-unit change
in x

Slope � �1

Error
term

An observed
value of y
when x equals x0

Mean value of y
when x equals x0

Straight line defined
by the equation
�y � �0 � �1x

x0 � A specific value of
 the independent
 variable x

0

�0

F I G U R E 1 4 . 3 The Simple Linear Regression Model (Here the Slope B1 Is Positive)

The Simple Linear Regression Model

associated with a one-unit increase in x. If b1 is
positive, the mean value of y increases as x
increases. If b1 is negative, the mean value of y
decreases as x increases.

4 e is an error term that describes the effects on y
of all factors other than the value of the inde-
pendent variable x.

The simple linear (or straight line) regression model is: y �b0 �b1x � e

Here

1 my � b0 �b1x is the mean value of the dependent
variable y when the value of the independent
variable is x.

2 b0 is the y-intercept. b0 is the mean value of y
when x equals zero.

3 b1 is the slope. b1 is the change (amount of
increase or decrease) in the mean value of y

This model is illustrated in Figure 14.3 (note that x0 in this figure denotes a specific value of the
independent variable x). The y-intercept b0 and the slope b1 are called regression parameters.
In addition, we have interpreted the slope b1 to be the change in the mean value of y associated
with a one-unit increase in x. We sometimes refer to this change as the effect of the independent
variable x on the dependent variable y. However, we cannot prove that a change in an indepen-
dent variable causes a change in the dependent variable. Rather, regression can be used only to
establish that the two variables move together and that the independent variable contributes in-
formation for predicting the dependent variable. For instance, regression analysis might be used
to establish that as liquor sales have increased over the years, college professors’ salaries have
also increased. However, this does not prove that increases in liquor sales cause increases in col-
lege professors’ salaries. Rather, both variables are influenced by a third variable—long-run
growth in the national economy.
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14.1 The Simple Linear Regression Model and the Least Squares Point Estimates 491

The least squares point estimates Suppose that we have gathered n observations 
where each observation consists of a value of an independent variable x

and a corresponding value of a dependent variable y. Also, suppose that a scatter plot of the n
observations indicates that the simple linear regression model relates y to x. In order to estimate
the y-intercept and the slope of the line of means of this model, we could visually draw a
line—called an estimated regression line—through the scatter plot. Then, we could read the
y-intercept and slope off the estimated regression line and use these values as the point estimates
of and . Unfortunately, if different people visually drew lines through the scatter plot, their
lines would probably differ from each other. What we need is the “best line” that can be drawn
through the scatter plot. Although there are various definitions of what this best line is, one of the
most useful best lines is the least squares line.

To understand the least squares line, we let

denote the general equation of an estimated regression line drawn through a scatter plot. Here,
because we will use this line to predict y on the basis of x, we call the predicted value of y when
the value of the independent variable is x. In addition, is the y-intercept and is the slope of
the estimated regression line. When we determine numerical values for and , these values
will be the point estimates of the y-intercept and the slope of the line of means. To explain
which estimated regression line is the least squares line, we begin with the Tasty Sub Shop
situation. Figure 14.4 shows an estimated regression line drawn through a scatter plot of the Tasty
Sub Shop revenue data. In this figure the red dots represent the 10 observed yearly revenues and
the black squares represent the 10 predicted yearly revenues given by the estimated regression
line. Furthermore, the line segments drawn between the red dots and black squares represent
residuals, which are the differences between the observed and predicted yearly revenues.
Intuitively, if a particular estimated regression line provides a good “fit” to the Tasty Sub Shop
revenue data, it will make the predicted yearly revenues “close” to the observed yearly revenues,
and thus the residuals given by the line will be small. The least squares line is the line that min-
imizes the sum of squared residuals. That is, the least squares line is the line positioned on the
scatter plot so as to minimize the sum of the squared vertical distances between the observed and
predicted yearly revenues.

b1b0

b1b0

b1b0

ŷ

ŷ � b0 � b1x

b1b0

b1b0

(x2, y2), . . . , (xn, yn),
(x1, y1),

F I G U R E 1 4 . 4 An Estimated Regression Line Drawn through the Tasty Sub Shop Revenue Data
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492 Chapter 14 Simple Linear Regression Analysis

The following example illustrates how to calculate these point estimates and how to use these
point estimates to estimate mean values and predict individual values of the dependent variable.
Note that the quantities SSxy and SSxx used to calculate the least squares point estimates are also
used throughout this chapter to perform other important calculations.

1In order to simplify notation, we will often drop the limits on summations in this and subsequent chapters. That is, instead of

using the summation we will simply writea .a
n

i�1

The Least Squares Point Estimates

For the simple linear regression model:

1 The least squares point estimate of the slope B1 is 

where

and

2 The least squares point estimate of the y-intercept B0 is 

where

and

Here n is the number of observations (an observation is an observed value of x and its corresponding
value of y).

x �
a xi

n
y �

a yi

n

b0 � y � b1x

SSxx � a (xi � x )2 �a x2
i �

�a xi�
2

n
 SSxy � a (xi � x )(yi � y ) �a xiyi �

�a xi��a yi�
n

b1 �
SSxy

SSxx

To define the least squares line in a general situation, consider an arbitrary observation 
in a sample of n observations. For this observation, the predicted value of the dependent vari-
able y given by an estimated regression line is

Furthermore, the difference between the observed and predicted values of y, is the
residual for the observation, and the sum of squared residuals for all n observations is

The least squares line is the line that minimizes SSE. To find this line, we find the values of the
y-intercept and slope that give values of that minimize SSE. These values of

are called the least squares point estimates of Using calculus, it can be
shown that these estimates are calculated as follows:1

b0 and b1.b0 and b1

ŷi � b0 � b1xib1b0

SSE � a
n

i�1
(yi � ŷi)

2

yi � ŷi,

ŷi � b0 � b1xi

(xi, yi)
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14.1 The Simple Linear Regression Model and the Least Squares Point Estimates 493

EXAMPLE 14.2 The Tasty Sub Shop Case: The Least Squares Estimates C

Part 1: Calculating the least squares point estimates Again consider the Tasty Sub
Shop problem. To compute the least squares point estimates of the regression parameters b0 and
b1 we first calculate the following preliminary summations:

yi xi xiyi

527.1 20.8 (20.8)2 � 432.64 (20.8)(527.1) � 10963.68
548.7 27.5 (27.5)2 � 756.25 (27.5)(548.7) � 15089.25
767.2 32.3 (32.3)2 � 1,043.29 (32.3)(767.2) � 24780.56
722.9 37.2 (37.2)2 � 1,383.84 (37.2)(722.9) � 26891.88
826.3 39.6 (39.6)2 � 1,568.16 (39.6)(826.3) � 32721.48
810.5 45.1 (45.1)2 � 2,034.01 (45.1)(810.5) � 36553.55

1040.7 49.9 (49.9)2 � 2,490.01 (49.9)(1040.7) � 51930.93
1033.6 55.4 (55.4)2 � 3,069.16 (55.4)(1033.6) � 57261.44
1090.3 61.7 (61.7)2 � 3,806.89 (61.7)(1090.3) � 67271.51
1235.8 64.6 (64.6)2 � 4,173.16 (64.6)(1235.8) � 79832.68

Using these summations, we calculate SSxy and SSxx as follows.

It follows that the least squares point estimate of the slope b1 is

Furthermore, because

the least squares point estimate of the y-intercept b0 is

(where we have used more decimal place accuracy than shown to obtain the result 183.31).
Because b1 � 15.596, we estimate that mean yearly revenue at Tasty Sub restaurants in-

creases by 15.596 (that is by $15,596) for each one-unit (1,000 resident) increase in the popula-
tion size x. Because b0 � 183.31, we estimate that mean yearly revenue for all Tasty Sub restau-
rants that could potentially be built near populations of zero residents is $183,310. However,
because it is unlikely that a Tasty Sub restaurant would be built near a population of zero resi-
dents, this interpretation is of dubious practical value.

The least squares line

is sometimes called the least squares prediction equation. In Table 14.2 (on the next page) we
summarize using this prediction equation to calculate the predicted yearly revenues and the

ŷ � b0 � b1x � 183.31 � 15.596x

b0 � y � b1x � 860.31 � (15.596)(43.41) � 183.31

y �
a yi

n
�

8603.1

10
� 860.31    and    x �

a xi

n
�

434.1

10
� 43.41

b1 �
SSxy

SSxx

�
29,836.389

1913.129
� 15.596

 � 1913.129

 � 20,757.41 �
(434.1)2

10

 SSxx � a x2
i �

�a xi�2

n

 � 29,836.389

 � 403,296.96 �
(434.1)(8603.1)

10

 SSxy � a xiyi �
�a xi��a yi�

n

a xiyi � 403,296.96a x2
i � 20,757.41a xi � 434.1a yi � 8603.1

xi
2
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residuals for the 10 observed Tasty Sub restaurants. For example, because the population size for
restaurant 1 was 20.8, the predicted yearly revenue for restaurant 1 is 

It follows, because the observed yearly revenue for restaurant 1 was that the resid-
ual for restaurant 1 is

If we consider all of the residuals in Table 14.2 and add their squared values, we find that SSE,
the sum of squared residuals, is 30,460.21. This SSE value will be used throughout this chapter.
Figure 14.5 gives the MINITAB output of the least squares line. Note that this output gives
(within rounding) the least squares estimates we have calculated and 
In general, we will rely on Excel and MINITAB to compute the least squares estimates (and to
perform many other regression calculations).

Part 2: Estimating a mean yearly revenue and predicting an individual yearly
revenue We define the experimental region to be the range of the previously observed pop-
ulation sizes. Referring to Table 14.2, we see that the experimental region consists of the range

b1 � 15.60).(b0 � 183.3

y1 � ŷ1 � 527.1 � 507.69 � 19.41

y1 � 527.1,

ŷ1 � 183.31 � 15.596(20.8) � 507.69

494 Chapter 14 Simple Linear Regression Analysis

T A B L E 1 4 . 2 Calculation of SSE Obtained by Using the Least Squares Point Estimates

F I G U R E 1 4 . 5 The MINITAB Output of the Least Squares Line

Best Fit Line for Revenue Data
Revenue = 183.3 � 15.60Population
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yi xi � 183.31 � 15.596xi yi � 

527.1 20.8 183.31 � 15.596(20.8) � 507.69 19.41
548.7 27.5 183.31 � 15.596(27.5) � 612.18 �63.48
767.2 32.3 687.04 80.16
722.9 37.2 763.46 �40.56
826.3 39.6 800.89 25.41
810.5 45.1 886.67 �76.17

1040.7 49.9 961.53 79.17
1033.6 55.4 1047.30 �13.70
1090.3 61.7 1145.55 �55.25
1235.8 64.6 1190.78 45.02

Note: The predictions and residuals in this table are taken from MINITAB, which uses values of b0 and b1 that are more
precise than the rounded values we have calculated by hand. If you use the formula � 183.31 � 15.596xi, your figures
may differ slightly from those given here.

ŷi

SSE � a ( yi � ŷi )
2 � (19.41)2 � (�63.48)2 � � � � � (45.02)2 � 30,460.21

ŷiŷi
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14.1 The Simple Linear Regression Model and the Least Squares Point Estimates 495

of population sizes from 20.8 to 64.6. The simple linear regression model relates yearly revenue
y to population size x for values of x that are in the experimental region. For such values of x, the
least squares line is the estimate of the line of means. It follows that the point on the least squares
line corresponding to a population size of x

is the point estimate of the mean yearly revenue for all Tasty Sub restaurants that could
potentially be built near populations of size x. In addition, we predict the error term to be 0.
Therefore, is also the point prediction of an individual value which is the
yearly revenue for a single (individual) Tasty Sub restaurant that is built near a population of size
x. Note that the reason we predict the error term to be zero is that, because of several regression
assumptions to be discussed in the next section, has a 50 percent chance of being positive and a
50 percent chance of being negative.

For example, suppose that one of the business entrepreneur’s potential restaurant sites is near
a population of 47,300 residents. Because x � 47.3 is in the experimental region,

(that is, $921,000)

is

1 The point estimate of the mean yearly revenue for all Tasty Sub restaurants that could
potentially be built near populations of 47,300 residents.

2 The point prediction of the yearly revenue for a single Tasty Sub restaurant that is built
near a population of 47,300 residents.

Figure 14.6 illustrates as a square on the least squares line. Moreover, suppose that the
yearly rent and other fixed costs for the entrepreneur’s potential restaurant will be $257,550 and
that (according to Tasty Sub corporate headquarters) the yearly food and other variable costs for
the restaurant will be 60 percent of the yearly revenue. Because we predict that the yearly revenue

ŷ � 921.0

� 921.0

ŷ � 183.31 � 15.596(47.3)

e

e

y � b0 � b1x � e,ŷ
e

b0 � b1x,

ŷ � b0 � b1x

F I G U R E 1 4 . 6 Point Estimation and Point Prediction, and the Danger of Extrapolation
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1500

30 40 50 60 70 80 90

The least squares line
y^ � 183.31 � 15.596x

y^ � 183.31 � 15.596(47.3)
 � 921.0
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for the restaurant will be $921,000, it follows that we predict that the yearly total operating cost for
the restaurant will be $257,550 � .6($921,000) � $810,150. In addition, if we subtract this pre-
dicted yearly operating cost from the predicted yearly revenue of $921,000, we predict that the
yearly profit for the restaurant will be $110,850. Of course, these predictions are point predictions.
In Section 14.4 we will predict the restaurant’s yearly revenue and profit with confidence.

To conclude this example, note that Figure 14.6 illustrates the potential danger of using
the least squares line to predict outside the experimental region. In the figure, we extrapolate
the least squares line beyond the experimental region to obtain a prediction for a population
size of As shown in Figure 14.6, for values of x in the experimental region (that is, be-
tween 20.8 and 64.6) the observed values of y tend to increase in a straight-line fashion as the
values of x increase. However, for population sizes greater than we have no data to
tell us whether the relationship between y and x continues as a straight-line relationship or, pos-
sibly, becomes a curved relationship. If, for example, this relationship becomes the sort of curved
relationship shown in Figure 14.6, then extrapolating the straight-line prediction equation to ob-
tain a prediction for would overestimate mean yearly revenue (see Figure 14.6).

The previous example illustrates that when we are using a least squares regression line, we
should not estimate a mean value or predict an individual value unless the corresponding value
of x is in the experimental region—the range of the previously observed values of x. Often the
value x � 0 is not in the experimental region. In such a situation, it would not be appropriate to
interpret the y-intercept b0 as the estimate of the mean value of y when x equals 0. For example,
consider the Tasty Sub Shop problem. Figure 14.6 illustrates that the population size x � 0 is not
in the experimental region. Therefore, it would not be appropriate to use b0 � 183.31 as the point
estimate of the mean yearly revenue for all Tasty Sub restaurants that could potentially be built
near populations of zero residents. Because it is not meaningful to interpret the y-intercept in
many regression situations, we often omit such interpretations.

We now present a general procedure for estimating a mean value and predicting an individual
value:

x � 90

x � 64.6,

x � 90.

496 Chapter 14 Simple Linear Regression Analysis

Point Estimation and Point Prediction in Simple Linear Regression

1 is the point estimate of the mean value of the
dependent variable when the value of the inde-
pendent variable is x0.

2 is the point prediction of an individual value of
the dependent variable when the value of the
independent variable is x0. Here we predict the
error term to be 0.

Let b0 and b1 be the least squares point estimates
of the y-intercept b0 and the slope b1 in the simple

linear regression model, and suppose that x0, a spec-
ified value of the independent variable x, is inside
the experimental region. Then

ŷ � b0 � b1x0

Exercises for Section 14.1
CONCEPTS

14.1 What is the least squares regression line, and what are the least squares point estimates?

14.2 Why is it dangerous to extrapolate outside the experimental region?

METHODS AND APPLICATIONS

In Exercises 14.3 through 14.8 we present six data sets involving a dependent variable y and an indepen-
dent variable x. For each data set, assume that the simple linear regression model

relates y to x.

14.3 THE NATURAL GAS CONSUMPTION CASE GasCon1

On the next page we give the average hourly outdoor temperature (x) in a city during a week and
the city’s natural gas consumption (y) during the week for each of eight weeks (the temperature
readings are expressed in degrees Fahrenheit and the natural gas consumptions are expressed in

DS

y � b0 � b1x � e
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14.1 The Simple Linear Regression Model and the Least Squares Point Estimates 497

millions of cubic feet of natural gas—denoted MMcf). The output to the right of the data is obtained
when MINITAB is used to fit a least squares line to the natural gas consumption data.
a Find the least squares point estimates b0 and b1 on the computer output and report their values.

Interpret b0 and b1. Is an average hourly temperature of 0�F in the experimental region? What
does this say about the interpretation of b0?

b Use the facts that and to hand
calculate (within rounding) b0 and b1. 

c Use the least squares line to compute a point estimate of the mean natural gas consumption for
all weeks having an average hourly temperature of 40°F and a point prediction of the natural
gas consumption for an individual week having an average hourly temperature of 40°F.

14.4 THE STARTING SALARY CASE StartSal

The chairman of the marketing department at a large state university undertakes a study to relate
starting salary (y) after graduation for marketing majors to grade point average (GPA) in major
courses. To do this, records of seven recent marketing graduates are randomly selected, and the
data shown below on the left are obtained. The MINITAB output obtained by fitting a least squares
regression line to the data is below on the right.

DS

x � 43.98y � 10.2125;SSxx � 1,404.355;SSxy � �179.6475;

Average Hourly Natural Gas
Temperature, Consumption, 

Week x (ºF) y (MMcf)
1 28.0 12.4
2 28.0 11.7
3 32.5 12.4
4 39.0 10.8
5 45.9 9.4
6 57.8 9.5
7 58.1 8.0
8 62.5 7.5

GasCon1DS
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s
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7

Best Fit Line for Gas Consumption Data
GasCons = 15.84 - 0.1279 Temp

Starting Salary, 
Marketing y (Thousands 
Graduate GPA, x of Dollars)
1 3.26 33.8
2 2.60 29.8
3 3.35 33.5
4 2.86 30.4
5 3.82 36.4
6 2.21 27.6
7 3.47 35.3

StartSalDS

GPA

S
ta

rt
S

al

4.03.53.02.52.0

36

34

32

30

28

Fitted Line Plot
StartSal = 14.82 + 5.707 GPA

a Find the least squares point estimates b0 and b1 on the computer output and report their values.
Interpret b0 and b1. Does the interpretation of b0 make practical sense?

b Use the least squares line to compute a point estimate of the mean starting salary for all
marketing graduates having a grade point average of 3.25 and a point prediction of the
starting salary for an individual marketing graduate having a grade point average of 3.25.

14.5 THE SERVICE TIME CASE SrvcTime

Accu-Copiers, Inc., sells and services the Accu-500 copying machine. As part of its standard service
contract, the company agrees to perform routine service on this copier. To obtain information about
the time it takes to perform routine service, Accu-Copiers has collected data for 11 service calls. The
data and Excel output from fitting a least squares regression line to the data follow on the next page.

DS
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a Find the least squares point estimates b0 and b1 on the computer output and report their values.
Interpret b0 and b1. Does the interpretation of b0 make practical sense?

b Use the least squares line to compute a point estimate of the mean time to service four copiers
and a point prediction of the time to service four copiers on a single call.

14.6 THE FRESH DETERGENT CASE Fresh

Enterprise Industries produces Fresh, a brand of liquid laundry detergent. In order to study the
relationship between price and demand for the large bottle of Fresh, the company has gathered data
concerning demand for Fresh over the last 30 sales periods (each sales period is four weeks). Here,
for each sales period,

y � demand for the large bottle of Fresh (in hundreds of thousands of bottles) in the sales
period, and

x � the difference between the average industry price (in dollars) of competitors’ similar
detergents and the price (in dollars) of Fresh as offered by Enterprise Industries in the
sales period.

The data and MINITAB output from fitting a least squares regression line to the data follow
below.

DS
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Service Number of Copiers Number of Minutes
Call Serviced, x Required, y

1 4 109
2 2 58
3 5 138
4 7 189
5 1 37
6 3 82
7 4 103
8 5 134
9 2 68

10 4 112
11 6 154

SrvcTimeDS

Copiers Line Fit Plot

Minutes = 11.4641 + 24.6022*Copiers 
0

50

100

150

200

0 2 4 6 8

Copiers

M
in
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es

Fresh Detergent Demand Data
Sales Sales
Period y x Period y x

1 7.38 �.05 24 8.50 .10
2 8.51 .25 25 8.75 .50
3 9.52 .60 26 9.21 .60
4 7.50 0 27 8.27 �.05
5 9.33 .25 28 7.67 0
6 8.28 .20 29 7.93 .05
7 8.75 .15 30 9.26 .55
8 7.87 .05
9 7.10 �.15

10 8.00 .15
11 7.89 .20
12 8.15 .10
13 9.10 .40
14 8.86 .45
15 8.90 .35
16 8.87 .30
17 9.26 .50
18 9.00 .50
19 8.75 .40
20 7.95 �.05
21 7.65 �.05
22 7.27 �.10
23 8.00 .20

FreshDS

PriceDif

D
em

an
d

0.60.40.20.0-0.2

9.5

9.0

8.5

8.0

7.5

7.0

Fitted Line Plot
Demand = 7.814 + 2.665 PriceDif
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14.1 The Simple Linear Regression Model and the Least Squares Point Estimates 499

a Find the least squares point estimates b0 and b1 on the computer output and report their values.
b Interpret b0 and b1. Does the interpretation of b0 make practical sense?
c Write the equation of the least squares line.
d Use the least squares line to compute a point estimate of the mean demand in all sales periods

when the price difference is .10 and a point prediction of the actual demand in an individual
sales period when the price difference is .10.

14.7 THE DIRECT LABOR COST CASE DirLab

An accountant wishes to predict direct labor cost (y) on the basis of the batch size (x) of a product
produced in a job shop. Data for 12 production runs are given in the table below, along with the
Excel output from fitting a least squares regression line to the data.

DS

Direct Labor Cost 
Data DirLab

Direct
Labor Cost, Batch
y ($100s) Size, x

71 5
663 62
381 35
138 12
861 83
145 14
493 46
548 52
251 23

1024 100
435 41
772 75

DS
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a By using the formulas illustrated in Example 14.2 (see page 493) and the data provided,
verify that (within rounding) b0 � 18.488 and b1 � 10.146, as shown on the Excel output.

b Interpret the meanings of b0 and b1. Does the interpretation of b0 make practical sense?
c Write the least squares prediction equation.
d Use the least squares line to obtain a point estimate of the mean direct labor cost for all 

batches of size 60 and a point prediction of the direct labor cost for an individual batch of
size 60.

14.8 THE REAL ESTATE SALES PRICE CASE RealEst

A real estate agency collects data concerning the sales price of a house (in thousands of
dollars), and the home size (in hundreds of square feet). The data are given in the table 
below. The MINITAB output from fitting a least squares regression line to the data is on the 
next page.

x �
y �

DS

Real Estate Sales Price Data RealEst

Sales Home Sales Home
Price (y) Size (x) Price (y) Size (x)
180 23 165.9 21

98.1 11 193.5 24
173.1 20 127.8 13
136.5 17 163.5 19
141 15 172.5 25

Source: Reprinted with permission from The Real Estate Appraiser and
Analyst, Spring 1986 issue. Copyright 1986 by the Appraisal Institute,
Chicago, Illinois.

DS
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a By using the formulas illustrated in Example 14.2 (see page 493) and the data provided,
verify that (within rounding) b0 � 48.02 and b1 � 5.700, as shown on the MINITAB output.

b Interpret the meanings of b0 and b1. Does the interpretation of b0 make practical sense?
c Write the least squares prediction equation.
d Use the least squares line to obtain a point estimate of the mean sales price of all houses 

having 2,000 square feet and a point prediction of the sales price of an individual house 
having 2,000 square feet.

14.2 Model Assumptions and the Standard Error 
Model assumptions In order to perform hypothesis tests and set up various types of inter-
vals when using the simple linear regression model

y � b0 � b1x � e

we need to make certain assumptions about the error term e. At any given value of x, there is a
population of error term values that could potentially occur. These error term values describe the
different potential effects on y of all factors other than the value of x. Therefore, these error term
values explain the variation in the y values that could be observed when the independent variable
is x. Our statement of the simple linear regression model assumes that my, the mean of the popu-
lation of all y values that could be observed when the independent variable is x, is b0 �b1x.
This model also implies that e� y � (b0 �b1x), so this is equivalent to assuming that the mean
of the corresponding population of potential error term values is 0. In total, we make four
assumptions (called the regression assumptions) about the simple linear regression model.
These assumptions can be stated in terms of potential y values or, equivalently, in terms of
potential error term values. Following tradition, we begin by stating these assumptions in terms
of potential error term values:

500 Chapter 14 Simple Linear Regression Analysis
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Fitted Line Plot
SalesPrice = 48.02 + 5.700 HomeSize

The Regression Assumptions

3 Normality Assumption
At any given value of x, the population of poten-
tial error term values has a normal distribution.

4 Independence Assumption
Any one value of the error term E is statistically
independent of any other value of E. That is, the
value of the error term E corresponding to an
observed value of y is statistically independent
of the value of the error term corresponding to
any other observed value of y.

1 At any given value of x, the population of poten-
tial error term values has a mean equal to 0.

2 Constant Variance Assumption
At any given value of x, the population of
potential error term values has a variance that
does not depend on the value of x. That is, the
different populations of potential error term
values corresponding to different values of x
have equal variances. We denote the constant
variance as �2.

Describe
the as-

sumptions behind
simple linear
regression and
calculate the
standard error.

LO14-3
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14.2 Model Assumptions and the Standard Error 501

Taken together, the first three assumptions say that, at any given value of x, the population of
potential error term values is normally distributed with mean zero and a variance S2 that
does not depend on the value of x. Because the potential error term values cause the variation
in the potential y values, these assumptions imply that the population of all y values that could
be observed when the independent variable is x is normally distributed with mean B0 � B1x
and a variance S2 that does not depend on x. These three assumptions are illustrated in
Figure 14.7 in the context of the Tasty Sub Shop problem. Specifically, this figure depicts
the populations of yearly revenues corresponding to two values of the population size x—32.3
and 61.7. Note that these populations are shown to be normally distributed with different means
(each of which is on the line of means) and with the same variance (or spread).

The independence assumption is most likely to be violated when time series data are being uti-
lized in a regression study. For example, the natural gas consumption data in Exercise 14.3 are
time series data. Intuitively, the independence assumption says that there is no pattern of positive
error terms being followed (in time) by other positive error terms, and there is no pattern of posi-
tive error terms being followed by negative error terms. That is, there is no pattern of higher-than-
average y values being followed by other higher-than-average y values, and there is no pattern of
higher-than-average y values being followed by lower-than-average y values.

It is important to point out that the regression assumptions very seldom, if ever, hold exactly
in any practical regression problem. However, it has been found that regression results are not
extremely sensitive to mild departures from these assumptions. In practice, only pronounced
departures from these assumptions require attention. In Section 14.9 we show how to check the
regression assumptions. Prior to doing this, we will suppose that the assumptions are valid in our
examples.

In Section 14.1 we stated that, when we predict an individual value of the dependent variable,
we predict the error term to be 0. To see why we do this, note that the regression assumptions
state that, at any given value of the independent variable, the population of all error term values
that can potentially occur is normally distributed with a mean equal to 0. Because we also assume
that successive error terms (observed over time) are statistically independent, each error term has
a 50 percent chance of being positive and a 50 percent chance of being negative. Therefore, it is
reasonable to predict any particular error term value to be 0.

The mean square error and the standard error To present statistical inference formulas
in later sections, we need to be able to compute point estimates of s2 and s, the constant variance
and standard deviation of the error term populations. The point estimate of s2 is called the mean
square error and the point estimate of s is called the standard error. In the following box, we
show how to compute these estimates:

F I G U R E 1 4 . 7 An Illustration of the Model Assumptions

1090.3 � Observed value
 of y when x � 61.7

Mean yearly revenue
when x � 61.7

Mean yearly revenue when x � 32.3

y

x
32.30 61.7

767.2 � Observed value of y when x � 32.3

�y � �0 � �1x
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502 Chapter 14 Simple Linear Regression Analysis

The Mean Square Error and the Standard Error

If the regression assumptions are satisfied and SSE is the sum of squared residuals: 

1 The point estimate of s2 is the mean
square error

2 The point estimate of s is the standard
error

s �
B

SSE
n � 2

s2 �
SSE

n � 2

EXAMPLE 14.3 The Tasty Sub Shop Case: The Standard Error

Consider the Tasty Sub Shop situation, and recall that in Table 14.2 (page 494) we have calcu-
lated the sum of squared residuals to be SSE � 30,460.21. It follows, because we have observed
n � 10 yearly revenues, that the point estimate of s2 is the mean square error

This implies that the point estimate of s is the standard error

To conclude this section, note that in optional Section 14.10 we present a shortcut formula for
calculating SSE. The reader may study Section 14.10 now or at any later point.

s � 2s2 � 23807.526 � 61.7052

s2 �
SSE

n � 2
�

30,460.21

10 � 2
� 3807.526

C

Exercises for Section 14.2
CONCEPTS

14.9 What four assumptions do we make about the simple linear regression model?

14.10 What is estimated by the mean square error, and what is estimated by the standard error?

METHODS AND APPLICATIONS

14.11 THE NATURAL GAS CONSUMPTION CASE GasCon1

When a least squares line is fit to the 8 observations in the natural gas consumption data, we obtain 
SSE � 2.568. Calculate s2 and s.

14.12 THE STARTING SALARY CASE StartSal

When a least squares line is fit to the 7 observations in the starting salary data, we obtain 
SSE � 1.438. Calculate s2 and s.

14.13 THE SERVICE TIME CASE SrvcTime

When a least squares line is fit to the 11 observations in the service time data, we obtain 
SSE � 191.7017. Calculate s2 and s.

DS

DS

DS

In order to understand these point estimates, recall that s2 is the variance of the population of
y values (for a given value of x) around the mean value my. Because is the point estimate of this
mean, it seems natural to use 

to help construct a point estimate of s2. We divide SSE by n � 2 because it can be proven that
doing so makes the resulting s2 an unbiased point estimate of s2. Here we call n � 2 the number
of degrees of freedom associated with SSE.

SSE � a (yi � ŷi)
2

ŷ
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14.14 THE FRESH DETERGENT CASE Fresh

When a least squares line is fit to the 30 observations in the Fresh detergent data, we obtain 
SSE � 2.806. Calculate s2 and s.

14.15 THE DIRECT LABOR COST CASE DirLab

When a least squares line is fit to the 12 observations in the labor cost data, we obtain 
SSE � 746.7624. Calculate s2 and s.

14.16 THE REAL ESTATE SALES PRICE CASE RealEst

When a least squares line is fit to the 10 observations in the real estate sales price data, we obtain
SSE � 896.8. Calculate s2 and s.

14.17 Ten sales regions of equal sales potential for a company were randomly selected. The
advertising expenditures (in units of $10,000) in these 10 sales regions were purposely set
during July of last year at, respectively, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14. The sales volumes
(in units of $10,000) were then recorded for the 10 sales regions and found to be, respectively,
89, 87, 98, 110, 103, 114, 116, 110, 126, and 130. Assuming that the simple linear regression
model is appropriate, it can be shown that b0 � 66.2121, b1 � 4.4303, and SSE � 222.8242. 
Calculate s2 and s. SalesPlot

14.3 Testing the Significance of the Slope 
and y-Intercept 

Testing the significance of the slope A simple linear regression model is not likely to be
useful unless there is a significant relationship between y and x. In order to judge the signifi-
cance of the relationship between y and x, we test the null hypothesis

H0: b1 � 0

which says that there is no change in the mean value of y associated with an increase in x, versus
the alternative hypothesis

Ha: b1 � 0

which says that there is a (positive or negative) change in the mean value of y associated with an
increase in x. It would be reasonable to conclude that x is significantly related to y if we can be
quite certain that we should reject H0 in favor of Ha.

In order to test these hypotheses, recall that we compute the least squares point estimate b1 of
the true slope b1 by using a sample of n observed values of the dependent variable y. Different
samples of n observed y values would yield different values of the least squares point estimate b1.
It can be shown that, if the regression assumptions hold, then the population of all possible val-
ues of b1 is normally distributed with a mean of b1 and with a standard deviation of

The standard error s is the point estimate of s, so it follows that a point estimate of is

which is called the standard error of the estimate b1. Furthermore, if the regression assump-
tions hold, then the population of all values of

has a t distribution with n � 2 degrees of freedom. It follows that, if the null hypothesis
H0: b1 � 0 is true, then the population of all possible values of the test statistic

has a t distribution with n � 2 degrees of freedom. Therefore, we can test the significance of the
regression relationship as follows:

t �
b1

sb1

b1 � b1

sb1

sb1
�

s

1SSxx

sb1

sb1
�

s

1SSxx

DS

DS

DS

DS

Test the
signifi-

cance of the slope
and y-intercept.

LO14-4
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We usually use the two-sided alternative Ha: b1 � 0 for this test of significance. However,
sometimes a one-sided alternative is appropriate. For example, in the Tasty Sub Shop problem
we can say that if the slope b1 is not 0, then it must be positive. A positive b1 would say that
mean yearly revenue increases as the population size x increases. Because of this, it would be
appropriate to decide that x is significantly related to y if we can reject H0: b1 � 0 in favor of
the one-sided alternative Ha: b1 � 0. Although this test would be slightly more effective than the
usual two tailed test, there is little practical difference between using the one tailed or two tailed
test. Furthermore, computer packages (such as Excel and MINITAB) present results for the two
tailed test. For these reasons we will emphasize the two tailed test in future discussions.

It should also be noted that

1 If we can decide that the slope is significant at the .05 significance level, then we have
concluded that x is significantly related to y by using a test that allows only a .05 probability
of concluding that x is significantly related to y when it is not. This is usually regarded as
strong evidence that the regression relationship is significant.

2 If we can decide that the slope is significant at the .01 significance level, this is usually
regarded as very strong evidence that the regression relationship is significant.

3 The smaller the significance level A at which H0 can be rejected, the stronger is the
evidence that the regression relationship is significant.

504 Chapter 14 Simple Linear Regression Analysis

EXAMPLE 14.4 The Tasty Sub Shop Case: Testing the Significance of the Slope

Again consider the Tasty Sub Shop revenue model. For this model SSxx � 1913.129, b1 � 15.596,
and s � 61.7052 [see Examples 14.2 (page 493) and 14.3 (page 502)]. Therefore,

and

t �
b1

sb1

�
15.596

1.411
� 11.05

sb1
�

s

1SSxx

�
61.7052

11913.129
� 1.411

C

Testing the Significance of the Regression Relationship: Testing the 
Significance of the Slope

Here tA�2, tA, and all p-values are based on n � 2 degrees of freedom. If we can reject H0: B1 � 0 at a given value of
A, then we conclude that the slope (or, equivalently, the regression relationship) is significant at the A level.

Ha: �1 � 0 Ha: �1 	 0 Ha: �1 � 0 Ha: �1 � 0 Ha: �1 	 0 Ha: �1 � 0

t�

�

Critical Value Rule

Reject H0  if
t � t�

Reject H0  if
t 	 �t�

Reject H0  if

t
 � t��2—that is,

t � t��2 or t 	 �t��2

0 �t�

�

0 �t��2 t��2

��2

0

��2

p-value � area
to the right of t

p-value � area
to the left of t

p-Value (Reject H0 if p-Value 	 �) 

p-value � twice
the area to the
right of 
t


Do not

reject H0

Do not

reject H0

Do not

reject H0

Reject

H0

Reject

H0

Reject

H0

Reject

H0

t

p-value

0 t 0 �
t
 
t
0

p-value

Null
Hypothesis

Test
Statistic where sb1

�
s

1SSxx
t �

b1

sb1

Assumptions
The regression
assumptionsH0: b1 � 0
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14.3 Testing the Significance of the Slope and y-Intercept 505

F I G U R E 1 4 . 8 Excel and MINITAB Outputs of a Simple Linear Regression Analysis 
of the Tasty Sub Shop Revenue Data

The regression equation is
Revenue = 183 + 15.6 Population

Predictor            Coef           SE Coef               T                   P
Constant 183.31             64.27            2.85               0.021
Population 15.596             1.411           11.05               0.000

S = 61.7052  R-Sq = 93.9%          R-Sq(adj) = 93.1%

Analysis of Variance
Source              DF            SS          MS         F      P-value
Regression 1        465316       465316      122.21         0.000
Residual Error 8         30460         3808
Total 9        495777

Predicted Values for New Observations
New Obs          Fit    SE Fit            95% CI               95% PI

1 921.0 20.3        (874.2, 967.7)      (771.2, 1070.7)

Values of Predictors for New Observations  
New Obs    Population                         

1 47.3

Regression Statistics
Multiple R 0.9688
R Square 0.9386
Adjusted R Square 0.9309
Standard Error 61.7052
Observations 10

ANOVA df SS MS F Significance F
Regression 1 465316.3004 465316.3004 122.2096 0.0000
Residual 8 30460.2086 3807.5261
Total 9 495776.5090

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 183.3051 64.2741 2.8519 0.0214 35.0888 331.5214
Population 15.5956 1.4107 11.0548 0.0000 12.3424 18.8488

point estimate of the y-intercept point estimate of the slope standard error of the estimate b0 standard error of the estimate b1

t for testing significance of the y-intercept t for testing significance of the slope p-values for t statistics standard error r2 Explained variation

Unexplained variation Total variation F(model) statistic p-value for F(model) point prediction when standard error

of the estimate 95% confidence interval when 95% prediction interval when 95% confidence interval for the slope b119x � 47.318x � 47.317ŷ

sŷ �16x � 47.3ŷ �15141312SSE �11

109s �8765

sb1
�4sb0
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Figure 14.8 presents the Excel and MINITAB outputs of a simple linear regression analysis of
the Tasty Sub Shop revenue data. Note that b0 (labeled as on the outputs), b1 (labeled ),
s (labeled ), (labeled ), and t (labeled ) are given on each of these outputs. (The other
quantities on the outputs will be discussed later.) In order to test versus 
at the level of significance, we compare with which
is based on degrees of freedom. Because is greater than

we reject and conclude that there is strong evidence that the slope (re-
gression relationship) is significant. The p-value for testing H0 versus Ha is twice the area to the
right of under the curve of the t distribution having degrees of freedom.
Both the Excel and MINITAB outputs in Figure 14.8 tell us that this p-value is less than .001 (see

on the outputs). It follows that we can reject H0 in favor of Ha at level of significance .05, .01,
or .001, which implies that we have extremely strong evidence that the regression relationship
between x and y is significant.

7

n � 2 � 8� t � � 11.05

H0 :b1 � 0t.025 � 2.306,
� t � � 11.05n � 2 � 10 � 2 � 8
ta�2 � t.025 � 2.306,� t � � 11.05a � .05

Ha :  b1 � 0H0 :b1 � 0
64sb1

8

21
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A Confidence Interval for the Slope

If the regression assumptions hold, a 100(1 �A) percent confidence interval for the true slope B1 is
. Here is based on n � 2 degrees of freedom. ta�2[b1 � ta�2 sb1

]

The Excel and MINITAB outputs in Figure 14.8 tell us that and Thus,
for instance, because t.025 based on degrees of freedom equals 2.306, a 95
percent confidence interval for b1 is

(where we have used more decimal place accuracy than shown to obtain the final result). This in-
terval says we are 95 percent confident that, if the population size increases by one thousand res-
idents, then mean yearly revenue will increase by at least $12,342 and by at most $18,849. Also,
because the 95 percent confidence interval for b1 does not contain 0, we can reject H0: b1 � 0 in
favor of Ha: b1 � 0 at level of significance .05. Note that the 95 percent confidence interval for b1

is given on the Excel output but not on the MINITAB output (see Figure 14.8).

Testing the significance of the y-intercept We can also test the significance of the 
y-intercept b0. We do this by testing the null hypothesis H0: b0 � 0 versus the alternative hypo-
thesis Ha: b0 � 0. If we can reject H0 in favor of Ha by setting the probability of a Type I error
equal to A, we conclude that the intercept B0 is significant at the A level. To carry out the
hypothesis test, we use the test statistic

Here the critical value and p-value conditions for rejecting H0 are the same as those given previ-
ously for testing the significance of the slope, except that t is calculated as For example, if
we consider the Tasty Sub Shop problem and the Excel and MINITAB outputs in Figure 14.8, we
see that b0 � 183.31, sb0

� 64.27, t � 2.85, and p-value � .021. Because t � 2.85 � t.025 � 2.306
and p-value 	 .05, we can reject H0: b0 � 0 in favor of Ha: b0 � 0 at the .05 level of significance.
This provides strong evidence that the y-intercept b0 of the line of means does not equal 0 and thus
is significant. Therefore, we should include b0 in the Tasty Sub Shop revenue model.

In general, if we fail to conclude that the intercept is significant at a level of significance of .05,
it might be reasonable to drop the y-intercept from the model. However, it is common practice to
include the y-intercept whether or not H0: b0 � 0 is rejected. In fact, experience suggests that it is
definitely safest, when in doubt, to include the intercept b0.

b0�sb0
.

t �
b0

sb0

  where  sb0
� s 
B

1

n
�

x 2

SSxx

 � [12.342, 18.849]

 [b1 � t.025sb1
] � [15.596 � 2.306(1.411)]

n � 2 � 10 � 2 � 8
sb1

� 1.411.b1 � 15.596

C

Exercises for Section 14.3
CONCEPTS

14.18 What do we conclude if we can reject H0: b1 � 0 in favor of Ha: b1 � 0 by setting
a a equal to .05? b a equal to .01?

14.19 Give an example of a practical application of the confidence interval for b1.

METHODS AND APPLICATIONS

In Exercises 14.20 through 14.25, we refer to Excel and MINITAB outputs of simple linear regression analy-
ses of the data sets related to the six case studies introduced in the exercises for Section 14.1. Using the
appropriate output for each case study,
a Find the least squares point estimates b0 and b1 of b0 and b1 on the output and report their values.
b Find SSE and s on the computer output and report their values.
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14.3 Testing the Significance of the Slope and y-Intercept 507

c Find and the t statistic for testing the significance of the slope on the output and report their values.
Show (within rounding) how t has been calculated by using b1 and sb1

from the computer output.
d Using the t statistic and an appropriate critical value, test H0: b1 � 0 versus Ha : b1 � 0 by setting a

equal to .05. Is the slope (regression relationship) significant at the .05 level?
e Using the t statistic and an appropriate critical value, test H0: b1 � 0 versus Ha : b1 � 0 by setting a

equal to .01. Is the slope (regression relationship) significant at the .01 level?
f Find the p-value for testing H0: b1 � 0 versus Ha: b1 � 0 on the output and report its value. Using the

p-value, determine whether we can reject H0 by setting a equal to .10, .05, .01, and .001. How much
evidence is there that the slope (regression relationship) is significant?

g Calculate the 95 percent confidence interval for b1 using numbers on the output. Interpret the interval.
h Calculate the 99 percent confidence interval for b1 using numbers on the output.
i Find and the t statistic for testing the significance of the y intercept on the output and report their val-

ues. Show (within rounding) how t has been calculated by using b0 and sb0
from the computer output.

j Find the p-value for testing H0: b0 � 0 versus Ha: b0 � 0 on the computer output and report its value.
Using the p-value, determine whether we can reject H0 by setting a equal to .10, .05, .01, and .001.
What do you conclude about the significance of the y intercept?

k Using the data set and s from the computer output, hand calculate (within rounding) SSxx, , and .sb1
sb0

sb0

sb1

F I G U R E 1 4 . 9 Excel Output of a Simple Linear Regression Analysis of the Natural Gas Consumption Data

Regression Statistics
Multiple R 0.9484
R Square 0.8995
Adjusted R Square 0.8827
Standard Error 0.6542
Observations 8

ANOVA df SS MS F Significance F
Regression 1 22.9808 22.9808 53.6949 0.0003
Residual 6 2.5679 0.4280
Total 7 25.5488

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 15.8379 0.8018 19.7535 1.09E-06 13.8760 17.7997
TEMP –0.1279 0.0175 –7.3277 0.0003 –0.1706 –0.0852

F I G U R E 1 4 . 1 0 MINITAB Output of a Simple Linear Regression Analysis of the Natural Gas Consumption Data

The regression equation is
FuelCons = 15.8 - 0.128 Temp

Predictor            Coef        SE Coef            T           P
Constant 15.8379         0.8018        19.75       0.000
Temp -0.12792        0.01746        -7.33       0.000

S = 0.654209         R-Sq = 89.9%         R-Sq(adj) = 88.3%

Analysis of Variance
Source               DF            SS           MS         F     P
Regression 1        22.981       22.981        53.69         0.000
Residual Error 6         2.568        0.428
Total 7        25.549

Values of Predictors for New Obs   Predicted Values for New Observations
New Obs  Temp                      New Obs     Fit   SE Fit       95% CI           95% PI

1 40.0 1 10.721 0.241  (10.130, 11.312)  (9.015, 12.427)

14.20 THE NATURAL GAS CONSUMPTION CASE GasCon1

The Excel and MINITAB outputs of a simple linear regression analysis of the data set for this case (see Exercise 14.3 on
pages 496 and 497) are given in Figures 14.9 and 14.10. Recall that labeled Excel and MINITAB outputs are on page 505.
Note that gas consumption is called FuelCons on the MINITAB output of Figure 14.10. 

14.21 THE STARTING SALARY CASE StartSal

The MINITAB output of a simple linear regression analysis of the data set for this case (see Exercise 14.4 on page 497) is
given in Figure 14.11. Recall that a labeled MINITAB regression output is on page 505.

DS

DS
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14.22 THE SERVICE TIME CASE SrvcTime

The Excel output of a simple linear regression analysis of the data set for this case (see
Exercise 14.5 on pages 497 and 498) is given in Figure 14.12. Recall that a labeled Excel
regression output is on page 505.

14.23 THE FRESH DETERGENT CASE Fresh

The MINITAB output of a simple linear regression analysis of the data set for this case (see
Exercise 14.6 on page 498) is given in Figure 14.13. Recall that a labeled MINITAB regression
output is on page 505.

14.24 THE DIRECT LABOR COST CASE DirLab

The Excel output of a simple linear regression analysis of the data set for this case (see Exercise
14.7 on page 499) is given in Figure 14.14. Recall that a labeled Excel regression output is on
page 505.

14.25 THE REAL ESTATE SALES PRICE CASE RealEst

The MINITAB output of a simple linear regression analysis of the data set for this case (see
Exercise 14.8 on pages 499 and 500) is given in Figure 14.15. Recall that a labeled MINITAB re-
gression output is on page 505.

14.26 Find and interpret a 95 percent confidence interval for the slope b1 of the simple linear regression
model describing the sales volume data in Exercise 14.17 (page 503). SalesPlotDS

DS

DS

DS

DS

F I G U R E 1 4 . 1 1 MINITAB Output of a Simple Linear Regression Analysis of the 
Starting Salary Data

The regression equation is 
StartSal = 14.8 + 5.71 GPA 

Predictor    Coef  SE Coef      T      P         
Constant   14.816    1.235  12.00  0.000          
GPA        5.7066   0.3953  14.44  0.000 

S = 0.536321   R-Sq = 97.7%   R-Sq(adj) = 97.2% 

Analysis of Variance 
Source          DF      SS      MS       F      P 
Regression  1 59.942 59.942 208.39 0.000
Residual Error   5   1.438   0.288 
Total            6  61.380 

Values of Predictors for New Obs    Predicted Values for New Observations 
New Obs   GPA                       New Obs     Fit   SE Fit       95% CI            95% PI 

1  3.25                             1  33.362    0.213  (32.813, 33.911) (31.878, 34.846)

F I G U R E 1 4 . 1 2 Excel Output of a Simple Linear Regression Analysis of the 
Service Time Data

Regression Statistics
Multiple R 0.9952
R Square 0.9905
Adjusted R Square 0.9894
Standard Error 4.6152
Observations 11

ANOVA df SS MS F Significance F
Regression 1 19918.8438 19918.844 935.149 2.094E-10
Residual 9 191.7017 21.300184
Total 10 20110.5455

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 11.4641 3.4390 3.3335 0.0087 3.6845 19.2437
Copiers 24.6022 0.8045 30.5802 2.09E-10 22.7823 26.4221
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F I G U R E 1 4 . 1 3 MINITAB Output of a Simple Linear Regression Analysis of the Fresh 
Detergent Demand Data

The regression equation is 
Demand = 7.81 + 2.67 PriceDif

Predictor     Coef  SE Coef      T      P 
Constant   7.81409  0.07988  97.82  0.000 
PriceDif    2.6652   0.2585  10.31  0.000 

S = 0.316561   R-Sq = 79.2%   R-Sq(adj) = 78.4% 

Analysis of Variance 
Source          DF      SS      MS       F      P 
Regression       1  10.653  10.653  106.30  0.000 
Residual Error  28   2.806   0.100 
Total           29  13.459 

Values of Predictors for New Obs     Predicted Values for New Observations 
New Obs  PriceDif                    New Obs     Fit  SE Fit       95% CI            95% PI 

1     0.100                          1  8.0806  0.0648  (7.9479, 8.2133)  (7.4187, 8.7425) 
2     0.250                          2  8.4804  0.0586  (8.3604, 8.6004)  (7.8209, 9.1398) 

F I G U R E 1 4 . 1 4 Excel Output of a Simple Linear Regression Analysis of the 
Direct Labor Cost Data

Regression Statistics
Multiple R 0.9996
R Square 0.9993
Adjusted R Square 0.9992
Standard Error 8.6415
Observations 12

ANOVA df SS MS F Significance F
Regression 1 1024592.9043 1024592.9043 13720.4677 5.04E-17
Residual 10 746.7624 74.6762
Total 11 1025339.6667

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 18.4875 4.6766 3.9532 0.0027 8.0674 28.9076
BatchSize (x) 10.1463 0.0866 117.1344 5.04E-17 9.9533 10.3393

F I G U R E 1 4 . 1 5 MINITAB Output of a Simple Linear Regression Analysis of the Real Estate
Sales Price Data

The regression equation is 
SPrice = 48.0 + 5.70 HomeSize 

Predictor    Coef  SE Coef     T      P        
Constant    48.02    14.41  3.33  0.010              
HomeSize   5.7003   0.7457  7.64  0.000  

S = 10.5880     R-Sq = 88.0%      R-Sq(adj) = 86.5% 

Analysis of Variance 
Source          DF      SS      MS      F      P 
Regression       1  6550.7  6550.7  58.43  0.000 
Residual Error   8   896.8   112.1 
Total            9  7447.5 

Values of Predictors for New Obs    Predicted Values for New Observations    
New Obs  HomeSize                   New Obs     Fit  SE Fit       95% CI            95% PI 
      1      20.0                         1  162.03    3.47  (154.04, 170.02)  (136.34, 187.72) 
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14.27 THE FAST-FOOD RESTAURANT RATING CASE FastFood

In the early 1990s researchers at The Ohio State University studied consumer ratings of six 
fast-food restaurants: Borden Burger, Hardee’s, Burger King, McDonald’s, Wendy’s, and White
Castle. Each of 406 randomly selected individuals gave each restaurant a rating of 1, 2, 3, 4, 5, or
6 on the basis of taste, and then ranked the restaurants from 1 through 6 on the basis of overall
preference. In each case, 1 is the best rating and 6 the worst. The mean ratings given by the 
406 individuals are given in the following table:

Mean Mean
Restaurant Taste Preference
Borden Burger 3.5659 4.2552
Hardee’s 3.329 4.0911
Burger King 2.4231 3.0052
McDonald’s 2.0895 2.2429
Wendy’s 1.9661 2.5351
White Castle 3.8061 4.7812

Figure 14.16 gives the Excel output of a simple linear regression analysis of this data. Here, mean
preference is the dependent variable and mean taste is the independent variable. Recall that a
labeled Excel regression output is given on page 505.
a Find the least squares point estimate b1 of b1 on the computer output. Report and interpret this

estimate.
b Find the 95 percent confidence interval for b1 on the output. Report and interpret the interval.

14.4 Confidence and Prediction Intervals 
If the regression relationship between y and x is significant, then

is the point estimate of the mean value of y when the value of the independent variable x is .
We have also seen that is the point prediction of an individual value of y when the value of
the independent variable x is . In this section we will assess the accuracy of as both a point
estimate and a point prediction. To do this, we will find a confidence interval for the mean
value of y and a prediction interval for an individual value of y.

Because each possible sample of n values of the dependent variable gives values of and 
that differ from the values given by other samples, different samples give different values of

b1b0

ŷx0

ŷ
x0

ŷ � b0 � b1x0

DS

510 Chapter 14 Simple Linear Regression Analysis

F I G U R E 1 4 . 1 6 Excel Output of a Simple Linear Regression Analysis of the Fast-Food 
Restaurant Rating Data

Regression Statistics
Multiple R 0.9873
R Square 0.9747
Adjusted R Square 0.9684
Standard Error 0.1833
Observations 6

ANOVA df SS MS F Significance F
Regression 1 5.1817 5.1817 154.2792 0.0002
Residual 4 0.1343 0.0336
Total 5 5.3160

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept �0.1602 0.3029 �0.5289 0.6248 �1.0011 0.6807
MeanTaste (x) 1.2731 0.1025 12.4209 0.0002 0.9885 1.5577

Calculate
and inter-

pret a confidence
interval for a mean
value and a predic-
tion interval for an
individual value.

LO14-5
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14.4 Confidence and Prediction Intervals 511

If the regression assumptions hold, a confidence interval for the mean value of
y is based on the estimated standard deviation of the normally distributed population of all
possible values of This estimated standard deviation is called the standard error of , is
denoted , and is given by the formula 

Here, s is the standard error (see Section 14.2), is the average of the n previously observed
values of x, and 

As explained above, a confidence interval for the mean value of y is based on the standard
error A prediction interval for an individual value of y is based on a more complex standard
error: the estimated standard deviation of the population of all possible values of the pre-
diction error obtained when predicting y by We refer to this estimated standard deviation as the
standard error of y � and denote it as If the regression assumptions hold, the formula
for is

Intuitively, the “extra 1” under the radical in the formula for accounts for the fact that there
is more uncertainty in predicting an individual value than in estimating the
mean value (because we must predict the error term when predicting an individual
value). Therefore, as shown in the following summary box, the prediction interval for an indi-
vidual value of y is longer than the confidence interval for the mean value of y.

eb0 � b1x0

y � b0 � b1x0 � e
s(y� ŷ)

s(y�ŷ) � s
B

1 �
1

n
�

(x0 � x)2

SSxx

s(y� ŷ)

s(y� ŷ).ŷ
ŷ.

y � ŷ,
sŷ.

SSxx � x2
i � (xi)

2�n.
x

sŷ � s
B

1

n
�

(x0 � x)2

SSxx

sŷ

ŷŷ.

ŷ � b0 � b1x0.

A Confidence Interval and a Prediction Interval

If the regression assumptions hold,

1 A 100(1 � A) percent confidence interval for the mean value of y when x equals x0 is

2 A 100(1 � A) percent prediction interval for an individual value of y when x equals x0 is

Here, is based on (n � 2) degrees of freedom.ta�2

Bŷ � tA�2s
B

1 �
1
n

�
(x0 � x )2

SSxx
R

Bŷ � tA�2s
B

1
n

�
(x0 � x )2

SSxx
R

The summary box tells us that both the formula for the confidence interval and the formula for the
prediction interval use the quantity We will call this quantity the distance
value, because it is a measure of the distance between the value of x for which we will 
make a point estimate or a point prediction, and the average of the previously observed
values of x. The farther that is from which represents the center of the experimental re-
gion, the larger is the distance value, and thus the longer are both the confidence interval 

and the prediction interval Said
another way, when is farther from the center of the data, is likely to be less
accurate as both a point estimate and a point prediction.

ŷ � b0 � b1x0x0

[ ŷ � ta�2 s11 � distance value].ta�2 s1distance value][ŷ �

x,x0

x,
x0,

1�n � (x0 � x)2�SSxx.
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EXAMPLE 14.6 The Tasty Sub Shop Case: Predicting Revenue and Profit
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In the Tasty Sub Shop problem, recall that one of the business entrepreneur’s potential sites is
near a population of 47,300 residents. Also, recall that

(that is, $921,000)

is the point estimate of the mean yearly revenue for all Tasty Sub restaurants that could poten-
tially be built near populations of 47,300 residents and is the point prediction of the yearly
revenue for a single Tasty Sub restaurant that is built near a population of 47,300 residents. Using
the information in Example 14.2 (page 493), we compute

Because s � 61.7052 (see Example 14.3 on page 502) and because based on n � 2 �
10 � 2 � 8 degrees of freedom equals 2.306, it follows that a 95 percent confidence interval for the
mean yearly revenue when is

This interval says we are 95 percent confident that the mean yearly revenue for all Tasty Sub
restaurants that could potentially be built near populations of 47,300 residents is between
$874,300 and $967,700.

Because the entrepreneur would be operating a single Tasty Sub restaurant that is built near a
population of 47,300 residents, the entrepreneur is interested in obtaining a prediction interval for
the yearly revenue of such a restaurant. A 95 percent prediction interval for this revenue is

� [921.0 � 2.306(61.7052) ]

� [921.0 � 149.77]

� [771.2, 1070.8]

This interval says that we are 95 percent confident that the yearly revenue for a single Tasty
Sub restaurant that is built near a population of 47,300 residents will be between $771,200 and
$1,070,800. Moreover, recall that the yearly rent and other fixed costs for the entrepreneur’s
potential restaurant will be $257,550 and that (according to Tasty Sub corporate headquarters)
the yearly food and other variable costs for the restaurant will be 60 percent of the yearly rev-
enue. Using the lower end of the 95 percent prediction interval [771.2, 1070.8], we predict that
(1) the restaurant’s yearly operating cost will be $257,550 � .6($771,200) � $720,270 and
(2) the restaurant’s yearly profit will be $771,200 � $720,270 � $50,930. Using the upper end
of the 95 percent prediction interval [771.2, 1070.8], we predict that (1) the restaurant’s yearly

21.1079

[ŷ � ta�2s21 � distance value]

 � [874.3, 967.7]

 � [921.0 � 46.74]

 � [921.0 � 2.306(61.7052)1.1079]

[ŷ � ta�2s1distance value]

x � 47.3

ta�2 � t.025

� .1079

�
1

10
�

(47.3 � 43.41)2

1913.129

distance value �
1

n
�

(x0 � x)2

SSxx

 � 921.0

� 183.31 � 15.596(47.3)

ŷ � b0 � b1x0

C
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operating cost will be $257,550 � .6($1,070,800) � $900,030 and (2) the restaurant’s yearly
profit will be $1,070,800 � $900,030 � $170,770. Combining the two predicted profits, it
follows that we are 95 percent confident that the potential restaurant’s yearly profit will be
between $50,930 and $170,770. If the entrepreneur decides that this is an acceptable range of
potential yearly profits, then the entrepreneur might decide to purchase a Tasty Sub franchise
for the potential restaurant site. In Chapter 15 we will use a multiple regression model to re-
duce the range of the predicted yearly profits for the potential Tasty Sub restaurant.

Below we repeat the bottom of the MINITAB output in Figure 14.8(b) on page 505. This out-
put gives (within rounding) the point estimate and prediction the 95 percent confi-
dence interval for the mean value of y when x equals 47.3, and the 95 percent prediction interval
for an individual value of y when x equals 47.3.

Although the MINITAB output does not directly give the distance value, it does give
under the heading “SE Fit.” A little algebra shows that this implies that

the distance value equals Specifically, because and , the distance
value equals Note that, because MINITAB rounds , this calculation
of the distance value is slightly less accurate than the previous hand calculation that obtained a
distance value of .1079.

To conclude this example, note that Figure 14.17 illustrates the MINITAB output of the 95 per-
cent confidence and prediction intervals corresponding to all values of x in the experimental region.
Here can be regarded as the center of the experimental region. Notice that the farther x0

is from the larger is the distance value and, therefore, the longer are the 95 percent
confidence and prediction intervals. These longer intervals are undesirable because they give us
less information about mean and individual values of y.

x � 43.41,
x � 43.41

sŷ(20.3�61.7052)2 � .1082.
s � 61.7052sŷ � 20.3(sŷ�s)2.

sŷ � s1distance value

Predicted Values for New Observations
New Obs     Fit  SE Fit     95% CI          95% PI
      1   921.0    20.3  (874.2, 967.7)  (771.2, 1070.7)

ŷ � 921.0,

F I G U R E 1 4 . 1 7 MINITAB Output of 95% Confidence and Prediction Intervals for the Tasty 
Sub Shop Case

BI
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R
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CONCEPTS

14.28 What is the difference between a confidence interval and a prediction interval?

14.29 What does the distance value measure? How does the distance value affect a confidence or 
prediction interval?

METHODS AND APPLICATIONS

14.30 THE NATURAL GAS CONSUMPTION CASE GasCon1

The following partial MINITAB regression output for the natural gas consumption data relates to
predicting the city’s natural gas consumption (in MMcf) in a week that has an average hourly
temperature of 40°F.

a Report (as shown on the computer output) a point estimate of and a 95 percent confidence
interval for the mean natural gas consumption for all weeks having an average hourly
temperature of 40°F.

b Report (as shown on the computer output) a point prediction of and a 95 percent prediction
interval for the natural gas consumption in a single week that has an average hourly tempera-
ture of 40°F.

c Remembering that s � .6542; and hand calculate the
distance value when Remembering that the distance value equals , use s and 
from the computer output to calculate (within rounding) the distance value using this formula.
Note that, because MINITAB rounds , the first hand calculation is the more accurate calcula-
tion of the distance value.

d Remembering that for the natural gas consumption data and 
calculate (within rounding) the confidence interval of part a and the prediction interval of
part b.

e Suppose that next week the city’s average hourly temperature will be 40°F. Also, suppose that
the city’s natural gas company will use the point prediction and order 10.721
MMcf of natural gas to be shipped to the city by a pipeline transmission system. The company
will have to pay a fine to the transmission system if the city’s actual gas usage y differs
from the order of 10.721 MMcf by more than 10.5 percent—that is, is outside of the range
[10.721 � .105(10.721)] � [9.595, 11.847]. Discuss why the 95 percent prediction interval
for y, [9.015, 12.427], says that y might be outside of the allowable range and thus does not
make the company 95 percent confident that it will avoid paying a fine.
Note: In the exercises of Chapter 15, we will use multiple regression analysis to predict y
accurately enough so that the company is likely to avoid paying a fine.

14.31 THE STARTING SALARY CASE StartSal

The following partial MINITAB regression output for the starting salary data relates to predicting
the starting salary of a marketing graduate having a grade point average of 3.25.

a Report (as shown on the computer output) a point estimate of and a 95 percent confidence
interval for the mean starting salary of all marketing graduates having a grade point average
of 3.25.

b Report (as shown on the computer output) a point prediction of and a 95 percent prediction
interval for the starting salary of an individual marketing graduate having a grade point
average of 3.25.

c Remembering that s � .536321 and that the distance value equals ( �s)2, use from the
computer output to hand calculate the distance value when .

d Remembering that for the starting salary data and hand
calculate (within rounding) the confidence interval of part a and the prediction interval of
part b.

b1 � 5.7066,n � 7, b0 � 14.816,
x � 3.25

sŷsŷ

DS

ŷ � 10.721

b1 � �.1279,b0 � 15.84

sŷ

sŷ(sŷ�s)2x0 � 40.
n � 8,x � 43.98;SSxx � 1,404.355;

Predicted Values for New Observations
New Obs      Fit   SE Fit       95% CI           95% PI
      1   10.721    0.241  (10.130, 11.312)  (9.015, 12.427)

DS

514 Chapter 14 Simple Linear Regression Analysis

Exercises for Section 14.4

    Predicted Values for New Observations 
    New Obs     Fit   SE Fit       95% CI            95% PI 

     1  33.362    0.213  (32.813, 33.911)  (31.878, 34.846) 
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14.4 Confidence and Prediction Intervals 515

14.32 THE SERVICE TIME CASE SrvcTime

The following partial Excel add-in (MegaStat) regression output for the service time data relates
to predicting service times for 1, 2, 3, 4, 5, 6, and 7 copiers.

DS

Predicted values for: Minutes (y)

95% Confidence Intervals 95% Prediction Intervals
Copiers (x) Predicted lower upper lower upper Leverage

1 36.066 29.907 42.226 23.944 48.188 0.348
2 60.669 55.980 65.357 49.224 72.113 0.202
3 85.271 81.715 88.827 74.241 96.300 0.116
4 109.873 106.721 113.025 98.967 120.779 0.091
5 134.475 130.753 138.197 123.391 145.559 0.127
6 159.077 154.139 164.016 147.528 170.627 0.224
7 183.680 177.233 190.126 171.410 195.950 0.381

a Report (as shown on the computer output) a point estimate of and a 95 percent confidence
interval for the mean time to service four copiers.

b Report (as shown on the computer output) a point prediction of and a 95 percent prediction
interval for the time to service four copiers on a single call.

c For this case: n � 11, b0 � 11.4641, b1 � 24.6022, and s � 4.615. Using this information and
a distance value (called Leverage on the add-in output), hand calculate (within rounding) the
confidence interval of part a and the prediction interval of part b.

d If we examine the service time data, we see that there was at least one call on which 
Accu-Copiers serviced each of 1, 2, 3, 4, 5, 6, and 7 copiers. The 95 percent confidence
intervals for the mean service times on these calls might be used to schedule future service
calls. To understand this, note that a person making service calls will (in, say, a year or
more) make a very large number of service calls. Some of the person’s individual service
times will be below, and some will be above, the corresponding mean service times. 
However, because the very large number of individual service times will average out to the
mean service times, it seems fair to both the efficiency of the company and to the person
making service calls to schedule service calls by using estimates of the mean service 
times. Therefore, suppose we wish to schedule a call to service five copiers. Examining 
the computer output, we see that a 95 percent confidence interval for the mean time to
service five copiers is [130.753, 138.197]. Because the mean time might be 138.197 min-
utes, it would seem fair to allow 138 minutes to make the service call. Now suppose we
wish to schedule a call to service four copiers. Determine how many minutes to allow for
the service call.

14.33 THE FRESH DETERGENT CASE Fresh

The following partial MINITAB regression output for the Fresh detergent data relates to
predicting demand for future sales periods in which the price difference will be .10 (see New 
Obs 1) and .25 (see New Obs 2).

a Report (as shown on the computer output) a point estimate of and a 95 percent confidence
interval for the mean demand for Fresh in all sales periods when the price difference is .10.

b Report (as shown on the computer output) a point prediction of and a 95 percent prediction
interval for the actual demand for Fresh in an individual sales period when the price
difference is .10.

c Remembering that s � .316561 and that the distance value equals ( �s)2, use from the
computer output to hand calculate the distance value when .

d For this case: and Using this information,
and your result from part c, find 99 percent confidence and prediction intervals for mean and
individual demands when x � .10.

e Repeat parts a, b, c, and d when x � .25.

s � .316561.n � 30, b0 � 7.81409, b1 � 2.6652,
x � .10

sŷsŷ

     Predicted Values for New Observations 
     New Obs     Fit  SE Fit       95% CI            95% PI 

     1  8.0806  0.0648  (7.9479, 8.2133)  (7.4187, 8.7425) 
     2  8.4804  0.0586  (8.3604, 8.6004)  (7.8209, 9.1398) 

DS
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a Report (as shown on the computer output) a point estimate of and a 95 percent confidence
interval for the mean direct labor cost of all batches of size 60.

b Report (as shown on the computer output) a point prediction of and a 95 percent prediction
interval for the actual direct labor cost of an individual batch of size 60.

c For this case: n � 12, b0 � 18.4875, b1 � 10.1463, and s � 8.6415. Use this information and
the distance value (called Leverage) on the computer output to compute 99 percent confi-
dence and prediction intervals for the mean and individual labor costs when x � 60.

14.35 THE REAL ESTATE SALES PRICE CASE RealEst

The following partial MINITAB regression output for the real estate sales price data relates to
predicting the sales price of a home having 2,000 square feet.

a Report (as shown on the MINITAB output) a point estimate of and a 95 percent confidence
interval for the mean sales price of all houses having 2,000 square feet.

b Report (as shown on the MINITAB output) a point prediction of and a 95 percent prediction
interval for the sales price of an individual house having 2,000 square feet.

c If you were purchasing a home having 2,000 square feet, which of the above intervals would
you find to be most useful? Explain.

14.5 Simple Coefficients of Determination 
and Correlation 

The simple coefficient of determination The simple coefficient of determination is a
measure of the usefulness of a simple linear regression model. To introduce this quantity, which
is denoted r2 (pronounced r squared), suppose we have observed n values of the dependent
variable y. However, we choose to predict y without using a predictor (independent) variable x.
In such a case the only reasonable prediction of a specific value of y, say yi, would be which
is simply the average of the n observed values y1, y2, . . . , yn. Here the error of prediction in
predicting yi would be yi � . For example, Figure 14.18(a) illustrates the prediction errors
obtained for the Tasty Sub Shop revenue data when we do not use the information provided by
the independent variable x, population size.

Next, suppose we decide to employ the predictor variable x and observe the values x1, x2, . . . , xn

corresponding to the observed values of y. In this case the prediction of yi is

and the error of prediction is yi � ŷi. For example, Figure 14.18(b) illustrates the prediction
errors obtained in the Tasty Sub Shop case when we use the predictor variable x. Together,
Figures 14.18(a) and (b) show the reduction in the prediction errors accomplished by employ-
ing the predictor variable x (and the least squares line).

Using the predictor variable x decreases the prediction error in predicting yi from (yi – ) to 
(yi – ), or by an amount equal to

(yi � y) � (yi � ŷi) � ( ŷi � y )

ŷi

y

ŷi � b0 � b1xi

 y

y,

Predicted Values for New Observations
New Obs     Fit   SE Fit       95% CI            95% PI
      1   162.03    3.47  (154.04, 170.02)  (136.34, 187.72)

DS
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14.34 THE DIRECT LABOR COST CASE DirLab

The following partial Excel add-in (MegaStat) regression output for the direct labor cost data
relates to predicting direct labor cost when the batch size is 60.

DS

Predicted values for: LaborCost (y)
95% Confidence Interval 95% Prediction Interval

BatchSize (x) Predicted lower upper lower upper Leverage
60 627.263 621.054 633.472 607.032 647.494 0.104

Calculate
and inter-

pret the simple
coefficients of
determination and
correlation.

LO14-6
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14.5 Simple Coefficients of Determination and Correlation 517

F I G U R E 1 4 . 1 8 The Reduction in the Prediction Errors Accomplished by Employing the 
Predictor Variable x
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(a) Prediction errors for the Tasty Sub Shop case when we do not use the information
contributed by x

(b) Prediction errors for the Tasty Sub Shop case when we use the information 
contributed by x by using the least squares line

It can be shown that in general

The sum of squared prediction errors obtained when we do not employ the predictor variable x,
is called the total variation. Intuitively, this quantity measures the total amount of

variation exhibited by the observed values of y. The sum of squared prediction errors obtained
when we use the predictor variable is called the unexplained variation (this is
another name for SSE). Intuitively, this quantity measures the amount of variation in the values
of y that is not explained by the predictor variable. The quantity is called the
explained variation. Using these definitions and the above equation involving these summations,
we see that

Total variation � Unexplained variation � Explained variation

It follows that the explained variation is the reduction in the sum of squared prediction errors that
has been accomplished by using the predictor variable x to predict y. It also follows that

Total variation � Explained variation � Unexplained variation

� ( ŷi � y)2

x, � (yi � ŷi)
2,

� (yi � y )2,

a (yi � y )2 � a (yi � ŷi)
2 � a ( ŷi � y )2

bow21493_ch14_486-553.qxd  11/29/12  4:51 PM  Page 517



518 Chapter 14 Simple Linear Regression Analysis

The Simple Coefficient of Determination, r 2

5 The simple coefficient of determination is

6 r2 is the proportion of the total variation in the 
n observed values of the dependent variable
that is explained by the simple linear regression
model.

r2 �
Explained variation

Total variation
 

EXAMPLE 14.7 The Tasty Sub Shop Case: Calculating and Interpreting r2 C

Intuitively, this equation implies that the explained variation represents the amount of the total
variation in the observed values of y that is explained by the predictor variable x (and the simple
linear regression model).

We now define the simple coefficient of determination to be

That is, r2 is the proportion of the total variation in the n observed values of y that is explained by
the simple linear regression model. Neither the explained variation nor the total variation can be
negative (both quantities are sums of squares). Therefore, r2 is greater than or equal to 0. Because
the explained variation must be less than or equal to the total variation, r2 cannot be greater than 1.
The nearer r2 is to 1, the larger is the proportion of the total variation that is explained by the
model, and the greater is the utility of the model in predicting y. If the value of r2 is not reason-
ably close to 1, the independent variable in the model does not provide accurate predictions of y.
In such a case, a different predictor variable must be found in order to accurately predict y. It is
also possible that no regression model employing a single predictor variable will accurately pre-
dict y. In this case the model must be improved by including more than one independent variable.
We show how to do this in Chapter 15.

r2 �
Explained variation

Total variation

For the Tasty Sub data we have seen that 860.31 (see Example 14.2 on page 493). It follows
that the total variation is 

Furthermore, we found in Table 14.2 (page 494) that the unexplained variation is SSE �
30,460.21. Therefore, we can compute the explained variation and r2 as follows:

Explained variation � Total variation � Unexplained variation

� 495,776.51 � 30,460.21 � 465,316.30

This value of r2 says that the regression model explains 93.9 percent of the total variation in the
10 observed yearly revenues.

r2 �
Explained variation

Total variation
�

465,316.30

495,776.51
� .939

 � 495,776.51

 a (yi � y)2 � (527.1 � 860.31)2 � (548.7 � 860.31)2 � … � (1235.8 � 860.31)2

�y

For the simple linear regression model

1 Total variation �

2 Explained variation �

3 Unexplained variation �

4 Total variation � Explained variation
� Unexplained variation

a (yi �  ŷi )
2

a ( ŷi � y )2

a (yi � y )2
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14.5 Simple Coefficients of Determination and Correlation 519

The simple correlation coefficient, r People often claim that two variables are correlated.
For example, a college admissions officer might feel that the academic performance of college
students (measured by grade point average) is correlated with the students’ scores on a standard-
ized college entrance examination. This means that college students’ grade point averages are
related to their college entrance exam scores. One measure of the relationship between two vari-
ables y and x is the simple correlation coefficient. We define this quantity as follows:

F I G U R E 1 4 . 1 9 An Illustration of Different Values of the Simple Correlation Coefficient

y

x

(a) r � 1: perfect positive
correlation

y

x

(b) Positive correlation (positive r):
  y increases in a straight-line

fashion as x increases 

y

x

(c) Little correlation (r near 0):
little linear relationship

between y and x

y

x

(e) r � �1: perfect negative
correlation

y

x

(d) Negative correlation (negative r):
y decreases in a straight-line

fashion as x increases

The Simple Correlation Coefficient

The simple correlation coefficient between y and x, denoted by r, is

and

where b1 is the slope of the least squares line relating y to x. This correlation coefficient measures the
strength of the linear relationship between y and x.

r � �2r2  if b1 is negativer � �2r2  if b1 is positive

Because r2 is always between 0 and 1, the correlation coefficient r is between �1 and 1.Avalue
of r near 0 implies little linear relationship between y and x. A value of r close to 1 says that y and x
have a strong tendency to move together in a straight-line fashion with a positive slope and, there-
fore, that y and x are highly related and positively correlated. A value of r close to �1 says that y
and x have a strong tendency to move together in a straight-line fashion with a negative slope and,
therefore, that y and x are highly related and negatively correlated. Figure 14.19 illustrates these
relationships. Notice that when r � 1, y and x have a perfect linear relationship with a positive
slope, whereas when r � �1, y and x have a perfect linear relationship with a negative slope.
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EXAMPLE 14.8 The Tasty Sub Shop Case: Simple Correlation Coefficient

520 Chapter 14 Simple Linear Regression Analysis

In the Tasty Sub Shop case, we found that b1 � 15.596 and r2 � .939. It follows that the simple
correlation coefficient between y (yearly revenue) and x (population size) is

This simple correlation coefficient says that x and y have a strong tendency to move together in a
linear fashion with a positive slope. We have seen this tendency in Figure 14.1 (page 488), which
indicates that y and x are positively correlated.

If we have computed the least squares slope b1 and r2, the method given in the previous box
provides the easiest way to calculate r. The simple correlation coefficient can also be calculated
using the formula

Here SSxy and SSxx have been defined in Section 14.1 on page 492, and SSyy denotes the total vari-
ation, which has been defined in this section. Furthermore, this formula for r automatically gives
r the correct (� or �) sign. For instance, in the Tasty Sub Shop case, SSxy � 29,836.389, 
SSxx � 1913.129, and SSyy � 495,776.51 (see Examples 14.2 on page 493 and 14.7 on page 518).
Therefore

It is important to make two points. First, the value of the simple correlation coefficient is not
the slope of the least squares line. If we wish to find this slope, we should use the previously
given formula for b1.

2 Second, high correlation does not imply that a cause-and-effect rela-
tionship exists. When r indicates that y and x are highly correlated, this says that y and x have a
strong tendency to move together in a straight-line fashion. The correlation does not mean that
changes in x cause changes in y. Instead, some other variable (or variables) could be causing the
apparent relationship between y and x. For example, suppose that college students’ grade point
averages and college entrance exam scores are highly positively correlated. This does not mean
that earning a high score on a college entrance exam causes students to receive a high grade point
average. Rather, other factors such as intellectual ability, study habits, and attitude probably
determine both a student’s score on a college entrance exam and a student’s college grade point
average. In general, while the simple correlation coefficient can show that variables tend to move
together in a straight-line fashion, scientific theory must be used to establish cause-and-effect
relationships. 

A technical note In optional Section 14.10 we present some shortcut formulas for calculating
the total, explained, and unexplained variations. Also, for those who have already read Sec-
tion 14.3, r2, the explained variation, the unexplained variation, and the total variation are calcu-
lated by Excel and MINITAB. These quantities are identified on the Excel and MINITAB outputs
of Figure 14.8 (page 505) by, respectively, the labels , , , and . These outputs also give
an “adjusted r2.” We will explain the meaning of this quantity in Chapter 15.

1211109

�
29,836.389

2(1,913.129)(495,776.51)
� .969

r �
SSxy

2SSxxSSyy

r �
SSxy

2SSxx SSyy

r � �2r2 � �2.939 � .969

C

2Essentially, the difference between r and b1 is a change of scale. It can be shown that b1 and r are related by the equation
b1 � (SSyy�SSxx)

1�2 r.
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14.6 Testing the Significance of the Population Correlation Coefficient (Optional) 521

Exercises for Section 14.5
CONCEPTS

14.36 Discuss the meanings of the total variation, the unexplained variation, and the explained variation.

14.37 What does the simple coefficient of determination measure?

METHODS AND APPLICATIONS

In Exercises 14.38 through 14.43, we give the total variation, the unexplained variation (SSE), and the
least squares point estimate b1 that are obtained when simple linear regression is used to analyze the data
set related to each of six previously discussed case studies. Using the information given in each exercise,
find the explained variation, the simple coefficient of determination (r2), and the simple correlation
coefficient (r). Interpret r2.

14.38 THE NATURAL GAS CONSUMPTION CASE GasCon1

Total variation � 25.549; SSE � 2.568; b1 � �.12792

14.39 THE STARTING SALARY CASE StartSal

Total variation � 61.380; SSE � 1.438; b1 � 5.7066

14.40 THE SERVICE TIME CASE SrvcTime

Total variation � 20,110.5455; SSE � 191.7017; b1 � 24.6022

14.41 THE FRESH DETERGENT CASE Fresh

Total variation � 13.459; SSE � 2.806; b1 � 2.6652

14.42 THE DIRECT LABOR COST CASE DirLab

Total variation � 1,025,339.6667; SSE � 746.7624; b1 � 10.1463

14.43 THE REAL ESTATE SALES PRICE CASE RealEst

Total variation � 7447.5; SSE � 896.8; b1 � 5.7003

14.6 Testing the Significance of the Population 
Correlation Coefficient (Optional)

We have seen that the simple correlation coefficient measures the linear relationship between the
observed values of x and the observed values of y that make up the sample. A similar coefficient
of linear correlation can be defined for the population of all possible combinations of observed
values of x and y. We call this coefficient the population correlation coefficient and denote it
by the symbol R (pronounced rho). We use r as the point estimate of r. In addition, we can carry
out a hypothesis test. Here we test the null hypothesis H0: � � 0, which says there is no linear
relationship between x and y, against the alternative Ha: � � 0, which says there is a positive
or negative linear relationship between x and y. This test employs the test statistic 

and is based on the assumption that the population of all possible observed combinations of val-
ues of x and y has a bivariate normal probability distribution. See Wonnacott and Wonnacott
(1981) for a discussion of this distribution. It can be shown that the preceding test statistic t and
the p-value used to test H0: r � 0 versus Ha: r � 0 are equal to, respectively, the test statistic

and the p-value used to test H0: b1 � 0 versus Ha: b1 � 0, where b1 is the slope in the
simple linear regression model. Keep in mind, however, that although the mechanics involved in
these hypothesis tests are the same, these tests are based on different assumptions (remember that
the test for significance of the slope is based on the regression assumptions). If the bivariate
normal distribution assumption for the test concerning r is badly violated, we can use a non-
parametric approach to correlation. One such approach is Spearman’s rank correlation coeffi-
cient. This approach is discussed in Chapter 18.

t � b1�sb1

t �
r2n � 2

21 � r2

DS

DS

DS

DS

DS

DS

Test
hypotheses

about the popula-
tion correlation
coefficient.

LO14-7
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EXAMPLE 14.9 The Tasty Sub Shop Case: The Correlation Between x and y
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Again consider testing the significance of the slope in the Tasty Sub Shop problem. Recall that in
Example 14.4 (page 504) we found that t � 11.05 and that the p-value related to this t statistic is
less than .001. We therefore (if the regression assumptions hold) can reject H0: b1 � 0 at level of
significance .05, .01, or .001, and we have extremely strong evidence that x is significantly re-
lated to y. This also implies (if the population of all possible observed combinations of x and y
has a bivariate normal probability distribution) that we can reject H0: r � 0 in favor of Ha: r � 0
at level of significance .05, .01, or .001. It follows that we have extremely strong evidence of a
linear relationship, or correlation, between x and y. Furthermore, because we have previously
calculated r to be .969, we estimate that x and y are positively correlated.

Exercises for Section 14.6
CONCEPTS

14.44 Explain what is meant by the population correlation coefficient r.

14.45 Explain how we test H0: r � 0 versus Ha: r � 0. What do we conclude if we reject H0: r � 0?

METHODS AND APPLICATIONS

14.46 THE STARTING SALARY CASE StartSal

Consider testing H0: b1 � 0 versus Ha: b1 � 0. Figure 14.11 (page 508) tells us that t � 14.44 
and that the related p-value is less than .001. Assuming that the bivariate normal probability 
distribution assumption holds, test H0: r � 0 versus Ha: r � 0 by setting a equal to .05, .01, 
and .001. What do you conclude about how x and y are related?

14.47 THE SERVICE TIME CASE SrvcTime

Consider testing H0: b1 � 0 versus Ha: b1 � 0. Figure 14.12 (page 508) tells us that t � 30.5802
and that the related p-value is less than .001. Assuming that the bivariate normal probability 
distribution assumption holds, test H0: r � 0 versus Ha: r � 0 by setting a equal to .05, .01, 
and .001. What do you conclude about how x and y are related?

14.7 An F-Test for the Model 
In this section we discuss an F-test that can be used to test the significance of the regression rela-
tionship between x and y. Sometimes people refer to this as testing the significance of the simple
linear regression model. For simple linear regression, this test is another way to test the null
hypothesis H0: b1 � 0 (the relationship between x and y is not significant) versus Ha: b1 � 0 (the
relationship between x and y is significant). If we can reject H0 at level of significance a, we often
say that the simple linear regression model is significant at level of significance A.

DS

DS

An F Test for the Simple Linear Regression Model

We can reject in favor of 
at level of significance a if either of the following
equivalent conditions holds: 

1 F(model) � Fa
2 p-value � a

Here the point Fa is based on 1 numerator and n � 2
denominator degrees of freedom.

Ha:  b1 Z 0H0:  b1 � 0Suppose that the regression assumptions hold, and
define the overall F statistic to be 

Also define the p-value related to F(model) to be
the area under the curve of the F distribution (having
1 numerator and n � 2 denominator degrees of free-
dom) to the right of F (model)—see Figure 14.20(b).

F (model) �
Explained variation

(Unexplained variation)�(n � 2)

C

Test the
signifi-

cance of a simple
linear regression
model by using an 
F-test.

LO14-8
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14.7 An F-Test for the Model 523

The first condition in the box says we should reject H0: b1 � 0 (and conclude that the rela-
tionship between x and y is significant) when F(model) is large. This is intuitive because a large
overall F statistic would be obtained when the explained variation is large compared to the un-
explained variation. This would occur if x is significantly related to y, which would imply that the
slope b1 is not equal to 0. Figure 14.20(a) illustrates that we reject H0 when F(model) is greater
than Fa. As can be seen in Figure 14.20(b), when F(model) is large, the related p-value is small.
When the p-value is small enough [resulting from an F(model) statistic that is large enough], we
reject H0. Figure 14.20(b) illustrates that the second condition in the box ( p-value � a) is an
equivalent way to carry out this test.

F I G U R E 1 4 . 2 0 ( a ) The F-Test Critical Value F I G U R E 1 4 . 2 0 ( b ) The F-Test p-Value

If the p-value is smaller than �, then
F(model) � F�  and we reject H0.

The curve of the F distribution having
1 and n � 2 degrees of freedom

F(model)

p-value

EXAMPLE 14.10 The Tasty Sub Shop Case: An F-Test for the Model

Consider the Tasty Sub Shop problem and the following partial MINITAB output of the simple
linear regression analysis relating yearly revenue y to population size x:

Looking at this output, we see that the explained variation is 465,316 and the unexplained varia-
tion is 30,460. It follows that

Note that this overall F statistic is given on the MINITAB output and is also given on the follow-
ing partial Excel output:

 � 122.21

 �
465,316

30,460�(10 � 2)
�

465,316

3808

 F(model) �
Explained variation

(Unexplained variation)�(n � 2)

Analysis of Variance
Source                DF             SS            MS             F      P-value
Regression 1         465316        465316        122.21        0.000
Residual Error 8          30460          3808
Total 9         495777

C

ANOVA df SS MS F Significance F
Regression 1 465316.3004 465316.3004 122.2096 0.0000
Residual 8 30460.2086 3807.5261
Total 9 495776.5090

The curve of the F distribution having
1 and n � 2 degrees of freedom

� � The probability
of a Type I error1 � �

F�

If F(model) � F�,
do not reject H0 in favor of Ha

If F(model) � F�,
reject H0 in favor of Ha
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The p-value related to F(model) is the area to the right of 122.21 under the curve of the F dis-
tribution having 1 numerator and 8 denominator degrees of freedom. This p-value is given on
both the MINITAB output (labeled “p”) and the Excel output (labeled “Significance F”) and is
less than .001. If we wish to test the significance of the regression relationship with level of sig-
nificance a � .05, we use the critical value F.05 based on 1 numerator and 8 denominator
degrees of freedom. Using Table A.7 (page 796), we find that F.05 � 5.32. Because F(model) �
122.21 � F.05 � 5.32, we can reject H0: b1 � 0 in favor of Ha: b1 � 0 at level of significance
.05. Alternatively, because the p-value is smaller than .05, .01, and .001, we can reject H0 at level
of significance .05, .01, or .001. Therefore, we have extremely strong evidence that H0: b1 � 0
should be rejected and that the regression relationship between x and y is significant. That is, we
might say that we have extremely strong evidence that the simple linear model relating y to x is
significant.

Testing the significance of the regression relationship between y and x by using the overall F
statistic and its related p-value is equivalent to doing this test by using the t statistic and its re-
lated p-value. Specifically, it can be shown that (t)2 � F(model) and that (ta�2)

2 based on n � 2
degrees of freedom equals Fa based on 1 numerator and n � 2 denominator degrees of freedom.
It follows that the critical value conditions

and F(model) � Fa

are equivalent. Furthermore, the p-values related to t and F(model) can be shown to be equal.
Because these tests are equivalent, it would be logical to ask why we have presented the F-test.
There are two reasons. First, most standard regression computer packages include the results
of the F-test as a part of the regression output. Second, the F-test has a useful generalization in
multiple regression analysis (where we employ more than one predictor variable). The F-test
in multiple regression is not equivalent to a t test. This is further explained in Chapter 15.

� t � � ta�2

524 Chapter 14 Simple Linear Regression Analysis

Exercises for Section 14.7
CONCEPTS

14.48 What are the null and alternative hypotheses for the F-test in simple linear regression?

14.49 The F-test in simple linear regression is equivalent to what other test?

METHODS AND APPLICATIONS

In Exercises 14.50 through 14.55, we give MINITAB and Excel outputs of simple linear regression analy-
ses of the data sets related to six previously discussed case studies. Using the appropriate computer output,
a Use the explained variation and the unexplained variation as given on the computer output to calculate

(within rounding) the F(model) statistic.
b Utilize the F(model) statistic and the appropriate critical value to test H0: b1 � 0 versus Ha: b1 � 0 by

setting a equal to .05. What do you conclude about the regression relationship between y and x?
c Utilize the F(model) statistic and the appropriate critical value to test H0: b1 � 0 versus Ha: b1 � 0 by

setting a equal to .01. What do you conclude about the regression relationship between y and x?
d Find the p-value related to F(model) on the computer output and report its value. Using the p-value,

test the significance of the regression model at the .10, .05, .01, and .001 levels of significance. What
do you conclude?

e Show that the F(model) statistic is (within rounding) the square of the t statistic for testing H0: b1 � 0
versus Ha: b1 � 0. Also, show that the F.05 critical value is the square of the t.025 critical value.

Note that in the lower right hand corner of each output we give (in parentheses) the number of observa-
tions, n, used to perform the regression analysis and the t statistic for testing H0: b1 � 0 versus Ha: b1 � 0.

14.50 THE NATURAL GAS CONSUMPTION CASE GasCon1

ANOVA df SS MS F Significance F
Regression 1 22.9808 22.9808 53.6949 0.0003
Residual 6 2.5679 0.4280
Total 7 25.5488 (n=8; t=–7.33)

DS
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14.51 THE STARTING SALARY CASE StartSal

14.52 THE SERVICE TIME CASE SrvcTimeDS

Analysis of Variance 
Source          DF      SS      MS       F      P 
Regression       1  59.942  59.942  208.39  0.000
Residual Error   5   1.438   0.288 
Total            6  61.380 (n=7; t=14.44)

DS

ANOVA SS df MS F p-value
Regression 19,918.8438 1 19,918.8438 935.15 2.09E-10
Residual 191.7017 9 21.3002
Total 20,110.5455 10 (n=11; t=30.580)

14.53 THE FRESH DETERGENT CASE Fresh

14.54 THE DIRECT LABOR COST CASE DirLab

14.55 THE REAL ESTATE SALES PRICE CASE RealEst

14.8 The QHIC Case: Developing An Advertising 
Strategy 

Quality Home Improvement Center (QHIC) operates five stores in a large metropolitan area. The
marketing department at QHIC wishes to study the relationship between x, home value (in thou-
sands of dollars), and y, yearly expenditure on home upkeep (in dollars). A random sample of
40 homeowners is taken and survey participants are asked to estimate their expenditures during
the previous year on the types of home upkeep products and services offered by QHIC. Public
records of the county auditor are used to obtain the previous year’s assessed values of the home-
owner’s homes. The resulting x and y values, as well as a scatter plot of these values, are given in
Figure 14.21. The Excel output included in this figure tells us that the least squares point esti-
mates of the y-intercept and the slope are and The p-value
associated with b1 implies there is a significant linear relationship between x and y. In addition,
because , we estimate that mean yearly upkeep expenditure increases by $7.26 for
each additional $1,000 increase in home value. Consider a home worth $220,000, and note that
x0 � 220 is in the range of previously observed values of x: 48.9 to 286.18. It follows that

ŷ � b0 � b1x0

� �348.3921 � 7.2583(220)

� 1,248.43 (or $1,248.43)

b1 � 7.2583

b1 � 7.2583.b0 � �348.3921b1b0

Analysis of Variance 
Source          DF      SS      MS      F      P 
Regression       1  6550.7  6550.7  58.43  0.000
Residual Error   8   896.8   112.1 
Total            9  7447.5 (n=10; t=7.64)

DS

ANOVA df SS MS F Significance F
Regression 1 1024592.9043 1024592.9043 13720.4677 5.04E-17
Residual 10 746.7624 74.6762
Total 11 1025339.6667 (n=12; t=117.1344)

DS

Analysis of Variance 
Source          DF      SS      MS       F      P 
Regression       1  10.653  10.653  106.30  0.000
Residual Error  28   2.806   0.100 
Total           29  13.459 (n=30; t=10.31)

DS
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526 Chapter 14 Simple Linear Regression Analysis

F I G U R E 1 4 . 2 1 The QHIC Upkeep Expenditure Data, Scatterplot, and Excel Output QHICDS

Value of Home, x Upkeep Expenditure, Value of Home, x Upkeep Expenditure,
Home (Thousands of Dollars) y (Dollars) Home (Thousands of Dollars) y (Dollars)

1 237.00 1,412.08 21 153.04 849.14
2 153.08 797.20 22 232.18 1,313.84
3 184.86 872.48 23 125.44 602.06
4 222.06 1,003.42 24 169.82 642.14
5 160.68 852.90 25 177.28 1,038.80
6 99.68 288.48 26 162.82 697.00
7 229.04 1,288.46 27 120.44 324.34
8 101.78 423.08 28 191.10 965.10
9 257.86 1,351.74 29 158.78 920.14

10 96.28 378.04 30 178.50 950.90
11 171.00 918.08 31 272.20 1,670.32
12 231.02 1,627.24 32 48.90 125.40
13 228.32 1,204.76 33 104.56 479.78
14 205.90 857.04 34 286.18 2,010.64
15 185.72 775.00 35 83.72 368.36
16 168.78 869.26 36 86.20 425.60
17 247.06 1,396.00 37 133.58 626.90
18 155.54 711.50 38 212.86 1,316.94
19 224.20 1,475.18 39 122.02 390.16
20 202.04 1,413.32 40 198.02 1,090.84

Value of Home

U
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30025020015010050

2000

1500

1000

500

0

Scatterplot of Upkeep vs Value

Regression Statistics
Multiple R 0.9430
R Square 0.8892
Adjusted R Square 0.8863
Standard Error 146.8973
Observations 40

ANOVA df SS MS F Significance F
Regression 1 6582759.6972 6582759.6972 305.0564 0.0000
Residual 38 819995.5427 21578.8301
Total 39 7402755.2399

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept �348.3921 76.1410 �4.5756 0.0000 �502.5314 �194.2527
Value 7.2583 0.4156 17.4659 0.0000 6.4170 8.0995
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is the point estimate of the mean yearly upkeep expenditure for all homes worth $220,000 and is
the point prediction of a yearly upkeep expenditure for an individual home worth $220,000.

The marketing department at QHIC wishes to determine which homes should be sent adver-
tising brochures promoting QHIC’s products and services. If the marketing department has
decided to send an advertising brochure to any home that has a predicted yearly upkeep expen-
diture of at least $500, then a home worth $220,000 would be sent an advertising brochure. This
is because the predicted yearly upkeep expenditure for such a home is (as calculated above)
$1,248.43. Other homes can be evaluated in a similar fashion.

14.9 Residual Analysis 
In this section we explain how to check the validity of the regression assumptions. The required
checks are carried out by analyzing the regression residuals. The residuals are defined as
follows:

For any particular observed value of y, the corresponding residual is

e � y � � (observed value of y � predicted value of y)

where the predicted value of y is calculated using the least squares prediction equation

� b0 � b1x

The linear regression model implies that the error term e is given by the
equation Because in the previous box is clearly the point estimate of

we see that the residual is the point estimate of the error term e. If the re-
gression assumptions are valid, then, for any given value of the independent variable, the popu-
lation of potential error term values will be normally distributed with mean 0 and variance s2

(see the regression assumptions in Section 14.2 on page 500). Furthermore, the different error
terms will be statistically independent. Because the residuals provide point estimates of the error
terms, it follows that 

If the regression assumptions hold, the residuals should look like they have been randomly and
independently selected from normally distributed populations having mean 0 and variance s2.

In any real regression problem, the regression assumptions will not hold exactly. In fact, it
is important to point out that mild departures from the regression assumptions do not seriously
hinder our ability to use a regression model to make statistical inferences. Therefore, we are
looking for pronounced, rather than subtle, departures from the regression assumptions.
Because of this, we will require that the residuals only approximately fit the description just
given.

Residual plots One useful way to analyze residuals is to plot them versus various criteria.
The resulting plots are called residual plots. To construct a residual plot, we compute the resid-
ual for each observed y value. The calculated residuals are then plotted versus some criterion. To
validate the regression assumptions, we make residual plots against (1) values of the independent
variable x; (2) values of , the predicted value of the dependent variable; and (3) the time order
in which the data have been observed (if the regression data are time series data).

We next look at an example of constructing residual plots. Then we explain how to use these
plots to check the regression assumptions.

ŷ

e � y � ŷb0 � b1x,
ŷe � y � (b0 � b1x).

y � b0 � b1x � e

ŷ

ŷ

EXAMPLE 14.11 The QHIC Case: Constructing Residual Plots

Figure 14.21 gives the QHIC upkeep expenditure data and a scatterplot of the data. If we use a
simple linear regression model to describe the QHIC data, we find that the least squares point esti-
mates of b0 and b1 are b0 � �348.3921 and b1 � 7.2583. The Excel add-in (MegaStat) output in

C

Use resid-
ual analysis

to check the as-
sumptions of simple
linear regression.

LO14-9
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Figure 14.22(a) presents the predicted home upkeep expenditures and residuals that are given by
the simple linear regression model. Here each residual is computed as

e � y �  � y � (b0 � b1x) � y � (�348.3921 � 7.2583x)

For instance, for the first observation (home) when y � 1,412.08 and x � 237.00 (see Figure 14.21
on page 526), the residual is

e � 1,412.08 � (�348.3921 � 7.2583(237))

� 1,412.08 � 1,371.816 � 40.264

The MINITAB output in Figure 14.22(b) and (c) gives plots of the residuals for the QHIC simple
linear regression model against values of x and . To understand how these plots are constructed,
recall that for the first observation (home) and the
residual is 40.264. It follows that the point plotted in Figure 14.22(b) corresponding to the first
observation has a horizontal axis coordinate of the x value 237.00 and a vertical axis coordinate
of the residual 40.264. It also follows that the point plotted in Figure 14.22(c) corresponding to
the first observation has a horizontal axis coordinate of the value 1,371.816, and a vertical axis
coordinate of the residual 40.264. Finally, note that the QHIC data are cross-sectional data, not
time series data. Therefore, we cannot make a residual plot versus time.

ŷ

ŷ � 1,371.816,y � 1,412.08, x � 237.00,
ŷ

ŷ

528 Chapter 14 Simple Linear Regression Analysis
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F I G U R E 1 4 . 2 2 Residuals and Residual Plots for the QHIC Simple Linear Regression Model

Observation Upkeep Predicted Residual
1 1,412.080 1,371.816 40.264
2 797.200 762.703 34.497
3 872.480 993.371 �120.891
4 1,003.420 1,263.378 �259.958
5 852.900 817.866 35.034
6 288.480 375.112 �86.632
7 1,288.460 1,314.041 �25.581
8 423.080 390.354 32.726
9 1,351.740 1,523.224 �171.484

10 378.040 350.434 27.606
11 918.080 892.771 25.309
12 1,627.240 1,328.412 298.828
13 1,204.760 1,308.815 �104.055
14 857.040 1,146.084 �289.044
15 775.000 999.613 �224.613
16 869.260 876.658 �7.398
17 1,396.000 1,444.835 �48.835
18 711.500 780.558 �69.058
19 1,475.180 1,278.911 196.269
20 1,413.320 1,118.068 295.252

Observation Upkeep Predicted Residual
21 849.140 762.413 86.727
22 1,313.840 1,336.832 �22.992
23 602.060 562.085 39.975
24 642.140 884.206 �242.066
25 1,038.800 938.353 100.447
26 697.000 833.398 �136.398
27 324.340 525.793 �201.453
28 965.100 1,038.662 �73.562
29 920.140 804.075 116.065
30 950.900 947.208 3.692
31 1,670.320 1,627.307 43.013
32 125.400 6.537 118.863
33 479.780 410.532 69.248
34 2,010.640 1,728.778 281.862
35 368.360 259.270 109.090
36 425.600 277.270 148.330
37 626.900 621.167 5.733
38 1,316.940 1,196.602 120.338
39 390.160 537.261 �147.101
40 1,090.840 1,088.889 1.951

(b) MINITAB output of a residual plot versus x (c) MINITAB output of a residual plot versus ŷ

(a) Excel add-in (MegaStat) output of the residuals
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The constant variance assumption To check the validity of the constant variance as-
sumption, we examine plots of the residuals against values of x, , and time (if the regression data
are time series data). When we look at these plots, the pattern of the residuals’ fluctuation around
0 tells us about the validity of the constant variance assumption. A residual plot that “fans out”
[as in Figure 14.23(a)] suggests that the error terms are becoming more spread out as the hori-
zontal plot value increases and that the constant variance assumption is violated. Here we would
say that an increasing error variance exists. A residual plot that “funnels in” [as in Fig-
ure 14.23(b)] suggests that the spread of the error terms is decreasing as the horizontal plot value
increases and that again the constant variance assumption is violated. In this case we would say
that a decreasing error variance exists. A residual plot with a “horizontal band appearance” [as
in Figure 14.23(c)] suggests that the spread of the error terms around 0 is not changing much as
the horizontal plot value increases. Such a plot tells us that the constant variance assumption 
(approximately) holds.

As an example, consider the QHIC case and the residual plot in Figure 14.22(b). This plot
appears to fan out as x increases, indicating that the spread of the error terms is increasing as x
increases. That is, an increasing error variance exists. This is equivalent to saying that the vari-
ance of the population of potential yearly upkeep expenditures for houses worth x (thousand
dollars) appears to increase as x increases. The reason is that the model y �b0 � b1x � e says that
the variation of y is the same as the variation of e. For example, the variance of the population of
potential yearly upkeep expenditures for houses worth $200,000 would be larger than the vari-
ance of the population of potential yearly upkeep expenditures for houses worth $100,000.
Increasing variance makes some intuitive sense because people with more expensive homes
generally have more discretionary income. These people can choose to spend either a substantial
amount or a much smaller amount on home upkeep, thus causing a relatively large variation in
upkeep expenditures.

Another residual plot showing the increasing error variance in the QHIC Case is Fig-
ure 14.22(c). This plot tells us that the residuals appear to fan out as (predicted y) increases,
which is logical because is an increasing function of x. Also, note that the scatter plot of y versus
x in Figure 14.21 (page 526) shows the increasing error variance—the y values appear to fan out
as x increases. In fact, one might ask why we need to consider residual plots when we can simply
look at scatter plots of y versus x. One answer is that, in general, because of possible differences
in scaling between residual plots and scatter plots of y versus x, one of these types of plots might
be more informative in a particular situation. Therefore, we should always consider both types of
plots.

When the constant variance assumption is violated, we cannot use the formulas of this chap-
ter to make statistical inferences. Later in this section we discuss how we can make statistical
inferences when a nonconstant error variance exists.

ŷ
ŷ

ŷ

Residual

Residual

Residual

(c) Constant error variance

(a) Increasing error variance (b) Decreasing error variance

Residuals fan out Residuals funnel in

Residuals form a horizontal band  

   

F I G U R E 1 4 . 2 3 Residual Plots and the Constant Variance Assumption
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The assumption of correct functional form If the functional form of a regression model
is incorrect, the residual plots constructed by using the model often display a pattern suggesting
the form of a more appropriate model. For instance, if we use a simple linear regression model
when the true relationship between y and x is curved, the residual plot will have a curved
appearance. For example, the scatter plot of upkeep expenditure, y, versus home value, x, in
Figure 14.21 (page 526) has either a straight-line or slightly curved appearance. We used a simple
linear regression model to describe the relationship between y and x, but note that there is a “dip,”
or slightly curved appearance, in the upper left portion of each residual plot in Figure 14.22
(page 528). Therefore, both the scatter plot and residual plots indicate that there might be a
slightly curved relationship between y and x. Later in this section we discuss one way to model
curved relationships.

The normality assumption If the normality assumption holds, a histogram and/or stem-
and-leaf display of the residuals should look reasonably bell-shaped and reasonably symmetric
about 0. Figure 14.24(a) gives the MINITAB output of a stem-and-leaf display of the residuals
from the simple linear regression model describing the QHIC data. The stem-and-leaf display
looks fairly bell-shaped and symmetric about 0. However, the tails of the display look somewhat
long and “heavy” or “thick,” indicating a possible violation of the normality assumption.

Another way to check the normality assumption is to construct a normal plot of the residu-
als. To make a normal plot, we first arrange the residuals in order from smallest to largest. 
Letting the ordered residuals be denoted as e(1), e(2), . . . , e(n) we denote the ith residual in the
ordered listing as e(i). We plot e(i) on the vertical axis against a point called z(i) on the horizontal
axis. Here z(i) is defined to be the point on the horizontal axis under the standard normal curve
so that the area under this curve to the left of z(i) is (3i � 1)�(3n � 1). For example, recall in
the QHIC case that there are n � 40 residuals given in Figure 14.22(a). It follows that, when 
i � 1, then

Therefore, z(1) is the normal point having an area of .0165 under the standard normal curve to its
left. Thus, as illustrated in Figure 14.24(b), z(1) equals �2.13. Because the smallest residual in
Figure 14.22(a) is �289.044, the first point plotted is e(1) � �289.044 on the vertical scale ver-
sus z(1) � �2.13 on the horizontal scale. When i � 2, it can be verified that (3i � 1)�(3n � 1)
equals .0413 and thus that z(2) � �1.74. Therefore, because the second-smallest residual in Fig-
ure 14.24(a) is �259.958, the second point plotted is e(2) � �259.958 on the vertical scale ver-
sus z(2) � �1.74 on the horizontal scale. This process is continued until the entire normal plot is
constructed. The Excel add-in (MegaStat) output of this plot is given in Figure 14.24(c).

An equivalent plot is shown in Figure 14.24(d), which is a MINITAB output. In this figure, we
plot the percentage p(i) of the area under the standard normal curve to the left of z(i) on the verti-
cal axis. Thus, the first point plotted in this normal plot is e(1) � �289.044 on the horizontal scale
versus p(1) � (.0165)(100) � 1.65 on the vertical scale, and the second point plotted is
e(2) � �259.958 on the horizontal scale versus p(2) � (.0413)(100) � 4.13 on the vertical scale.
It is important to note that the scale on the vertical axis does not have the usual spacing between
the percentages. The spacing reflects the distance between the z-scores that correspond to the
percentages in the standard normal distribution. Hence, if we wished to create the plot in 
Figure 14.24(d) by hand, we would need special graphing paper with this vertical scale.

It can be proven that, if the normality assumption holds, then the expected value of the ith
ordered residual e(i) is proportional to z(i). Therefore, a plot of the e(i) values on the horizontal
scale versus the z(i) values on the vertical scale (or equivalently, the e(i) values on the horizontal
scale versus the p(i) values on the vertical scale) should have a straight-line appearance. That is,
if the normality assumption holds, then the normal plot should have a straight-line appearance.
A normal plot that does not look like a straight line (admittedly, a subjective decision) indicates
that the normality assumption is violated. Because the normal plots in Figure 14.24 have some
curvature (particularly in the upper right portion), there is a possible violation of the normality
assumption.

3i � 1

3n � 1
�

3(1) � 1

3(40) � 1
�

2

121
� .0165
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It is important to realize that violations of the constant variance and correct functional form
assumptions can often cause a histogram and/or stem-and-leaf display of the residuals to look
nonnormal and can cause the normal plot to have a curved appearance. Because of this, it is
usually a good idea to use residual plots to check for nonconstant variance and incorrect func-
tional form before making any final conclusions about the normality assumption. Later in this
section we discuss a procedure that sometimes remedies simultaneous violations of the constant
variance, correct functional form, and normality assumptions.

The independence assumption The independence assumption is most likely to be violated
when the regression data are time series data—that is, data that have been collected in a time se-
quence. For such data the time-ordered error terms can be autocorrelated. Intuitively, we say
that error terms occurring over time have positive autocorrelation if a positive error term in time
period i tends to produce, or be followed by, another positive error term in time period i � k
(some later time period) and if a negative error term in time period i tends to produce, or be
followed by, another negative error term in time period i � k. In other words, positive autocorre-
lation exists when positive error terms tend to be followed over time by positive error terms and
when negative error terms tend to be followed over time by negative error terms. Positive auto-
correlation in the error terms is depicted in Figure 14.25(a), which illustrates that positive
autocorrelation can produce a cyclical error term pattern over time. The simple linear
regression model implies that a positive error term produces a greater-than-average value of y
and a negative error term produces a smaller-than-average value of y. It follows that positive
autocorrelation in the error terms means that greater-than-average values of y tend to be followed
by greater-than-average values of y, and smaller-than-average values of y tend to be followed by
smaller-than-average values of y. An example of positive autocorrelation could hypothetically be

(a) MINITAB output of the stem-and-leaf display (b) Calculating z(1) for a normal plot

Standard normal
 curve

3(1) 2 1

3(40) 1 1

2

121
5 5 .0165

z(1) 5 22.13 0

Stem-and-leaf of RESI1 N = 40 
Leaf Unit = 10 
 2    –2  85 
 5    –2  420 
 6    –1  7 
 10   –1  4320 
 13   –0  876 
 17   –0  4220 
(11)   0  00022333344 
 12    0  68 
 10    1  001124 
 4     1  9 
 3     2 
 3     2  899 

(c) Excel add-in (MegaStat) normal plot (d) MINITAB normal plot
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F I G U R E 1 4 . 2 4 Stem-and-Leaf Display and Normal Plots of the Residuals from the Simple Linear Regression
Model Describing the QHIC Data
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6 7 84321

Time

Error term

(a) Positive Autocorrelation in the Error 
Terms: Cyclical Pattern

(b) Negative Autocorrelation in the Error 
Terms: Alternating Pattern
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Time

Error term

F I G U R E 1 4 . 2 5 Positive and Negative Autocorrelation

provided by a simple linear regression model relating demand for a product to advertising
expenditure. Here we assume that the data are time series data observed over a number of con-
secutive sales periods. One of the factors included in the error term of the simple linear regres-
sion model is competitors’ advertising expenditure for their similar products. If, for the moment,
we assume that competitors’ advertising expenditure significantly affects the demand for the
product, then a higher-than-average competitors’ advertising expenditure probably causes
demand for the product to be lower than average and hence probably causes a negative error
term. On the other hand, a lower-than-average competitors’ advertising expenditure probably
causes the demand for the product to be higher than average and hence probably causes a posi-
tive error term. If, then, competitors tend to spend money on advertising in a cyclical fashion—
spending large amounts for several consecutive sales periods (during an advertising campaign)
and then spending lesser amounts for several consecutive sales periods—a negative error term in
one sales period will tend to be followed by a negative error term in the next sales period, and a
positive error term in one sales period will tend to be followed by a positive error term in the next
sales period. In this case the error terms would display positive autocorrelation, and thus these
error terms would not be statistically independent.

Intuitively, error terms occurring over time have negative autocorrelation if a positive error
term in time period i tends to produce, or be followed by, a negative error term in time period
i � k and if a negative error term in time period i tends to produce, or be followed by, a positive
error term in time period i � k. In other words, negative autocorrelation exists when posi-
tive error terms tend to be followed over time by negative error terms and negative error terms
tend to be followed over time by positive error terms. An example of negative autocorrelation
in the error terms is depicted in Figure 14.25(b), which illustrates that negative autocorrelation
in the error terms can produce an alternating pattern over time. It follows that negative
autocorrelation in the error terms means that greater-than-average values of y tend to be followed
by smaller-than-average values of y and smaller-than-average values of y tend to be fol-
lowed by greater-than-average values of y. An example of negative autocorrelation might be pro-
vided by a retailer’s weekly stock orders. Here a larger-than-average stock order one week might
result in an oversupply and hence a smaller-than-average order the next week.

The independence assumption basically says that the time-ordered error terms display no
positive or negative autocorrelation. This says that the error terms occur in a random pattern
over time. Such a random pattern would imply that the error terms (and their corresponding y
values) are statistically independent.

Because the residuals are point estimates of the error terms, a residual plot versus time is
used to check the independence assumption. If a residual plot versus the data’s time sequence
has a cyclical appearance, the error terms are positively autocorrelated, and the independence
assumption is violated. If a plot of the time-ordered residuals has an alternating pattern, the
error terms are negatively autocorrelated, and again the independence assumption is violated.
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However, if a plot of the time-ordered residuals displays a random pattern, the error terms have
little or no autocorrelation. In such a case, it is reasonable to conclude that the independence
assumption holds. 

EXAMPLE 14.12 Pages Bookstore: Positive Autocorrelation

Figure 14.26(a) presents data concerning weekly sales at Pages Bookstore (Sales), Pages weekly
advertising expenditure (Adver), and the weekly advertising expenditure of Pages main com-
petitor (Compadv). Here the sales values are expressed in thousands of dollars, and the advertis-
ing expenditure values are expressed in hundreds of dollars. Figure 14.26(a) also gives the
MINITAB output of the residuals that are obtained when a simple linear regression analysis is
performed relating Pages sales to Pages advertising expenditure. These residuals are plotted ver-
sus time in Figure 14.26(b). We see that the residual plot has a cyclical pattern. This tells us that
the error terms for the model are positively autocorrelated and the independence assumption is
violated. Furthermore, there tend to be positive residuals when the competitor’s advertising
expenditure is lower (in weeks 1 through 8 and weeks 14, 15, and 16) and negative residuals
when the competitor’s advertising expenditure is higher (in weeks 9 through 13). Therefore, the
competitor’s advertising expenditure seems to be causing the positive autocorrelation.

F I G U R E 1 4 . 2 6 Pages Bookstore Sales and Advertising Data, and Residual Analysis

(b) A plot of the residuals in Figure 14.26(a) versus time

(a) The data and the MINITAB output of the residuals from a simple linear regression relating Pages
sales to Pages advertising expenditure BookSalesDS
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Observation Adver Compadv Sales Predicted Residual

1 18 10 22 18.7 3.3

2 20 10 27 23.0 4.0

3 20 15 23 23.0 �0.0

4 25 15 31 33.9 �2.9

5 28 15 45 40.4 4.6

6 29 20 47 42.6 4.4

7 29 20 45 42.6 2.4

8 28 25 42 40.4 1.6

9 30 35 37 44.7 �7.7

10 31 35 39 46.9 �7.9

11 34 35 45 53.4 �8.4

12 35 30 52 55.6 �3.6

13 36 30 57 57.8 �0.8

14 38 25 62 62.1 �0.1

15 41 20 73 68.6 4.4

16 45 20 84 77.3 6.7

Durbin-Watson � 0.65
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534 Chapter 14 Simple Linear Regression Analysis

1 If d 	 dL,a, we reject H0.

2 If d � dU,a, we do not reject H0.

3 If dL,a � d � dU,a, the test is inconclusive.

To conclude this example, note that the simple linear regression model relating Pages sales
to Pages advertising expenditure has a standard error, s, of 5.038. The residual plot in Fig-
ure 14.26(b) includes grid lines that are placed one and two standard errors above and below the
residual mean of 0. Such grid lines help us to better diagnose potential violations of the regres-
sion assumptions.

When the independence assumption is violated, various remedies can be employed. One ap-
proach is to identify which independent variable left in the error term (for example, competitors’
advertising expenditure) is causing the error terms to be autocorrelated. We can then remove this
independent variable from the error term and insert it directly into the regression model, forming
a multiple regression model. (Multiple regression models are discussed in Chapter 15.)

The Durbin–Watson test One type of positive or negative autocorrelation is called first-
order autocorrelation. It says that et, the error term in time period t, is related to et�1, the error
term in time period t � 1. To check for first-order autocorrelation, we can use the Durbin–
Watson statistic

where e1, e2, . . . , en are the time-ordered residuals.
Intuitively, small values of d lead us to conclude that there is positive autocorrelation. This is

because, if d is small, the differences (et � et�1) are small. This indicates that the adjacent resid-
uals et and et�1 are of the same magnitude, which in turn says that the adjacent error terms et and
et�1 are positively correlated. Consider testing the null hypothesis H0 that the error terms are
not autocorrelated versus the alternative hypothesis Ha that the error terms are positively
autocorrelated. Durbin and Watson have shown that there are points (denoted dL,a and dU,a) such
that, if a is the probability of a Type I error, then

d �
a

n

t�2
(et � et�1)

2

a
n

t�1
 e2

t

So that the Durbin–Watson test may be easily done, tables containing the points dL,a and dU,a

have been constructed. These tables give the appropriate dL,a and dU,a points for various values of a;
k, the number of independent variables used by the regression model; and n, the number of obser-
vations. Tables A.11, A.12, and A.13 (pages 801–802) give these points for a� .05, a� .025, and
a� .01. A portion of Table A.11 is given in Table 14.3. Note that when we are considering a sim-
ple linear regression model, which uses one independent variable, we look up the points dL,a and
dU,a under the heading “k � 1.” Other values of k are used when we study multiple regression mod-
els in Chapter 15. Using the residuals in Figure 14.26(a), the Durbin–Watson statistic for the sim-
ple linear regression model relating Pages sales to Pages advertising expenditure is calculated to be

A MINITAB output of the Durbin–Watson statistic is given at the bottom of Figure 14.26(a). To
test for positive autocorrelation, we note that there are n � 16 observations and the regression

 � .65

 �
(4.0 � 3.3)2 � (0.0 � 4.0)2 � � � � � (6.7 � 4.4)2

(3.3)2 � (4.0)2 � � � � � (6.7)2

 d �
a
16

t�2
(et � et�1)

2

a
16

t�1

e2
t

Reject H0 Do not
reject H0

Test
inconclusive

dL,� dU,�
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14.9 Residual Analysis 535

model uses k � 1 independent variable. Therefore, if we set a � .05, Table 14.3 tells us that
dL,.05 � 1.10 and dU,.05 � 1.37. Because d � .65 is less than dL,.05 � 1.10, we reject the null hy-
pothesis of no autocorrelation. That is, we conclude (at an a of .05) that there is positive (first-
order) autocorrelation. 

It can be shown that the Durbin–Watson statistic d is always between 0 and 4. Large values
of d (and hence small values of 4 � d) lead us to conclude that there is negative autocorrelation
because if d is large, this indicates that the differences (et � et�1) are large. This says that the
adjacent error terms et and et�1 are negatively autocorrelated. Consider testing the null
hypothesis H0 that the error terms are not autocorrelated versus the alternative hypothesis Ha

that the error terms are negatively autocorrelated. Durbin and Watson have shown that based
on setting the probability of a Type I error equal to a, the points dL,a and dU,a are such that

T A B L E 1 4 . 3 Critical Values for the Durbin–Watson d Statistic (A � .05)

k � 1 k � 2 k � 3 k � 4
n dL,.05 dU,.05 dL,.05 dU,.05 dL,.05 dU,.05 dL,.05 dU,.05

15 1.08 1.36 0.95 1.54 0.82 1.75 0.69 1.97
16 1.10 1.37 0.98 1.54 0.86 1.73 0.74 1.93
17 1.13 1.38 1.02 1.54 0.90 1.71 0.78 1.90
18 1.16 1.39 1.05 1.53 0.93 1.69 0.82 1.87
19 1.18 1.40 1.08 1.53 0.97 1.68 0.86 1.85
20 1.20 1.41 1.10 1.54 1.00 1.68 0.90 1.83

As an example, for the Pages sales simple linear regression model, we see that

(4 � d ) � (4 � .65) � 3.35 � dU,.05 � 1.37

Therefore, on the basis of setting a equal to .05, we do not reject the null hypothesis of no auto-
correlation. That is, there is no evidence of negative (first-order) autocorrelation.

We can also use the Durbin–Watson statistic to test for positive or negative autocorrelation.
Specifically, consider testing the null hypothesis H0 that the error terms are not autocorre-
lated versus the alternative hypothesis Ha that the error terms are positively or negatively
autocorrelated. Durbin and Watson have shown that, based on setting the probability of a Type I
error equal to a, we perform both the above described test for positive autocorrelation and the
above described test for negative autocorrelation by using the critical values dL,a�2 and dU,a�2 for
each test. If either test says to reject H0, then we reject H0. If both tests say to not reject H0, then
we do not reject H0. Finally, if either test is inconclusive, then the overall test is inconclusive.
For example, consider testing for positive or negative autocorrelation in the Pages sales model.
If we set a equal to .05, then a�2 � .025, and we need to find the points dL,.025 and dU,.025 when
n � 16 and k � 1. Looking up these points in Table A.12 (page 801), we find that dL,.025 � .98
and dU,.025 � 1.24. Because d � .65 is less than dL,.025 � .98, we reject the null hypothesis of no
autocorrelation. That is, we conclude (at an a of .05) that there is first-order autocorrelation.

Although we have used the Pages sales model in these examples to demonstrate the Durbin–
Watson tests for (1) positive autocorrelation, (2) negative autocorrelation, and (3) positive or
negative autocorrelation, we must in practice choose one of these Durbin–Watson tests in a
particular situation. Because positive autocorrelation is more common in real time series data than
negative autocorrelation, the Durbin–Watson test for positive autocorrelation is used more often
than the other two tests.Also, note that each Durbin–Watson test assumes that the population of all
possible residuals at any time t has a normal distribution.

Transforming the dependent variable: A possible remedy for violations of the
constant variance, correct functional form, and normality assumptions In general,
if a data or residual plot indicates that the error variance of a regression model increases as an

1 If (4 � d) 	 dL,a, we reject H0.

2 If (4 � d) � dU,a, we do not reject H0.

3 If dL,a � (4 � d) � dU,a, the test is inconclusive.
Reject H0 Do not

reject H0

Test
inconclusive

dL,� dU,�
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536 Chapter 14 Simple Linear Regression Analysis

EXAMPLE 14.13 The QHIC Case: Using a Data Transformation

Consider the QHIC upkeep expenditures in Figure 14.21. In Figures 14.27, 14.28, and 14.29 we
show the plots that result when we take the square root, quartic root, and natural logarithmic
transformations of the upkeep expenditures and plot the transformed values versus the home
values. The square root transformation seems to best equalize the error variance and straighten
out the curved data plot in Figure 14.21. Note that the natural logarithm transformation seems to

C

F I G U R E 1 4 . 2 7 MINITAB Plot of the Square Roots of 
the Upkeep Expenditures versus the 
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F I G U R E 1 4 . 2 8 MINITAB Plot of the Quartic Roots of 
the Upkeep Expenditures versus the 
Home Values
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independent variable or the predicted value of the dependent variable increases, then we can
sometimes remedy the situation by transforming the dependent variable. One transformation that
works well is to take each y value to a fractional power. As an example, we might use a transfor-
mation in which we take the square root (or one-half power) of each y value. Letting y* denote
the value obtained when the transformation is applied to y, we would write the square root
transformation as

Another commonly used transformation is the quartic root transformation. Here we take each
y value to the one-fourth power. That is,

If we consider a transformation that takes each y value to a fractional power (such as .5, .25, or the
like), as the power approaches 0, the transformed value y* approaches the natural logarithm of y
(commonly written ln y). In fact, we sometimes use the logarithmic transformation

which takes the natural logarithm of each y value. In general, when we take a fractional power
(including the natural logarithm) of the dependent variable, the transformation not only tends to
equalize the error variance but also tends to “straighten out” certain types of nonlinear data
plots. Specifically, if a data plot indicates that the dependent variable is increasing at an in-
creasing rate, then a fractional power transformation tends to straighten out the data plot. A frac-
tional power transformation can also help to remedy a violation of the normality assumption.
Because we cannot know which fractional power to use before we actually take the transforma-
tion, we recommend taking all of the square root, quartic root, and natural logarithm transfor-
mations and seeing which one best equalizes the error variance and (possibly) straightens out a
nonlinear data plot.

y* � ln y

y* � y.25

y* � 1y � y .5
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14.9 Residual Analysis 537

“overtransform” the data—the error variance tends to decrease as the home value increases and
the data plot seems to “bend down.” The plot of the quartic roots indicates that the quartic root
transformation also seems to overtransform the data (but not by as much as the logarithmic trans-
formation). In general, as the fractional power gets smaller, the transformation gets stronger.
Different fractional powers are best in different situations.

Because the plot in Figure 14.27 of the square roots of the upkeep expenditures versus the
home values has a straight-line appearance, we consider the model

The MINITAB output of a regression analysis using this transformed model is given in 
Figure 14.30, along with a plot of the transformed model’s residuals versus x. Note that this resid-
ual plot has a horizontal band appearance. It can also be verified that the transformed model’s
residual plot versus ŷ, which we do not give here, has a similar horizontal band appearance.

y* � b0 � b1x � e  where y* � y.5

F I G U R E 1 4 . 2 9 MINITAB Plot of the Natural Logarithms of the Upkeep Expenditures 
versus the Home Values
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F I G U R E 1 4 . 3 0 MINITAB Output of a Regression Analysis of the Upkeep Expenditure Data by Using the
Model y* � B0 � B1x � E where y* � y .5, and a Residual Plot versus x

The regression equation is 
SqRtUpkeep = 7.20 + 0.127 Value

Predictor      Coef   SE Coef      T      P       
Constant      7.201     1.205   5.98  0.000 
Value      0.127047  0.006577  19.32  0.000 

S = 2.32479   R–Sq = 90.8%   R–Sq(adj) = 90.5% 

Analysis of Variance 
Source          DF      SS      MS       F      P 
Regression 1 2016.8 2016.8 373.17 0.000
Residual Error  38   205.4     5.4 
Total           39  2222.2 

Values of Predictors for New Obs    Predicted Values for New Observations 
New Obs  Value                      New Obs     Fit  SE Fit       95% CI            95% PI 

1    220                            1  35.151   0.474  (34.191, 36.111)  (30.348, 39.954) 
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538 Chapter 14 Simple Linear Regression Analysis

F I G U R E 1 4 . 3 1 MINITAB Output of Normality Assumption Analysis for the Upkeep Expenditure Model 
y* � B0 � B1x � E where y* � y .5
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Therefore, we conclude that the constant variance and the correct functional form assumptions
approximately hold for the transformed model. Next, note that the histogram of the transformed
model’s residuals in Figure 14.31(a) looks reasonably bell-shaped and symmetric, and note that
the normal plot of these residuals in Figure 14.31(b) looks straighter than the normal plots for the
untransformed model (see Figure 14.24 on page 531). Therefore, we also conclude that the nor-
mality assumption approximately holds for the transformed model.

Because the regression assumptions approximately hold for the transformed regression
model, we can use this model to make statistical inferences. Consider a home worth $220,000.
Using the least squares point estimates on the MINITAB output in Figure 14.30 on the previous
page, it follows that a point prediction of y* for such a home is

� 35.151

This point prediction is given at the bottom of the MINITAB output, as is the 95 percent prediction
interval for y*, which is [30.348, 39.954]. It follows that a point prediction of the upkeep
expenditure for a home worth $220,000 is (35.151)2 � $1,235.59 and that a 95 percent prediction
interval for this upkeep expenditure is [(30.348)2, (39.954)2] � [$921.00, $1596.32]. Suppose that
QHIC wishes to send an advertising brochure to any home that has a predicted upkeep
expenditure of at least $500. It follows that a home worth $220,000 would be sent an advertising
brocedure. This is because the predicted yearly upkeep expenditure for such a home is (as just
calculated) $1,235.59. Other homes can be evaluated in a similar fashion.

ŷ* � 7.201 � .127047(220)

Exercises for Section 14.9
CONCEPTS

14.56 In regression analysis, what variables should the residuals be plotted against? 

14.57 What patterns in residual plots indicate violations of the regression assumptions?

14.58 In regression analysis, how do we check the normality assumption?

METHODS AND APPLICATIONS

14.59 THE SERVICE TIME CASE SrvcTime

The residuals given by the service time prediction equation � 11.4641 � 24.6022x are listed in
Table 14.4(a), and residual plots versus x and are given in Figures 14.32(a) and (b). Do the plots
indicate any violations of the regression assumptions? Explain.

ŷ
ŷ

DS
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Observation Copiers Minutes Predicted Residual
1 4 109.0 109.9 �0.9
2 2 58.0 60.7 �2.7
3 5 138.0 134.5 3.5
4 7 189.0 183.7 5.3
5 1 37.0 36.1 0.9
6 3 82.0 85.3 �3.3
7 4 103.0 109.9 �6.9
8 5 134.0 134.5 �0.5
9 2 68.0 60.7 7.3

10 6 112.0 109.9 2.1
11 4 154.0 159.1 �5.1

F I G U R E 1 4 . 3 2 Service Time Model Residual and 
Normal Plots
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(a) Predicted values and residuals using 
� 11.4641 � 24.6022xŷ

(b) Ordered residuals and normal plot calculations

T A B L E 1 4 . 4 Service Time Model Residuals and
Normal Plot Calculations

Ordered
i Residual, e(i)

z(i)

1 �6.9 .0588 �1.565
2 �5.1 .1470 �1.05
3 �3.3 .2353 �.72
4 �2.7 .3235 �.46
5 �0.9 .4118 �.22
6 �0.5 .5000 0
7 0.9 .5882 .22
8 2.1 .6765 .46
9 3.5 .7647 .72

10 5.3 .8529 1.05
11 7.3 .9412 1.565

3i � 1
3n � 1

14.60 THE SERVICE TIME CASE SrvcTime

The residuals given by the service time prediction equation � 11.4641 � 24.6022x are listed in
Table 14.4(a).
a In this exercise we construct a normal plot of these residuals. To construct this plot, we must

first arrange the residuals in order from smallest to largest. These ordered residuals are given
in Table 14.4(b). Denoting the ith ordered residual as e(i) (i � 1, 2, . . . , 11), we next compute
for each value of i the point z(i). These computations are summarized in Table 14.4(b). Show
how z(4) � �.46 and z(10) � 1.05 have been obtained.

b The ordered residuals (the e(i)’s) are plotted against the z(i)’s in Figure 14.32(c). Does this
figure indicate a violation of the normality assumption? Explain.

14.61 A simple linear regression model is employed to analyze the 24 monthly observations given
in Table 14.5 on the next page. Residuals are computed and are plotted versus time. The resulting
residual plot is shown in Figure 14.33 on the next page. (1) Discuss why the residual plot sug-
gests the existence of positive autocorrelation. (2) The Durbin–Watson statistic d can be calcu-
lated to be .473. Test for positive (first-order) autocorrelation at a� .05, and test for negative
(first-order) autocorrelation at a� .05 SalesAdv

14.62 THE LAPTOP SERVICE TIME CASE SrvcTime2

The page margin shows data concerning the time, y, required to perform service (in minutes) and
the number of laptop computers serviced, x, for 15 service calls. Figure 14.34 on the next page
gives a plot of y versus x, and Figure 14.35(a) gives the Excel output of a plot of the residuals
versus x for a simple linear regression model. What regression assumption appears to be violated?
Explain.

DS

DS

ŷ

DS

The Laptop Service
Time Data

Service Laptops
Time, y Serviced, x

92 3
63 2

126 6
247 8
49 2
90 4

119 5
114 6
67 2

115 4
188 6
298 11
77 3

151 10
27 1
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0 1 2 3 654 7 8 109 11
0

100

200

300

Laptops

Y

F I G U R E 1 4 . 3 4 The Laptop Service Time Scatter Plot
(for Exercise 14.62) SrvcTime2DS

14.63 THE LAPTOP SERVICE TIME CASE SrvcTime2
Figure 14.35(a) shows the residual plot versus x for the simple linear regression of the laptop ser-
vice time data. This plot fans out, indicating that the error term e tends to become larger in
magnitude as x increases. To remedy this violation of the constant variance assumption, we divide
all terms in the simple linear regression model by x. This gives the transformed model

y

x
� b0�1

x� � b1 �
e

x
  or, equivalently,  

y

x
� b0 � b1�1

x� �
e

x

DS

T A B L E 1 4 . 5 Sales and Advertising Data for 
Exercise 14.61 SalesAdvDS

Monthly Advertising
Month Total Sales, y Expenditures, x

1 202.66 116.44
2 232.91 119.58
3 272.07 125.74
4 290.97 124.55
5 299.09 122.35
6 296.95 120.44
7 279.49 123.24
8 255.75 127.55
9 242.78 121.19

10 255.34 118.00
11 271.58 121.81
12 268.27 126.54
13 260.51 129.85
14 266.34 122.65
15 281.24 121.64
16 286.19 127.24
17 271.97 132.35
18 265.01 130.86
19 274.44 122.90
20 291.81 117.15
21 290.91 109.47
22 264.95 114.34
23 228.40 123.72
24 209.33 130.33

Source: Forecasting Methods and Applications, “Sales and
Advertising Data,” by S. Makridakis, S. C. Wheelwright, and 
V. E. McGee, Forecasting: Methods and Applications (Copyright 
© 1983 John Wiley & Sons, Inc.). Reprinted by permission of John
Wiley & Sons, Inc.
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F I G U R E 1 4 . 3 3 Residual Plot for Exercise 14.61

F I G U R E 1 4 . 3 5 Residual Plots in the Laptop Service Time Case (for Exercises 14.62 and 14.63).

(a) For the original simple linear regression model
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(b) For the transformed regression model
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14.9 Residual Analysis 541

Figure 14.36 and Figure 14.35(b) give a regression output and a residual plot versus x for this model.
Does the residual plot indicate that the constant variance assumption holds for the transformed
model? Explain.

14.64 THE LAPTOP SERVICE TIME CASE SrvcTime2
Consider a future service call on which seven laptops will be serviced. Let m0 represent the mean
service time for all service calls on which seven laptops will be serviced, and let y0 represent the
actual service time for an individual service call on which seven laptops will be serviced. The bot-
tom of the MINITAB output in Figure 14.36 tells us that �7 � 24.041 � 6.764(1�7) � 25.01 is a
point estimate of and a point prediction of y0�7. (1) Multiply this result by 7 to obtain 
(2) Multiply the ends of the confidence interval and prediction interval shown on the MINITAB
output by 7. This will give a 95 percent confidence interval for m0 and a 95 percent prediction
interval for y0. (3) If the number of minutes we will allow for the future service call is the upper
limit of the 95 percent confidence interval for m0, how many minutes will we allow?

14.65 USING A NATURAL LOGARITHM TRANSFORMATION WestStk

Western Steakhouses, a fast-food chain, opened 15 years ago. Each year since then the number
of steakhouses in operation, y, was recorded. An analyst for the firm wishes to use these data to
predict the number of steakhouses that will be in operation next year. The data are given in 
the page margin, and a plot of the data is given in Figure 14.37(a) on the next page. Examining
the data plot, we see that the number of steakhouse openings has increased over time at an
increasing rate and with increasing variation. A plot of the natural logarithms of the steakhouse
values versus time (see Figure 14.37(b) on the next page) has a straight-line appearance with
constant variation. Therefore, we consider the model ln yt � b0 � b1t � et. If we use MINITAB,
we find that the least squares point estimates of b0 and b1 are b0 � 2.07012 and b1 � .256880. We
also find that a point prediction of and a 95 percent prediction interval for the natural logarithm of
the number of steakhouses in operation next year (year 16) are 6.1802 and [5.9945, 6.3659]. See
the MINITAB output in Figure 14.38 on the next page.
a Use the least squares point estimates to calculate the point prediction.
b By exponentiating the point prediction and prediction interval—that is, by calculating e6.1802

and [e5.9945, e6.3659]—find a point prediction of and a 95 percent prediction interval for the
number of steakhouses in operation next year. 

c The model ln yt � b0 � b1t � et is called a growth curve model because it implies that

where , and . Here is called the growth rate of the y
values. Noting that the least squares point estimate of is estimate the growth
rate a1. 

d We see that . This says that yt is expected to be
approximately a1 times yt�1. Noting this, interpret the growth rate of part (c).

(yt�1)a1htyt � a0 a1
tht � (a0 a1

t�1)a1ht �

b1 � .256880,b1

a1 � eb1ht � eeta0 � eb0, a1 � eb1

yt � e(b0�b1t�et) � (eb0)(eb1t)(eet) � a0 a
t
1ht

DS

ŷ.m0�7
ŷ

DS

The Steakhouse
Data

Year, Steakhouses,
t y
1 11
2 14
3 16
4 22
5 28
6 36
7 46
8 67
9 82

10 99
11 119
12 156
13 257
14 284
15 403

F I G U R E 1 4 . 3 6 MINITAB Output of a Regression Analysis of the Laptop Service Time Data Using
the Model y�x � B0 � B1(1�x) � E�x

The regression equation is 
Y/X = 24.0 + 6.76 1/X

Predictor       Coef     SE Coef        T        P 
Constant      24.041       2.246    10.70    0.000

      6.764       5.794     1.17    0.2641/X

S = 5.15816   R–Sq = 9.50%   R-Sq(adj) = 2.5%    

Analysis of Variance 
Source            DF        SS        MS       F       P 
Regression         1     36.27     36.27    1.36   0.264
Residual Error    13    345.89     26.61 
Total             14    382.15 

Predicted Values for New Observations Values of Predictors for New Obs 
New Obs          1/X
      1        0.143                                                          

Obs       Fit    SE Fit            95% CI           95% PI 
1     25.01      1.65     (21.43, 28.58)   (13.30, 36.71)
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542 Chapter 14 Simple Linear Regression Analysis

F I G U R E 1 4 . 3 7 Data Plots for Exercise 14.65 WestStkDS

(a) Time Series Plot of y versus t

Year
1614121086420

400

300

200

100

0

Time Series Plot of y vs Year

y

(b) Time Series Plot of  Natural Logarithm of y versus t 

Year

ln(y)

1614121086420

6

5

4

3

2

Time Series Plot of Nat Log of y vs Year

F I G U R E 1 4 . 3 8 MINITAB Output of a Regression Analysis of the Steakhouse Data Using
the Model ln yt � �0 � �1t � Et (for Exercise 14.65)

14.10 Some Shortcut Formulas (Optional) 
Calculating the sum of squared residuals A shortcut formula for the sum of squared
residuals is

where

For example, consider the Tasty Sub Shop case. If we square each of the ten observed yearly rev-
enues in Table 14.1 (page 488) and add up the resulting squared values, we find that

We have also found in Example 14.2 (page 493) that
and It follows that

SSyy � a y2
i �

�a yi�
2

n
� 7,897,109.47 �

(8603.1)2

10
� 495,776.51

SSxx � 1,913.129.29,836.389
yi � 8603.1, SSxy �y2

i � 7,897,109.47.

SSyy �a (yi � y)2 �a y2
i �

�a yi�
2

n

SSE � SSyy �
SS2

xy

SSxx

The regression equation is 
ln(y) = 2.07 + 0.257 Year 

Predictor        Coef     SE Coef        T        P 
Constant      2.07012     0.04103    50.45    0.000 
Year         0.256880    0.004513    56.92    0.000 

S = 0.0755161   R–Sq = 99.6%   R-Sq(adj) = 99.6%    Durbin-Watson statistic = 1.87643 

Analysis of Variance 
Source            DF        SS        MS          F        P 
Regression         1    18.477    18.477    3239.97    0.000 
Residual Error    13     0.074     0.006 
Total             14    18.551 

Values of Predictors for New Obs   Predicted Values for New Observations 
New Obs  Year                      Obs     Fit  SE Fit       95% CI            95% PI 

1    16                        1  6.1802  0.0410  (6.0916, 6.2689)  (5.9945, 6.3659)
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Glossary of Terms 543

and

� 495,776.51 � 465,316.30 � 30,460.21

Finally, note that SS2
xy�SSxx equals b1SSxy. However, we recommend using the first of these expres-

sions, because doing so usually gives less round-off error.

Calculating the total, explained, and unexplained variations The unexplained vari-
ation is SSE, and thus the shortcut formula for SSE is a shortcut formula for the unexplained vari-
ation. The quantity SSyy defined on page 542 is the total variation, and thus the shortcut formula
for SSyy is a shortcut formula for the total variation. Lastly, it can be shown that the expression
SS2

xy�SSxx equals the explained variation and thus is a shortcut formula for this quantity.

SSE � SSyy �
SSxy

2

SSxx

� 495,776.51 �
(29,836.389)2

1913.129

Glossary of Terms

dependent variable: The variable that is being described, pre-
dicted, or controlled. (page 487)
distance value: A measure of the distance between a particular
value x0 of the independent variable x and , the average of the
previously observed values of x (the center of the experimental
region). (page 511)
error term: The difference between an individual value of the
dependent variable and the corresponding mean value of the de-
pendent variable. (page 490)
experimental region: The range of the previously observed val-
ues of the independent variable. (page 494)
explained variation: A quantity that measures the amount of the
total variation in the observed values of y that is explained by the
predictor variable x. (pages 517 and 518)
independent variable: A variable used to describe, predict, and
control the dependent variable. (page 487)
least squares point estimates: The point estimates of the slope
and y intercept of the simple linear regression model that mini-
mize the sum of squared residuals. (pages 492–493)
negative autocorrelation: The situation in which positive error
terms tend to be followed over time by negative error terms and
negative error terms tend to be followed over time by positive
error terms. (page 532)
normal plot: A residual plot that is used to check the normality
assumption. (page 530)
positive autocorrelation: The situation in which positive error
terms tend to be followed over time by positive error terms and
negative error terms tend to be followed over time by negative
error terms. (page 531)

x

residual: The difference between the observed value of the
dependent variable and the corresponding predicted value of the
dependent variable. (pages 492, 527)
residual plot: A plot of the residuals against some criterion. The
plot is used to check the validity of one or more regression
assumptions. (page 527)
simple coefficient of determination r2: The proportion of the
total variation in the observed values of the dependent variable
that is explained by the simple linear regression model. (page 518)
simple correlation coefficient: A measure of the linear associa-
tion between two variables. (page 519)
simple linear regression model: An equation that describes the
straight-line relationship between a dependent variable and an
independent variable. (page 490)
slope (of the simple linear regression model): The change in
the mean value of the dependent variable that is associated with
a one-unit increase in the value of the independent variable. 
(page 490)
total variation: A quantity that measures the total amount of
variation exhibited by the observed values of the dependent vari-
able y. (pages 517 and 518)
unexplained variation: A quantity that measures the amount of
of the total variation in the observed values of y that is not ex-
plained by the predictor variable x. (pages 517 and 518)
y-intercept (of the simple linear regression model): The mean
value of the dependent variable when the value of the indepen-
dent variable is 0. (page 490)

Chapter Summary

This chapter has discussed simple linear regression analysis,
which relates a dependent variable to a single independent
(predictor) variable. We began by considering the simple linear
regression model, which employs two parameters: the slope and
y intercept. We next discussed how to compute the least squares
point estimates of these parameters and how to use these esti-
mates to calculate a point estimate of the mean value of the
dependent variable and a point prediction of an individual
value of the dependent variable. Then, after considering the
assumptions behind the simple linear regression model, we
discussed testing the significance of the regression relationship

(slope), calculating a confidence interval for the mean value of
the dependent variable, and calculating a prediction interval for
an individual value of the dependent variable. We next explained
several measures of the utility of the simple linear regression
model. These include the simple coefficient of determination
and an F-test for the simple linear model. We concluded this
chapter by giving a discussion of using residual analysis to
detect violations of the regression assumptions. We learned that
we can sometimes remedy violations of these assumptions by
transforming the dependent variable.
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544 Chapter 14 Simple Linear Regression Analysis

Important Formulas and Tests

Simple linear regression model: page 490

Least squares point estimates of b0 and b1: pages 492 and 493

Least squares line (prediction equation): page 492

The predicted value of y: page 492

The residual: pages 492 and 527

Sum of squared residuals: pages 492 and 502

Point estimate of a mean value of y: pages 496 and 510

Point prediction of an individual value of y: pages 496 and 510

Mean square error: page 502

Standard error: page 502

Standard error of the estimate b1: page 503

Testing the significance of the slope: page 504

Testing the significance of the y-intercept: page 506

Confidence interval for the slope: page 506

Standard error of : page 511

Confidence interval for a mean value of y: page 511

Prediction interval for an individual value of y: page 511

Explained variation: page 518

Unexplained variation: page 518

Total variation: page 518

Simple coefficient of determination r2: page 518

Simple correlation coefficient: page 519

Testing the significance of the population correlation 
coefficient: page 521

An F-test for the simple linear regression model: page 522

Normal plot calculations: page 530

Durbin–Watson test: pages 534–535

Shortcut formulas: pages 542–543

ŷ

Supplementary Exercises

14.66 Consider the following data concerning the demand (y) and price (x) of a consumer 
product. Demand

Demand, y 252 244 241 234 230 223
Price, x $2.00 $2.20 $2.40 $2.60 $2.80 $3.00

a Plot y versus x. Does it seem reasonable to use the simple linear regression model to relate y to x?
b Calculate the least squares point estimates of the parameters in the simple linear regression model.
c Write the least squares prediction equation. Graph this equation on the plot of y versus x.
d Test the significance of the regression relationship between y and x.
e Find a point prediction of and a 95 percent prediction interval for the demand corresponding

to each of the prices $2.10, $2.75, and $3.10.

14.67 In an article in Public Roads (1983), Bissell, Pilkington, Mason, and Woods study bridge safety
(measured in accident rates per 100 million vehicles) and the difference between the width of the
bridge and the width of the roadway approach (road plus shoulder):3 AutoAcc

WidthDiff. �6 �4 �2 0 2 4 6 8 10 12
Accident 120 103 87 72 58 44 31 20 12 7

The MINITAB output of a simple linear regression analysis relating accident to width difference
is as follows:

The regression equation is 
Accident Rate = 74.7 – 6.44 WidthDif

Predictor        Coef     SE Coef          T         P 
Constant       74.727       1.904      39.25     0.000 
WidthDif      –6.4424      0.2938     –21.93     0.000 

S = 5.33627   R–Sq = 98.4%   R–Sq(adj) = 98.2% 

Analysis of Variance 
Source             DF        SS        MS          F         P 
Regression          1     13697     13697     480.99     0.000 
Residual Error      8       228        28 
Total               9     13924 

DS

DS

3Source: H. H. Bissell, G. B. Pilkington II, J. M. Mason, and D. L. Woods, “Roadway Cross Section and Alignment,” Public Roads
46 (March 1983), pp. 132–41.
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Supplementary Exercises 545

Using the MINITAB output
a Identify and interpret the least squares point estimate of the slope of the simple linear regression

model.
b Identify and interpret the p-value for testing H0: b1 � 0 versus Ha: b1 � 0.
c Identify and interpret r2.

14.68 The data in Table 14.6 concerning the relationship between smoking and lung cancer death
are presented in a course of The Open University, Statistics in Society, Unit C4, The
Open University Press, Milton Keynes, England, 1983. The original source of the data is
Occupational Mortality: The Registrar General’s Decennial Supplement for England and Wales,
1970–1972, Her Majesty’s Stationery Office, London, 1978. In the table, a smoking index
greater (less) than 100 indicates that men in the occupational group smoke more (less) than
average when compared to all men of the same age. Similarly, a lung cancer death index greater
(less) than 100 indicates that men in the occupational group have a greater (less) than average
lung cancer death rate when compared to all men of the same age. In Figure 14.39 we present a
portion of a MINITAB output of a simple linear regression analysis relating the lung cancer
death index to the smoking index. In Figure 14.40 we present a plot of the lung cancer death
index versus the smoking index. SmokingDS

T A B L E 1 4 . 6 The Smoking and Lung Cancer Death Data SmokingDS

Occupational Group Smoking Index Lung Cancer Death Index
Farmers, foresters, and fisherman 77 84
Miners and quarrymen 137 116
Gas, coke, and chemical makers 117 123
Glass and ceramics makers 94 128
Furnace, forge, foundry, and rolling mill workers 116 155
Electrical and electronics workers 102 101
Engineering and allied trades 111 118
Woodworkers 93 113
Leather workers 88 104
Textile workers 102 88
Clothing workers 91 104
Food, drink, and tobacco workers 104 129
Paper and printing workers 107 86
Makers of other products 112 96
Construction workers 113 144
Painters and decorators 110 139
Drivers of stationary engines, cranes, etc. 125 113
Laborers not included elsewhere 133 146
Transport and communications workers 115 128
Warehousemen, storekeepers, packers, and bottlers 105 115
Clerical workers 87 79
Sales workers 91 85
Service, sport, and recreation workers 100 120
Administrators and managers 76 60
Professionals, technical workers, and artists 66 51

F I G U R E 1 4 . 3 9 MINITAB Output of a Simple Linear Regression Analysis of 
the Data in Table 14.6

The regression equation is 
Death Index = – 2.9 + 1.09 Smoking Index

Predictor           Coef       SE Coef           T           P 
Constant           –2.89         23.03       –0.13       0.901 
Smoking Index     1.0875        0.2209        4.92        0.00 

S = 18.6154   R–Sq = 51.3%   R–Sq(adj) = 49.2% 
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546 Chapter 14 Simple Linear Regression Analysis

a Although the data do not prove that smoking increases your chance of getting lung cancer, can
you think of a third factor that would cause the two indexes to move together?

b Does the slope of the hypothetical line relating the two indexes when the smoking index is
less than 100 seem to equal the slope of the hypothetical line relating the two indexes when
the smoking index is greater than 100? If you wish, use simple linear regression to make a
more precise determination. What practical conclusion might you make?

14.69 In analyzing the stock market, we sometimes use the model to relate y, the
rate of return on a particular stock, to x, the rate of return on the overall stock market. When
using the preceding model, we can interpret b1 to be the percentage point change in the mean 
(or expected) rate of return on the particular stock that is associated with an increase of one 
percentage point in the rate of return on the overall stock market.

If regression analysis can be used to conclude (at a high level of confidence) that b1 is greater
than 1 (for example, if the 95 percent confidence interval for b1 were [1.1826, 1.4723]), this indi-
cates that the mean rate of return on the particular stock changes more quickly than the rate of
return on the overall stock market. Such a stock is called an aggressive stock because gains for
such a stock tend to be greater than overall market gains (which occur when the market is bullish).
However, losses for such a stock tend to be greater than overall market losses (which occur when
the market is bearish). Aggressive stocks should be purchased if you expect the market to rise and
avoided if you expect the market to fall.

If regression analysis can be used to conclude (at a high level of confidence) that b1 is less
than 1 (for example, if the 95 percent confidence interval for b1 were [.4729, .7861]), this indi-
cates that the mean rate of return on the particular stock changes more slowly than the rate of
return on the overall stock market. Such a stock is called a defensive stock. Losses for such a
stock tend to be less than overall market losses, whereas gains for such a stock tend to be less
than overall market gains. Defensive stocks should be held if you expect the market to fall and
sold off if you expect the market to rise.

If the least squares point estimate b1 of b1 is nearly equal to 1, and if the 95 percent confidence
interval for b1 contains 1, this might indicate that the mean rate of return on the particular stock
changes at roughly the same rate as the rate of return on the overall stock market. Such a stock is
called a neutral stock.

In an article in Financial Analysts Journal, Haim Levy considers how a stock’s value of b1

depends on the length of time for which the rate of return is calculated. Levy calculated
estimated values of b1 for return length times varying from 1 to 30 months for each of 38 ag-
gressive stocks, 38 defensive stocks, and 68 neutral stocks. In Table 14.7 we present the aver-
age estimate of b1 for each stock type for different return length times.
a Let y � average estimate of b1 and x � return length time, and consider relating y to x for

each stock type by using the simple linear regression model . Here 
and are regression parameters relating y to x. We use the asterisks to indicate that these
regression parameters are different from b0 and b1. Calculate a 95 percent confidence
interval for for each stock type. 

b Carefully interpret the meaning of each interval that you found in part(a).
b*
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F I G U R E 1 4 . 4 0 A Plot of the Lung Cancer Death
Index versus the Smoking Index

T A B L E 1 4 . 7 Return Length Estimates of B1

Average Estimate of B1 Beta
Return
Length Aggressive Defensive Neutral
Time Stocks Stocks Stocks
1 1.37 .50 .98
3 1.42 .44 .95
6 1.53 .41 .94
9 1.69 .39 1.00

12 1.83 .40 .98
15 1.67 .38 1.00
18 1.78 .39 1.02
24 1.86 .35 1.14
30 1.83 .33 1.22

Source: Reprinted by permission from H. Levy, “Measuring Risk and
Performance over Alternative Investment Horizons,” Financial Analysts
Journal (March–April 1984), pp. 61–68. Copyright © 1984, CFA Institute.
Reproduced and modified from Financial Analysts Journal with
permission of CFA Institute.

DS
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F I G U R E 1 4 . 4 1 A Data Plot Based on Seven Launches
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F I G U R E 1 4 . 4 2 A Data Plot Based on All 24 Launches

14.70 On January 28, 1986, the space shuttle Challenger exploded soon after takeoff, killing all eight
astronauts aboard. The temperature at the Kennedy Space Center at liftoff was 31�F. Before the
launch, several scientists argued that the launch should be delayed because the shuttle’s O-rings
might harden in the cold and leak. Other scientists used the data plot in Figure 14.41 to argue that
there was no relationship between temperature and O-ring failure. On the basis of this figure and
other considerations, Challenger was launched to its disastrous, last flight.

Scientists using the data plot in Figure 14.41 made a horrible mistake. They relied on a data
plot that was created by using only the seven previous launches where there was at least one 
O-ring failure. A plot based on all 24 previous launches—17 of which had no O-ring failures—is
given in Figure 14.42.
a Intuitively, do you think that Figure 14.42 indicates that there is a relationship between tempera-

ture and O-ring failure? Use simple linear regression to justify your answer.
b Even though the figure using only seven launches is incomplete, what about it should have

cautioned the scientists not to make the launch?

14.71 In New Jersey, banks have been charged with withdrawing from counties having a high
percentage of minorities. To substantiate this charge, P. D’Ambrosio and S. Chambers (1995)
present the data in Table 14.8 concerning the percentage, x, of minority population and the
number of county residents, y, per bank branch in each of New Jersey’s 21 counties. If we use
Excel to perform a simple linear regression analysis of this data, we obtain the output given in 
Figure 14.43 on the next page. NJBank
a Determine if there is a significant relationship between x and y.
b Describe the exact nature of any relationship that exists between x and y. (Hint: Estimate b1

by a point estimate and a confidence interval.)

Note: The Internet exercise for this chapter is on page 553.

DS

T A B L E 1 4 . 8 The New Jersey Bank Data
NJBankDS

Percentage Number of 
of Minority Residents Per 

County Population, x Bank Branch, y
Atlantic 23.3 3,073
Bergen 13.0 2,095
Burlington 17.8 2,905
Camden 23.4 3,330
Cape May 7.3 1,321
Cumberland 26.5 2,557
Essex 48.8 3,474
Gloucester 10.7 3,068
Hudson 33.2 3,683
Hunterdon 3.7 1,998
Mercer 24.9 2,607
Middlesex 18.1 3,154
Monmouth 12.6 2,609
Morris 8.2 2,253
Ocean 4.7 2,317
Passaic 28.1 3,307
Salem 16.7 2,511
Somerset 12.0 2,333
Sussex 2.4 2,568
Union 25.6 3,048
Warren 2.8 2,349

Source: P. D’Ambrosio and S. Chambers, “No Checks and Balances,”
Asbury Park Press, September 10, 1995. Copyright © 1995 Asbury Park
Press. Used with permission.
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F I G U R E 1 4 . 4 3 Excel Output of a Simple Linear Regression Analysis of the New Jersey Bank Data

Regression Statistics
Multiple R 0.7256
R Square 0.5265
Adjusted R Square 0.5016
Standard Error 400.2546
Observations 21

ANOVA df SS MS F Significance F
Regression 1 3385090.234 3385090 21.1299 0.0002
Residual 19 3043870.432 160203.7
Total 20 6428960.667

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 2082.0153 159.1070 13.0856 5.92E-11 1749.0005 2415.0301
% Minority Pop (x) 35.2877 7.6767 4.5967 0.0002 19.2202 51.3553

Appendix 14.1 ■ Simple Linear Regression Analysis Using Excel
Simple linear regression in Figure 14.9 on page 507
(data file: GasCon1.xlsx):

• Enter the natural gas consumption data 
(page 497)—the temperatures in column A 
with label Temp and the gas consumptions in 
column B with label FuelCons.

• Select Data : Data Analysis : Regression and click
OK in the Data Analysis dialog box.

• In the Regression dialog box:

Enter B1:B9 into the “Input Y Range” box.

Enter A1:A9 into the “Input X Range” box.

• Place a checkmark in the Labels checkbox.

• Be sure that the “Constant is Zero” checkbox is
NOT checked.

• Select the “New Worksheet Ply” option and enter
the name Output into the New Worksheet window.

• Click OK in the Regression dialog box to obtain
the regression results in a new worksheet.

To produce residual plots similar to Figures 14.22(b)
and 14.22(c) on page 528:

• In the Regression dialog box, place a checkmark in
the Residuals checkbox to request predicted 
values and residuals.

• Place a checkmark in the Residual Plots checkbox.

• Place a checkmark in the Normal Probability Plots
checkbox.

• Click OK in the Regression dialog box.
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Simple linear regression with a transformed
response similar to Figure 14.30 on page 537
(data file: QHIC.xlsx): 

• Enter the QHIC upkeep expenditure data
from Figure 14.21 (page 526). Enter the
label Value in cell A1 with the home 
values in cells A2 to A41 and enter the
label Upkeep in cell B1 with the upkeep
expenditures in cells B2 to B41.

• Enter the label SqUpkeep in cell C1.

• Click on cell C2 and then select the Insert
Function button on the Excel ribbon. 

• Select Math & Trig from the “Or select a
category:” menu, select SQRT from the
“Select a function:” menu, and click OK in
the Insert Function dialog box.

• In the “SQRT Function Arguments” dialog
box, enter B2 in the Number box and click
OK to compute the square root of the
value in cell B2.

• Copy the cell formula of C2 through cell
C41 by double-clicking the drag handle 
(in the lower right corner) of cell C2 to
compute the square roots of the 
remaining upkeep values.

• Follow the steps for simple linear 
regression (on page 548) using cells
C1:C41 as the response (Input Y 
Range) and cells A1:A41 as the 
predictor (Input X Range).

fx

• Move the plots to chart sheets to format 
them for effective viewing. Additional residual
plots—residuals versus predicted values 
and residuals versus time—can be produced
using the Excel charting features.

To compute a point prediction of gas consumption
when temperature is 40°F (data file: GasCon1.xlsx):

• The Excel Analysis ToolPak does not provide an
option for computing point or interval predic-
tions. A point prediction can be computed from
the regression results using Excel cell formulas.

• In the regression output, the estimated intercept
and slope parameters from cells A17:B18 have
been copied to cells D2:E3 and the predictor
value 40 has been placed in cell E5.

• In cell E6, enter the Excel formula = E2 + E3*E5 
(= 10.721) to compute the prediction.
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Simple linear regression for the service time data in
Exercise 14.5 on page 497 (data file: SrvcTime.xlsx):

• Enter the service time data (page 498) with the
numbers of copiers serviced in column A with
label Copiers and with the service times in 
column B with label Minutes. 

• Select Add-Ins : MegaStat : Correlation/
Regression : Regression Analysis.

• In the Regression Analysis dialog box, click in
the Independent Variables window and use the 
autoexpand feature to enter the range A1:A12.

• Click in the Dependent Variable window and
use the AutoExpand feature to enter the range
B1:B12.

• Check the appropriate Options and Residuals
checkboxes as follows: 

1 Check “Test Intercept” to include a 
y-intercept and to test its significance.

2 Check “Output Residuals” to obtain a list of
the model residuals.

3 Check “Plot Residuals by Observation,” and
“Plot Residuals by Predicted Y and X” to 
obtain residual plots versus time, versus the
predicted values of y, and versus the values
of the independent variable.

4 Check “Normal Probability Plot of Residuals”
to obtain a normal plot.

5 Check “Durbin-Watson” for the Durbin–
Watson statistic.

To obtain a point prediction of y when four comput-
ers will be serviced (as well as a confidence interval
and prediction interval):

• Click on the drop-down menu above the 
Predictor Values window and select “Type in
predictor values.”

• Type the value of the independent variable for
which a prediction is desired (here equal to 4)
into the Predictor Values window.

• Select a desired level of confidence (here 95%)
from the Confidence Level drop-down menu or
type in a value.

• Click OK in the Regression Analysis dialog box.

Appendix 14.2 ■ Simple Linear Regression Analysis Using MegaStat
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To compute several point predictions of y—say, when
1, 2, 3, and 4 computers will be serviced—(and to
compute corresponding confidence and prediction
intervals):

• Enter the values of x for which predictions are 
desired into a column in the spreadsheet—these
values can be in any column. Here we have 
entered the values 1, 2, 3, and 4 into cells E1
through E4.

• Click on the drop-down menu above the
predictor values window and select “Predictor
values from spreadsheet cells.”

• Enter the range E1:E4 into the predictor 
values window.

• Click OK in the Regression Analysis dialog box.

Simple linear regression with a transformed response
similar to Figure 14.30 on page 537 (data file:
QHIC.xlsx):

• Enter the QHIC data from Figure 14.21
(page 526)—the home values in column A
(with label Value) and the upkeep expenditures
in column B (with label Upkeep).

• Follow the instructions on page 549 in Appen-
dix 14.1 to calculate the square roots of the
upkeep expenditures in column C (with label
SRUpkeep).

• Select Add-Ins : MegaStat : Correlation/
Regression : Regression Analysis.

• In the Regression Analysis dialog box, click in 
the Independent variables window, and use the 
AutoExpand feature to enter the range A1:A41.

• Click in the Dependent variable window and use
the AutoExpand feature to enter the range
C1:C41.

• Check the “Test Intercept” checkbox to include a
y-intercept and test its significance.

To compute a point prediction of the square root of y
(as well as a confidence interval and prediction inter-
val) for a house having a value of $220,000: 

• Select “Type in predictor values” from the drop-
down menu above the predictor values window.

• Type 220 into the predictor values window.

• Select a desired level of confidence (here 95%)
from the drop-down menu in the Confidence
Level box or type in a value.

• Click OK in the Regression Analysis dialog box.

bow21493_ch14_486-553.qxd  11/29/12  4:52 PM  Page 551



552 Chapter 14 Simple Linear Regression Analysis

Appendix 14.3 ■ Simple Linear Regression Analysis Using MINITAB
Simple linear regression of the natural gas consump-
tion data in Figure 14.10 on page 507 (data file: Gas-
Con1.MTW):

• In the Data window, enter the gas consumption
data from Exercise 14.3 (page 497)—average
hourly temperatures in column C1 with variable
name Temp and weekly gas consumptions in 
column C2 with variable name FuelCons.

• Select Stat : Regression : Regression.

• In the Regression dialog box, select FuelCons into
the Response window.

• Select Temp into the Predictors window.

To compute a prediction of natural gas consumption
when temperature is 40ºF:

• In the Regression dialog box, click on the 
Options... button.

• In the “Regression—Options” dialog box, type 40
in the “Prediction intervals for new observations” 
window.

• Click OK in the “Regression—Options” dialog
box.

To produce residual analysis similar to Figure 14.32
on page 539:

• In the Regression dialog box, click on the 
Graphs... button.

• In the “Regression—Graphs” dialog box, select
the “Residuals for Plots: Regular” option.

• To obtain a histogram and normal plot of the 
residuals, a plot of the residuals versus the fitted
values, and a plot of the residuals versus time
order, select “Four in one” in the list of options
under Residual Plots. (Note that the plot versus
time order is generally informative only if the
data are in time sequence order.)

• Enter Temp in the “Residuals versus the 
variables” window to obtain a plot of the 
residuals versus the values of average hourly 
temperature.

• Click OK in the “Regression—Graphs” dialog box.

• To see the regression results in the Session 
window and high-resolution graphs in two
graphics windows, click OK in the Regression 
dialog box.
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Simple linear regression with a transformed response
in Figure 14.30 on page 537 (data file: QHIC.MTW):

• In the Data window, enter the QHIC upkeep 
expenditure data from Figure 14.21 (page 526)—
home values in column C1 with variable name
Value and upkeep expenditures in column C2 with
variable name Upkeep.

• Select Calc : Calculator.

• In the Calculator dialog box, enter SqRtUpkeep in
the “Store result in variable” window.

• From the Functions menu list, double-click on
“Square root,” giving SQRT(number) in the
Expression window.

• Replace “number” in the Expression window 
with Upkeep by double-clicking Upkeep in the
variables list.

• Click OK in the Calculator dialog box to obtain a
new column, SqRtUpkeep, containing the square
roots of the Upkeep values.

• Follow the steps for simple linear regression on
page 552 using SqRtUpkeep as the response and
Value as the predictor.

14.72 Internet Exercise

The U.S. News & World Report website provides rank-
ings of the best colleges and universities in the United
States. The free version of “Best Colleges” gives infor-
mation such as number of students enrolled, tuition
rates, and so forth. Among the data provided are the
percentage acceptance rate and the average freshman
retention rate.

One might wonder if there is a statistically significant
relationship between average freshman percentage re-
tention rate and the percentage acceptance rate at col-
leges and universities in the United States. To investi-
gate this possible relationship, go to the U.S. News &
World Report website (www.usnews.com). Then make
selections as follows: Education; Best Colleges; National
Universities; View National Universities Rankings. From
the rankings, randomly select a list of the ranked uni-
versities and their most recent acceptance rates. Note
that following the list of ranked universities is a list of
unranked schools. Omit these unranked schools from
your analysis. Next, return to the National Universities

page and select “Freshman Retention Rate” from the
”National Universities Quick Comparison” list. Compile
a list of average retention rates for the schools in your
list of ranked universities. Finally, enter the ranked uni-
versities and their corresponding acceptance rates and
average freshman retention rates into a spreadsheet.

Using Excel or MINITAB, construct a scatter plot of av-
erage freshman retention rate versus acceptance rate.
Describe any apparent relationship between these vari-
ables. Develop a simple linear regression model express-
ing average freshman retention rate as a linear function
of acceptance rate. Then use Excel or MINITAB to fit the
model. Using the computer output, identify the key sum-
mary measures—r2, the standard error, and the F-statistic
from the ANOVA table. Identify and interpret the esti-
mated regression coefficients. Suppose that a university
has an acceptance rate of 90 percent. Use your regres-
sion model to predict the average freshman retention
rate for this school. Prepare a brief report summarizing
your analysis and conclusions.
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