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Chapter Outline

LO16-1 Identify the components of a time 
series.

LO16-2 Use time series regression to forecast time
series having linear, quadratic, and certain
types of seasonal patterns.

LO16-3 Use data transformations to forecast time
series having increasing seasonal variation.

LO16-4 Use multiplicative decomposition and
moving averages to forecast a time series.

LO16-5 Use simple exponential smoothing to
forecast a time series.

LO16-6 Use double exponential smoothing to
forecast a time series.

LO16-7 Use multiplicative Winters’ method to
forecast a time series.

LO16-8 Appreciate some of the basic concepts of
Box–Jenkins forecasting models.

LO16-9 Compare time series models by using
forecast errors.

L16-10 Use index numbers to compare economic
data over time.

Learning Objectives

After mastering the material in this chapter, you will be able to:

Note: After completing Section 16.2, the reader may study Sections 16.3, 16.4, 16.6, 16.7, and 16.8 in
any order without loss of continuity. Section 16.5 requires background from Sections 16.1, 16.2, and
16.4. Section 16.8 may be covered at any time.
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time series is a set of observations on a
variable of interest that has been collected
in time order. In this chapter we discuss

developing and using univariate time series models,
which forecast future values of a time series solely
on the basis of past values of the time series. Often 

univariate time series models forecast future time
series values by extrapolating the trend and/or
seasonal patterns exhibited by the past values of
the time series. To illustrate these ideas, we consider
several cases in this chapter, including:

The Calculator Sales Case: By extrapolating an
upward trend in past sales of the Bismark X-12
electronic calculator, Smith’s Department Stores,
Inc., forecasts future sales of this calculator. The
forecasts help the department store chain to better
implement its inventory and financial policies.

The Traveler’s Rest Case: By extrapolating an
upward trend and the seasonal behavior of its
past hotel room occupancies, Traveler’s Rest, Inc.,
forecasts future hotel room occupancies. The
forecasts help the hotel chain to more effectively
hire help and acquire supplies. 

16.1 Time Series Components and Models 
In order to identify patterns in time series data, it is often convenient to think of such data as con-
sisting of several components: trend, cycle, seasonal variations, and irregular fluctuations.
Trend refers to the upward or downward movement that characterizes a time series over time.
Thus trend reflects the long-run growth or decline in the time series. Trend movements can repre-
sent a variety of factors. For example, long-run movements in the sales of a particular industry
might be determined by changes in consumer tastes, increases in total population, and increases
in per capita income. Cycle refers to recurring up-and-down movements around trend levels.
These fluctuations can last from 2 to 10 years or even longer measured from peak to peak or
trough to trough. One of the common cyclical fluctuations found in time series data is the business
cycle, which is represented by fluctuations in the time series caused by recurrent periods of pros-
perity and recession. Seasonal variations are periodic patterns in a time series that complete
themselves within a calendar year or less and then are repeated on a regular basis. Often seasonal
variations occur yearly. For example, soft drink sales and hotel room occupancies are annually
higher in the summer months, while department store sales are annually higher during the winter
holiday season. Seasonal variations can also last less than one year. For example, daily restaurant
patronage might exhibit within-week seasonal variation, with daily patronage higher on Fridays
and Saturdays. Irregular fluctuations are erratic time series movements that follow no recogniz-
able or regular pattern. Such movements represent what is “left over” in a time series after trend,
cycle, and seasonal variations have been accounted for.

Time series that exhibit trend, seasonal, and cyclical components are illustrated in Figure 16.1.
In Figure 16.1(a) a time series of sales observations that has an essentially straight-line or linear
trend is plotted. Figure 16.1(b) portrays a time series of sales observations that contains a

Sales
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(a) Trend
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(b) Seasonal variation
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F I G U R E 1 6 . 1 Time Series Exhibiting Trend, Seasonal, and Cyclical Components
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seasonal pattern that repeats annually. Figure 16.1(c) exhibits a time series of agricultural yields
that is cyclical, repeating a cycle about once every 10 years.

Time series models attempt to identify significant patterns in the components of a time series.
Then, assuming that these patterns will continue into the future, time series models extrapolate
these patterns to forecast future time series values. In Section 16.2 we discuss forecasting by time
series regression models, and in Section 16.3 we discuss forecasting by using an intuitive
method called multiplicative decomposition. Both of these approaches assume that the time se-
ries components remain essentially constant over time. If the time series components might be
changing slowly over time, it is appropriate to forecast by using exponential smoothing. This
approach is discussed in Sections 16.4 and 16.5. If the time series components might be chang-
ing fairly quickly over time, it is appropriate to forecast by using the Box–Jenkins methodology.
This more advanced approach is discussed in (Optional) Section 16.6.

16.2 Time Series Regression 
Modeling trend components We begin this section with two examples.

632 Chapter 16 Time Series Forecasting and Index Numbers

EXAMPLE 16.1 The Cod Catch Case: No Trend Regression

The Bay City Seafood Company owns a fleet of fishing trawlers and operates a fish processing
plant. In order to forecast its minimum and maximum possible revenues from cod sales and plan
the operations of its fish processing plant, the company desires to make both point forecasts and
prediction interval forecasts of its monthly cod catch (measured in tons). The company has
recorded monthly cod catch for the previous two years (years 1 and 2). The cod history is given
in Table 16.1. A time series plot shows that the cod catches appear to randomly fluctuate around
a constant average level. (See the plot in Figure 16.2.) Because the company subjectively be-
lieves that this data pattern will continue in the future, it seems reasonable to use the “no trend”
regression model

yt � b0 � et

to forecast cod catch in future months. It can be shown that for the no trend regression model the
least squares point estimate b0 of b0 is , the average of the n observed time series values. Because
the average of the observed cod catches is 351.29, it follows that is
the point prediction of the cod catch (yt) in any future month. Furthermore, it can be shown that a

percent prediction interval for any future yt value described by the no trend model is
. Here s is the sample standard deviation of the n observed time series

values, and is based on degrees of freedom. For example, because s can be calculated to ben � 1ta�2

[ŷt � ta�2 s11 � (1�n)]
100(1 � a)

ŷt � b0 � 351.29n � 24y
y
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F I G U R E 1 6 . 2 Plot of Cod Catch versus Time

Month Year 1 Year 2
Jan. 362 276
Feb. 381 334
Mar. 317 394
Apr. 297 334
May 399 384
June 402 314
July 375 344
Aug. 349 337
Sept. 386 345
Oct. 328 362
Nov. 389 314
Dec. 343 365

T A B L E 1 6 . 1
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F I G U R E 1 6 . 3 Plot of Calculator Sales versus Time
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16.2 Time Series Regression 633

33.82 for the n � 24 cod catches, and because t.025 based on n � 1 � 23 degrees of freedom is
2.069, it follows that a 95 percent prediction interval for the cod catch in any future month is

, or [279.92, 422.66].[351.29 � 2.069(33.82)11 � (1�24)]

EXAMPLE 16.2 The Calculator Sales Case: Inventory Policy

For the last two years Smith’s Department Stores, Inc., has carried a new type of electronic cal-
culator called the Bismark X-12. Sales of this calculator have generally increased over these two
years. Smith’s inventory policy attempts to ensure that stores will have enough Bismark X-12
calculators to meet practically all demand for the Bismark X-12, while at the same time ensuring
that Smith’s does not needlessly tie up its money by ordering many more calculators than can be
sold. In order to implement this inventory policy in future months, Smith’s requires both point
predictions and prediction intervals for total monthly Bismark X-12 demand.

The monthly calculator demand data for the last two years are given in Table 16.2. A time se-
ries plot of the demand data is shown in Figure 16.3. The demands appear to randomly fluctuate
around an average level that increases over time in a linear fashion. Furthermore, Smith’s be-
lieves that this trend will continue for at least the next year. Thus it is reasonable to use the
“linear trend” regression model

yt � b0 � b1t � et

to forecast calculator sales in future months. Notice that this model is just a simple linear
regression model where the time period t plays the role of the independent variable. The least
squares point estimates of b0 and b1 can be calculated to be b0 � 198.0290 and b1 � 8.0743.
[see Figure 16.4(a).] Therefore, for example, point forecasts of Bismark X-12 demand in January
and February of year 3 (time periods 25 and 26) are, respectively,

Note that Figure 16.4(b) gives these point forecasts. In addition, it can be shown using either the
formulas for simple linear regression or a computer software package [see Figure 16.4(c)] that
a 95 percent prediction interval for demand in time period 25 is [328.6, 471.2] and that a 95 per-
cent prediction interval for demand in time period 26 is [336.0, 479.9]. These prediction inter-
vals can help Smith’s implement its inventory policy. For instance, if Smith’s stocks 471 Bis-
mark X-12 calculators in January of year 3, we can be reasonably sure that monthly demand
will be met.

 ŷ26 � 198.0290 � 8.0743(26) � 408.0

 ŷ25 � 198.0290 � 8.0743(25) � 399.9    and

C

BI

Month Year 1 Year 2
Jan. 197 296
Feb. 211 276
Mar. 203 305
Apr. 247 308
May 239 356
June 269 393
July 308 363
Aug. 262 386
Sept. 258 443
Oct. 256 308
Nov. 261 358
Dec. 288 384

T A B L E 1 6 . 2
Calculator Sales
Data CalcSaleDS

F I G U R E 1 6 . 4 Excel Analysis of the Calculator Sales Data Using the Linear Trend Regression Model

(a) The Excel Output

(c) Prediction using an Excel add-in (MegaStat)

Predicted values for: Sales

ANOVA
df
1 74974.3567

22066.6016
97040.9583

74974.3567
1003.0273

74.7481 1.5893E-08
22
33

SS MS

Intercept

T

Coefficients Standard Error

95%
Confidence Intervals

95%
Prediction Intervals

t Stat P-value Lower 95% Upper 95%

F Significance F
Regression
Residual
Total

198.0290

8.0743 8.9339

13.3444 14.8398

8.6457

6.0955E-13

1.5893E-08

170.3543

6.1375

225.7036

10.0112

t Predicted
399.9 372.2 427.6 328.6 471.2

479.9336.0437.3378.6408.0

lower upper lower upper
25
26

(b) Prediction using Excel

358 23

24
25 USING TREND
26

384
399.8877
407.962

24

25
26
27

A B C D
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Example 16.1 illustrates that the intercept b0 can be used to model a lack of trend over time,
and Example 16.2 illustrates that the expression (b0 � b1t) can model a linear trend over time. In
addition, as will be illustrated in Exercise 16.42, the expression (b0 � b1t � b2t

2) can model a
quadratic trend over time.

Modeling seasonal components We next consider how to forecast time series described
by trend and seasonal components.

634 Chapter 16 Time Series Forecasting and Index Numbers

EXAMPLE 16.3 The Bike Sales Case: Inventory Policy

Table 16.3 presents quarterly sales of the TRK-50 mountain bike for the previous four years at a
bicycle shop in Switzerland. The time series plot in Figure 16.5 shows that the bike sales exhibit
a linear trend and a strong seasonal pattern, with bike sales being higher in the spring and summer
quarters than in the winter and fall quarters. If we let yt denote the number of TRK-50 mountain
bikes sold in time period t at the Swiss bike shop, then a regression model describing yt is

Here the expression (b0 � b1t) models the linear trend evident in Figure 16.5. Q2, Q3, and Q4 are
dummy variables defined for quarters 2, 3, and 4. Specifically, Q2 equals 1 if quarterly bike sales
were observed in quarter 2 (spring) and 0 otherwise; Q3 equals 1 if quarterly bike sales were ob-
served in quarter 3 (summer) and 0 otherwise; Q4 equals 1 if quarterly bike sales were observed
in quarter 4 (fall) and 0 otherwise. Note that we have not defined a dummy variable for quarter 1
(winter). It follows that the regression parameters bQ2, bQ3, and bQ4 compare quarters 2, 3, and 4
with quarter 1. Intuitively, for example, bQ4 is the difference, excluding trend, between the level
of the time series (yt) in quarter 4 (fall) and the level of the time series in quarter 1 (winter). A
positive bQ4 would imply that, excluding trend, bike sales in the fall can be expected to be higher
than bike sales in the winter. A negative bQ4 would imply that, excluding trend, bike sales in the
fall can be expected to be lower than bike sales in the winter.

Figure 16.6 gives the MINITAB output of a regression analysis of the quarterly bike sales by
using the dummy variable model. The MINITAB output tells us that the linear trend and the
seasonal dummy variables are significant (every t statistic has a related p-value less than .01).
Also, notice that the least squares point estimates of bQ2, bQ3, and bQ4 are, respectively, bQ2 � 21,
bQ3 � 33.5, and bQ4 � 4.5. It follows that, excluding trend, expected bike sales in quarter 2
(spring), quarter 3 (summer), and quarter 4 (fall) are estimated to be, respectively, 21, 33.5, and
4.5 bikes greater than expected bike sales in quarter 1 (winter). Furthermore, using all of the least
squares point estimates in Figure 16.6, we can compute point forecasts of bike sales in quarters 

yt � b0 � b1t � bQ2Q2 � bQ3Q3 � bQ4Q4 � et
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F I G U R E 1 6 . 5 Time Series Plot of TRK-50 Bike Sales

Year Quarter t Sales, yt

1 1 (Winter) 1 10
2 (Spring) 2 31
3 (Summer) 3 43
4 (Fall) 4 16

2 1 5 11
2 6 33
3 7 45
4 8 17

3 1 9 13
2 10 34
3 11 48
4 12 19

4 1 13 15
2 14 37
3 15 51
4 16 21

T A B L E 1 6 . 3 Quarterly Sales of the TRK-50 
Mountain Bike BikeSalesDS
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16.2 Time Series Regression 635

1 through 4 of next year (periods 17 through 20) as follows:

These point forecasts are given at the bottom of the MINITAB output, as are 95 percent predic-
tion intervals for y17, y18, y19, and y20. The upper limits of these prediction intervals suggest that
the bicycle shop can be reasonably sure that it will meet demand for the TRK-50 mountain bike
if the numbers of bikes it stocks in quarters 1 through 4 are, respectively, 19, 41, 54, and 25 bikes.

 ŷ20 � b0 � b1(20) � bQ2(0) � bQ3(0) � bQ4(1) � 8.75 � .5(20) � 4.5 � 23.250

 ŷ19 � b0 � b1(19) � bQ2(0) � bQ3(1) � bQ4(0) � 8.75 � .5(19) � 33.5 � 51.750

 ̂y18 � b0 � b1(18) � bQ2(1) � bQ3(0) � bQ4(0) � 8.75 � .5(18) � 21 � 38.750

 ŷ17 � b0 � b1(17) � bQ2(0) � bQ3(0) � bQ4(0) � 8.75 � .5(17) � 17.250

F I G U R E 1 6 . 6 MINITAB Output of an Analysis of the Quarterly Bike Sales by Using 
Dummy Variable Regression

The regression equation is 
BikeSales = 8.75 + 0.500 Time + 21.0 Q2 + 33.5 Q3 + 4.50 Q4

Predictor     Coef  SE Coef      T      P 
Constant    8.7500   0.4281  20.44  0.000 
Time       0.50000  0.03769  13.27  0.000 
Q2         21.0000   0.4782  43.91  0.000 
Q3 33.5000 0.4827 69.41 0.000
Q4          4.5000   0.4900   9.18  0.000 

S = 0.674200   R-Sq = 99.8%   R-Sq(adj) = 99.8% 

Values of Predictors for New Obs   Predicted Values for New Observations      
New Obs  Time    Q2    Q3    Q4    New Obs    Fit  SE Fit       95% CI            95% PI
      1  17.0     0     0     0         1  17.250   0.506  (16.137, 18.363)  (15.395, 19.105) 
      2  18.0     1     0     0         2  38.750   0.506  (37.637, 39.863)  (36.895, 40.605) 

3  19.0     0     1     0         3  51.750   0.506  (50.637, 52.863)  (49.895, 53.605) 
4  20.0     0     0     1         4  23.250   0.506  (22.137, 24.363)  (21.395, 25.105) 

BI

EXAMPLE 16.4 The Traveler’s Rest Case: Predicting Hotel Room Occupancy C

Table 16.4 presents a time series of hotel room occupancies observed  by Traveler’s Rest, Inc., a
corporation that operates four hotels in a midwestern city. The analysts in the operating division
of the corporation were asked to develop a model that could be used to obtain short-term fore-
casts (up to one year) of the number of occupied rooms in the hotels. These forecasts were needed
by various personnel to assist in hiring additional help during the summer months, ordering ma-
terials that have long delivery lead times, budgeting of local advertising expenditures, and so on.
The available historical data consisted of the number of occupied rooms during each day for the
previous 14 years. Because it was desired to obtain monthly forecasts, these data were reduced to
monthly averages by dividing each monthly total by the number of days in the month. The
monthly room averages for the previous 14 years are the time series values given in Table 16.4.
A time series plot of these values in Figure 16.7(a) shows that the monthly room averages follow
a strong trend and have a seasonal pattern with one major and several minor peaks during the
year. Note that the major peak each year occurs during the high summer travel months of June,
July, and August.

Although the quarterly bike sales and monthly hotel room averages both exhibit seasonal
variation, they exhibit different kinds of seasonal variation. The quarterly bike sales plotted in
Figure 16.5 exhibit constant seasonal variation. In general, constant seasonal variation is sea-
sonal variation where the magnitude of the seasonal swing does not depend on the level of the
time series. On the other hand, increasing seasonal variation is seasonal variation where the
magnitude of the seasonal swing increases as the level of the time series increases. Figure 16.7(a)
shows that the monthly hotel room averages exhibit increasing seasonal variation. If a time series
exhibits increasing seasonal variation, one approach is to first use a fractional power transfor-
mation (see Section 14.9) that produces a transformed time series that exhibits constant seasonal
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variation. Therefore, consider taking the square roots, quartic roots, and natural logarithms of
the monthly hotel room averages in Table 16.4. If we do this and plot the resulting three sets of
transformed values versus time, we find that the quartic root transformation best equalizes the
seasonal variation. Figure 16.7(b) presents a plot of the quartic roots of the monthly hotel room
averages versus time. Letting yt denote the hotel room average observed in time period t, it fol-
lows that a regression model describing the quartic root of yt is

b0 � b1t � bM1M1 � bM2M2 � . . . � bM11M11 � et

The expression (b0 � b1t) models the linear trend evident in Figure 16.7(b). Furthermore, M1,
M2, . . . , M11 are dummy variables defined for months January (month 1) through November
(month 11). For example, M1 equals 1 if a monthly room average was observed in January, and
0 otherwise; M2 equals 1 if a monthly room average was observed in February, and 0 otherwise.
Note that we have not defined a dummy variable for December (month 12). It follows that the
regression parameters bM1, bM2, . . . , bM11 compare January through November with December.
Intuitively, for example, bM1 is the difference, excluding trend, between the level of the time
series (yt

.25) in January and the level of the time series in December. A positive bM1 would imply
that, excluding trend, the value of the time series in January can be expected to be greater than
the value in December. A negative bM1 would imply that, excluding trend, the value of the time
series in January can be expected to be smaller than the value in December.

Figure 16.8 gives relevant portions of the Excel output of a regression analysis of the hotel
room data using the quartic root dummy variable model. The Excel output tells us that the linear
trend and the seasonal dummy variables are significant (every t statistic has a related p-value less
than .05). In addition, although not shown on the output, R2 � .988. Now consider time period
169, which is January of next year and which therefore implies that M1 � 1 and that all the other

yt
.25 �

636 Chapter 16 Time Series Forecasting and Index Numbers
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F I G U R E 1 6 . 7 Plots for the Monthly Hotel Room Averages in Table 16.4

Year Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.
1 501 488 504 578 545 632 728 725 585 542 480 530
2 518 489 528 599 572 659 739 758 602 587 497 558
3 555 523 532 623 598 683 774 780 609 604 531 592
4 578 543 565 648 615 697 785 830 645 643 551 606
5 585 553 576 665 656 720 826 838 652 661 584 644
6 623 553 599 657 680 759 878 881 705 684 577 656
7 645 593 617 686 679 773 906 934 713 710 600 676
8 645 602 601 709 706 817 930 983 745 735 620 698
9 665 626 649 740 729 824 937 994 781 759 643 728

10 691 649 656 735 748 837 995 1040 809 793 692 763
11 723 655 658 761 768 885 1067 1038 812 790 692 782
12 758 709 715 788 794 893 1046 1075 812 822 714 802
13 748 731 748 827 788 937 1076 1125 840 864 717 813
14 811 732 745 844 833 935 1110 1124 868 860 762 877

T A B L E 1 6 . 4 Monthly Hotel Room Averages TravRestDS

Use data
transforma-

tions to forecast
time series having
increasing seasonal
variation.

LO16-3

(a) Plot of the monthly hotel room averages 
versus time

(b) Plot of the quartic roots of the monthly hotel
averages versus time
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16.2 Time Series Regression 637

dummy variables equal 0. Using the least squares point estimates in Figure 16.8(a), we compute
a point forecast of to be

b0 � b1(169) � bM1(1) � 4.8073 � 0.0035(169) � (�.0525)(1)

� 5.3489

Note that this point forecast is given in Figure 16.8(b) [see time period 169]. It follows that a
point forecast of y169 is

(5.3489)4 � 818.57

Furthermore, Figure 16.8(b) shows that a 95 percent prediction interval for is [5.2913,
5.4065]. It follows that a 95 percent prediction interval for y169 is

[(5.2913)4, (5.4065)4] � [783.88, 854.41]

This interval says that Traveler’s Rest, Inc., can be 95 percent confident that the monthly hotel
room average in period 169 will be no less than 783.88 rooms per day and no more than 854.41
rooms per day. Lastly, note that Figure 16.8(b) also gives point forecasts of and 95 percent pre-
diction intervals for the quartic roots of the hotel room averages in February through December of
next year (time periods 170 through 180).

The validity of the regression methods just illustrated requires that the independence assump-
tion be satisfied. However, when time series data are analyzed, this assumption is often violated.
It is quite common for the time-ordered error terms to exhibit positive or negative autocorrela-
tion. In Section 14.9 we discussed positive and negative autocorrelation, and we saw that we can
use the Durbin–Watson statistic d to check for such autocorrelation. For example, it can be
verified that this statistic shows no evidence of positive or negative first-order autocorrelation
in the error terms of the calculator sales model or in the error terms of the bike sales model.
However, the Durbin–Watson statistic for the dummy variable regression model describing the
quartic roots of the hotel room averages can be calculated to be d � 1.26. Because the dummy
variable regression model uses k � 12 independent variables, and because Tables A.11, A.12,
and A.13 (pages 801 and 802) do not give the Durbin–Watson critical points corresponding
to k � 12, we cannot test for autocorrelation using these tables. However, it can be shown that
d � 1.26 is quite small and indicates positive autocorrelation in the error terms. One approach
to dealing with autocorrelation in the error terms is to predict a future error term et by using an
autoregressive model that relates et to past error terms et�1, et�2, . . . . A better way (in the
authors’ opinion) is to use the Box–Jenkins methodology to forecast the time series. This
methodology is presented in Section 16.6.

y 
.25
169

y 
.25
169

(a) The Excel output

Coefficients Standard Error t Stat P-value
Intercept 4.8073 0.0085 568.0695 4.06E-259
t 0.0035 0.0000 79.0087 3.95E-127
M1 -0.0525 0.0106 -4.9709 1.75E-06
M2 -0.1408 0.0106 -13.3415 1.59E-27
M3 -0.1071 0.0106 -10.1509 7.016E-19
M4 0.0499 0.0105 4.7284 5.05E-06
M5 0.0254 0.0105 2.4096 0.0171
M6 0.1902 0.0105 18.0311 6.85E-40
M7 0.3825 0.0105 36.2663 1.28E-77
M8 0.4134 0.0105 39.2009 2.41E-82
M9 0.0714 0.0105 6.7731 2.47E-10
M10 0.0506 0.0105 4.8029 3.66E-06
M11 -0.1419 0.0105 -13.4626 7.47E-28

F I G U R E 1 6 . 8 Excel Output of an Analysis of the Quartic Roots of the Room Averages Using Dummy Variable Regression

(b) Prediction of y .25
t using an Excel add-in

(MegaStat)

95% Prediction Intervals
t Predicted lower upper

169 5.3489 5.2913 5.4065
170 5.2641 5.2065 5.3217
171 5.3013 5.2437 5.3589
172 5.4618 5.4042 5.5194
173 5.4409 5.3833 5.4984
174 5.6091 5.5515 5.6667
175 5.8049 5.7473 5.8625
176 5.8394 5.7818 5.8969
177 5.5009 5.4433 5.5585
178 5.4837 5.4261 5.5412
179 5.2946 5.2370 5.3522
180 5.4400 5.3825 5.4976
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638 Chapter 16 Time Series Forecasting and Index Numbers

T A B L E 1 6 . 7 Air Conditioner Sales and A Dummy Variable Regression Analysis of the Sales Data ACSalesDS

Year Quarter Sales
1 1 2,915

2 8,032
3 10,411
4 2,427

2 1 4,381
2 9,138
3 11,386
4 3,382

3 1 5,105
2 9,894
3 12,300
4 4,013

The regression equation is 
Sales = 2625 + 383 T - 11.4 TSq + 4630 Q2 + 6739 Q3 - 1565 Q4

Predictor      Coef  SE Coef       T      P 
Constant     2624.5    100.4   26.15  0.000    S = 92.4244 
T            382.82    34.03   11.25  0.000    R-Sq = 100.0% 
TSq         -11.354    2.541   -4.47  0.004    R-Sq(adj)= 99.9% 
Q2          4629.74    76.08   60.86  0.000 
Q3          6738.85    77.38   87.09  0.000 
Q4         -1565.32    79.34  -19.73  0.000 

Time      Fit  SE Fit        95% CI              95% PI 
13   5682.4   112.6  ( 5406.9,  5957.9)  ( 5325.9,  6038.8) 
14 10388.4 142.8 (10039.0, 10737.8) ( 9972.2, 10804.6)
15  12551.0   177.2  (12117.4, 12984.7)  (12061.9, 13040.2) 
16   4277.7   213.9  ( 3754.4,  4801.1)  ( 3707.6,  4847.8)

Exercises for Section 16.2
CONCEPTS

16.1 Discuss how we model no trend and a linear trend.

16.2 Discuss the difference between constant seasonal variation and increasing seasonal variation.

METHODS AND APPLICATIONS

16.3 THE LUMBER PRODUCTION CASE LumberProd

In this exercise we consider annual U.S. lumber production over 30 years. The data were
obtained from the U.S. Department of Commerce Survey of Current Business and are presented
in Table 16.5. (The lumber production values are given in millions of board feet.) Plot the lumber
production values versus time and discuss why the plot indicates that the model yt � b0 � et might
appropriately describe these values.

16.4 THE LUMBER PRODUCTION CASE LumberProd

Referring to the situation of Exercise 16.3, the mean and the standard deviation of the lumber
production values can be calculated to be and s � 2,037.3599. Find a point forecast
of and a 95 percent prediction interval for any future lumber production value.

16.5 THE WATCH SALES CASE WatchSale

The past 20 monthly sales figures for a new type of watch sold at Lambert’s Discount Stores are
given in Table 16.6. 
a Plot the watch sales values versus time and discuss why the plot indicates that the model

yt � b0 � b1t � et

might appropriately describe these values.
b The least squares point estimates of b0 and b1 can be calculated to be b0 � 290.0895 and 

b1 � 8.6677. Use b0 and b1 to show (calculate) that a point forecast of watch sales in period 21
is ŷ21 � 472.1. Use the formulas of simple linear regression analysis or a computer software
package to show that a 95 percent prediction interval for watch sales in period 21 is [421.5,
522.7].

16.6 THE AIR CONDITIONER SALES CASE ACSales

Bargain Department Stores, Inc., is a chain of department stores in the Midwest. Quarterly sales
of the “Bargain 8000-Btu Air Conditioner” over the past three years are as given in the lefthand
portion of Table 16.7.
a Plot sales versus time and discuss why the plot indicates that the model

yt � b0 � b1t � b2t
2 � bQ2Q2 � bQ3Q3 � bQ4Q4 � et

might appropriately describe the sales values. In this model Q2, Q3, and Q4 are appropriately
defined dummy variables for quarters 2, 3, and 4.

DS

DS

y � 35,651.9

DS

DS

35,404 35,733
37,462 35,791
32,901 34,592
33,178 38,902
34,449 37,858
38,044 32,926
36,762 35,697
36,742 34,548
33,385 32,087
34,171 37,515
36,124 38,629
38,658 32,019
32,901 35,710
36,356 36,693
37,166 37,153

T A B L E 1 6 . 5
Annual Total U.S.
Lumber Production

LumberProdDS

298 356
302 371
301 399
351 392
336 425
361 411
407 455
351 457
357 465
346 481

T A B L E 1 6 . 6
Watch Sales Values

WatchSaleDS
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b The right-hand portion of Table 16.7 is the MINITAB output of a regression analysis of the air
conditioner sales data using the model in part a. (1) Define the dummy variables Q2, Q3, and Q4.
(2) Use the MINITAB output to find, report, and interpret the least squares point estimates of
bQ2, bQ3, and bQ4.

c At the bottom of the MINITAB output are point and prediction interval forecasts of air
conditioner sales in the four quarters of year 4. Find and report these forecasts and hand calcu-
late the point forecasts.

16.7 Table 16.8 gives the monthly international passenger totals over the last 11 years for an airline
company. A plot of these passenger totals reveals an upward trend with increasing seasonal
variation, and the natural logarithmic transformation is found to best equalize the seasonal
variation [see Figure 16.9(a) and (b)]. Figure 16.9(c) gives the MINITAB output of a regression
analysis of the monthly international passenger totals by using the model

ln yt � b0 � b1t � bM1M1 � bM2M2 � . . . � bM11M11 � et

Here M1, M2, . . . , M11 are appropriately defined dummy variables for January (month 1) through
November (month 11). Let y133 denote the international passenger totals in month 133 (January of
next year). The MINITAB output tells us that a point forecast of and a 95 percent prediction
interval for ln y133 are, respectively, 6.08610 and [5.96593, 6.20627]. (1) Using the least squares
point estimates on the MINITAB output, calculate the point forecast. (2) By calculating 
e6.08610 and [e5.96593, e6.20627], find a point forecast of and a 95 percent prediction interval 
for y133. AirPass

16.8 Use the Durbin–Watson statistic given at the bottom of the MINITAB output in Figure 16.9(c) to
assess whether there is positive autocorrelation.

DS

16.2 Time Series Regression 639

Year Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.
1 112 118 132 129 121 135 148 148 136 119 104 118
2 115 126 141 135 125 149 170 170 158 133 114 140
3 145 150 178 163 172 178 199 199 184 162 146 166
4 171 180 193 181 183 218 230 242 209 191 172 194
5 196 196 236 235 229 243 264 272 237 211 180 201
6 204 188 235 227 234 264 302 293 259 229 203 229
7 242 233 267 269 270 315 364 347 312 274 237 278
8 284 277 317 313 318 374 413 405 355 306 271 306
9 315 301 356 348 355 422 465 467 404 347 305 336

10 340 318 362 348 363 435 491 505 404 359 310 337
11 360 342 406 396 420 472 548 559 463 407 362 405

Source: FAA Statistical Handbook of Civil Aviation (several annual issues). These data were originally presented by Box and Jenkins (1976). We have updated
the situation in this exercise to be more modern.

T A B L E 1 6 . 8 Monthly International Passenger Totals (Thousands of Passengers) AirPassDS

800

600

400

200

0

0 20 40 60 80

Time

100 120 140

6.5

6.0

5.5

5.0

4.5

0 20 40 60 80 100 120 140

Time

F I G U R E 1 6 . 9 Analysis of the Monthly International Passenger Totals

(a) Plot of the passenger totals (b) Plot of the natural logarithms of the passenger totals
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16.3 Multiplicative Decomposition 
When a time series exhibits increasing (or decreasing) seasonal variation, we can use the multi-
plicative decomposition method to decompose the time series into its trend, seasonal, cyclical,
and irregular components. This is illustrated in the following example.

640 Chapter 16 Time Series Forecasting and Index Numbers

4

yt

400

363228242016128

t

200

600

800

1,000

1,200

1,400

1,600

F I G U R E 1 6 . 1 0 Time Series Plot of the Tasty Cola
Sales Data

Sales, Sales,
Year Month t yt Year Month t yt

1 1 (Jan.) 1 189 2 7 19 831
2 (Feb.) 2 229 8 20 960
3 (Mar.) 3 249 9 21 1,152
4 (Apr.) 4 289 10 22 759
5 (May) 5 260 11 23 607
6 (June) 6 431 12 24 371
7 (July) 7 660 3 1 25 298
8 (Aug.) 8 777 2 26 378
9 (Sept.) 9 915 3 27 373

10 (Oct.) 10 613 4 28 443
11 (Nov.) 11 485 5 29 374
12 (Dec.) 12 277 6 30 660

2 1 13 244 7 31 1,004
2 14 296 8 32 1,153
3 15 319 9 33 1,388
4 16 370 10 34 904
5 17 313 11 35 715
6 18 556 12 36 441

F I G U R E 1 6 . 9 Analysis of the Monthly International Passenger Totals (continued )

T A B L E 1 6 . 9 Monthly Sales of Tasty Cola (in Hundreds 
of Cases) TastyColaDS

Predictor       Coef    SE Coef       T      P    Predicted Values for New Observations 
Constant     4.69618    0.01973  238.02  0.000    Time      Fit   SE Fit        95% PI
Time       0.0103075  0.0001316   78.30  0.000     133  6.08610  0.01973  (5.96593, 6.20627) 
Jan          0.01903    0.02451    0.78  0.439     134  6.07888  0.01973  (5.95871, 6.19905) 
Feb          0.00150    0.02451    0.06  0.951     135  6.22564  0.01973  (6.10547, 6.34581) 
March        0.13795    0.02450    5.63  0.000     136  6.19383  0.01973  (6.07366, 6.31400) 
April        0.09583    0.02449    3.91  0.000     137  6.20008  0.01973  (6.07991, 6.32025) 
May          0.09178    0.02449    3.75  0.000     138  6.33292  0.01973  (6.21276, 6.45309) 
June         0.21432    0.02448    8.75  0.000     139  6.44360  0.01973  (6.32343, 6.56377) 
July         0.31469    0.02448   12.85  0.000     140  6.44682  0.01973  (6.32665, 6.56699) 
Aug          0.30759    0.02448   12.57  0.000     141  6.31605  0.01973  (6.19588, 6.43622) 
Sept         0.16652    0.02448    6.80  0.000     142  6.18515  0.01973  (6.06498, 6.30531) 
Oct          0.02531    0.02447    1.03  0.303     143  6.05455  0.01973  (5.93438, 6.17472) 
Nov         -0.11559    0.02447   -4.72  0.000     144  6.18045  0.01973  (6.06028, 6.30062) 

S = 0.0573917   R-Sq = 98.3%   R-Sq(adj) = 98.1%    Durbin-Watson statistic = 0.420944 

(c) MINITAB Output of a Regression Analysis of the Monthly International Passenger Totals 
Using the Dummy Variable Model

EXAMPLE 16.5 The Tasty Cola Case: Predicting Soft Drink Sales

The Discount Soda Shop, Inc., owns and operates 10 drive-in soft drink stores. Discount Soda has
been selling Tasty Cola, a soft drink introduced just three years ago and gaining in popularity. Peri-
odically, Discount Soda orders Tasty Cola from the regional distributor. To better implement its in-
ventory policy, Discount Soda needs to forecast monthly Tasty Cola sales (in hundreds of cases).

Discount Soda has recorded monthly Tasty Cola sales for the previous three years. This time
series is given in Table 16.9 and plotted in Figure 16.10. Notice that, in addition to having a lin-
ear trend, the Tasty Cola sales time series possesses seasonal variation, with sales of the soft drink

C

Use multi-
plicative 

decomposition and
moving averages to
forecast a time series.

LO16-4
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16.3 Multiplicative Decomposition 641

greatest in the summer and early fall months and lowest in the winter months. Because the sea-
sonal variation seems to be increasing, we will see as we progress through this example that it
might be reasonable to conclude that yt, the sales of Tasty Cola in period t, is described by the
multiplicative model

yt � TRt � SNt � CLt � IRt

Here TRt, SNt, CLt, and IRt represent the trend, seasonal, cyclical, and irregular components of the
time series in time period t.

Table 16.10 summarizes the calculations needed to find estimates—denoted trt, snt, clt, and
irt—of TRt, SNt, CLt, and IRt. As shown in the table, we begin by calculating moving averages
and centered moving averages. The purpose behind computing these averages is to eliminate
seasonal variations and irregular fluctuations from the data. The first moving average of the first
12 Tasty Cola sales values is 

� 447.833

189 � 229 � 249 � 289 � 260 � 431 � 660 � 777 � 915 � 613 � 485 � 277

12

yt First Step: trt � clt: clt:
t Tasty 12-Period Centered snt � irt: snt: dt: trt: trt � snt: clt � irt: 3-Period irt:

Time Cola Moving Moving yt Table yt 380.163 Multiply yt Moving clt � irt

Period Sales Average Average trt � clt 16.11 snt �9.489t trt by snt trt � snt Average clt
1 (Jan) 189 .493 383.37 389.652 192.10 .9839

2 229 .596 384.23 399.141 237.89 .9626 .9902 .9721

3 249 .595 418.49 408.630 243.13 1.0241 1.0010 1.0231

4 289 .680 425 418.119 284.32 1.0165 1.0396 .9778

5 260 .564 460.99 427.608 241.17 1.0781 1.0315 1.0452

6 431
447.833

.986 437.12 437.097 430.98 1.0000 1.0285 .9723

7 660
452.417

450.125 1.466 1.467 449.9 446.586 655.14 1.0074 1.0046 1.0028

8 777
458

455.2085 1.707 1.693 458.95 456.075 772.13 1.0063 1.0004 1.0059

9 915
563.833

460.9165 1.985 1.990 459.79 465.564 926.47 .9876 .9937 .9939

10 613
470.583

467.208 1.312 1.307 469.01 475.053 620.89 .9873 .9825 1.0049

11 485
475

472.7915 1.026 1.029 471.33 489.542 498.59 .9727 .9648 1.0082

12 277
485.417

480.2085 .577 .600 461.67 494.031 296.42 .9345 .9634 .9700

13 (Jan) 244
499.667

492.542 .495 .493 494.97 503.520 248.24 .9829 .9618 1.0219

14 296
514.917

507.292 .583 .596 496.64 513.009 305.75 .9681 .9924 .9755

15 319
534.667

524.792 .608 .595 536.13 522.498 310.89 1.0261 1.0057 1.0203

16 370
546.833

540.75 .684 .680 544.12 531.987 361.75 1.0228 1.0246 .9982

17 313
557

551.9165 .567 .564 554.97 541.476 305.39 1.0249 1.0237 1.0012

18 556
564.833

560.9165 .991 .986 563.89 550.965 543.25 1.0235 1.0197 1.0037

19 831
569.333

567.083 1.465 1.467 566.46 560.454 822.19 1.0107 1.0097 1.0010

20 960
576.167

572.75 1.676 1.693 567.04 569.943 964.91 .9949 1.0016 .9933

21 1,152
580.667

578.417 1.992 1.990 578.89 579.432 1,153.07 .9991 .9934 1.0057

22 759
586.75

583.7085 1.300 1.307 580.72 588.921 769.72 .9861 .9903 .9958

23 607
591.833

589.2915 1.030 1.029 589.89 598.410 615.76 .9858 .9964 .9894

24 371
600.5

596.1665 .622 .600 618.33 607.899 364.74 1.0172 .9940 1.0233

25 (Jan) 298
614.917

607.7085 .490 .493 604.46 617.388 304.37 .9791 1.0027 .9765

26 378
631

622.9585 .607 .596 634.23 626.877 373.62 1.0117 .9920 1.0199

27 373
650.667

640.8335 .582 .595 626.89 636.366 378.64 .9851 1.0018 .9833

28 443
662.75

656.7085 .675 .680 651.47 645.855 439.18 1.0087 1.0030 1.0057

29 374
671.75

667.25 .561 .564 663.12 655.344 369.61 1.0119 1.0091 1.0028

30 660
677.583

674.6665 .978 .986 669.37 664.833 655.53 1.0068 1.0112 .9956

31 1,004 1.467 684.39 674.322 989.23 1.0149 1.0059 1.0089

32 1,153 1.693 681.04 683.811 1,157.69 .9959 1.0053 .9906

33 1,388 1.990 697.49 693.300 1,379.67 1.0060 .9954 1.0106

34 904 1.307 691.66 702.789 918.55 .9842 .9886 .9955

35 715 1.029 694.85 712.278 732.93 .9755 .9927 .9827

36 441 .600 735 721.707 433.06 1.0183

T A B L E 1 6 . 1 0 Tasty Cola Sales and the Multiplicative Decomposition Method
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Here we use a “12-period moving average” because the Tasty Cola time series data are monthly
(12 time periods or “seasons” per year). If the data were quarterly, we would compute a “4-period
moving average.” The second moving average is obtained by dropping the first sales value ( y1)
from the average and by including the next sales value ( y13) in the average. Thus we obtain

The third moving average is obtained by dropping y2 from the average and by including y14 in the
average. We obtain

Successive moving averages are computed similarly until we include y36 in the last moving aver-
age. Note that we use the term moving average here because, as we calculate these averages, we
move along by dropping the most remote observation in the previous average and by including
the “next” observation in the new average.

The first moving average corresponds to a time that is midway between periods 6 and 7, the
second moving average corresponds to a time that is midway between periods 7 and 8, and so
forth. In order to obtain averages corresponding to time periods in the original Tasty Cola time
series, we calculate centered moving averages. The centered moving averages are two-period
moving averages of the previously computed 12-period moving averages. Thus the first centered
moving average is

The second centered moving average is

Successive centered moving averages are calculated similarly. The 12-period moving averages
and centered moving averages for the Tasty Cola sales time series are given in Table 16.10.

If the original moving averages had been computed using an odd number of time series values,
the centering procedure would not have been necessary. For example, if we had three seasons per
year, we would compute three-period moving averages. Then, the first moving average would
correspond to period 2, the second moving average would correspond to period 3, and so on.
However, most seasonal time series are quarterly, monthly, or weekly, so the centering procedure
is necessary.

The centered moving average in time period t is considered to equal trt � clt, the estimate of 
TRt � CLt, because the averaging procedure is assumed to have removed seasonal variations
(note that each moving average is computed using exactly one observation from each season) and
(short-term) irregular fluctuations. The (longer-term) trend effects and cyclical effects—that is, 
trt � clt—remain.

Because the model

yt � TRt � SNt � CLt � IRt

implies that

it follows that the estimate snt � irt of SNt � IRt is

snt � irt �
yt

trt � clt

SNt � IRt �
yt

TRt � CLt

452.417 � 458

2
� 455.2085

447.833 � 452.417

2
� 450.125

� 458

249 � 289 � 260 � 431 � 660 � 777 � 915 � 613 � 485 � 277 � 244 � 296

12

� 452.417

229 � 249 � 289 � 260 � 431 � 660 � 777 � 915 � 613 � 485 � 277 � 244

12

642 Chapter 16 Time Series Forecasting and Index Numbers
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16.3 Multiplicative Decomposition 643

Noting that the values of snt � irt are calculated in Table 16.10, we can find snt by grouping the
values of snt � irt by months and calculating an average, , for each month. These monthly av-
erages are given for the Tasty Cola data in Table 16.11. The monthly averages are then normalized
so that they sum to the number of time periods in a year. Denoting the number of time periods in
a year by L (for instance, L � 4 for quarterly data, L � 12 for monthly data), we accomplish the
normalization by multiplying each value of by the quantity

This normalization process results in the estimate snt � 1.0008758( ), which is the estimate of
SNt. These calculations are summarized in Table 16.11.

Having calculated the values of snt and placed them in Table 16.10, we next define the desea-
sonalized observation in time period t to be

Deseasonalized observations are computed to better estimate the trend component TRt. Dividing yt

by the estimated seasonal factor removes the seasonality from the data and allows us to better un-
derstand the nature of the trend. The deseasonalized observations are calculated in Table 16.10 and
are plotted in Figure 16.11. Because the deseasonalized observations have a straight-line appearance,
it seems reasonable to assume a linear trend

TRt � b0 � b1t

We estimate TRt by fitting a straight line to the deseasonalized observations. That is, we compute
the least squares point estimates of the parameters in the simple linear regression model relating
the dependent variable dt to the independent variable t:

dt � b0 � b1t � et

We obtain b0 � 380.163 and b1 � 9.489. It follows that the estimate of TRt is

trt � b0 � b1t � 380.163 � 9.489t

The values of trt are calculated in Table 16.10. Note that, for example, although y22 � 759, Tasty
Cola sales in period 22 (October of year 2), are larger than tr22 � 588.921 (the estimated trend in

dt �
yt

snt

snt

  �
12

11.9895
� 1.0008758

 
L

a snt

�
12

.4925 � .595 � � � � � .5995

snt

snt

snt � irt � yt �(trt � clt) snt �
Year 1 Year 2 1.0008758( )

1 Jan. .495 .490 .4925 .493
2 Feb. .583 .607 .595 .596
3 Mar. .608 .582 .595 .595
4 Apr. .684 .675 .6795 .680
5 May .567 .561 .564 .564
6 June .991 .978 .9845 .986
7 July 1.466 1.465 1.4655 1.467
8 Aug. 1.707 1.676 1.6915 1.693
9 Sep. 1.985 1.992 1.9885 1.990

10 Oct. 1.312 1.300 1.306 1.307
11 Nov. 1.026 1.030 1.028 1.029
12 Dec. .577 .622 .5995 .600

sntsnt

6

Sales

400

36302418

Deseasonalized observations
Original observations

12

t

200

600

800

1,000

1,200

1,400

1,600

F I G U R E 1 6 . 1 1 Plot of Tasty Cola Sales and 
Deseasonalized Sales

T A B L E 1 6 . 1 1 Estimation of the Seasonal Factors
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period 22), d22 � 580.72 is smaller than tr22 � 588.921. This implies that, on a deseasonalized
basis, Tasty Cola sales were slightly down in October of year 2. This might have been caused by
a slightly colder October than usual.

Thus far, we have found estimates snt and trt of SNt and TRt. Because the model

yt � TRt � SNt � CLt � IRt

implies that

it follows that the estimate of CLt � IRt is

Moreover, experience has shown that, when considering either monthly or quarterly data, we can
average out irt and thus calculate the estimate clt of CLt by computing a three-period moving
average of the clt � irt values.

Finally, we calculate the estimate irt of IRt by using the equation

The calculations of the values clt and irt for the Tasty Cola data are summarized in Table 16.10.
Because there are only three years of data, and because most of the values of clt are near 1, we
cannot discern a well-defined cycle. Furthermore, examining the values of irt, we cannot detect a
pattern in the estimates of the irregular factors.

Traditionally, the estimates trt, snt, clt, and irt obtained by using the multiplicative decomposi-
tion method are used to describe the time series. However, we can also use these estimates to
forecast future values of the time series. If there is no pattern in the irregular component, we
predict IRt to equal 1. Therefore, the point forecast of yt is

� trt � snt � clt

if a well-defined cycle exists and can be predicted. The point forecast is

� trt � snt

if a well-defined cycle does not exist or if CLt cannot be predicted, as in the Tasty Cola example.
Because values of trt � snt have been calculated in column 9 of Table 16.10, these values are the
point forecasts of the n � 36 historical Tasty Cola sales values. Furthermore, we present in
Table 16.12 point forecasts of future Tasty Cola sales in the 12 months of year 4. Recalling that

ŷt

ŷt

irt �
clt � irt

clt

clt � irt �
yt

trt � snt

CLt � IRt �
yt

TRt � SNt

644 Chapter 16 Time Series Forecasting and Index Numbers

T A B L E 1 6 . 1 2 Forecasts of Future Values of Tasty Cola Sales Calculated Using the Multiplicative 
Decomposition Method

Point Prediction, Approximate 95%
t snt trt � 380.163 � 9.489t ŷt � trt � snt Prediction Interval yt

37 .493 731.273 360.52 [333.72, 387.32] 352
38 .596 740.762 441.48 [414.56, 468.40] 445
39 .595 750.252 446.40 [419.36, 473.44] 453
40 .680 759.741 516.62 [489.45, 543.79] 541
41 .564 769.231 433.85 [406.55, 461.15] 457
42 .986 778.720 767.82 [740.38, 795.26] 762
43 1.467 788.209 1,156.30 [1,128.71, 1,183.89] 1,194
44 1.693 797.699 1,350.50 [1,322.76, 1,378.24] 1,361
45 1.990 807.188 1,606.30 [1,578.41, 1,634.19] 1,615
46 1.307 816.678 1,067.40 [1,039.35, 1,095.45] 1,059
47 1.029 826.167 850.12 [821.90, 878.34] 824
48 .600 835.657 501.39 [473, 529.78] 495
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16.3 Multiplicative Decomposition 645

the estimated trend equation is trt � 380.163 � 9.489t and that the estimated seasonal factor for
August is 1.693 (see Table 16.11), it follows, for example, that the point forecast of Tasty Cola
sales in period 44 (August of year 4) is

� tr44 � sn44

� (380.163 � 9.489(44))(1.693)

� 797.699(1.693)

� 1,350.50

Although there is no theoretically correct prediction interval for yt, a fairly accurate approxi-
mate 100(1 � A) percent prediction interval for yt is obtained by computing an interval that is
centered at and that has a length equal to the length of the 100(1 � a) percent prediction
interval for the deseasonalized observation dt. Here the interval for dt is obtained by using the
model

dt � TRt � et

� b0 � b1t � et

For instance, using MINITAB to predict dt on the basis of this model, we find that a 95 percent pre-
diction interval for d44 is [769.959, 825.439]. Because this interval has a half-length equal to
(825.439 � 769.959)/2 � 55.48/2 � 27.74, it follows that an approximate 95 percent prediction
interval for y44 is

� [1,322.76, 1,378.24]

In Table 16.12 we give the approximate 95 percent prediction intervals (calculated by the above
method) for Tasty Cola sales in the 12 months of year 4.

Next, suppose we actually observe Tasty Cola sales in year 4, and these sales are as given in
Table 16.12. In Figure 16.12 we plot the observed and forecasted sales for all 48 sales periods. In
practice, the comparison of the observed and forecasted sales in years 1 through 3 would be used
by the analyst to determine whether the forecasting equation adequately fits the historical data.
An adequate fit (as indicated by Figure 16.12, for example) might prompt an analyst to use this
equation to calculate forecasts for future time periods. One reason that the Tasty Cola forecasting
equation

� trt � snt

� (380.163 � 9.489t)snt

ŷt

[ŷ44 � 27.74] � [1,350.50 � 27.74]

ŷt

ŷ44

6

Sales

400
500

484236302418

Forecasts
Observed values

12

t

300
200
100

600
700
800
900

1,000

1,200
1,100

1,600
1,500
1,400
1,300

F I G U R E 1 6 . 1 2 A Plot of the Observed and Forecasted Tasty Cola Sales Values
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provides reasonable forecasts is that this equation multiplies trt by snt. Therefore, as the average
level of the time series (determined by the trend) increases, the seasonal swing of the time series
increases, which is consistent with the data plots in Figures 16.10 and 16.12. For example, note
from Table 16.11 that the estimated seasonal factor for August is 1.693. The forecasting equation
yields a prediction of Tasty Cola sales in August of year 1 equal to

� [380.163 � 9.489(8)]1.693

� (456.075)(1.693)

� 772.13

This implies a seasonal swing of 772.13 � 456.075 � 316.055 (hundreds of cases) above
456.075, the estimated trend level. The forecasting equation yields a prediction of Tasty Cola
sales in August of year 2 equal to

� [380.163 � 9.489(20)]1.693

� (569.943)(1.693)

� 964.91

which implies an increased seasonal swing of 964.91 � 569.943 � 394.967 (hundreds of cases)
above 569.943, the estimated trend level. In general, then, the forecasting equation is appropriate
for forecasting a time series with a seasonal swing that is proportional to the average level of the
time series as determined by the trend—that is, a time series exhibiting increasing seasonal
variation.

We next note that the U.S. Bureau of the Census has developed the Census II method, which
is a sophisticated version of the multiplicative decomposition method discussed in this section.
The initial version of Census II was primarily developed by Julius Shiskin in the late 1950s when
a computer program was written to perform the rather complex calculations. Several modifica-
tions have been made to the first version of the method over the years. Census II continues to be
widely used by a variety of businesses and government agencies.

Census II first adjusts the original data for “trading day variations.” That is, the data are
adjusted to account for the fact that, for example, different months or quarters will consist of dif-
ferent numbers of business days or “trading days.” The method then uses an iterative procedure
to obtain estimates of the seasonal component (SNt), the trading day component, the so-called
trend-cycle component (TRt � CLt), and the irregular component (IRt). The iterative procedure
makes extensive use of moving averages and a method for identifying and replacing extreme val-
ues in order to eliminate randomness. For a good explanation of the details involved here and in
the Census II method as a whole, see Makridakis, Wheelwright, and McGee (1983). After carry-
ing out a number of tests to check the correctness of the estimates, the method estimates the
trend-cycle, seasonal, and irregular components.

MINITAB carries out a modified version of the multiplicative decomposition method discussed
in this section. We believe that MINITAB’s modified version (at the time of the writing of this book)
makes some conceptual errors that can result in biased estimates of the time series components.
Therefore, we will not present MINITAB output of multiplicative decomposition. The Excel add-
in (MegaStat) estimates the seasonal factors and the trend line exactly as described in this
section. MegaStat does not estimate the cyclical and irregular components. However, because it
is often reasonable to make forecasts by using estimates of the seasonal factors and trend line,
MegaStat can be used to do this. In Appendix 16.2, we show a MegaStat output that estimates the
seasonal factors and trend line for the Tasty Cola data.

ŷ20

ŷ8

646 Chapter 16 Time Series Forecasting and Index Numbers

Exercises for Section 16.3
CONCEPTS

16.9 Explain how the multiplicative decomposition model estimates seasonal factors.

16.10 Explain how the multiplicative decomposition method estimates the trend effect.

16.11 Discuss how the multiplicative decomposition method makes point forecasts of future time series
values.
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16.4 Simple Exponential Smoothing 647

16.12 Find and identify the four seasonal factors for quarters 1, 2, 3, and 4.

16.13 What type of trend is indicated by the plot of the deseasonalized data?

16.14 What is the equation of the estimated trend that has been calculated using the deseasonalized data?

16.15 Compute a point forecast of tractor sales (based on trend and seasonal factors) for each of the
quarters next year.

16.16 Compute an approximate 95 percent prediction interval forecast of tractor sales for each of the
quarters next year. Use the fact that the half-lengths of 95 percent prediction intervals for the de-
seasonalized sales values in the four quarters of next year are, respectively, 14, 14.4, 14.6, and 15.

16.17 If we use the multiplicative decomposition method to analyze the quarterly bicycle sales data
given in Table 16.3 (page 634), we find that the quarterly seasonal factors are .46, 1.22, 1.68, 
and .64. Furthermore, if we use a statistical software package to fit a straight line to the 
deseasonalized sales values, we find that the estimate of the trend is trt � 22.61 � .59t.

In addition, we find that the half-lengths of 95 percent prediction intervals for the deseasonalized
sales values in the four quarters of the next year are, respectively, 2.80, 2.85, 2.92, and 2.98.

BikeSales
a Calculate point predictions of bicycle sales in the four quarters of the next year.
b Calculate approximate 95 percent prediction intervals for bicycle sales in the four quarters of

the next year.

16.4 Simple Exponential Smoothing 
In ongoing forecasting systems, forecasts of future time series values are made each period for
succeeding periods. At the end of each period the estimates of the time series parameters and the
forecasting equation need to be updated to account for the most recent observation. This updat-
ing accounts for possible changes in the parameters that may occur over time. In addition, such
changes may imply that unequal weights should be applied to the time series observations when
the estimates of the parameters are updated.

DS

Centered
Moving Ratio to Seasonal Sales, y

t Year Quarter Sales, y Average CMA Indexes Deseasonalized
1 1 1 293 1.191 245.9
2 1 2 392 1.521 257.7
3 1 3 221 275.125 0.803 0.804 275.0
4 1 4 147 302.000 0.487 0.484 303.9
5 2 1 388 325.250 1.193 1.191 325.7
6 2 2 512 338.125 1.514 1.521 336.6
7 2 3 287 354.125 0.810 0.804 357.1
8 2 4 184 381.500 0.482 0.484 380.4
9 3 1 479 405.000 1.183 1.191 402.0

10 3 2 640 417.375 1.533 1.521 420.7
11 3 3 347 435.000 0.798 0.804 431.8
12 3 4 223 462.125 0.483 0.484 461.0
13 4 1 581 484.375 1.199 1.191 487.7
14 4 2 755 497.625 1.517 1.521 496.3
15 4 3 410 0.804 510.2
16 4 4 266 0.484 549.9

800
y � 19.95x � 220.54

R2 � 0.9965

0
0 16128

Quarter

Sales, y
Deseasonalized
Linear (Deseasonalized)

4

100

200

300

400

Sa
le

s,
 y 500

600

700

Calculation of Seasonal Indexes
1 2 3 4

1 0.803 0.487
2 1.193 1.514 0.810 0.482
3 1.183 1.533 0.798 0.483
4 1.199 1.517

mean: 1.192 1.522 0.804 0.484 4.001
adjusted: 1.191 1.521 0.804 0.484 4.000

METHODS AND APPLICATIONS

Exercises 16.12 through 16.16 are based on the following situation: International Machinery, Inc., produces
a tractor and wishes to use quarterly tractor sales data observed in the last four years to predict quarterly
tractor sales next year. The following MegaStat output gives the tractor sales data and the estimates of the
seasonal factors and trend line for the data: IntMachDS

Use simple
exponential

smoothing to fore-
cast a time series.

LO16-5
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In this section we assume that a time series is appropriately described by the no trend equation

yt � b0 � et

When the parameter b0 remains constant over time, we have seen that it is reasonable to forecast
future values of yt by using regression analysis (see Example 16.1 on page 632). In such a case,
the least squares point estimate of b0 is

b0 � � the average of the observed time series values

When we compute the point estimate b0 we are equally weighting each of the previously observed
time series values y1, y2, . . . , yn.

When the value of the parameter b0 is slowly changing over time, the equal weighting scheme
may not be appropriate. Instead, it may be desirable to weight recent observations more heavily
than remote observations. Simple exponential smoothing is a forecasting method that applies
unequal weights to the time series observations. This unequal weighting is accomplished by
using a smoothing constant that determines how much weight is attached to each observation.
The most recent observation is given the most weight. More distantly past observations are given
successively smaller weights. The procedure allows the forecaster to update the estimate of b0 so
that changes in the value of this parameter can be detected and incorporated into the forecasting
equation. We illustrate simple exponential smoothing in the following example.

y

648 Chapter 16 Time Series Forecasting and Index Numbers

EXAMPLE 16.6 The Cod Catch Case: Simple Exponential Smoothing

Consider the cod catch data of Example 16.1, which are given in Table 16.1 (page 632). The plot
of these data (in Figure 16.2 on page 632) suggests that the no trend model

yt � b0 � et

may appropriately describe the cod catch series. It is also possible that the parameter b0 could be
slowly changing over time.

We begin the simple exponential smoothing procedure by calculating an initial estimate of the
average level b0 of the series. This estimate is denoted S0 and is computed by averaging the first
six time series values. We obtain

Note that, because simple exponential smoothing attempts to track changes over time in the
average level b0 by using newly observed values to update the estimates of b0, we use only six of
the n � 24 time series observations to calculate the initial estimate of b0. If we do this, then 18
observations remain to tell us how b0 may be changing over time. Experience has shown that, in
general, it is reasonable to calculate initial estimates in exponential smoothing procedures by
using half of the historical data. However, it can be shown that, in simple exponential smoothing,
using six observations is reasonable (it would not, however, be reasonable to use a very small
number of observations because doing so might make the initial estimate so different from the
true value of b0 that the exponential smoothing procedure would be adversely affected).

Next, assume that at the end of time period T � 1 we have an estimate ST�1 of b0. Then,
assuming that in time period T we obtain a new observation yT, we can update ST�1 to ST, which
is an estimate made in period T of b0. We compute the updated estimate by using the so-called
smoothing equation

ST � ayT � (1 � a)ST�1

Here a is a smoothing constant between 0 and 1 (a will be discussed in more detail later). The
updating equation says that ST, the estimate made in time period T of b0, equals a fraction a (for
example, .1) of the newly observed time series observation yT plus a fraction (1 �a) (for exam-
ple, .9) of ST�1, the estimate made in time period T � 1 of b0. The more the average level of the
process is changing, the more a newly observed time series value should influence our estimate,
and thus the larger the smoothing constant a should be set. We will soon see how to use histori-
cal data to determine an appropriate value of a.

S0 �
a

6

t�1
yt

6
�

362 � 381 � � � � � 402

6
� 359.667

C
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16.4 Simple Exponential Smoothing 649

We will now begin with the initial estimate S0 � 359.667 and update this initial estimate by
applying the smoothing equation to the 24 observed cod catches. To do this, we arbitrarily set a
equal to .02, and to judge the appropriateness of this choice of awe calculate “one-period-ahead”
forecasts of the historical cod catches as we carry out the smoothing procedure. Because the ini-
tial estimate of b0 is S0 � 359.667, it follows that 359.667 is the forecast made at time 0 for y1,
the value of the time series in period 1. Because we see from Table 16.13 that y1 � 362, we have
a forecast error of 362 � 359.667 � 2.333. Using y1 � 362, we can update S0 to S1, an estimate
made in period 1 of the average level of the time series, by using the equation

S1 �ay1 � (1 �a)S0

� .02(362) � .98(359.667) � 359.713

Because this implies that 359.713 is the forecast made in period 1 for y2, and because we see from
Table 16.13 that y2 � 381, we have a forecast error of 381 � 359.713 � 21.287. Using y2 � 381,
we can update S1 to S2, an estimate made in period 2 of b0, by using the equation

S2 �ay2 � (1 �a)S1

� .02(381) � .98(359.713) � 360.139

Because this implies that 360.139 is the forecast made in period 2 for y3, and because we see from
Table 16.13 that y3 � 317, we have a forecast error of 317 � 360.139 � �43.139. This procedure
is continued through the entire 24 periods of historical data. The results are summarized in
Table 16.13. Using the results in this table, we find that, for a� .02, the mean of the squared fore-
cast errors is 1161.14. To find a “good” value of a, we evaluate the mean of the squared forecast
errors for values of a ranging from .02 to .30 in increments of .02. (In most exponential smooth-
ing applications, the value of the smoothing constant used is between .01 and .30.) When we do
this, we find that a � .02 minimizes the mean of the squared forecast errors. Because this mini-
mizing value of a is small, it appears to be best to apply small weights to new observations,
which tells us that the level of the time series is not changing very much.

T A B L E 1 6 . 1 3 One-Period-Ahead Forecasting of the Historical Cod Catch Time Series Using 
Simple Exponential Smoothing with A � .02

Actual Cod Smoothed Forecast Made Forecast
Year Month Catch, yT Estimate, ST Last Period Error

(S0 � 359.667)
1 Jan. 362 359.713 359.667 2.333

Feb. 381 360.139 359.713 21.287
Mar. 317 359.276 360.139 �43.139
Apr. 297 358.031 359.276 �62.276
May 399 358.850 358.031 40.969
June 402 359.713 358.850 43.150
July 375 360.019 359.713 15.287
Aug. 349 359.799 360.019 �11.019
Sept. 386 360.323 359.799 26.201
Oct. 328 359.676 360.323 �32.323
Nov. 389 360.263 359.676 29.324
Dec. 343 359.917 360.263 �17.263

2 Jan. 276 358.239 359.917 �83.917
Feb. 334 357.754 358.239 �24.239
Mar. 394 358.479 357.754 36.246
Apr. 334 357.990 358.479 �24.479
May 384 358.510 357.990 26.010
June 314 357.620 358.510 �44.510
July 344 357.347 357.620 �13.620
Aug. 337 356.940 357.347 �20.347
Sept. 345 356.701 356.940 �11.940
Oct. 362 356.807 356.701 5.299
Nov. 314 355.951 356.807 �42.807
Dec. 365 356.132 355.951 9.049
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In general, simple exponential smoothing is carried out as follows:

650 Chapter 16 Time Series Forecasting and Index Numbers

Simple Exponential Smoothing

1 and ST�1 is the estimate of b0 made in time
period T � 1.

2 A point forecast made in time period T for any
future value of the time series is ST.

3 If we observe yT�1 in time period T � 1, we can
update ST to ST�1 by using the equation

and a point forecast made in time period T � 1
for any future value of the time series is ST�1.

ST�1 � ayT�1 � (1 � a)ST

1 Suppose that the time series y1, . . . , yn is
described by the equation

where the average level b0 of the process may be
slowly changing over time. Then the estimate ST

of b0 made in time period T is given by the
smoothing equation

where a is a smoothing constant between 0 and

ST � ayT � (1 � a)ST�1

yt � b0 � et

EXAMPLE 16.7 The Cod Catch Case: Forecasting

In Example 16.6 we saw that a� .02 is a “good” value of the smoothing constant when fore-
casting the 24 observed cod catches in Table 16.13. Therefore, we will use simple exponential
smoothing with a� .02 to forecast future monthly cod catches. From Table 16.13 we see that
S24 � 356.132 is the estimate made in month 24 of the average level b0 of the monthly cod
catches. It follows that the point forecast made in month 24 of any future monthly cod catch is
356.132 tons of cod. Now, assuming that we observe a cod catch in January of year 3 of y25 �
384, we can update S24 to S25 by using the equation

S25 �ay25 � (1 �a)S24

� .02(384) � .98(356.132)

� 356.689

This implies that the point forecast made in month 25 of any future monthly cod catch is
356.689 tons of cod.

By using the smoothing equation

ST � ayT � (1 � a)ST�1

it can be shown that ST, the estimate made in time period T of the average level b0 of the time
series, can be expressed as

ST � ayT � a(1 � a)yT�1 � a(1 � a)2yT�2

� � � � � a(1 � a)T�1y1 � (1 � a)TS0

The coefficients measuring the contributions of the observations yT, yT�1, yT�2, . . . , y1—that is,
a, a(1 �a), a(1 �a)2, . . . , a(1 �a)T�1—decrease exponentially with age. For this reason we
refer to this procedure as simple exponential smoothing.

Because the coefficients measuring the contributions of yT, yT�1, yT�2, . . . , y1 are decreasing
exponentially, the most recent observation yT makes the largest contribution to the current
estimate of b0. Older observations make smaller and smaller contributions to this estimate. Thus
remote observations are “dampened out” of the current estimate of b0 as time advances. The rate
at which remote observations are dampened out depends on the smoothing constant a. For val-
ues of a near 1, remote observations are dampened out quickly. For example, if a� .9 we obtain
coefficients .9, .09, .009, .0009, . . . . For values of a near 0, remote observations are dampened
out more slowly (if a� .1, we obtain coefficients .1, .09, .081, .0729, . . .). The choice of a
smoothing constant a is usually made by simulated forecasting of a historical data set as illus-
trated in Example 16.6.

Computer software packages can be used to implement exponential smoothing. These packages
choose the smoothing constant (or constants) in different ways and also compute approximate

C
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16.4 Simple Exponential Smoothing 651

prediction intervals in different ways. Optimally, the user should carefully investigate how the
computer software package implements exponential smoothing. At a minimum, the user should
not trust the forecasts given by the software package if they seem illogical.

Figure 16.13 gives the MINITAB output of using simple exponential smoothing to forecast in
month 24 the cod catches in future months. Note that MINITAB has selected the smoothing con-
stant a� .0703909 and tells us that the point forecast and the 95 percent prediction interval fore-
cast of the cod catch in any future month are, respectively, 348.168 and [276.976, 419.360].
Looking at Figure 16.13(a), these forecasts seem intuitively reasonable. An Excel add-in (Mega-
Stat) output of simple exponential smoothing for the cod catch data is given in Appendix 16.1.

F I G U R E 1 6 . 1 3 MINITAB Output of Using Simple Exponential Smoothing to Forecast 
the Cod Catches

Time

C
od

 C
at

ch

3632282420161284

420

400

380

360

340

320

300

280

260

Smoothing Constant

Alpha 0.0703909

Accuracy Measures

MAPE 8.45

MAD 29.06

MSD 1177.39

Variable

Forecasts

95.0% PI

Actual

Fits

Single Exponential Smoothing Plot for CodCatch

(a) The graphical forecasts

(b) The numerical forecasts of the cod catch in month 25 (and any other future month)

Forecasts 
Period  Forecast    Lower    Upper
25       348.168  276.976  419.360 

Exercises for Section 16.4
CONCEPTS

16.18 In general, when is it appropriate to use exponential smoothing?

16.19 What is the purpose of a smoothing constant in exponential smoothing?

METHODS AND APPLICATIONS

16.20 THE COD CATCH CASE CodCatch

Consider Table 16.13 (page 649). Verify (calculate) that S3, an estimate made in period 3 of b0, is
359.276. Also verify (calculate) that the one-period-ahead forecast error for period 4 is �62.276,
as shown in Table 16.13. 

DS
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16.21 THE COD CATCH CASE CodCatch

Consider Example 16.7 (page 650). Suppose that we observe a cod catch in February of year 3 of
y26 � 328. Update S25 � 356.689 to S26, a point forecast made in month 26 of any future monthly
cod catch. Use a � .02 as in Example 16.7.

16.22 THE LUMBER PRODUCTION CASE LumberProd

Figure 16.14 gives the MINITAB output of using simple exponential smoothing to forecast
yearly U.S. lumber production. Here MINITAB has estimated the smoothing constant alpha 
to be .0361553. Use the MINITAB output to find and report the point prediction of and the 
95 percent prediction interval for the total U.S. lumber production in a future year.

16.5 Holt–Winters’ Models 
Holt–Winters’ double exponential smoothing Various extensions of simple exponential
smoothing can be used to forecast time series that are described by models that are different from
the model . For example, Holt–Winters’ double exponential smoothing can be
used to forecast time series that are described by the linear trend model

Here we assume that b0 and b1 (and thus the linear trend) may be changing slowly over time. To
implement Holt–Winters’ double exponential smoothing, we let �T�1 denote the estimate of the
level b0 � b1(T � 1) of the time series in time period T � 1, and we let bT�1 denote the estimate
of the slope b1 of the time series in time period T � 1. Then, if we observe a new time series
value yT in time period T, the estimate of the level b0 � b1T of the time series in time period T
uses the smoothing constant A and is

This equation says that �T equals a fraction a of the newly observed time series value yT plus a
fraction (1 �a) of [�T�1 � bT�1], which is the estimate of the level of the time series in time

�T � a yT � (1 � a) [�T�1 � bT�1]

yt � b0 � b1t � et

yt � b0 � et

DS

DS
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Period   Forecast    Lower    Upper 

Time

Lu
m

be
r 

P
ro

du
ct

io
n

3330272421181512963

40000

39000

38000

37000

36000

35000

34000

33000

32000

31000

Smoothing Constant
Alpha 0.0361553

Accuracy Measures
MAPE 5

MAD 1712
MSD 4201951

Variable

Forecasts
95.0% PI

Actual
Fits

Single Exponential Smoothing for Lumber Production

31    35782.6  31588.9  39976.3 

F I G U R E 1 6 . 1 4 MINITAB Output of Using Simple Exponential Smoothing to Forecast Lumber Production

Use double
exponential

smoothing to fore-
cast a time series.

LO16-6

bow21493_ch16_630-679.qxd  11/29/12  6:51 PM  Page 652



16.5 Holt–Winters’ Models 653

period T, as calculated using the estimates �T�1 and bT�1 computed in time period T � 1. Fur-
thermore, the estimate of the slope b1 of the time series in time period T uses the smoothing
constant G and is

bT � g[�T � �T�1] � (1 � g)bT�1

This equation says that bT equals a fraction g of [�T � �T�1], which is an estimate of the differ-
ence between the levels of the time series in periods T and T � 1, plus a fraction (1 �g) of bT�1,
the estimate of the slope made in time period T � 1.

To use the updating equations, we first obtain initial estimates �0 and b0 of the level and the
slope of the time series in time period 0. One way to do this is to fit a least squares trend line to
part (say, one-half) of the historical data and let the y-intercept and slope of the trend line be �0

and b0. For example, consider the 24 observed calculator sales values in Table 16.2 (page 633).
If we fit a least squares trend line to the first 12 of those values, we obtain

This would imply that �0 � 204.803 and b0 � 6.9406. MINITAB uses a more complicated
method to find initial estimates and obtains �0 � 198.0290 and b0 � 8.0743. Starting with the
MINITAB initial estimates �0 and b0, we calculate a point forecast of y1 from time origin 0 to be

This point forecast is shown on the MINITAB output of Figure 16.15(a) [it is the first number
under the column headed ]. Also shown on the output are the actual calculator sales
value and the forecast error, which is

y1 � ŷ1(0) � 197 � 206.103 � �9.103

y1 � 197
ŷT (T � 1)

ŷ1(0) � �0 � b0 � 198.0290 � 8.0743 � 206.103

ŷt � 204.803 � 6.9406t

�0 = 198.0290 b0 = 8.0743
Time Sales Level Slope Forecast Error
T yT �T bT yT(T � 1) yT � yT(T � 1)

1 197 204.283 7.7102 206.103 -9.1033

2 211 211.794 7.6705 211.993 -0.9929

3 203 216.172 7.0119 219.465 -16.4648

4 247 227.947 7.9646 223.184 23.8162

5 239 236.529 8.0881 235.912 3.0884

6 269 249.494 9.0634 244.617 24.3827

7 308 268.446 11.0411 258.557 49.4427

8 262 275.990 10.3416 279.487 -17.4869

9 258 280.665 9.2084 286.331 -28.3312

10 256 283.099 7.8535 289.873 -33.8733

11 261 284.962 6.6554 290.952 -29.9521

12 288 290.894 6.5107 291.617 -3.6171

13 296 297.123 6.4545 297.404 -1.4043

14 276 298.062 5.3514 303.578 -27.5780

15 305 303.731 5.4148 303.414 1.5862

16 308 308.917 5.3690 309.146 -1.1459

17 356 322.629 7.0376 314.286 41.7143

18 393 342.333 9.5709 329.666 63.3339

19 363 354.123 10.0148 351.904 11.0962

20 386 368.510 10.8893 364.138 21.8621

21 443 392.120 13.4333 379.400 63.6004

22 308 386.042 9.5312 405.553 -97.5529

23 358 388.059 8.0282 395.574 -37.5735

24 384 393.670 7.5447 396.087 -12.0870

ˆˆ

(a) The updated level and slope estimates when A � .2 and 
G � .2

Period Forecast       Lower       Upper

25      401.214     337.813     464.616
26      408.759     344.037     473.482
27      416.304     350.159     482.449
28      423.849     356.186     491.512
29      431.393     362.124     500.663
30      438.938     367.979     509.898

(b) Point and 95 percent prediction interval forecasts
when A � .2 and G � .2 

(c) Point and 95 percent prediction interval forecasts
when A � .496 and G � .142

Period     Forecast       Lower       Upper

25      383.677     319.135     448.220
26      389.121     316.066     462.177
27      394.565     312.109     477.022
28      400.010     307.534     492.486
29      405.454     302.521     508.386
30      410.898     297.191     524.604

F I G U R E 1 6 . 1 5 The MINITAB Output of Double Exponential Smoothing for the Calculator Sales Data
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We next choose values of the smoothing constants a and g. A reasonable choice (and the default
option of MINITAB) is to let each of a and g be .2. Then, using y1 � 197 and the equation for �T,
it follows that the estimate of the level of the time series in time period 1 is

Furthermore, using the equation for bT, the estimate of the slope of the time series in time
period 1 is

It follows that a point forecast made in time period 1 of y2 is

Because the actual calculator sales value in period 2 is y2 � 211, the forecast error is

The MINITAB output in Figure 16.15(a) on the previous page shows the entire process of using
the double exponential smoothing updating equations to find new period-by-period estimates of the
level and slope of the time series. The output also shows the one-period-ahead forecasts and fore-
cast errors, which are utilized to evaluate the effectiveness of the double exponential smoothing
procedure. At the end of the updating process, MINITAB uses �24 � 393.670 and b24 � 7.5447 to
calculate point forecasts of future calculator sales values. For example, point forecasts of y25

and y26 made from time origin 24 are

and

These point forecasts, as well as point forecasts of y27 through y30, are shown on the MINITAB out-
put in Figure 16.15(b). Also shown are 95 percent prediction interval forecasts of y25 through y30.

Figure 16.16 shows a MINITAB output that graphically illustrates the forecasts when a � .2
and g � .2. Generally speaking, choosing a � .2 and g � .2 gives reasonable results, but
MINITAB will choose its own values of a and g. If we have MINITAB do this, it chooses
a � .496 and g� .142. The forecasts given by this choice of a and g are given in Figure 16.15(c)
and graphically illustrated in Figure 16.17. To evaluate the choice of a particular set of values for
a and g, MINITAB gives the mean of the absolute forecast errors (the MAD) and the mean of
the squared forecast errors (the MSD) for the 24 historical calculator sales values. Comparing
Figures 16.16 and 16.17, we see that a� .2 and g� .2 give a smaller MAD and MSD than
do a� .496 and g� .142. Therefore, we might conclude that we should use the forecasts of
y25 through y30 based on a� .2 and g� .2. On the other hand, we might believe that the lower
sales values at the end of the observed data signal that the sales values will not continue to
increase as fast as they have been increasing. In this case, we might use the lower forecasts given
by a� .496 and g� .142 (see Figure 16.17).

Multiplicative Winters’ method (requires material from Section 16.3) The Multi-
plicative Winters’ method can be used to forecast time series that are described by the model

yt � (b0 � b1t) � SNt � et

Here we assume that b0 and b1 (and thus the linear trend) and SNt (which represents the seasonal
pattern) may be changing slowly over time. To implement the multiplicative Winters’ method, we
let �T�1 denote the estimate of the deseasonalized level b0 �b1(T � 1) of the time series in time
period T � 1, and we let bT�1 denote the estimate of the slopeb1 of the time series in time period T � 1.
Then, suppose that we observe a new time series value yT in time period T, and let snT�L denote the
“most recent” estimate of the seasonal factor for the season corresponding to time period T. Here
L denotes the number of seasons in a year (L � 12 for monthly data, and L � 4 for quarterly data),

ŷ26(24) � �24 � 2b24 � 393.670 � 2(7.5447) � 408.759

ŷ25(24) � �24 � b24 � 393.670 � 7.5447 � 401.214

y2 � ŷ2(1) � 211 � 211.933 � �.993

ŷ2(1) � �1 � b1 � 204.283 � 7.7102 � 211.993

 � 7.7102

 � .2[204.283 � 198.0290] � .8(8.0743)

 b1 � g[�1 � �0] � (1 � g)b0

 � 204.283

 � .2(197) � .8[198.0290 � 8.0743]

�1 � ay1 � (1 � a)[�0 � b0]

654 Chapter 16 Time Series Forecasting and Index Numbers

Use multi-
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F I G U R E 1 6 . 1 7 The MINITAB Graphical Forecasts When A � .496 and G � .142

and thus T � L denotes the time period occurring one year prior to time period T. Furthermore, the
subscript T � L of snT�L denotes the fact that the time series value observed in time period T � L
was the most recent time series value observed in the season being analyzed and thus was the most
recent time series value used to help find snT�L. Then, the estimate of the deseasonalized level
b0 � b1T of the time series in time period T uses the smoothing constant a and is

where yT�snT�L is the deseasonalized observation in time period T. The estimate of the slope b1

of the time series in time period T uses the smoothing constant g and is

bT � g[�T � �T�1] � (1 � g)bT�1

�T � a 
yT

sn T�L

� (1 � a)[�T�1 � bT�1]
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The new estimate of the seasonal factor SNT in time period T uses the smoothing constant d and is

where yT��T is an estimate of the newly observed seasonal variation.
To use the updating equations, we first obtain initial estimates �0, b0, and sn0 of the deseason-

alized level, slope, and seasonal factors of the time series in time period 0. One way to do this is
to use the multiplicative decomposition method (see Section 16.3 on page 640) to analyze part
(say, one-half) of the historical data. Here, if there are less than five years of historical data, it is
probably best to base the initial estimates on all of the historical data. Then, we regard the y-
intercept and slope of the trend line fit to the deseasonalized data as the initial estimates �0 and
b0. Furthermore, we regard the multiplicative decomposition method’s seasonal factors as the ini-
tial estimates of the seasonal factors in time period 0. For example, consider the 36 Tasty Cola
sales values in Table 16.9 (page 640). Using the multiplicative decomposition method results
summarized in Tables 16.10 (page 641) and 16.11 (page 643), we obtain the initial estimates 
�0 � 380.163 and b0 � 9.489 and the initial seasonal factor estimates given in the page margin.
Starting with these initial estimates, we calculate a point forecast of y1 from time origin 0 to be

Here we have used the initial January seasonal factor estimate sn0 � .493 because y1 is Tasty Cola
sales in January of year 1. The actual value of y1 is 189, so the forecast error is

We next choose values of the smoothing constants a, g, and d. A reasonable choice (and the default
option of MINITAB) is to let each of a, g, and d be .2. Then, using y1 � 189 and the equation for
�T, it follows that the estimate of the deseasonalized level of the time series in time period 1 is

Here we have used the initial January seasonal factor estimate sn0 � .493 as the most recent
Winters’ method estimate of the January seasonal factor. Using the equation for bT, the estimate
of the slope of the time series in time period 1 is

Using the equation for snT, the new estimate of the January seasonal factor in time period 1 is

It follows that a point forecast made in period 1 of y2 is

 � 236.989

 � (388.395 � 9.238)(.596)

 ŷ2(1) � (�1 � b1)sn0

 � .492

 � .2B 189

388.395
R � .8(.493)

 sn1 � d 
y1

�1
� (1 � d)sn0

 � 9.238

 � .2[388.395 � 380.163] � .8(9.489)

 b1 � g[�1 � �0] � (1 � g)b0

 � 388.395

 � .2B 189

.493
R � .8[380.163 � 9.489]

 �1 � a 
y1

sn0
� (1 � a)[�0 � b0]

y1 � ŷ1(0) � 189 � 192.098 � �3.098

 � 192.098

 � (380.163 � 9.489)(.493)

 ŷ1(0) � (�0 � b0)sn0

snT � d 
yT

�T

� (1 � d)snT�L

656 Chapter 16 Time Series Forecasting and Index Numbers

Month sn0

Jan. .493
Feb. .596
Mar. .595
Apr. .680
May .564
June .986
July 1.467
Aug. 1.693
Sept. 1.990
Oct. 1.307
Nov. 1.029
Dec. .600

Initial Seasonal
Factor Estimates
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16.5 Holt–Winters’ Models 657

Here we have used the initial February seasonal factor estimate sn0 � .596 because y2 is the Tasty
Cola sales in February of year 1. The actual value of y2 is 229, so the forecast error is

The MINITAB output in Figure 16.18(a) on the next page shows the entire process of using
the Winters’ method updating equations to find new period-by-period estimates of the level,
slope, and seasonal factors of the time series. The output also shows the one-period-ahead fore-
casts and forecast errors, which are utilized to evaluate the effectiveness of the Winters’ method
procedure. MINITAB does not find initial estimates by using the multiplicative decomposition
method. We will not discuss how MINITAB obtains initial estimates, but note from Figure 16.18(a)
that the values of �1 and b1 obtained by MINITAB (�1 � 278.768 and b1 � 44.9736) are very
different from the values that we obtained by hand calculation (�1 � 388.395 and b1 � 9.238).
In addition, the one-period-ahead forecast errors obtained by MINITAB are generally quite large
in periods 1 through 12 but then become reasonably small for periods 13 through 36. To further
illustrate the Winters’ method updating equations, note from Figure 16.18(a) that �35 � 725.603
and b35 � 8.9026. Because the most recent estimate of the December seasonal factor is sn24 � .60767,
the point forecast made in period 35 of y36 (sales in December of year 3) is

The actual sales value in period 36 is y36 � 441, so the forecast error is

The updated estimates �36, b36, and sn36 are calculated as follows:

and

We are now at the end of the historical data, so we can forecast future Tasty Cola sales values.
Figure 16.18(b) gives the point and 95 percent prediction interval forecasts of future sales values
in periods 37 through 48, and Figure 16.19 graphically portrays the forecasts. To see how the
point forecasts are calculated, note that, for example, the most recent estimates of the January and
July seasonal factors are sn25 � .48019 and sn31 � 1.42891. Therefore, point forecasts made in
period 36 of Tasty Cola sales in periods 37 and 43 (January and July of year 4) are

and

� 1,132.57� [732.75 � 7(8.5514)](1.42891) ŷ43(36) � (�36 � 7b36)sn31

� 355.96� (732.75 � 8.5514) (.48019) ŷ37(36) � (�36 � b36)sn25

 � .6065

 � .2B 441
732.75

R � .8(.60767)

 sn36 � d 
y36

�36
� (1 � d)sn24

 � 8.5514

 � .2[732.75 � 725.603] � .8(8.9026)

 b36 � g[�36 � �35] � (1 � g)b35

 � 732.75

 � .2B 441

.60767
R � .8[725.603 � 8.9026]

 �36 � a 
y36

sn24
� (1 � a)[�35 � b35]

y36 � ŷ36(35) � 441 � 446.34 � �5.34

 � 446.34

 � (725.603 � 8.9026)(.60767)

 ŷ36(35) � (�35 � b35)sn24

y2 � ŷ2(1) � 229 � 236.989 � �7.989
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658 Chapter 16 Time Series Forecasting and Index Numbers

(a) The updated level, slope, and seasonal factor estimates

Time Sales Level Slope Seasonal Forecast Error
T yT �T bT snT yT(T � 1) yT � yT(T � 1)

1 189 278.768 44.9736 0.48896 106.67 82.334

2 229 343.270 48.8794 0.56818 175.93 53.065

3 249 401.836 50.8167 0.57606 221.63 27.371

4 289 449.774 50.2409 0.65605 298.49 -9.492

5 260 492.009 48.6398 0.55787 282.62 -22.624

6 431 520.567 44.6235 0.94880 529.30 -98.301

7 660 541.448 39.8750 1.42638 835.48 -175.485

8 777 556.089 34.8280 1.64516 992.39 -215.395

9 915 562.722 29.1891 1.95207 1201.68 -286.680

10 613 565.315 23.8699 1.28544 790.62 -177.623

11 485 563.116 18.6561 1.01787 622.78 -137.777

12 277 552.752 12.8521 0.60770 369.04 -92.044

13 244 552.287 10.1887 0.47953 276.56 -32.557

14 296 554.174 8.5282 0.56137 319.59 -23.586

15 319 560.914 8.1706 0.57459 324.15 -5.151

16 370 568.063 7.9664 0.65511 373.35 -3.349

17 313 573.035 7.3675 0.55554 321.35 -8.352

18 556 581.523 7.5916 0.95026 550.68 5.315

19 831 587.811 7.3308 1.42385 840.30 -9.301

20 960 592.820 6.8664 1.64000 979.10 -19.101

21 1152 597.777 6.4846 1.94709 1170.63 -18.631

22 759 601.501 5.9325 1.28072 776.74 -17.742

23 607 605.216 5.4890 1.01488 618.29 -11.287

24 371 610.664 5.4807 0.60767 371.13 -0.126

25 298 617.205 5.6927 0.48019 295.46 2.542

26 378 632.989 7.7111 0.56853 349.67 28.326

27 373 642.391 8.0493 0.57580 368.14 4.859

28 443 655.597 9.0806 0.65923 426.11 16.891

29 374 666.385 9.4222 0.55668 369.26 4.743

30 660 679.556 10.1717 0.95445 642.19 17.807

31 1004 692.808 10.7879 1.42891 982.07 21.934

32 1153 703.487 10.7660 1.63980 1153.90 -0.898

33 1388 713.974 10.7103 1.94648 1390.71 -2.712

34 904 720.918 9.9571 1.27537 928.12 -24.118

35 715 725.603 8.9026 1.00898 741.75 -26.753

36 441 732.750 8.5514 0.60650 446.34 -5.336

ˆˆ

(b) Point and 95 percent prediction interval
forecasts

Period   Forecast     Lower     Upper

37     355.96    240.98    470.95

38     426.31    309.52    543.10

39     436.69    317.90    555.49

40     505.60    384.60    626.60

41     431.71    308.32    555.10

42     748.35    622.39    874.31

43    1132.57   1003.88   1261.26

44    1313.74   1182.16   1445.32

45    1576.09   1441.48   1710.70

46    1043.59   905.81   1181.37

47     834.24   693.17    975.32

48     506.65   362.17    651.14

F I G U R E 1 6 . 1 8 The MINITAB Output of Winters’ Method for the Tasty Cola Sales Data,
When A � .2,G � .2, and D� .2
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F I G U R E 1 6 . 1 9 MINITAB Output of Using Winters’ Method to Forecast Tasty Cola Sales
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16.5 Holt–Winters’ Models 659

The reason that the 95 percent prediction intervals are so wide is that they can be shown to be
functions of the historical forecast errors, which are very large in periods 1 through 12. The mean
absolute forecast error in periods 13 through 36 can be calculated to be 12.98 and is more
representative of the Winters’ method’s accuracy than is the mean absolute forecast error in all 
36 periods, which is 46.93 (see Figure 16.19). Therefore, to obtain more reasonable prediction
intervals, we might multiply the lengths of the prediction intervals by 12.98�46.93 � .28. For
example, Figure 16.18(b) tells us that the 95 percent prediction interval for y37 is [240.98,
470.95], which has length 470.95 � 240.98 � 229.97. Multiplying this length by .28, we obtain
(229.97)(.28) � 64.39. Surrounding the point forecast 355.96 by a new half-length of 64.39�2 �
32.2, we obtain a new 95 percent prediction interval of [355.96 � 32.2] � [323.76, 388.16]. The
other 95 percent prediction intervals can be modified similarly.

The wide prediction intervals in Figure 16.18(b) result from a combination of a short histori-
cal series (36 sales values) and MINITAB obtaining inaccurate initial estimates of the level,
slope, and seasonal factors. When the historical series is long (for example, see Exercise 16.28, 
page 660), MINITAB usually obtains reasonable prediction intervals. Finally, note that
MINITAB will not choose its own values of �, 	, and 
. However, the user can simply experi-
ment with different combinations of values of these smoothing constants until a combination is
found that produces the “best” results.

CONCEPTS

16.23 When do we use double exponential smoothing?

16.24 When do we use the multiplicative Winters’ method?

METHODS AND APPLICATIONS

16.25 Consider Figure 16.15 on page 653. Calculate �2 and b2 from �1, b1, and y2. Also, calculate (24)
from �24 and b24.

16.26 Consider Figure 16.18 on page 658. Calculate �35, b35, and sn35 from �34, b34, y35, and sn23. Also,
calculate (36) from �36, b36, and sn26.

16.27 THE WATCH SALES CASE WatchSale

Figure 16.20 gives the MINITAB output of using double exponential smoothing in month 20 
to forecast watch sales in months 21 through 26. Here we have used MINITAB’s default option
that sets each of the smoothing constants alpha and gamma equal to .2. Find and report the point
prediction of and a 95 percent prediction interval for watch sales in month 21.
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Exercises for Section 16.5
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Period    Forecast     Lower     Upper 
21     475.916   427.380   524.453 
22     486.313   436.766   535.861 
23     496.711   446.074   547.348 
24     507.108   455.309   558.907 
25     517.506   464.477   570.535 
26     527.903   473.580   582.225 

F I G U R E 1 6 . 2 0 MINITAB Output of Using Double Exponential Smoothing to Forecast Watch Sales
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16.28 THE TRAVELER’S REST CASE TravRest

Figure 16.21 gives the MINITAB output of using multiplicative Winters’ method in month 168
to forecast the monthly hotel room averages in months 169 through 180. Here we have used
MINITAB’s default option that sets each of the smoothing constants alpha, gamma, and delta
equal to .2. Use the MINITAB output to find and report the point prediction of and a 95 percent
prediction interval for the monthly hotel room average in period 169.

16.6 A Brief Introduction to Box–Jenkins Models 
(Optional Advanced Section) 

In this section we discuss the Box–Jenkins methodology. This methodology, developed by 
G. E. P. Box and G. M. Jenkins (1976), uses an approach to describe the trend and seasonal effects
in time series data that is quite different from the approach taken by regression (or exponential
smoothing). The Box–Jenkins methodology begins by determining if the time series under con-
sideration is stationary. Intuitively, a time series is stationary if the statistical properties (for ex-
ample, the level and the variance) of the time series are essentially constant through time. If we
have observed n values of a time series, we can use a plot of these values (against
time) to help us determine whether the time series is stationary. If the n values seem to fluctuate
with constant variation around a constant level, then it is reasonable to believe that the time series
is stationary. If the n values do not fluctuate around a constant level or do not fluctuate with con-
stant variation, then it is reasonable to believe that the time series is nonstationary. In this case, the
Box–Jenkins methodology tells us to transform the nonstationary time series values into station-
ary time series values.

For example, recall that Table 16.8 on page 639 gives monthly international passenger totals 
for the past 11 years for an airline. The partial MINITAB output in Figure 16.22(a) gives the first
15 and the last 2 of these monthly passenger totals (see Pass). The plot of these passenger totals is

y1, y2, . . . , yn

DS
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Period   Forecast     Lower     Upper 
169     810.04    774.95    845.13 
170     754.55    718.91    790.20 
171     772.31    736.06    808.57 
172     874.62    837.69    911.55 
173     867.63    829.97    905.28 
174     992.02    953.58   1030.47 

Period   Forecast     Lower     Upper 
175    1158.99   1119.72   1198.27 
176    1189.52   1149.37   1229.68 
177     917.33    876.25    958.41 
178     912.83    870.78    954.88 
179     787.09    744.04    830.15 
180     887.66    843.56    931.75

F I G U R E 1 6 . 2 1 MINITAB Output of Using Winters’ Method to Forecast the Monthly 
Hotel Room Averages

Appreciate
some of 

the basic concepts
of Box–Jenkins 
forecasting models.

LO16-8
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16.6 A Brief Introduction to Box–Jenkins Models (Optional Advanced Section) 661

shown in Figure 16.22(b) and indicates that the passenger totals exhibit an upward linear trend
with seasonal variation that increases with the level of the totals. In terms of Box–Jenkins model-
ing, the increasing seasonal variation implies that the time series is nonstationary with respect
to its variance and we should use a variance stabilizing transformation. Figure 16.22(a) gives the
natural logarithms (see LnPass) of the monthly passenger totals for the time periods shown in the
figure, and Figure 16.22(c) shows that the natural logarithms exhibit an upward linear trend with
constant (variance-stabilized) seasonal variation. That is, letting denote the variance-stabilized
passenger total in month t, it follows that . The linear trend and seasonal variation in the

values indicate that, although these values are stationary with respect to their variance, they are
nonstationary with respect to their level. To transform these values into stationary values with
respect to their level, the Box–Jenkins methodology uses one of three types of differencing: regu-
lar differencing, seasonal differencing, or combined regular and seasonal differencing.

The regular difference of the passenger totals’ natural logarithms in time period t, denoted zt,
is the difference between , the natural logarithm in time period t, and , the natural logarithm
in time period t�1. That is, . For example, Figure 16.22(a) tells us that the natural
logarithms in months 1, 2, 3, 131, and 132 are , , ,

, and . Therefore, the regular differences of the natural logarithms
are:

Figure 16.22(a) gives the regular differences (see Reg) of the natural logarithms for the time pe-
riods shown in the figure. Note that, because MINITAB does calculations using more precise
decimal place accuracy than it sometimes shows, the results in Figure 16.22(a) are slightly dif-
ferent from the results that we hand calculate. To calculate the seasonal differences of the natural
logarithms in time period t, we use the equation , where L is the number of seasons
in a year. Because the passenger totals data is monthly, L equals 12, and thus we use the equation

. Figure 16.22(a) tells us that , , , and
. It follows that the first two seasonal differences are:

and

To carry out combined regular and seasonal differencing, we take the regular differences of
the seasonal differences. For example, the regular difference of the just calculated two seasonal
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F I G U R E 1 6 . 2 2 The Passenger Totals, Natural Logarithms, and Differences Data, and Time Series
Plots of the Passenger Totals and Natural Logarithms
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differences is .0656 � .02643 � .03917. Figure 16.22(a) gives the seasonal differences (see
Seas) and the combined regular and seasonal differences (see RegSeas) of the natural logarithms
for the time periods shown in the figure. Moreover, Figure 16.23 shows time series plots of the
regular differences, the seasonal differences, and the combined regular and seasonal differences
of the natural logarithms. Examining the plot in Figure 16.23(a), it might seem at first glance that
the regular differences are fluctuating with constant variation around a constant level. However,
the periodic “dips” in the plot indicate that the regular differences exhibit a seasonal pattern and
thus are nonstationary. The plot in Figure 16.23(b) shows that the seasonal differences do not
exhibit any long term upward or downward trend movements or any seasonal pattern. However,
because these seasonal differences exhibit repeated, short term upward and downward trend
movements, we say that they exhibit changing (or stochastic) trend effects. These stochastic
trend effects imply that the seasonal differences are nonstationary. Finally, Figure 16.23(c) shows
that the combined regular and seasonal differences do not seem to exhibit either trend effects or
a seasonal pattern. Because these combined differences seem to fluctuate with (approximately)
constant variation around a constant level, we will regard them as being stationary.

A Box–Jenkins model Because the combined regular and seasonal differences are stationary,
we will find a Box–Jenkins model describing them. The combined regular and seasonal differ-
ence in time period t, , is the regular difference of the seasonal difference and thus
can be expressed as

The simplest Box–Jenkins model describing would set equal to an error term . This would
give

Solving for , we would have the following Box–Jenkins model describing :

If we temporarily ignore the error term , this model says that , the passenger totals’ natural
logarithm in time period t, equals , the passenger totals’ natural logarithm one year ago, plus
( ), the difference between the passenger totals’ natural logarithm last month and the
passenger totals’ natural logarithm one year ago last month. Of course, this and all Box–Jenkins
models describe the time series value by using , the error term in time period t, and in fact
some Box–Jenkins models also describe by using , the error terms in previous
time periods. Such previous error terms are called moving average terms. Later in this section we
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16.6 A Brief Introduction to Box–Jenkins Models (Optional Advanced Section) 663

will see that the appropriate Box–Jenkins model describing the logged passenger total uses the
moving average terms , , and and is

Here, and are unknown parameters that must be estimated from sample data, and the minus
signs are used because of the theory behind the Box–Jenkins methodology. The procedure for
finding such a model is quite complex. For this reason we will first give the reader an intuitive
understanding of the model by using it to forecast future time series values.

The MINITAB output in Figure 16.24(a) tells us that the least squares point estimates of 
and are and . Moreover, because the p-values for testing 
and are each less than .001, we conclude that each of and is important in the
model. (The lower half of Figure 16.24(a) provides a Chi-square analysis that is used to diagnos-
tically check the adequacy of the model. This will be explained later.) To compute a point fore-
cast of , next month’s logged passenger total, we insert t � 133, as well as the least squares
point estimates and , into the model. This gives the point forecast

To compute this point forecast, we use the natural logarithms (see LnPass in Figure 16.24(b))
, , and of the passenger totals in months 120, 121,

and 132. In addition, we predict the future error term to be , and we predict the past error
terms , , and by using MINITAB computed residuals for time periods 132, 121, and
120. To obtain the residuals, MINITAB uses an advanced technique and the Box–Jenkins model
that it has fit to the 132 logged passenger totals to calculate a point prediction of each logged pas-
senger total. The residual for a particular month is then the difference between the observed logged
passenger total and the predicted logged passenger total for the month. Figure 16.24(b) shows the
residuals for months 120 through 132. For month 120, for example, the observed logged passen-
ger total is (see LnPass), the predicted logged passenger total is 
(see FITS), and the residual is (see RESI).
Figure 16.24(b) tells us that the residuals for time periods 132, 121, and 120 are ,

, and . Inserting all of the needed quantities into the above equa-
tion for the point forecast (132), we find that 

This point forecast and a 95 percent prediction interval for are given in Figure 16.24(c). Ex-
ponentiating the point forecast and the ends of the prediction interval, we obtain

and . Therefore, the airline forecasts
that it will fly 418,933 customers in month 133 (January of year 12). The airline is 95 percent
confident it will fly between 390,403 and 449,542 customers in month 133.

[e5.96718, e6.10823] � [390,403, 449,542]e6.03771 � 418, 933
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Type       Coef   SE Coef     T      P 
MA   1 0.3407   0.0868   3.93  0.000 
SMA 12   0.6299   0.0766   8.23  0.000 

Modified Box-Pierce (Ljung-Box)
Chi-Square statistic
Lag            12      24     36     48
Chi-Square    7.5    19.6   30.5   38.7
DF  10      22     34 

0.638
46

0.770P-Value       0.679   0.607

120

121

122

123

124

125

126

127

128

129

130

131

132

5.82008

5.88610

5.83481

6.00635

5.98141

6.04025

6.15698

6.30628

6.32615

6.13773

6.00881

5.89164

6.00389

5.86184

5.85600

5.83182

5.98014

5.97049

6.00109

6.18944

6.27991

6.30195

6.15349

6.01104

5.87364

5.99133

�0.041754

0.030104

0.002987

0.026218

0.010927

0.039167

�0.032462

0.026361

0.024195

�0.015763

�0.002232

0.018005

0.012558

t LnPass FITS RESI
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133    6.03771   5.96718  6.10823
134    5.99099   5.90652  6.07546 
135    6.14666   6.05023  6.24308 
136    6.12046   6.01341  6.22751
137    6.15698   6.04026  6.27369
138    6.30256   6.17692  6.42819
139    6.42828   6.29432  6.56224
140    6.43857   6.29677  6.58037 
141    6.26527   6.11604  6.41450
142    6.13438   5.97807  6.29069
143    6.00539   5.84231  6.16846
144    6.11358   5.94401  6.28316

F I G U R E 1 6 . 2 4 Analysis of the Passenger Totals’ Box–Jenkins Model

(a) Estimation and diagnostic checking (b) Residuals (c) Forecasting
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The sample autocorrelation function In order to help find a Box–Jenkins model describ-
ing a time series of  values, we use the sample autocorrelation function (SAC) and the sample
partial autocorrelation (SPAC) of the values. To explain the sample autocorrelation function,
we first define the sample autocorrelation at lag k, denoted , to be the simple correlation
coefficient between values separated by k time units. For example, , , and are the simple
correlation coefficients between values separated by, respectively, one, two, and three time
units. To illustrate calculating (for instance) , consider the combined regular and seasonal 
differences of the passenger totals’ natural logarithms. In Figure 16.22(a) we have computed
these combined differences to be , , and

. The mean of these combined differences can be shown to equal .
Inserting these values and into the following equation

it follows that , the simple correlation coefficient between values separated by three time
units, can be calculated to be �.216. In general, we define the sample autocorrelation function
(SAC) to be a listing, or graph, of the sample autocorrelations at lags k � 1, 2, . . . . Fig-
ure 16.25(a) presents the MINITAB output of the SAC of the combined differences of the pas-
senger totals’ natural logarithms. The vertical lines on the output represent the sample autocorre-
lations. For example, the vertical lines at lags 1, 2, and 3 represent , , and , which can be
computed to be �.317, .109, and (as just demonstrated) �.216. In order to begin to interpret the
meaning of these and the other sample autocorrelations in the SAC, we identify the existence of
spikes in the SAC. We say that a spike exists at lag k in the SAC if the sample autocorrelation

is large enough in magnitude to conclude that rk, the population autocorrelation of all possible
values separated by k time units, does not equal 0. One frequently used convention is to con-

clude that a spike exists at lag k in the SAC if is at least as large in magnitude as twice its esti-
mated standard deviation. If we examine the MINITAB output of the SAC in Figure 16.25(a), we
see that the “center line” on the plot of the values is positioned at 0. Furthermore, for any lag k
the dashed line above the center line is two estimated standard deviations greater than 0, and the
dashed line below the center line is two estimated standard deviations less than 0. If the vertical
line representing extends at least as far up or down as the two standard deviation dashed lines
corresponding to lag k, then we conclude that a spike exists at lag k in the SAC. Examining Fig-
ure 16.25(a), we conclude that spikes exist at lags 1, 3, and 12 in the SAC.

The sample partial autocorrelation function The sample partial autocorrelation func-
tion (SPAC) of a time series of values is a listing, or graph, of the sample partial autocorre-
lations at lags k � 1, 2, . . . . It is beyond the scope of this text to give a precise definition of the
sample partial autocorrelation at lag k. However, this quantity, which is denoted , mayrkk
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16.6 A Brief Introduction to Box–Jenkins Models (Optional Advanced Section) 665

intuitively be thought of as the sample autocorrelation of values separated by k time units with
the effects of the intervening zt values eliminated. Figure 16.25(b) gives the MINITAB output
of the SPAC of the combined differences of the passenger totals’ natural logarithms. Examining
this output, we see that, for example, the vertical lines at lags 1 and 2 represent and , the
sample partial autocorrelations of the combined differences separated by, respectively, one and
two time units. In general, if is at least as large in magnitude as twice its estimated standard de-
viation, we say that a spike exists at lag k in the SPAC. This implies that , the population par-
tial autocorrelation of all possible values separated by k time units, does not equal 0. The 
values are plotted in the MINITAB output of Figure 16.25(b). We conclude that a spike exists at
lag k in the SPAC if the vertical line representing extends at least as far up or down as the two
standard deviation dashed lines corresponding to lag k. Because this occurs at lags 1, 3, 9, 12, and
23, we conclude that spikes occur at these lags in the SPAC. We will now see that the spikes in
the SAC and SPAC, as well as the overall behavior of the SAC and SPAC, help us to tentatively
identify a Box–Jenkins model.

Moving average terms We have previously seen that some Box–Jenkins models describe
the future time series value by using past error terms eet�1, eet�2, . . . , which are called mov-
ing average terms. The following guidelines tell us when to use nonseasonal moving average
terms and seasonal moving average terms. [See Bowerman, O’Connell, and Koehler (2005) for
the theory behind the guidelines.] To use the guidelines, we define (for monthly seasonal data) the
nonseasonal level of the SAC and the SPAC to be lags 1 through 9 and the seasonal level of the
SAC and the SPAC to be lags 12 and 24.

Guideline 1: Using nonseasonal moving average terms Suppose that, at the nonseasonal level,
the SAC has a spike at one or more lags and then abruptly cuts off (that is, has no spikes) after
a certain lag, and the SPAC dies down fairly quickly (that is, has sample partial autocorrelations
that steadily decrease fairly quickly). In this case, we should describe the time series value by
using past error terms (nonseasonal moving average terms) that correspond to the lags at
which spikes exist in the SAC. For example, we have seen that Figure 16.25 gives the SAC and
SPAC of the combined differences of the passenger totals’ natural logarithms. At the nonseasonal
level, the SAC has spikes at lags 1 and 3 and then cuts off after lag 3, and the SPAC dies down
fairly quickly. Here, in concluding that the SPAC dies down fairly quickly, we have ignored a
spike at lag 9 in the SPAC. In general, it is a common practice to ignore spikes at higher nonsea-
sonal lags in the SAC and SPAC. Because the SAC has spikes at lags 1 and 3, this guideline says
that we should describe the combined difference by using and . However, because the
spike at lag 3 is barely a spike, and because the Box–Jenkins methodology seeks to find simple
(parsimonious) models, we will begin by attempting to describe by using (and not ).
Then, we will diagnostically check the model to see if we made the right decision.

Guideline 2: Using a seasonal moving average term Suppose that, at the seasonal level, the
SAC has a spike at lag 12 and cuts off after lag 12 (that is, has a small sample autocorrelation
at lag 24), and the SPAC dies down fairly quickly (at lags 12 and 24). In this case, we should
describe the time series value by using the past error term eet � 12 (which is called a seasonal
moving average term). For example, consider Figure 16.25. At the seasonal level, the SAC has
a spike at lag 12 and cuts off after lag 12, and the SPAC dies down fairly quickly. Therefore, we
should describe by using the seasonal moving average term . Because we have also con-
cluded in Guideline 1 that we should describe by using , it follows that a tentative
Box–Jenkins model describing is

Here, theory behind the Box–Jenkins methodology tells us to use the multiplicative component
. Moreover, if we insert the expression for the combined difference,

into this model and solve for , we obtain
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Before using this tentative model to calculate forecasts (as we have done on page 663), we
should check to see if the model is adequate. In general, it can be shown that if a tentative model
is adequate, then the sample autocorrelations of the tentative model’s residuals will not be un-
usually large, and thus the model’s Chi-square statistic p-values will be greater than .05. Be-
cause the Chi-square statistic p-values in Figure 16.24(a) for the tentative passenger totals model
are greater than .05, we conclude that this model is adequate. 

We have seen that if a time series fluctuates with constant variation around a constant level,
then the time series should be considered to be stationary. It can also be shown that if the SAC
cuts off or dies down fairly quickly at both the nonseasonal and seasonal levels, then the time se-
ries should be considered to be stationary. However, if the SAC has large sample autocorrelations
that die down very slowly at either level, or at both levels (for example, see Figure 16.26 on 
page 664), then the time series should be considered to be nonstationary.

Autoregressive Terms Some Box–Jenkins models describe the future time series value zt,
by using past time series values zt�1, zt�2, . . . , which are called autoregressive terms. The fol-
lowing guidelines tell us when to use nonseasonal autoregressive terms and seasonal autore-
gressive terms.

Guideline 3: Using nonseasonal autoregressive terms Suppose that, at the nonseasonal level,
the SAC dies down fairly quickly (that is, has sample autocorrelations that steadily decrease
fairly quickly), and the SPAC has a spike at one or more lags and then abruptly cuts off (that
is, has no spikes) after a certain lag. In this case we should describe the time series value zt by using
past time series values (nonseasonal autoregressive terms) that correspond to the lags at
which spikes exist in the SPAC. For example, consider the seasonal differences 
of the quartic roots of the hotel room averages in Table 16.4 on page 636. It can be ver-
ified that these seasonal differences fluctuate with constant variation around a constant level and
are, therefore, stationary. Figure 16.27 gives the SAC and SPAC of these seasonal differences. At
the nonseasonal level, the SAC dies down fairly quickly, and the SPAC has spikes at lags 1 and 3
and (with the exception of a smaller spike at lag 5) cuts off after lag 3. Because the SPAC has
spikes at lags 1 and 3, this guideline says that we should describe the seasonal difference zt by
using zt�1 and zt�3. Moreover, MINITAB requires us to use the intervening term zt�2 because we
use zt�1 and zt�3.

Guideline 4: Using a seasonal autoregressive term Suppose that, at the seasonal level, the SAC
dies down fairly quickly (at lags 12 and 24), and the SPAC has a spike at lag 12 and cuts off
after lag 12 (that is, has a small sample partial autocorrelation at lag 24). In this case, we should
describe the time series value by using the past time series value zt�12 (which is called a sea-
sonal autoregressive term). In practice, the behavior described in this guideline does not occur
frequently. 

Examining Figure 16.27, we see that at the seasonal level, the SAC has a spike at lag 12 and
cuts off after lag 12, and the SPAC dies down fairly quickly. This is the behavior described in
Guideline 2, and thus Guideline 2 says that we should describe by using the seasonal moving
average term . Because Guideline 3 says that we should also describe by using , ,
and , a tentative Box–Jenkins model describing is

Here, we have included a constant term (to be explained momentarily) in the model, and , as
well as , , , and are unknown parameters that must be estimated from sample data. In-
serting the seasonal difference into this model and solving for , we find that a
tentative Box–Jenkins model describing is

The constant term in the tentative model says that there is a deterministic trend of as we
move from , the quartic root of the hotel room average one year ago, to , the quartic root
of the current hotel room average. In the exercises, the reader will assess the appropriateness of
the tentative model ( will be found to be important) and will use the model to forecast. (It can
be verified that a constant term is not needed in the passenger totals model.)d

d

yt
*yt�12

*
dd

y*
t � d � y*

t�12 � f1(y*
t�1 � y*

t�13) � f2(y*
t�2 � y*

t�14) � f3(y*
t�3 � y*

t�15) � u12et�12 � et

y*
t

y*
tzt � y*

t � y*
t�12

u12f3f2f1

dd

zt � d � f1 zt�1 � f2 zt�2 � f3 zt�3 � u12 et�12 � et

ztzt�3

zt�2zt�1ztzt�12

zt

zt

(y*
t � y.25

t )
(zt � yt

* � y*
t�12)
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16.7 Forecast Error Comparisons 667

To conclude this section, note that the reason we did not use any multiplicative terms in the
hotel room average model is that the nonseasonal components , , and are
autoregressive components and the seasonal component is a moving average compo-
nent. If the SAC at the seasonal level had told us to use the seasonal autoregressive term 
(Guideline 4), then would be replaced by 

. This model uses three multiplicative terms, which are appropriate when both the
nonseasonal and seasonal components of the model are autoregressive.
f3 f12 zt�15

f12 zt�12 � f1 f12 zt�13 � f2 f12 zt�14 ��u12 et�12

zt�12

�u12 et�12

f3 zt�3f2 zt�2f1 zt�1

CONCEPTS

16.29 Discuss the purpose of differencing.

16.30 Explain how we use the SAC and SPAC.

METHODS AND APPLICATIONS

16.31 The least squares point estimates of the parameters of the tentative hotel room average model are
, , , , and

, where the MINITAB calculated p-values for the importance of the model
parameters are given in parentheses. The chi-square statistic p-values for the diagnostic checking
of model adequacy are .242 (lag 12), .186 (lag 24), .276 (lag 36), and .461 (lag 48). (1) Assess 
the appropriateness of the tentative model. (2) Use the model to write out an expression for .
(3) Hand calculate the point forecast of to be (168) � 5.38091 (see Figure 16.28). Hint:
Recalling that , use the facts that , , 

, , and the residual for period 157 is .057297.

16.32 Find a point forecast and a 95 percent prediction interval for y169.

Note: For an exercise on tentative identification, see Supplemental Exercise 16.44 on page 675.

16.7 Forecast Error Comparisons 
Consider comparing the forecasting accuracies of two particular forecasting methods—Method 1
and Method 2. To do this, we use each method to compute point forecasts ( ) of the future values
( ) of a time series. We then wait for the future values to occur, record them, and compute the fore-
cast errors ( ). Specifically, suppose that the results we obtain when we use Method 1 and
Method 2 to forecast 12 future values of a time series are as shown in Tables 16.14 and 16.15 on
the next page. Three criteria by which to compare Method 1 and Method 2 are the mean absolute
deviation (MAD), the mean squared deviation (MSD), and the mean absolute percentage
error (MAPE).

yt � ŷt

yt

ŷt

y166
* � y154

* � �.00628.07934
y167

* � y155
* �y168

* � y156
* � .10212y157

* � 5.33648yt
* � yt

.25
ŷ169

*y169
*

y169
*

û12 � .5271 (.000)
f̂3 � �.2642 (.001)f̂2 � .1322 (.104)f̂1 � .2392 (.003)d̂ � .038056 (.000)

Exercises for Section 16.6

Compare
time series

models by using
forecast errors.

LO16-9

Forecast    Lower    Upper Period
95% Limits

169     5.38091  5.33070  5.43111 
170     5.26784  5.21622  5.31946 
171     5.27552  5.22303  5.32801 
172     5.42917  5.37584  5.48249 
173     5.40940  5.35592  5.46289 
174     5.59285  5.53915  5.64654 
175     5.82033  5.76663  5.87404 
176     5.85258  5.79888  5.90629 
177     5.47779  5.42406  5.53152 
178     5.47843  5.42470  5.53215 
179    5.28889  5.23516  5.34262 
180     5.46090  5.40717  5.51463

F I G U R E 1 6 . 2 8 Forecasting (for 
Exercise 16.31)
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To calculate the MAD, we find the absolute value of each forecast error and then average the
resulting absolute values. For example, if we find the absolute value of each of the 12 forecast
errors given by Method 1 in Table 16.14, sum the 12 absolute values, and divide the sum by 12,
we find that the MAD is 14.15. By contrast, if we calculate the MAD of the Method 2 forecast er-
rors in Table 16.15, we find that the MAD is 25.6.

To calculate the MSD, we find the squared value of each forecast error and then average the
resulting squared values. For example, if we find the squared value of each of the 12 forecast errors
given by Method 1 in Table 16.14, sum the 12 squared values, and divide the sum by 12, we find
that the MSD is 307.80. By contrast, if we calculate the MSD of the Method 2 forecast errors in
Table 16.15, we find that the MSD is 892.44.

To calculate the MAPE, we find the percentage error for each forecast, [ ] � 100%,
and we then average the absolute values of the percentage errors. For example, the percentage error
for the first forecast given by Method 1 is 

. If we average the absolute values of the 12 percentage errors given by 
Method 1, we find that the MAPE is 2.06%. By contrast, if we calculate the MAPE of the Method 2
forecast errors, we find that the MAPE is 3.24%.

In general, we want a forecasting method that gives small values of the MAD, MSD, and
MAPE. Note, however, that the MSD is the average of the squared forecast errors. It follows
that the MSD, unlike the MAD and MAPE, penalizes a forecasting method much more for large
forecast errors than for small forecast errors. Therefore, the forecasting method that gives the
smallest MSD may not be the forecasting method that gives the smallest MAD, or MAPE. Fur-
thermore, the forecaster who uses the MSD to choose a forecasting method would prefer several
smaller forecast errors to one large error. In our example, Method 1 gives smaller values of the
MAD, MSD, and MAPE than does Method 2. Moreover, for those who have studied Sections
16.3 and 16.5, the point forecasts in Tables 16.14 and 16.15 are point forecasts given by the mul-
tiplicative decomposition method (Method 1) and multiplicative Winters’ method (Method 2).
These point forecasts are point forecasts of future Tasty Cola sales in months 37 through 48. Al-
though the multiplicative decomposition method does better in this situation, the multiplicative
Winters’ method would do better in other situations.

100% � �2.42%
[(y1 � ŷ1)�y1] � 100% � [(352 � 360.52)�352] �

(yt � ŷt)�yt

668 Chapter 16 Time Series Forecasting and Index Numbers

T A B L E 1 6 . 1 4
Method 1 
Forecast Errors

yt ŷt yt � ŷt

352 360.52 �8.52
445 441.48 3.52
453 446.40 6.6
541 516.62 24.38
457 433.85 23.15
762 767.82 �5.82

1,194 1,156.30 37.7
1,361 1,350.50 10.5
1,615 1,606.30 8.7
1,059 1,067.40 �8.4

824 850.12 �26.12
495 501.39 �6.39

T A B L E 1 6 . 1 5
Method 2 
Forecast Errors 

yt ŷt yt � ŷt

352 355.96 �3.96
445 426.31 18.69
453 436.69 16.31
541 505.60 35.4
457 431.71 25.29
762 748.35 13.65

1,194 1,132.57 61.43
1,361 1,313.74 47.26
1,615 1,576.09 38.91
1,059 1,043.59 15.41

824 834.24 �10.24
495 506.65 �11.65

Exercises for Section 16.7
CONCEPTS

16.33 What is the MAD? What is the MSD? What is the MAPE? How do we use these quantities?

16.34 Why does the MSD penalize a forecasting method much more for large forecast errors than for
small forecast errors?

METHODS AND APPLICATIONS

Exercises 16.35 and 16.36 compare two forecasting methods—method A and method B. Suppose that method
A gives the point forecasts 57, 61, and 70 of three future time series values. Method B gives the point fore-
casts 59, 65, and 73 of these three future values. The three future values turn out to be 60, 64, and 67.

16.35 Calculate the MAD, MSD, and MAPE for method A. Calculate the MAD, MSD, and MAPE for
method B.

16.36 Which method—method A or method B—gives the smallest MAD? The smallest MSD? The
smallest MAPE?

16.8 Index Numbers 
We often wish to compare a value of a time series relative to another value of the time series. For
instance, according to the U.S. Bureau of Labor Statistics, energy prices increased by 4.7 percent
from 1995 to 1996, while apparel prices decreased by .2 percent from 1995 to 1996. In order to
make such comparisons, we must describe the time series. We have seen (in Section 16.3) that
time series decomposition can be employed to describe a time series. Another way to describe
time-related data is to use index numbers.

Use index
numbers

to compare eco-
nomic data over
time.

LO16-10
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16.8 Index Numbers 669

When we compare time series values to the same previous value, we say that the previous
value is in the base time period, and successive comparisons of time series values to the value
in the base period form a sequence of index numbers. More formally, a simple index number
(or simple index) is defined as follows:

A simple index is obtained by dividing the current value of a time series by the value of the time
series in the base time period and by multiplying this ratio by 100. That is, if yt denotes the cur-
rent value and if y0 denotes the value in the base time period, then the simple index number is 

The time series values used to construct an index are often quantities or prices. For instance, in
Table 16.16 we give the price of a gallon of regular gasoline in the United States (in dollars) for
the years 2003 through 2011. If we consider 2003 to be the base year, we compute an index for
each succeeding year by dividing the price per gallon for each year by 1.59 (the price per gallon
for the base year 2003) and by multiplying by 100. For example, for 2007 the simple index is
(2.80�1.59) � 100 � 176.10, while the simple index for 2008 is (3.27�1.59) � 100 � 205.66.
Table 16.16 gives the remaining index values for 2003 through 2011. Notice that (by definition)
the index for the base year will always equal 100.0 (as it does here).

Although the simple index is not written with a percentage sign, comparisons of the index with
the base year are percentage comparisons. For instance, the index of 205.66 for 2008 tells us that
the price per gallon in 2008 was up 105.66 percent compared to the 2003 base year. In general, if
we are comparing the index to the base year, the difference between the index and 100 gives the
percentage change from the base year. It is important to point out that other period-to-period per-
centage comparisons cannot be made by subtracting indexes. For instance, the percentage differ-
ence between the prices per gallon in 2007 and 2008 is not 205.66 � 176.10 � 29.56 percent.
Rather, the percentage difference is

This says that the price per gallon in 2008 was up 16.79 percent relative to 2007.
A simple index is computed by using the values of one time series. Often, however, we com-

pute an index based on the accumulated values of more than one time series. Such an index is
called an aggregate index. As an example, food prices are often compared with an aggregate
index based on a “market basket” of commonly bought grocery items. For instance, consider a
market basket consisting of six items—a gallon of whole milk, a one pound jar of peanut butter, a
pound of red delicious apples, a dozen eggs, a pound loaf of white bread, and a pound of ground
beef. Table 16.17 on the next page lists average city prices for these items in June 2006 and in June
2011 according to the Consumer Price Index Detailed Report.

One way to compare prices would be to compute a simple index for each individual item in
the market basket. However, we can create an aggregate price index by totaling the prices for
each year and by then computing a simple index of the yearly price totals. Using the data in

205.66 � 176.10

176.10
� 100 � 16.79

yt

y0
 � 100

T A B L E 1 6 . 1 6 Price of a Gallon of Regular Gasoline (in Dollars): 2003 to 2011
PriceGas1DS

Year 2003 2004 2005 2006 2007 2008 2009 2010 2011
Price per Gallon 1.59 1.88 2.30 2.59 2.80 3.27 2.35 2.78 3.63
Index (Base Year � 2003) 100.0 118.24 144.65 162.89 176.10 205.66 147.80 174.84 228.30

Source: U.S. Energy Information Administration.
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Table 16.17, we obtain (12.84�10.34) � 100 � 124.18. This index tells us that prices of the mar-
ket basket grocery items in 2011 have increased by 24.18 percent over the prices of these items
in the base year 2006. Notice that this percentage increase does not necessarily apply to each in-
dividual grocery item, nor does this index necessarily apply to any of the individual grocery
items. It applies only to the aggregate of grocery items in the market basket.

In general, we compute an aggregate price index as follows:

An aggregate price index is

where �pt is the sum of the prices in the current time period and �p0 is the sum of the prices in
the base year.

A disadvantage of this aggregate price index is that it does not take into account the fact that
some items in the market basket are purchased more frequently than others. To remedy this defi-
ciency, we can weight each price by the quantity of that item purchased in a given period (say
yearly). Then we can total the weighted prices for each year and compute a simple index of the
weighted price totals. To illustrate, Table 16.18 gives the 2006 and 2011 prices of the market
basket items and also gives estimates of the quantity of each item purchased in a year by a typi-
cal family. The table also gives the price multiplied by the quantity for each item, which is sim-
ply the total yearly cost of purchasing the item. These costs are totaled for each year. Looking at
Table 16.18, we see that a typical family in 2006 spent $824.09 purchasing the market basket
items during the year, while the family spent $1049.68 purchasing the market basket items during
2011. We now compute a simple index of the total costs, which is (1049.68�824.09) � 100 �
127.37.

This type of index is called a weighted aggregate price index. Two versions of this kind of
index are commonly used. The first version is called a Laspeyres index. Here the quantities that
are specified for the base year are also employed for all succeeding time periods. This is the
assumption we have made in Table 16.18. Notice that the quantities for 2011 are the same as
those specified for 2006. In general,

A Laspeyres index is

where p0 represents a base period price, q0 represents a base period quantity, and pt represents a
current period price.

Because the Laspeyres index employs the base period quantities in all succeeding time peri-
ods, this index allows for ready comparison of prices for identical quantities of goods purchased.
Such an index is useful as long as the base quantities provide a reasonable representation of
consumption patterns in succeeding time periods. However, sometimes purchasing patterns 
can change drastically as consumer preferences change or as dramatic price changes occur. If

a pt q0

a p0 
q0

� 100

¢ a pt

a p0
≤  � 100

670 Chapter 16 Time Series Forecasting and Index Numbers

T A B L E 1 6 . 1 7 2006 and 2011 Prices for a Market Basket of Grocery Items MkBsktDS

Grocery Item 2006 Price 2011 Price
1 gal. of whole milk $3.00 $3.62
1 lb. jar of peanut butter $1.74 $1.96
1 lb. of red delicious apples $1.05 $1.32
1 dozen eggs $1.24 $1.68
1 lb. loaf of white bread $1.07 $1.49
1 lb. of ground beef $2.24 $2.77

Totals $10.34 $12.84

Source: http://www.bls.gov/cpi/cpid1106.pdf
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16.8 Index Numbers 671

consumption patterns in the current period are very different from the quantities specified in the
base period, then a Laspeyres index can be misleading because it relates to quantities of goods
that few people would purchase.

A second version of the weighted aggregate price index is called a Paasche index. Here we
update the quantities so that they reflect consumption patterns in the current time period.

A Paasche index is

where p0 represents a base period price, pt represents a current period price, and qt represents a
current period quantity.

As an example, Table 16.19 presents revised quantities for the grocery items in our previously
discussed market basket. These quantities reflect increased consumption of apples, peanut butter,
and bread, and decreased consumption of milk and eggs. We calculate a 2006 cost of $835.81 for
the items in the market basket and a 2011 cost of $1065.71 for the items in the market basket.
Therefore, the Paasche index is (1065.71�835.81) � 100 � 127.51.

Because the Paasche index uses quantities from the current period, it reflects current buying
habits. However, quantity data for the current period can be difficult to obtain. Furthermore, al-
though each period is compared to the base period, it is difficult to compare the index at other
points in time. This is because different quantities are used in different periods, and thus changes
in the index are affected by changes in both prices and quantities.

Economic indexes Several commonly quoted economic indexes are compiled monthly by
the U.S. Bureau of Labor Statistics. Two important indexes are the Consumer Price Index (the
CPI) and the Producer Price Index (the PPI). These are both Laspeyres indexes.

The CPI monitors the price of a market basket of goods and services that would be purchased
by typical nonfarm consumers. Actually, there are two Consumer Price Indexes. The CPI-U, the

a pt qt

a p0 
qt

� 100

T A B L E 1 6 . 1 8 2006 and 2011 Prices and Quantities for a Market Basket of Grocery Items MkBsktDS

2006 (Base Year) 2011
Grocery Item Price, p0 Quantity, q p0 � q � cost Price, pt Quantity, q pt � q � cost
1 gal. of whole milk $3.00 52 $156.00 $3.62 52 $188.24
1 lb. jar of peanut butter $1.74 13 $22.62 $1.96 13 $25.48
1 lb. of red delicious apples $1.05 55 $57.75 $1.32 55 $72.60
1 dozen eggs $1.24 72 $89.28 $1.68 72 $120.96
1 lb. loaf of white bread $1.07 156 $166.92 $1.49 156 $232.44
1 lb. of ground beef $2.24 148 $331.52 $2.77 148 $409.96

Totals $10.34 $824.09 $12.84 $1049.68

T A B L E 1 6 . 1 9 2006 and 2011 Prices and 2011 Quantities for a Market Basket of Grocery Items MkBsktRDS

2006 2011 2011 2011
Grocery Item Price, p0 Quantity, qt p0 � qt � cost Price, pt Quantity, qt pt � qt � cost
1 gal. of whole milk $3.00 40 $120.00 $3.62 40 $144.80
1 lb. jar of peanut butter $1.74 21 $36.54 $1.96 21 $41.16
1 lb. of red delicious apples $1.05 82 $86.10 $1.32 82 $108.24
1 dozen eggs $1.24 60 $74.40 $1.68 60 $100.80
1 lb. loaf of white bread $1.07 175 $187.25 $1.49 175 $260.75
1 lb. of ground beef $2.24 148 $331.52 $2.77 148 $409.96

Totals $10.34 Total $835.81 $12.84 Total $1065.71
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Consumer Price Index for all Urban Workers, is often reported by the press as an indicator of
price changes. Figure 16.29, which gives a plot of the monthly CPI-U from February 1947 until
April 2011, shows the general increasing trend in prices over this period. The U.S. Bureau of the
Census periodically changes the base period for the CPI. The plot in Figure 16.29 uses a base pe-
riod of 1982–1984. Here, assume that the base period cost used to compute the CPI-U is the av-
erage of the 36 monthly market basket costs over the 1982–1984 base period. The April 2011
CPI-U, computed with a 1982–1984 base index of 100, was 224.91. This says that the cost of pur-
chasing the market basket of goods and services was 124.91 percent higher in April 2011 than it
was in the 1982–1984 base period. A second CPI, the CPI-W (Consumer Price Index for Urban
Wage Earners and Clerical Workers) is often used to determine wage increases that are written
into labor contracts. 

The PPI tracks the prices of goods sold by wholesalers. An increase in the PPI is often re-
garded as an indication that retail prices will soon rise.

672 Chapter 16 Time Series Forecasting and Index Numbers
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F I G U R E 1 6 . 2 9 Plot of the Monthly CPI-U from February 1947 until April 2011

Source: www.data360.org/pdf_print_group.aspx?Print_Group_Id=169.

Exercises for Section 16.8
CONCEPTS

16.37 Explain the difference between a simple index and an aggregate index.

16.38 Explain the difference between a Laspeyres index and a Paasche index.

METHODS AND APPLICATIONS

16.39 Referring to the discussion of Figure 16.29, the CPI-U for March 2011 was 223.47, and the 
CPI-U for October 1963 was 30. Interpret these CPI-U’s. 

16.40 Recall that Table 16.16 (page 669) gives the price of a gallon of regular gasoline in the 
United States (in dollars) for the years 2003 through 2011. Table 16.20 gives the price of a 
gallon of regular gasoline in the United States (in dollars) for the years 1990 through 2002.

PriceGas2
a By using 1990 as the base year, construct a simple index for the prices of a gallon of regular

gasoline in Tables 16.20 and 16.16.
b Plot the indices you have constructed versus time (1990 through 2011). Describe the pattern

that you see.

16.41 Suppose that Table 16.21 gives the yearly automobile operating expenses in a particular region of
the United States for the years 1990, 2000, and 2011. AutoExp
a Using 1990 as the base year, construct the Laspeyres index for these operating expenses.

Describe how the operating expenses have changed over time.

DS

DS

T A B L E 1 6 . 2 0
Gas Prices

PriceGas2DS

Price per 
Year Gallon ($)
1990 1.16
1991 1.14
1992 1.13
1993 1.11
1994 1.11
1995 1.15
1996 1.23
1997 1.23
1998 1.06
1999 1.17
2000 1.51
2001 1.46
2002 1.36
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Chapter Summary

In this chapter we have discussed using univariate time series
models to forecast future time series values. We began by seeing
that it can be useful to think of a time series as consisting of
trend, seasonal, cyclical, and irregular components. If these
components remain constant over time, then it is appropriate to
describe and forecast the time series by using a time series
regression model. We discussed using such models to describe
no trend, a linear trend, and constant seasonal variation (by
utilizing dummy variables). We also considered various transfor-
mations that transform increasing seasonal variation into
constant seasonal variation. As an alternative to using a transfor-
mation and dummy variables to model increasing seasonal varia-
tion, we discussed using the multiplicative decomposition
method. We then turned to a consideration of exponential

smoothing, which is appropriate to use if the components of a
time series may be changing slowly over time. Specifically, we
discussed simple exponential smoothing, Holt–Winters’ dou-
ble exponential smoothing, and multiplicative Winters’
method. We next considered how to use the Box–Jenkins
methodology to forecast a time series having components that
may be changing fairly quickly over time. We also explained how
to compare forecasting methods by using the mean absolute de-
viation (MAD), the mean squared deviation (MSD), and the
mean absolute percentage error (MAPE). We concluded this
chapter by showing how to use index numbers to describe time-
related data. Our discussion included the construction of a simple
index, an aggregate index, a Laspeyres index, and a Paasche
index.

Glossary of Terms 673

b Using 1990 as the base year, construct the Paasche index for the operating expenses.
c Another index, the value index, is given by the formula . This index

measures the changes in both the prices and quantities involved. Using 1990 as the base year,
construct the value index for the operating expenses. Compare the three indices you have
constructed.

(�pt qt��p0 q0) � 100

Glossary of Terms

autoregressive terms: Past time series values used in Box–
Jenkins models. (page 664) 
cyclical variation: Recurring up-and-down movements of a
time series around trend levels that last more than one calendar
year (often 2 to 10 years) from peak to peak or trough to trough.
(page 631)
deseasonalized time series: A time series that has had the effect
of seasonal variation removed. (page 645)
double exponential smoothing: An exponential smoothing pro-
cedure that can be used to forecast a time series described by a
linear trend model with parameters that may be slowly changing
over time. (pages 652–654)
exponential smoothing: A forecasting method that weights 
recent observations more heavily than distantly past observations.
(page 648)
index number: A number that compares a value of a time series
relative to another value of the time series. (pages 668–672)
irregular component: What is “left over” in a time series after
trend, cycle, and seasonal variations have been accounted for.
(page 631)
MAD: The mean of the absolute values of a set of forecast errors.
(pages 667–668)
MAPE: The mean of the absolute values of the percentage errors
of a set of forecasts. (pages 667–668)
MSD: The mean of the squares of a set of forecast errors. (pages
667–668)

moving averages: Averages of successive groups of time series
observations. (page 641)
moving average terms: Past error terms used in Box–Jenkins
models. (page 665)
multiplicative Winters’ method: An exponential smoothing
procedure that can be used to forecast a time series described by
a linear trend and increasing (or decreasing) seasonal variation
with parameters that may be slowly changing over time. (pages
654–659)
seasonal variation: Periodic patterns in a time series that repeat
themselves within a calendar year and are then repeated yearly.
(page 631)
simple exponential smoothing: An exponential smoothing pro-
cedure that can be used to forecast a time series described by a no
trend model with an average level that may be slowly changing
over time. (pages 647–651)
smoothing constant: A number that determines how much
weight is attached to each observation when using exponential
smoothing. (page 648)
time series: A set of observations that has been collected in time
order. (page 631)
trend: The long-run upward or downward movement that char-
acterizes a time series over a period of time. (page 631)
univariate time series model: A model that predicts future val-
ues of a time series solely on the basis of past values of the time
series. (page 631)

T A B L E 1 6 . 2 1 Yearly Automobile Operating Expenses in 1990, 2000, and 2011 AutoexpDS

1990 2000 2011
Item Price Quantity Price Quantity Price Quantity
Gallon of gasoline $1.16 1000 $1.51 882 $3.63 682
Quart of oil $2.00 15 $3.50 15 $5.75 15
Tire $125.00 2 $132.00 2 $142.00 2
Insurance $750.00 1 $900.00 1 $1,100.00 1

Note: The quantities are based on 15,000 miles driven per year and a 30,000 mile tire lifetime.
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674 Chapter 16 Time Series Forecasting and Index Numbers

Important Formulas and Tests

No trend: page 632

Linear trend: page 633

Modeling constant seasonal variation by using dummy
variables: pages 634–637

The multiplicative decomposition model: pages 640–646

Simple exponential smoothing: page 650

Double exponential smoothing: pages 652–654

Multiplicative Winters’ method: pages 654–659

Mean absolute deviation (MAD): pages 654, 667–668

Mean absolute percentage error (MAPE): pages 667–668

Mean squared deviation (MSD): pages 654, 667–668

Simple index: page 669

Aggregate price index: page 670

Laspeyres index: page 670

Paasche index: page 671

Supplementary Exercises

16.42 The State University Credit Union, a savings institution open to the faculty and staff of State
University, handles savings accounts and makes loans to members. In order to plan its investment
strategies, the credit union requires both point and prediction interval forecasts of monthly loan
requests (in thousands of dollars) to be made by the faculty and staff in future months. The credit
union has recorded monthly loan requests for its past two years of operation. These loan requests
are as follows: Loans

Year 1 297 249 340 406 464 481 549 553 556 642 670 712
Year 2 808 809 867 855 965 921 956 990 1019 1021 1033 1127

If we use MINITAB to fit the quadratic trend model

yt � b0 � b1t � b2t
2 � et

to these data, we obtain the following partial MINITAB output.

a Does the quadratic term t2 seem important in the model? Justify your answer.
b At the bottom of the MINITAB output are point and prediction interval forecasts of loan

requests in months 25 and 26. (1) Find and report these forecasts. (2) Then (using the least
squares point estimates of , , and on the computer output) calculate the point forecasts. 

16.43 The Olympia Paper Company, Inc., makes Absorbent Paper Towels. The company would like to
develop a prediction model that can be used to give point forecasts and prediction interval fore-
casts of weekly sales over 100,000 rolls, in units of 10,000 rolls, of Absorbent Paper Towels.
With a reliable model, Olympia Paper can more effectively plan its production schedule, plan its
budget, and estimate requirements for producing and storing this product. For the past 120 weeks
the company has recorded weekly sales of Absorbent Paper Towels. The 120 sales figures,

, are given in Table 16.22, and the MINITAB output resulting from using simple
exponential smoothing to forecast future values of the sales figures is given in Figure 16.30, on
the next page. Note that MINITAB chooses a smoothing constant of 1.35442, which is not (as is
the usual case) between 0 and 1. In general, if the trend effects in a time series are changing fairly
quickly (as the plot of the sales values in Figure 16.30 indicates is true) MINITAB will often
choose a smoothing constant greater than 1. Use the MINITAB output to find a point forecast of
and a 95 percent prediction interval for the number of rolls of Absorbent Paper Towels that will
be sold in a future week.

y1, y2, . . . y120

b2b1b0

The regression equation is 
Y = 200 + 50.9 Time - 0.568 TimeSQ 

Predictor        Coef       SE Coef          T          P 
Constant       199.62         20.85       9.58      0.000 
Time           50.937         3.842      13.26      0.000 
TimeSQ        -0.5677        0.1492      -3.80      0.001 

S = 31.2469   R-Sq = 98.7%   R-Sq(adj) = 98.6% 

Predicted Values for New Observations 

New Obs Time TimeSQ      Fit SE Fit        95% CI             95% PI 
   1    25.0    625  1118.21  20.85  (1074.85, 1161.56) (1040.09, 1196.32) 

2    26.0    676  1140.19  24.44  (1089.37, 1191.01) (1057.70, 1222.68) 

DS

T A B L E 1 6 . 2 2
Absorbent Paper
Towels Sales

TowelsDS

yt yt yt
15.0000 9.2835 11.4986
14.4064 7.7219 13.2778
14.9383 6.8300 13.5910
16.0374 8.2046 13.4297
15.6320 8.5289 13.3125
14.3975 8.8733 12.7445
13.8959 8.7948 11.7979
14.0765 8.1577 11.7319
16.3750 7.9128 11.6523
16.5342 8.7978 11.3718
16.3839 9.0775 10.5502
17.1006 9.3234 11.4741
17.7876 10.4739 11.5568
17.7354 10.6943 11.7986
17.0010 9.8367 11.8867
17.7485 8.1803 11.2951
18.1888 7.2509 12.7847
18.5997 5.0814 13.9435
17.5859 1.8313 13.6859
15.7389 �0.9127 14.1136
13.6971 �1.3173 13.8949
15.0059 �0.6021 14.2853
16.2574 0.1400 16.3867
14.3506 1.4030 17.0884
11.9515 1.9280 15.8861
12.0328 3.5626 14.8227
11.2142 1.9615 15.9479
11.7023 4.8463 15.0982
12.5905 6.5454 13.8770
12.1991 8.0141 14.2746
10.7752 7.9746 15.1682
10.1129 8.4959 15.3818
9.9330 8.4539 14.1863

11.7435 8.7114 13.9996
12.2590 7.3780 15.2463
12.5009 8.1905 17.0179
11.5378 9.9720 17.2929
9.6649 9.6930 16.6366

10.1043 9.4506 15.3410
10.3452 11.2088 15.6453
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Appendix 16.1 Time Series Analysis Using Excel 675

16.44 Figure 16.30 shows that the sales values in Table 16.22 are nonstationary and nonseasonal. At the
nonseasonal level (lags 1 through 9), the SAC of the regular differences of the sales values has a
spike at lag 1 and cuts off after lag 1, and the SPAC of these regular differences dies down fairly
quickly. Discuss why the guidelines in Section 16.6 say that a tentative Box–Jenkins model
describing the regular differences is and thus that a tentative
model describing is . Estimation shows that is important in the
tentative model and that a constant term does not belong in the model. Diagnostic checking
shows that the tentative model is adequate. Because the adequate Box–Jenkins model can be
shown to be equivalent to simple exponential smoothing, it gives the same point forecasts.
However, MINITAB calculates the Box–Jenkins model prediction intervals differently and
obtains increasingly wide intervals (see Figure 16.30).

d

u1yt � yt�1 � et � u1 et�1yt

zt � et � u1 et�1zt � yt � yt�1

F I G U R E 1 6 . 3 0 MINITAB Output of Simple Exponential Smoothing for the Absorbent Paper Towels Sales 
Time Series TowelsDS

1251007550251

20

15

10

5

0

Index

y

Alpha 1.35442
Smoothing Constant

MAPE 15.5454

MAD 0.8068
MSD 1.0618

Accuracy Measures

Actual
Variable

Fits
Forecasts
95.0% PI

Smoothing Plot for y
Single Exponential Method

Simple Exponential Smoothing Forecasts:

Box-Jenkins Model Forecasts:

Period   Forecast    Lower    Upper 
121    15.8899   13.9132  17.8667
122    15.8899   13.9132  17.8667
123    15.8899   13.9132  17.8667
124    15.8899   13.9132  17.8667

Period   Forecast    Lower    Upper 
121    15.8899   13.8532  17.9267
122    15.8899   12.4609  19.3189
123    15.8899   11.4891  20.2908
124    15.8899   10.6960  21.0839

Appendix 16.1 ■ Time Series Analysis Using Excel
Point forecasts from a linear trend line for the
calculator sales data in Table 16.2 on page 633
(data file: CalcSale.xlsx):

• Enter the calculator sales data from Table 16.2
with the label “Sales” in cell A1 and the values
of sales in cells A2 through A25.

• Enter the label “Month” in cell B1 and the 
values 1 to 28 in cells B2 through B29.

• Click on cell A26.

• Click the Insert Function button  on the Excel
ribbon.

• In the Insert Function dialog box, select Statistical
from the “Or select a category:” menu and select
TREND from the “Select a function:” menu. Then
click OK in the Insert Function dialog box.

• In the “TREND Function Arguments” dialog box,
enter $A$2:$A$25 into the “Known_y’s” 
window. Don’t forget the dollar signs—this
must be an absolute cell reference.

• Enter $B$2:$B$25 into the “Known_x’s” 
window. Again, don’t forget the dollar signs.

• Enter B26 into the “New_x’s” window.

• Enter the value 1 into the Const window.

(Continues on the next page.)

fx
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676 Chapter 16 Time Series Forecasting and Index Numbers

Calculation of seasonal factors and deseasonal-
ization similar to Table 16.10, Table 16.11, and
Figure 16.11 on pages 641 and 643 (data file:
TastyCola.xlsx):

• Enter the Tasty Cola data in Table 16.9 
(page 640) into column A with label Sales.
Only the sales values in Table 16.9 need to be 
entered—the year, month, and time period
need not be entered.

• Select Add-Ins : MegaStat : Time Series/
Forecasting : Deseasonalization.

• In the Deseasonalization dialog box, enter
the range A1:A37 into the “Input Range of 
Seasonal Data” window. This range can be
entered by dragging with the mouse—the
AutoExpand feature cannot be used in this
dialog box.

• Select the type of seasonal data—“quarterly”
or “monthly”—by clicking. Here we have
selected “monthly” because the Tasty Cola
data consists of monthly sales values.

• In the “First data period” box, specify the
month (in this case, January) in which the first
time series value was observed by using the up
or down arrow buttons.

• In the “First data period” box, enter the year in
which the first time series value was observed
(here equal to 1) into the Year box.

• Check the Plot Values checkbox to obtain 
plots of the seasonal observations, the 
deseasonalized data, and a trend line fit to 
the deseasonalized data.

• Click OK in the Deseasonalization dialog box.

• The seasonal factors are displayed in the
“Seasonal Indexes” column of the “Centered
Moving Average and Deseasonalization” table
in the output worksheet. They are also given in
the “adjusted” row at the bottom of the 
“Calculation of Seasonal Indexes” table in the
output worksheet.

• Click OK in the “TREND Function Arguments”
dialog box to produce the point forecast for time
period 25.

• Double-click on the drag handle in cell A26 to
extend the forecasts through time period 28.

Appendix 16.2 ■ Time Series Analysis Using MegaStat
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Appendix 16.2 Time Series Analysis Using MegaStat 677

Simple exponential smoothing similar to Table 16.13
on page 649 (data file: CodCatch.xlsx):

• Enter the cod catch data in Table 16.1 (page 632)
into column A with label CodCatch.

• Select Add-Ins : MegaStat : Time Series/
Forecasting : Exponential Smoothing : 
Simple Exponential Smoothing.

• In the Simple Exponential Smoothing dialog box,
enter the range A1:A25 into the “Input Range
for Data” window. Enter this range by dragging
with the mouse—the autoexpand feature cannot
be used in this dialog box.

• Type the value of the smoothing constant (here
equal to .02) into the Alpha window.

• Leave the Initial Value window blank if you wish
to use an initial value equal to the average of the
first six time series observations. If another initial
value is desired, type it into the Initial Value 
window.

• Click OK in the Simple Exponential Smoothing 
dialog box.

• The forecast for a future value of the time series
is found at the bottom of the “Forecast” column
in the output worksheet. 

Double exponential smoothing similar to Figure 16.15
on page 653 (data file: CalcSale.xlsx):

• Enter the calculator sales data in Table 16.2 on
page 633 into column A with label Sales.

• Select Add-Ins : MegaStat : Time Series/
Forecasting : Exponential Smoothing :
Two-factor Exponential Smoothing.

• In the Two-Factor Exponential Smoothing dialog
box, enter the range A1:A25 into the “Input
Range for Data” window. Enter this range by
dragging with the mouse—the AutoExpand 
feature cannot be used in this dialog box.

• Type the desired values of the smoothing 
constants (here both are set equal to .20) into 
the Alpha and Beta boxes.

• Leave the “Initial Value” and “Initial Trend”
boxes blank if you wish to use initial values that
are estimated by the computer using the first six
time series observations. If you wish to supply 
initial values, type an initial value of the intercept
into the “Initial Value” box and type an initial
value of the slope into the “Initial Trend” box.
Here we have supplied the values 198.0 and 8.1.

• Click OK in the Two-Factor Exponential Smoothing
dialog box.

• The forecast for the next time series value is
found at the bottom of the Forecast column in
the output worksheet.
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678 Chapter 16 Time Series Forecasting and Index Numbers

Multiplicative Winters’ method in Figure 16.19 on
page 658 (data file: TastyCola.MTW):

• In the Data window, enter the Tasty Cola data
from Table 16.9 (page 640) into column C1 with
variable name Sales.

• Select Stat : Time Series : Winters’ Method.

• In the Winters’ Method dialog box, enter Sales
into the Variable window.

• Enter 12 in the “Seasonal length” window.

• Click the Multiplicative option under Method
Type.

• Use the default values for “Weights to Use in
Smoothing” (0.2 in each of the Level, Trend,
and Seasonal windows).

• Click the “Generate forecasts” checkbox.

• Enter 12 in the “Number of forecasts” window
and enter 36 in the “Starting from origin” 
window.

• Click OK in the Winters’ Method dialog box
to obtain the forecast results in the Session 
window and a graphical summary in a 
high-resolution graphics window.

Simple exponential smoothing in Figure 16.13 on
page 651 (data file: CodCatch.MTW):

• In the Data window, enter the cod catch data
from Table 16.1 on page 632 into column C1
with variable name CodCatch.

• Select Stat : Time Series : Single Exp Smoothing.

• In the Single Exponential Smoothing dialog box,
enter CodCatch in the Variable window.

• To request that MINITAB select the smoothing
constant, select the “Optimal ARIMA” option
under “Weight to Use in Smoothing.” To choose
your own smoothing constant, select the “Use”
option and enter the desired smoothing constant
in the window.

• Place a checkmark in the “Generate forecasts”
checkbox.

• Enter 12 in the “Number of forecasts” window
and enter 24 in the “Starting from origin” 
window.

• Click OK in the Single Exponential Smoothing 
dialog box to see the forecast results in the 
Session window and a graphical summary in a
high-resolution graphics window.

Double exponential smoothing can be performed
by choosing Double Exp Smoothing from the Time
Series menu and by following the remainder of the
preceding steps.

Appendix 16.3 ■ Time Series Analysis Using MINITAB
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Computing the SAC and SPAC of the combined regu-
lar and seasonal differences of the logged passenger
totals in Figure 16.25 on page 664 (data file: AirPass.
MTW):

• Select Calc : Calculator
and calculate the natural logarithms of the pas-
senger totals (with variable name LnPassengers)
as shown in the calculator dialog box to the right.

• Select Stat : Time Series : Differences

• In the Differences dialog box, enter LnPassengers
into the Series window.

• Enter ‘Seasonal Diff’ into the “Store differences
in” window.

• Enter 12 into the Lag window.

• Click OK to calculate the first order seasonal
differences of the logged passenger totals.

• Select Stat : Time Series : Differences

• In the Differences dialog box, enter ‘Seasonal
Diff’ into the series window.

• Enter ‘RegSeasonal Diff’ into the “Store
differences in” window.

• Enter 1 into the Lag window.

• Click OK to calculate the first order regular
differences of the first order seasonal differences
of the logged passenger totals.

• Select Stat : Time Series : Autocorrelation

• In the Autocorrelation Function dialog box, enter
‘RegSeasonal Diff’ into the series window.

• Enter 24 into the “Number of lags” window.

• Click OK in the Autocorrelation Function dialog
box to obtain a graph of the sample autocorrela-
tion function of the combined regular and 
seasonal differences of the logged passenger
totals.

• In a similar fashion, obtain a graph of the sam-
ple partial autocorrelation function by selecting
Stat : Time Series : Partial Autocorrelation

Performing estimation, diagnostic checking, and
forecasting using the passenger totals Box–Jenkins
model as in Figure 16.24 on page 663 (data file: AirPass.
MTW):

• Select Stat : Time Series : ARIMA

• Enter “LnPassengers” into the Series window.

• Place a checkmark in the “Fit seasonal model”
box and enter 12 into the Period window to
specify monthly data.

• Enter 1 into each of the Nonseasonal and
Seasonal Difference windows (first order regular
and first order seasonal differencing).

• Enter 0 into each of the Nonseasonal Autore-
gressive and Seasonal Autoregressive windows
(the model has no autoregressive terms).

• Enter 1 into each of the Nonseasonal Moving
average and Seasonal Moving average windows.
(These specify the first-order nonseasonal and
first-order seasonal moving average terms.)

• Be sure that the “Include constant term in model”
checkbox is not checked (no constant in model).

• Click on the Forecasts... button and enter 12 into the
“Lead” window to forecast 12 months into the future.

• Click OK in the ARIMA dialog box.
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