CHAPTER

Operating
Systems

In this chapter we study operating systems, which are software
packages that coordinate a computer’s internal activities as well as
oversee its communication with the outside world. It is a computer’s
operating system that transforms the computer hardware into a
useful tool. Our goal is to understand what operating systems do
and how they do it. Such a background is central to being an
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An operating system is the software that controls the overall operation of a com-
puter. It provides the means by which a user can store and retrieve files, provides
the interface by which a user can request the execution of programs, and provides
the environment necessary to execute the programs requested.

Perhaps the best known example of an operating system is Windows, which
is provided in numerous versions by Microsoft and widely used in the PC
arena. Another well-established example is UNIX, which is a popular choice for
larger computer systems as well as PCs. In fact, UNIX is the core of two other
popular operating systems: Mac OS, which is the operating system provided
by Apple for its range of Mac machines, and Solaris, which was developed by
Sun Microsystems (now owned by Oracle). Still another example of an operat-
ing system found on both large and small machines is Linux, which was origi-
nally developed noncommercially by computer enthusiasts and is now
available through many commercial sources, including IBM.

For casual computer users, the differences between operating systems are
largely cosmetic. For computing professionals, different operating systems can
represent major changes in the tools they work with or the philosophy they
follow in disseminating and maintaining their work. Nevertheless, at their core
all mainstream operating systems address the same kinds of problems that
computing experts have faced for more than half a century.

3.1 The History of Operating Systems

Today's operating systems are large, complex software packages that have grown
from humble beginnings. The computers of the 1940s and 1950s were not very
flexible or efficient. Machines occupied entire rooms. Program execution
required significant preparation of equipment in terms of mounting magnetic
tapes, placing punched cards in card readers, setting switches, and so on. The
execution of each program, called a job, was handled as an isolated activity—the
machine was prepared for executing the program, the program was executed,
and then all the tapes, punched cards, etc. had to be retrieved before the next
program preparation could begin. When several users needed to share a
machine, sign-up sheets were provided so that users could reserve the machine
for blocks of time. During the time period allocated to a user, the machine was
totally under that user’s control. The session usually began with program setup,
followed by short periods of program execution. It was often completed in a hur-
ried effort to do just one more thing (“It will only take a minute”) while the next
user was impatiently starting to set up.

In such an environment, operating systems began as systems for simplifying
program setup and for streamlining the transition between jobs. One early devel-
opment was the separation of users and equipment, which eliminated the phys-
ical transition of people in and out of the computer room. For this purpose a
computer operator was hired to operate the machine. Anyone wanting a pro-
gram run was required to submit it, along with any required data and special
directions about the program’s requirements, to the operator and return later for
the results. The operator, in turn, loaded these materials into the machine’s mass
storage where a program called the operating system could read and execute
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them one at a time. This was the beginning of batch processing—the execution
of jobs by collecting them in a single batch, then executing them without further
interaction with the user.

In batch processing systems, the jobs residing in mass storage wait for exe-
cution in a job queue (Figure 3.1). A queue is a storage organization in which
objects (in this case, jobs) are ordered in first-in, first-out (abbreviated FIFO
and pronounced ‘FI-foe”) fashion. That is, the objects are removed from the
queue in the order in which they arrived. In reality, most job queues do not rig-
orously follow the FIFO structure, since most operating systems provide for con-
sideration of job priorities. As a result, a job waiting in the job queue can be
bumped by a higher-priority job.

In early batch processing systems, each job was accompanied by a set of
instructions explaining the steps required to prepare the machine for that
particular job. These instructions were encoded, using a system known as a
job control language (JCL), and stored with the job in the job queue. When
the job was selected for execution, the operating system printed these
instructions at a printer where they could be read and followed by the com-
puter operator. This communication between the operating system and the
computer operator is still seen today, as witnessed by PC operating systems
that report such errors as “disk drive not accessible” and “printer not
responding.”

A major drawback to using a computer operator as an intermediary between
a computer and its users is that the users have no interaction with their jobs once
they are submitted to the operator. This approach is acceptable for some applica-
tions, such as payroll processing, in which the data and all processing decisions
are established in advance. However, it is not acceptable when the user must
interact with a program during its execution. Examples include reservation
systems in which reservations and cancellations must be reported as they occur;
word processing systems in which documents are developed in a dynamic
write and rewrite manner; and computer games in which interaction with the
machine is the central feature of the game.

To accommodate these needs, new operating systems were developed that
allowed a program being executed to carry on a dialogue with the user through

Figure 3.1 Batch processing
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remote terminals—a feature known as interactive processing (Figure 3.2).
(A terminal consisted of little more than an electronic typewriter by which the user
could type input and read the computer’s response that was printed on paper. Today
terminals have evolved into more sophisticated devices called workstations and
even into complete PCs that can function as stand-alone computers when desired.)

Paramount to successful interactive processing is that the actions of the com-
puter be sufficiently fast to coordinate with the needs of the user rather than forcing
the user to conform to the machine’s timetable. (The task of processing payroll can
be scheduled to conform to the amount of time required by the computer, but using
a word processor would be frustrating if the machine did not respond promptly as
characters are typed.) In a sense, the computer is forced to execute tasks under a
deadline, a process that became known as real-time processing in which the
actions performed are said to occur in real-time. That is, to say that a computer
performs a task in real time means that the computer performs the task in
accordance with deadlines in its (external real-world) environment.

If interactive systems had been required to serve only one user at a time,
real-time processing would have been no problem. But computers in the 1960s
and 1970s were expensive, so each machine had to serve more than one user. In
turn, it was common for several users, working at remote terminals, to seek
interactive service from a machine at the same time, and real-time considera-
tions presented obstacles. If the operating system insisted on executing only one
job at a time, only one user would receive satisfactory real-time service.

The solution to this problem was to design operating systems that provided
service to multiple users at the same time: a feature called time-sharing. One
means of implementing time-sharing is to apply the technique called
multiprogramming in which time is divided into intervals and then the execu-
tion of each job is restricted to only one interval at a time. At the end of each inter-
val, the current job is temporarily set aside and another is allowed to execute
during the next interval. By rapidly shuffling the jobs back and forth in this man-
ner, the illusion of several jobs executing simultaneously is created. Depending on
the types of jobs being executed, early time-sharing systems were able to provide
acceptable real-time processing to as many as 30 users simultaneously. Today,
multiprogramming techniques are used in single-user as well as multiuser sys-
tems, although in the former the result is usually called multitasking. That is,
time-sharing refers to multiple users sharing access to a common computer,
whereas multitasking refers to one user executing numerous tasks simultaneously.

Figure 3.2 Interactive processing
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With the development of multiuser, time-sharing operating systems, a typi-
cal computer installation was configured as a large central computer connected
to numerous workstations. From these workstations, users could communicate
directly with the computer from outside the computer room rather than submit-
ting requests to a computer operator. Commonly used programs were stored in
the machine’s mass storage devices and operating systems were designed to exe-
cute these programs as requested from the workstations. In turn, the role of a
computer operator as an intermediary between the users and the computer
begins to fade.

Today, the existence of a computer operator has essentially disappeared, espe-
cially in the arena of personal computers where the computer user assumes all of
the responsibilities of computer operation. Even most large computer installations
run essentially unattended. Indeed, the job of computer operator has given way to
that of a system administrator who manages the computer system—obtaining and
overseeing the installation of new equipment and software, enforcing local regula-
tions such as the issuing of new accounts and establishing mass storage space limits
for the various users, and coordinating efforts to resolve problems that arise in the
system—rather than operating the machines in a hands-on manner.

In short, operating systems have grown from simple programs that retrieved
and executed programs one at a time into complex systems that coordinate time-
sharing, maintain programs and data files in the machine’s mass storage devices,
and respond directly to requests from the computer’s users.

But the evolution of operating systems continues. The development of multi-
processor machines has led to operating systems that provide time-sharing/
multitasking capabilities by assigning different tasks to different processors as well as
by sharing the time of each single processor. These operating systems must wrestle
with such problems as load balancing (dynamically allocating tasks to the various
processors so that all processors are used efficiently) as well as scaling (breaking
tasks into a number of subtasks compatible with the number of processors available).

Moreover, the advent of computer networks in which numerous machines
are connected over great distances has led to the creation of software systems to
coordinate the network’s activities. Thus the field of networking (which we will
study in Chapter 4) is in many ways an extension of the subject of operating

What’s in a Smartphone?

As cell phones have become more powerful, it has become possible for them to offer
services well beyond simply processing voice calls. A typical smartphone can now be
used to text message, browse the Web, provide directions, view multimedia
content—in short, it can be used to provide many of the same services as a tradi-
tional PC. As such, smartphones require full-fledged operating systems, not only to
manage the limited resources of the smartphone hardware, but also to provide fea-
tures that support the rapidly expanding collection of smartphone application soft-
ware. The battle for dominance in the smartphone operating system market place
promises to be fierce and will likely be settled on the basis of which system can pro-
vide the most imaginative features at the best price. Competitors in the smartphone
operating system arena include Apple’s iPhone OS, Research In Motion’s BlackBerry

0S, Microsoft’s Windows Phone, Nokia’s Symbian OS, and Google’s Android.
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systems—the goal being to manage resources across many users on many
machines rather than a single, isolated computer.

Still another direction of research in operating systems focuses on devices that
are dedicated to specific tasks such as medical devices, vehicle electronics, home
appliances, cell phones, or other hand-held computers. The computer systems
found in these devices are known as embedded systems. Embedded operating sys-
tems are often expected to conserve battery power, meet demanding real-time
deadlines, or operate continuously with little or no human oversight. Successes in
this endeavor are marked by systems such as VXWORKS, developed by Wind River
Systems and used in the Mars Exploration Rovers named Spirit and Opportunity;
Windows CE (also known as Pocket PC) developed by Microsoft; and Palm OS
developed by PalmSource, Inc., especially for use in hand-held devices.

A
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1. Identify examples of queues. In each case, indicate any situations that
violate the FIFO structure.

2. Which of the following activities require real-time processing?

Printing mailing labels

Playing a computer game

Displaying numbers on a smartphone screen as they are dialed
Executing a program that predicts the state of next year’s economy

Y PR PP

Playing an MP3 recording

3. What is the difference between embedded systems and PCs?
4. What is the difference between time-sharing and multitasking?

3.2 Operating System Architecture

To understand the composition of a typical operating system, we first consider
the complete spectrum of software found within a typical computer system.
Then we will concentrate on the operating system itself.

A Software Survey

We approach our survey of the software found on a typical computer system by
presenting a scheme for classifying software. Such classification schemes invari-
ably place similar software units in different classes in the same manner as the
assignment of time zones dictates that nearby communities must set their clocks
an hour apart even though there is no significant difference between the occur-
rence of sunrise and sunset. Moreover, in the case of software classification, the
dynamics of the subject and the lack of a definitive authority lead to contradictory
terminology. For example, users of Microsoft's Windows operating systems will
find groups of programs called “Accessories” and “Administrative Tools” that include
software from what we will call the application and utility classes. The following
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taxonomy should therefore be viewed as a means of gaining a foothold in an exten-
sive, dynamic subject rather than as a statement of universally accepted fact.

Let us begin by dividing a machine’s software into two broad categories:
application software and system software (Figure 3.3). Application software
consists of the programs for performing tasks particular to the machine’s utiliza-
tion. A machine used to maintain the inventory for a manufacturing company
will contain different application software from that found on a machine used by
an electrical engineer. Examples of application software include spreadsheets,
database systems, desktop publishing systems, accounting systems, program
development software, and games.

In contrast to application software, system software performs those tasks
that are common to computer systems in general. In a sense, the system soft-
ware provides the infrastructure that the application software requires, in much
the same manner as a nation’s infrastructure (government, roads, utilities, finan-
cial institutions, etc.) provides the foundation on which its citizens rely for their
individual lifestyles.

Within the class of system software are two categories: one is the operating
system itself and the other consists of software units collectively known as
utility software. The majority of an installation’s utility software consists of
programs for performing activities that are fundamental to computer installa-
tions but not included in the operating system. In a sense, utility software con-
sists of software units that extend (or perhaps customize) the capabilities of
the operating system. For example, the ability to format a magnetic disk or to
copy a file from a magnetic disk to a CD is often not implemented within the oper-
ating system itself but instead is provided by means of a utility program. Other
instances of utility software include software to compress and decompress data,
software for playing multimedia presentations, and software for handling net-
work communication.

Implementing certain activities as utility software allows system software to
be customized to the needs of a particular installation more easily than if they

Figure 3.3 Software classification
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Linux

For the computer enthusiast who wants to experiment with the internal components
of an operating system, there is Linux. Linux is an operating system originally
designed by Linus Torvalds while a student at the University of Helsinki. It is a non-
proprietary product and available, along with its source code (see Chapter 6) and
documentation, without charge. Because it is freely available in source code form, it
has become popular among computer hobbyists, students of operating systems, and
programmers in general. Moreover, Linux is recognized as one of the more reliable
operating systems available today. For this reason, several companies now package
and market versions of Linux in an easily useable form, and these products are now
challenging the long-established commercial operating systems on the market. You
can learn more about Linux from the Web site at http://www.linux.org.

were included in the operating system. Indeed, it is common to find companies
or individuals who have modified, or added to, the utility software that was orig-
inally provided with their machine’s operating system.

Unfortunately, the distinction between application software and utility soft-
ware can be vague. From our point of view, the difference is whether the pack-
age is part of the computer’s “software infrastructure.” Thus a new application
may evolve to the status of a utility if it becomes a fundamental tool. When still
a research project, software for communicating over the Internet was considered
application software; today such tools are fundamental to most PC usage and
would therefore be classified as utility software.

The distinction between utility software and the operating system is equally
vague. In particular, antitrust lawsuits in the United States and Europe have been
founded on questions regarding whether units such as browsers and media play-
ers are components of Microsoft's operating systems or utilities that Microsoft has
included merely to squash competition.

Components of an Operating System

Let us focus now on components that are within the domain of an operating sys-
tem. In order to perform the actions requested by the computer’'s users, an
operating system must be able to communicate with those users. The portion of
an operating system that handles this communication is often called the user
interface. Older user interfaces, called shells, communicated with users
through textual messages using a keyboard and monitor screen. More modern
systems perform this task by means of a graphical user interface (GUI—
pronounced “GOO-ee”) in which objects to be manipulated, such as files and
programs, are represented pictorially on the display as icons. These systems
allow users to issue commands by using one of several common input devices.
For example, a computer mouse, with one or more buttons, can be used to click
or drag icons on the screen. In place of a mouse, special-purpose pointing
devices or styluses are often used by graphic artists or on several types of hand-
held devices. More recently, advances in fine-grained touch screens allow users
to manipulate icons directly with their fingers. Whereas today’s GUIs use two-
dimensional image projection systems, three-dimensional interfaces that allow
human users to communicate with computers by means of 3D projection
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systems, tactile sensory devices, and surround sound audio reproduction systems
are subjects of current research.

Although an operating system’s user interface plays an important role in
establishing a machine’s functionality, this framework merely acts as an inter-
mediary between the computer’s user and the real heart of the operating system
(Figure 3.4). This distinction between the user interface and the internal parts of
the operating system is emphasized by the fact that some operating systems
allow a user to select among different interfaces to obtain the most comfortable
interaction for that particular user. Users of the UNIX operating system, for exam-
ple, can select among a variety of shells including the Bourne shell, the C shell,
and the Korn shell, as well as a GUI called X11. The earliest versions of Microsoft
Windows were a GUI application program that could be loaded from the MS-DOS
operating system’s command shell. The DOS cmd.exe shell can still be found as a
utility program in the latest versions of Windows, although this interface is
almost never required by casual users. Similarly, Apple’s OS X retains a Terminal
utility shell that hearkens back to that system’s UNIX ancestors.

An important component within today’s GUI shells is the window manager,
which allocates blocks of space on the screen, called windows, and keeps track of
which application is associated with each window. When an application wants to
display something on the screen, it notifies the window manager, and the win-
dow manager places the desired image in the window assigned to the applica-
tion. In turn, when a mouse button is clicked, it is the window manager that
computes the mouse’s location on the screen and notifies the appropriate appli-
cation of the mouse action. Window managers are responsible for what is gener-
ally called the “style” of a GUI, and most managers offer a range of configurable
choices. Linux users even have a range of choices for a window manager, with
popular choices including KDE and Gnome.

In contrast to an operating system'’s user interface, the internal part of an oper-
ating system is called the kernel. An operating system’s kernel contains those
software components that perform the very basic functions required by the com-
puter installation. One such unit is the file manager, whose job is to coordinate
the use of the machine’s mass storage facilities. More precisely, the file manager

Figure 3.4 The user interface acts as an intermediary between users and the operating
system’s kernel
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maintains records of all the files stored in mass storage, including where each
file is located, which users are allowed to access the various files, and which por-
tions of mass storage are available for new files or extensions to existing files.
These records are kept on the individual storage medium containing the related
files so that each time the medium is placed on-line, the file manager can retrieve
them and thus know what is stored on that particular medium.

For the convenience of the machine’s users, most file managers allow files to
be grouped into a bundle called a directory or folder. This approach allows a
user to organize his or her files according to their purposes by placing related
files in the same directory. Moreover, by allowing directories to contain other
directories, called subdirectories, a hierarchical organization can be constructed.
For example, a user may create a directory called MyRecords that contains sub-
directories called FinancialRecords, MedicalRecords, and HouseHold-
Records. Within each of these subdirectories could be files that fall within that
particular category. (Users of a Windows operating system can ask the file man-
ager to display the current collection of folders by executing the utility program
Windows Explorer.)

A chain of directories within directories is called a directory path. Paths are
often expressed by listing the directories along the path separated by slashes. For
instance, animals/prehistoric/dinosaurs would represent the path start-
ing at the directory named animals, passing through its subdirectory named
prehistoric, and terminating in the sub-subdirectory dinosaurs. (For Win-
dows users the slashes in such a path expression are reversed as in animals\
prehistoric\dinosaurs.)

Any access to a file by other software units is obtained at the discretion of
the file manager. The procedure begins by requesting that the file manager grant
access to the file through a procedure known as opening the file. If the file man-
ager approves the requested access, it provides the information needed to find
and to manipulate the file.

Another component of the kernel consists of a collection of device drivers,
which are the software units that communicate with the controllers (or at times,
directly with peripheral devices) to carry out operations on the peripheral
devices attached to the machine. Each device driver is uniquely designed for its
particular type of device (such as a printer, disk drive, or monitor) and translates
generic requests into the more technical steps required by the device assigned to
that driver. For example, a device driver for a printer contains the software for
reading and decoding that particular printer’s status word as well as all the other
handshaking details. Thus, other software components do not have to deal with
those technicalities in order to print a file. Instead, the other components can
merely rely on the device driver software to print the file, and let the device
driver take care of the details. In this manner, the design of the other software
units can be independent of the unique characteristics of particular devices. The
result is a generic operating system that can be customized for particular periph-
eral devices by merely installing the appropriate device drivers.

Still another component of an operating system’s kernel is the memory
manager, which is charged with the task of coordinating the machine’s use of
main memory. Such duties are minimal in an environment in which a computer
is asked to perform only one task at a time. In these cases, the program for per-
forming the current task is placed at a predetermined location in main memory,
executed, and then replaced by the program for performing the next task. How-
ever, in multiuser or multitasking environments in which the computer is asked
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to address many needs at the same time, the duties of the memory manager are
extensive. In these cases, many programs and blocks of data must reside in main
memory concurrently. Thus, the memory manager must find and assign mem-
ory space for these needs and ensure that the actions of each program are
restricted to the program’s allotted space. Moreover, as the needs of different
activities come and go, the memory manager must keep track of those memory
areas no longer occupied.

The task of the memory manager is complicated further when the total main
memory space required exceeds the space actually available in the computer. In
this case the memory manager may create the illusion of additional memory
space by rotating programs and data back and forth between main memory and
mass storage (a technique called paging). Suppose, for example, that a main
memory of 8GB is required but the computer only has 4GB. To create the illusion
of the larger memory space, the memory manager reserves 4GB of storage space
on a magnetic disk. There it records the bit patterns that would be stored in main
memory if main memory had an actual capacity of 8GB. This data is divided into
uniform sized units called pages, which are typically a few KB in size. Then the
memory manager shuffles these pages back and forth between main memory
and mass storage so that the pages that are needed at any given time are actually
present in the 4GB of main memory. The result is that the computer is able to
function as though it actually had 8GB of main memory. This large “fictional”
memory space created by paging is called virtual memory.

Two additional components within the kernel of an operating system are the
scheduler and dispatcher, which we will study in the next section. For now we
merely note that in a multiprogramming system the scheduler determines
which activities are to be considered for execution, and the dispatcher controls
the allocation of time to these activities.

Getting It Started

We have seen that an operating system provides the software infrastructure
required by other software units, but we have not considered how the operating
system gets started. This is accomplished through a procedure known as

Firmware

In addition to the boot loader, a PC’s ROM contains a collection of software routines for
performing fundamental input/output activities such as receiving information from the
keyboard, displaying messages on the computer screen, and reading data from mass
storage. Being stored in nonvolatile memory such as FlashROM, this software is not
immutably etched into the silicon of the machine—the hardware—but is also not as
readily changeable as the rest of the programs in mass storage —the software. The term
firmware was coined to describe this middle ground. Firmware routines can be used by
the boot loader to perform 1/0 activities before the operating system becomes func-
tional. For example, they are used to communicate with the computer user before the
boot process actually begins and to report errors during booting. Widely used firmware
systems include the BIOS (Basic Input/Output System) long used in “PCs”, the newer
EFI (Extensible Firmware Interface), Sun’s Open Firmware (now a product of Oracle),
and the CFE (Common Firmware Environment) used in many embedded devices.
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boot strapping (often shortened to booting) that is performed by a computer
each time it is turned on. It is this procedure that transfers the operating system
from mass storage (where it is permanently stored) into main memory (which
is essentially empty when the machine is first turned on). To understand the
boot strap process and the reason it is necessary, we begin by considering the
machine’s CPU.

A CPU is designed so that its program counter starts with a particular prede-
termined address each time the CPU is turned on. It is at this location that the
CPU expects to find the beginning of the program to be executed. Conceptually,
then, all that is needed is to store the operating system at this location. However,
for technical reasons, a computer’'s main memory is typically constructed from
volatile technologies—meaning that the memory loses the data stored in it when
the computer is turned off. Thus, the contents of main memory must be replen-
ished each time the computer is restarted.

In short, we need a program (preferably the operating system) to be present
in main memory when the computer is first turned on, but the computer’s
volatile memory is erased each time the machine is turned off. To resolve this
dilemma, a small portion of a computer’s main memory where the CPU expects
to find its initial program is constructed from special nonvolatile memory cells.
Such memory is known as read-only memory (ROM) because its contents
can be read but not altered. As an analogy, you can think of storing bit patterns
in ROM as blowing tiny fuses (some blown open—ones—and some blown
closed—zeros), although the technology used is more advanced. More precisely,
most ROM in today’s PCs is constructed with flash memory technology
(which means that it is not strictly ROM because it can be altered under special
circumstances).

In a general-purpose computer, a program called the boot loader is perma-
nently stored in the machine’s ROM. This, then, is the program that is initially
executed when the machine is turned on. The instructions in the boot loader
direct the CPU to transfer the operating system from a predetermined location
into the volatile area of main memory (Figure 3.5). Modern boot loaders can copy
an operating system into main memory from a variety of locations. For example,
in embedded systems, such as smartphones, the operating system is copied from
special flash (nonvolatile) memory; in the case of small workstations at large
companies or universities, the operating system may be copied from a distant
machine over a network. Once the operating system has been placed in main
memory, the boot loader directs the CPU to execute a jump instruction to that
area of memory. At this point, the operating system takes over and begins con-
trolling the machine’s activities. The overall process of executing the boot loader
and thus starting the operating system is called booting the computer.

You may ask why desktop computers are not provided with enough ROM to
hold the entire operating system so that booting from mass storage would not be
necessary. While this is feasible for embedded systems with small operating sys-
tems, devoting large blocks of main memory in general-purpose computers to
nonvolatile storage is not efficient with today’s technology. Moreover, com-
puter operating systems undergo frequent updates in order to maintain security
and keep abreast of new and improved device drivers for the latest hardware.
While it is possible to update operating systems and boot loaders stored in ROM,
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(often called a firmware update) the technological limits make mass storage
the most common choice for more traditional computer systems.

In closing we should point out that understanding the boot process as well as
the distinctions between an operating system, utility software, and application
software allows us to comprehend the overall methodology under which most
general-purpose computer systems operate. When such a machine is first turned
on, the boot loader loads and activates the operating system. The user then
makes requests to the operating system regarding the utility or application pro-
grams to be executed. As each utility or application is terminated, the user is put
back in touch with the operating system, at which time the user can make addi-
tional requests. Learning to use such a system is therefore a two-layered process.
In addition to learning the details of the specific utility or application desired,
one must learn enough about the machine’s operating system to navigate among

the applications.

1. List the components of a typical operating system and summarize the
role of each in a single phrase.

2. What is the difference between application software and utility software?
What is virtual memory?

5

4. Summarize the booting procedure.
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3.3 Coordinating the Machine’s Activities

In this section we consider how an operating system coordinates the execution
of application software, utility software, and units within the operating system
itself. We begin with the concept of a process.

The Concept of a Process

One of the most fundamental concepts of modern operating systems is the dis-
tinction between a program and the activity of executing a program. The former
is a static set of directions, whereas the latter is a dynamic activity whose prop-
erties change as time progresses. (This distinction is analogous to a piece of
sheet music, sitting inert in a book on the shelf, versus a musician performing
that piece by taking actions that the sheet music describes.) The activity of exe-
cuting a program under the control of the operating system is known as a
process. Associated with a process is the current status of the activity, called the
process state. This state includes the current position in the program being
executed (the value of the program counter) as well as the values in the other
CPU registers and the associated memory cells. Roughly speaking, the process
state is a snapshot of the machine at a particular time. At different times during
the execution of a program (at different times in a process) different snapshots
(different process states) will be observed.

Unlike a musician, who normally tries to play only one musical piece at a
time, typical time-sharing/multitasking computers are running many processes,
all competing for the computer’s resources. It is the task of the operating system
to manage these processes so that each process has the resources (peripheral
devices, space in main memory, access to files, and access to a CPU) that it
needs, that independent processes do not interfere with one another, and that
processes that need to exchange information are able to do so.

Process Administration

The tasks associated with coordinating the execution of processes are handled
by the scheduler and dispatcher within the operating system’s kernel. The
scheduler maintains a record of the processes present in the computer system,
introduces new processes to this pool, and removes completed processes from
the pool. Thus when a user requests the execution of an application, it is the
scheduler that adds the execution of that application to the pool of current
processes.

To keep track of all the processes, the scheduler maintains a block of infor-
mation in main memory called the process table. Each time the execution of a
program is requested, the scheduler creates a new entry for that process in the
process table. This entry contains such information as the memory area assigned
to the process (obtained from the memory manager), the priority of the process,
and whether the process is ready or waiting. A process is ready if it is in a state
in which its progress can continue; it is waiting if its progress is currently
delayed until some external event occurs, such as the completion of a mass stor-
age operation, the pressing of a key at the keyboard, or the arrival of a message
from another process.

The dispatcher is the component of the kernel that overseas the execu-
tion of the scheduled processes. In a time-sharing/multitasking system this
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task is accomplished by multiprogramming; that is, dividing time into
short segments, each called a time slice (typically measured in milli-
seconds or microseconds), and then switching the CPU’s attention among
the processes as each is allowed to execute for one time slice (Figure 3.6).
The procedure of changing from one process to another is called a process
switch (or a context switch).

Each time the dispatcher awards a time slice to a process, it initiates a timer
circuit that will indicate the end of the slice by generating a signal called an
interrupt. The CPU reacts to this interrupt signal in much the same way that you
react when interrupted from a task. You stop what you are doing, record where
you are in the task (so that you will be able to return at a later time), and take care
of'the interrupting entity. When the CPU receives an interrupt signal, it completes
its current machine cycle, saves its position in the current process and begins exe-
cuting a program, called an interrupt handler, which is stored at a predeter-
mined location in main memory. This interrupt handler is a part of the dispatcher,
and it describes how the dispatcher should respond to the interrupt signal.

Thus, the effect of the interrupt signal is to preempt the current process and
transfer control back to the dispatcher. At this point, the dispatcher selects the
process from the process table that has the highest priority among the ready
processes (as determined by the scheduler), restarts the timer circuit, and allows
the selected process to begin its time slice.

Paramount to the success of a multiprogramming system is the ability to
stop, and later restart, a process. If you are interrupted while reading a book,
your ability to continue reading at a later time depends on your ability to
remember your location in the book as well as the information that you had
accumulated to that point. In short, you must be able to re-create the environ-
ment that was present immediately prior to the interruption.

In the case of a process, the environment that must be re-created is the
process’s state, which as already mentioned, includes the value of the program
counter as well as the contents of the registers and pertinent memory cells.
CPUs designed for multiprogramming systems incorporate the task of saving this
information as part of the CPU’s reaction to the interrupt signal. These CPUs also

Figure 3.6 Multiprogramming between process A and process B
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Interrupts

The use of interrupts for terminating time slices, as described in the text, is only one
of many applications of a computer’s interrupt system. There are many situations in
which an interrupt signal is generated, each with its own interrupt routine. Indeed,
interrupts provide an important tool for coordinating a computer’s actions with its
environment. For example, both clicking a mouse and pressing a key on the keyboard
generate interrupt signals that cause the CPU to set aside its current activity and
address the cause of the interrupt.

To manage the task of recognizing and responding to incoming interrupts, the
various interrupt signals are assigned priorities so that the more important tasks can
be taken care of first. The highest priority interrupt is usually associated with a power
failure. Such an interrupt signal is generated if the computer’s power is unexpectedly
disrupted. The associated interrupt routine directs the CPU through a series of
“housekeeping” chores during the milliseconds before the voltage level drops below
an operational level.

tend to have machine-language instructions for reloading a previously saved
state. Such features simplify the task of the dispatcher when performing a
process switch and exemplify how the design of modern CPUs is influenced by
the needs of today’s operating systems.

In closing, we should note that the use of multiprogramming has been found
to increase the overall efficiency of a machine. This is somewhat counterintu-
itive since the shuffling of processes required by multiprogramming introduces
an overhead. However, without multiprogramming each process runs to comple-
tion before the next process begins, meaning that the time that a process is wait-
ing for peripheral devices to complete tasks or for a user to make the next
request is wasted. Multiprogramming allows this lost time to be given to another
process. For example, if a process executes an I/O request, such as a request to
retrieve data from a magnetic disk, the scheduler will update the process table to
reflect that the process is waiting for an external event. In turn, the dispatcher
will cease to award time slices to that process. Later (perhaps several hundred
milliseconds), when the I/O request has been completed, the scheduler will
update the process table to show that the process is ready, and thus that process
will again compete for time slices. In short, progress on other tasks will be made
while the I/0 request is being performed, and thus the entire collection of tasks
will be completed in less time than if executed in a sequential manner.
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1. Summarize the difference between a program and a process.

2. Summarize the steps performed by the CPU when an interrupt occurs.

3. In a multiprogramming system, how can high-priority processes be allowed
to run faster than others?
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4. If each time slice in a multiprogramming system is 50 milliseconds and
each context switch requires at most a microsecond, how many
processes can the machine service in a single second?

5. If each process uses its complete time slice in the machine in Question 4,
what fraction of the machine’s time is spent actually performing
processes? What would this fraction be if each process executed an I/0
request after only a microsecond of its time slice?
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An important task of an operating system is the allocation of the machine’s
resources to the processes in the system. Here we are using the term resource in
a broad sense, including the machine’s peripheral devices as well as features
within the machine itself. The file manager allocates access to files as well and
allocates mass storage space for the construction of new files; the memory man-
ager allocates memory space; the scheduler allocates space in the process table;
and the dispatcher allocates time slices. As with many problems in computer
systems, this allocation task may appear simple at first glance. Below the sur-
face, however, lie several subtleties that can lead to malfunctions in a poorly
designed system. Remember, a machine does not think for itself; it merely fol-
lows directions. Thus, to construct reliable operating systems, we must develop
algorithms that cover every possible contingency, regardless of how minuscule
it may appear.

Semaphores

Let us consider a time-sharing/multitasking operating system controlling the
activities of a computer with a single printer. If a process needs to print its
results, it must request that the operating system give it access to the printer’s
device driver. At this point, the operating system must decide whether to grant
this request, depending on whether the printer is already being used by another
process. If it is not, the operating system should grant the request and allow the
process to continue; otherwise, the operating system should deny the request

Microsoft’s Task Manager

You can gain insight to some of the internal activity of a Microsoft Windows operating
system by executing the utility program called Task Manager. (Press the Ctrl, Alt, and
Delete keys simultaneously.) In particular, by selecting the Processes tab in the Task
Manager window, you can view the process table. Here is an experiment you can per-
form: Look at the process table before you activate any application program. (You
may be surprised that so many processes are already in the table. These are neces-
sary for the system’s basic operation.) Now activate an application and confirm that
an additional process has entered the table. You will also be able to see how much

memory space was allocated to the process.
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and perhaps classify the process as a waiting process until the printer becomes
available. After all, if two processes were given simultaneous access to the com-
puter’s printer, the results would be worthless to both.

To control access to the printer, the operating system must keep track of
whether the printer has been allocated. One approach to this task would be to
use a flag, which in this context refers to a bit in memory whose states are
often referred to as set and clear, rather than 1 and 0. A clear flag (value 0) indi-
cates that the printer is available and a set flag (value 1) indicates that the
printer is currently allocated. On the surface, this approach seems well-
founded. The operating system merely checks the flag each time a request for
printer access is made. If it is clear, the request is granted and the operating
system sets the flag. If the flag is set, the operating system makes the request-
ing process wait. Each time a process finishes with the printer, the operating
system either allocates the printer to a waiting process or, if no process is
waiting, merely clears the flag.

However, this simple flag system has a problem. The task of testing and pos-
sibly setting the flag may require several machine instructions. (The value of
the flag must be retrieved from main memory, manipulated within the CPU,
and finally stored back in memory.) It is therefore possible for a task to be inter-
rupted after a clear flag has been detected but before the flag has been set.
In particular, suppose the printer is currently available, and a process requests
use of it. The flag is retrieved from main memory and found to be clear, indi-
cating that the printer is available. However, at this point, the process is inter-
rupted and another process begins its time slice. It too requests the use of the
printer. Again, the flag is retrieved from main memory and found still clear
because the previous process was interrupted before the operating system had
time to set the flag in main memory. Consequently, the operating system allows
the second process to begin using the printer. Later, the original process
resumes execution where it left off, which is immediately after the operating
system found the flag to be clear. Thus the operating system continues by set-
ting the flag in main memory and granting the original process access to the
printer. Two processes are now using the same printer.

The solution to this problem is to insist that the task of testing and possibly
setting the flag be completed without interruption. One approach is to use the
interrupt disable and interrupt enable instructions provided in most machine
languages. When executed, an interrupt disable instruction causes future inter-
rupts to be blocked, whereas an interrupt enable instruction causes the CPU to
resume responding to interrupt signals. Thus, if the operating system starts the
flag-testing routine with a disable interrupt instruction and ends it with an enable
interrupt instruction, no other activity can interrupt the routine once it starts.

Another approach is to use the test-and-set instruction that is available in
many machine languages. This instruction directs the CPU to retrieve the value
of a flag, note the value received, and then set the flag—all within a single
machine instruction. The advantage here is that because the CPU always com-
pletes an instruction before recognizing an interrupt, the task of testing and set-
ting the flag cannot be split when it is implemented as a single instruction.

A properly implemented flag, as just described, is called a semaphore, in
reference to the railroad signals used to control access to sections of track. In
fact, semaphores are used in software systems in much the same way as they are
in railway systems. Corresponding to the section of track that can contain only
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one train at a time is a sequence of instructions that should be executed by only
one process at a time. Such a sequence of instructions is called a critical region.
The requirement that only one process at a time be allowed to execute a critical
region is known as mutual exclusion. In summary, a common way of obtaining
mutual exclusion to a critical region is to guard the critical region with a sema-
phore. To enter the critical region, a process must find the semaphore clear and
then set the semaphore before entering the critical region; then upon exiting the
critical region, the process must clear the semaphore. If the semaphore is found
in its set state, the process trying to enter the critical region must wait until the
semaphore has been cleared.

Deadlock

Another problem that can arise during resource allocation is deadlock, the con-
dition in which two or more processes are blocked from progressing because
each is waiting for a resource that is allocated to another. For example, one
process may have access to the computer’s printer but be waiting for access to
the computer’s CD player, while another process has access to the CD player but
is waiting for the printer. Another example occurs in systems in which processes
are allowed to create new processes (an action called forking in the UNIX ver-
nacular) to perform subtasks. If the scheduler has no space left in the process
table and each process in the system must create an additional process before it
can complete its task, then no process can continue. Such conditions, as in other
settings (Figure 3.7), can severely degrade a system'’s performance.

Analysis of deadlock has revealed that it cannot occur unless all three of the
following conditions are satisfied:

1. There is competition for nonshareable resources.

2. The resources are requested on a partial basis; that is, having received
some resources, a process will return later to request more.

3. Once a resource has been allocated, it cannot be forcibly retrieved.

Figure 3.7 A deadlock resulting from competition for nonshareable railroad intersections
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The point of isolating these conditions is that the deadlock problem can be
removed by attacking any one of the three. Techniques that attack the third con-
dition fall into the category known as deadlock detection and correction
schemes. In these cases, the occurrence of deadlock is considered so remote
that no effort is made to avoid the problem. Instead, the approach is to detect it
should it occur and then correct it by forcibly retrieving some of the allocated
resources. Our example of a full process table might fall in this class. If deadlock
should occur due to a full table, routines within the operating system (or per-
haps a human administrator using his or her powers as “super user”) can
remove (the technical term is kill) some of the processes. This releases space in
the process table, breaking the deadlock and allowing the remaining processes
to continue their tasks.

Techniques that attack the first two conditions are known as deadlock
avoidance schemes. One, for example, attacks the second condition by requir-
ing each process to request all its resources at one time. Another scheme
attacks the first condition, not by removing the competition directly but by
converting nonshareable resources into shareable ones. For example, suppose
the resource in question is a printer and a variety of processes require its use.
Each time a process requests the printer, the operating system could grant
the request. However, instead of connecting the process to the printer's device
driver, the operating system would connect it to a device driver that stores the
information to be printed in mass storage rather than sending it to the printer.
Thus each process, thinking it has access to the printer, could execute in its
normal way. Later, when the printer is available, the operating system could
transfer the data from mass storage to the printer. In this manner, the operat-
ing system would make the nonshareable resource appear shareable by creat-
ing the illusion of more than one printer. This technique of holding data for
output at a later but more convenient time is called spooling.

We have introduced spooling as a technique for granting several processes
access to a common resource—a theme that has many variations. For example, a

Multi-Core Operating Systems

Traditional time-sharing/multitasking systems give the illusion of executing many
processes at once by switching rapidly between time slices faster than a human can
perceive. Modern systems continue to multitask in this way, but in addition, the lat-
est multi-core CPUs are genuinely capable of running two, four, or many more
processes simultaneously. Unlike a group of single-core computers working
together, a multi-core machine contains multiple independent processors (in this
case called cores) that share the computer's peripherals, memory, and other
resources. For a multi-core operating system, this means that the dispatcher and
scheduler must consider which processes to execute on each core. With different
processes running on different cores, handling competition among processes
becomes more challenging because disabling interrupts on all cores whenever one
needs to enter a critical region would be highly inefficient. Computer science has
many active research areas related to building operating system mechanisms better
suited to the new multi-core world.
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file manager could grant several processes access to the same file if the
processes are merely reading data from the file, but conflicts can occur if more
than one process tries to alter a file at the same time. Thus, a file manager may
allocate file access according to the needs of the processes, allowing several
processes to have read access but allowing only one to have write access. Other
systems may divide the file into pieces so that different processes can alter
different parts of the file concurrently. Each of these techniques, however, has
subtleties that must be resolved to obtain a reliable system. How, for example,
should those processes with only read access to a file be notified when a process

with write access alters the file?
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1. Suppose process A and process B are sharing time on the same machine,
and each needs the same nonshareable resource for short periods of
time. (For example, each process may be printing a series of independ-
ent, short reports.) Each process may then repeatedly acquire the re-
source, release it, and later request it again. What is a drawback to
controlling access to the resource in the following manner:

Begin by assigning a flag the value 0. If process A requests the resource and
the flag is 0, grant the request. Otherwise, make process A wait. If process B
requests the resource and the flag is 1, grant the request. Otherwise, make
process B wait. Each time process A finishes with the resource, change the
flag to 1. Each time process B finishes with the resource, change the flag to 0.

2. Suppose a two-lane road converges to one lane to pass through a tunnel.
To coordinate the use of the tunnel, the following signal system has been
installed:

A car entering either end of the tunnel causes red lights above the tunnel
entrances to be turned on. As the car exits the tunnel, the lights are turned
off. If an approaching car finds a red light on, it waits until the light is turned
off before entering the tunnel.

What is the flaw in this system?

3. Suppose the following solutions have been proposed for removing the
deadlock that occurs on a single-lane bridge when two cars meet. Iden-
tify which condition for deadlock given in the text is removed by each
solution.

a. Do not let a car onto the bridge until the bridge is empty.
b. If cars meet, make one of them back up.
c. Add a second lane to the bridge.

4. Suppose we represent each process in a multiprogramming system with
a dot and draw an arrow from one dot to another if the process repre-
sented by the first dot is waiting for a (nonshareable) resource being
used by the second. Mathematicians call the resulting picture a directed
graph. What property of the directed graph is equivalent to deadlock in
the system?
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3.5 Security

Since the operating system oversees the activities in a computer, it is natural for
it to play a vital role in maintaining security as well. In the broad sense, this
responsibility manifests itself in multiple forms, one of which is reliability. If a
flaw in the file manager causes the loss of part of a file, then the file was not
secure. If a defect in the dispatcher leads to a system failure (often called a sys-
tem crash) causing the loss of an hour’s worth of typing, we would argue that our
work was not secure. Thus the security of a computer system requires a well-
designed, dependable operating system.

The development of reliable software is not a subject that is restricted to
operating systems. It permeates the entire software development spectrum and
constitutes the field of computer science known as software engineering, which
we will study in Chapter 7. In this section, then, we focus on security problems
that are more closely related to the specifics of operating systems.

Attacks from the Outside

An important task performed by operating systems is to protect the computer’s
resources from access by unauthorized personnel. In the case of computers used
by multiple people, this is usually approached by means of establishing
“accounts” for the various authorized users—an account being essentially a
record within the operating system containing such entries as the user’s name,
password, and privileges to be granted to that user. The operating system can
then use this information during each login procedure (a sequence of transac-
tions in which the user establishes initial contact with a computer’s operating
system) to control access to the system.

Accounts are established by a person known as the super user or the
administrator. This person gains highly privileged access to the operating
system by identifying him- or herself as the administrator (usually by name
and password) during the login procedure. Once this contact is established,
the administrator can alter settings within the operating system, modify criti-
cal software packages, adjust the privileges granted to other users, and per-
form a variety of other maintenance activities that are denied normal users.

From this “lofty perch,” the administrator is also able to monitor activity
within the computer system in an effort to detect destructive behavior, whether
malicious or accidental. To assist in this regard, numerous software utilities,
called auditing software, have been developed that record and then analyze the
activities taking place within the computer system. In particular, auditing soft-
ware may expose a flood of attempts to login using incorrect passwords, indicat-
ing that an unauthorized user may be trying to gain access to the computer.
Auditing software may also identify activities within a user’s account that do not
conform to that user’s past behavior, which may indicate that an unauthorized
user has gained access to that account. (It is unlikely that a user who traditionally
uses only word processing and spreadsheet software will suddenly begin to access
highly technical software applications or try to execute utility packages that lie
outside that user’s privileges.)

Another culprit that auditing systems are designed to detect is the presence
of sniffing software, which is software that, when left running on a computer,



records activities and later reports them to a would-be intruder. An old, well-
known example is a program that simulates the operating system’s login
procedure. Such a program can be used to trick authorized users into thinking
they are communicating with the operating system, whereas they are actually
supplying their names and passwords to an impostor.

With all the technical complexities associated with computer security, it is
surprising to many that one of the major obstacles to the security of computer
systems is the carelessness of the users themselves. They select passwords that
are relatively easy to guess (such as names and dates), they share their pass-
words with friends, they fail to change their passwords on a timely basis, they
subject off-line mass storage devices to potential degradation by transferring
them back and forth between machines, and they import unapproved software
into the system that might subvert the system’s security. For problems like these,
most institutions with large computer installations adopt and enforce policies
that catalog the requirements and responsibilities of the users.

Attacks from Within

Once an intruder (or perhaps an authorized user with malicious intent) gains
access to a computer system, the next step is usually to explore, looking for
information of interest or for places to insert destructive software. This is a
straightforward process if the prowler has gained access to the administrator’s
account, which is why the administrator’s password is closely guarded. If, how-
ever, access is through a general user’s account, it becomes necessary to trick the
operating system into allowing the intruder to reach beyond the privileges
granted to that user. For example, the intruder may try to trick the memory man-
ager into allowing a process to access main memory cells outside its allotted
area, or the prowler may try to trick the file manager into retrieving files whose
access should be denied.

Today’s CPUs are enhanced with features that are designed to foil such
attempts. As an example, consider the need to restrict a process to the area of
main memory assigned to it by the memory manager. Without such restric-
tions, a process could erase the operating system from main memory and take
control of the computer itself. To counter such attempts, CPUs designed for
multiprogramming systems typically contain special-purpose registers in which
the operating system can store the upper and lower limits of a process’s allot-
ted memory area. Then, while performing the process, the CPU compares each
memory reference to these registers to ensure that the reference is within the
designated limits. If the reference is found to be outside the process’s desig-
nated area, the CPU automatically transfers control back to the operating sys-
tem (by performing an interrupt sequence) so that the operating system can
take appropriate action.

Embedded in this illustration is a subtle but significant problem. Without fur-
ther security features, a process could still gain access to memory cells outside of
its designated area merely by changing the special-purpose registers that contain
its memory limits. That is, a process that wanted access to additional memory
could merely increase the value in the register containing the upper memory
limit and then proceed to use the additional memory space without approval
from the operating system.

3.5 Security
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To protect against such actions, CPUs for multiprogramming systems are
designed to operate in one of two privilege levels; we will call one “privileged
mode,” the other we will call “nonprivileged mode.” When in privileged mode,
the CPU is able to execute all the instructions in its machine language. However,
when in nonprivileged mode, the list of acceptable instructions is limited. The
instructions that are available only in privileged mode are called privileged
instructions. (Typical examples of privileged instructions include instructions
that change the contents of memory limit registers and instructions that change
the current privilege mode of the CPU.) An attempt to execute a privileged
instruction when the CPU is in nonprivileged mode causes an interrupt. This
interrupt converts the CPU to privileged mode and transfers control to an
interrupt handler within the operating system.

When first turned on, the CPU is in privileged mode. Thus, when the oper-
ating system starts at the end of the boot process, all instructions are exe-
cutable. However, each time the operating system allows a process to start a
time slice, it switches the CPU to nonprivileged mode by executing a “change
privilege mode” instruction. In turn, the operating system will be notified if
the process attempts to execute a privileged instruction, and thus the operat-
ing system will be in position to maintain the integrity of the computer
system.

Privileged instructions and the control of privilege levels is the major tool
available to operating systems for maintaining security. However, the use of
these tools is a complex component of an operating system'’s design, and errors
continue to be found in current systems. A single flaw in privilege level control
can open the door to disaster from malicious programmers or from inadvertent
programming errors. If a process is allowed to alter the timer that controls the
system’s multiprogramming system, that process can extend its time slice and
dominate the machine. If a process is allowed to access peripheral devices
directly, then it can read files without supervision by the system’s file manager.
If a process is allowed to access memory cells outside its allotted area, it can read
and even alter data being used by other processes. Thus, maintaining security
continues to be an important task of an administrator as well as a goal in operat-
ing system design.
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1. Give some examples of poor choices for passwords and explain why they
would be poor choices.

2. Processors in Intel’s Pentium series provide for four privilege levels.
Why would the designers of CPUs decide to provide four levels rather
than three or five?

3. If a process in a multiprogramming system could access memory cells
outside its allotted area, how could it gain control of the machine?
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(Asterisked problems are associated with optional sections.)

1.
2.

List four activities of a typical operating system.

Summarize the distinction between batch pro-
cessing and interactive processing.

Suppose three items R, S, and T are placed in a
queue in that order. Then one item is removed
from the queue before a fourth item, X, is
placed in the queue. Then one item is removed
from the queue, the items Y and Z are placed in
the queue, and then the queue is emptied by
removing one item at a time. List all the items
in the order in which they were removed.

What is the difference between embedded sys-
tems and PCs?

5. What is a multitasking operating system?

10.

11.

12.

13.

14.

If you have a PC, identify some situations in
which you can take advantage of its multitask-
ing capabilities.

On the basis of a computer system with

which you are familiar, identify two units of

application software and two units of utility

software. Then explain why you classified

them as you did.

a. What is the role of the user interface of an
operating system?

b. What is the role of the kernel of an operat-
ing system?

What directory structure is described by the
path X/Y/Z7?

Define the term “process” as it is used in the
context of operating systems.

What information is contained in a process
table within an operating system?

What is the difference between a process that
is ready and a process that is waiting?

What is the difference between virtual mem-
ory and main memory?

Suppose a computer contained 512MB (MiB)
of main memory, and an operating system
needed to create a virtual memory of twice
that size using pages of 2KB (KiB). How many
pages would be required?

15.

16.

17.

18.
19.
20.

21.

22.

23.
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What complications could arise in a time-sharing/
multitasking system if two processes require
access to the same file at the same time? Are
there cases in which the file manager should
grant such requests? Are there cases in which
the file manager should deny such requests?

What is the distinction between application
software and system software? Give an exam-
ple of each.

Define load balancing and scaling in the con-
text of multiprocessor architectures.

Summarize the booting process.
Why is the booting process necessary?

If you have a PC, record the sequence activities
that you can observe when you turn it on. Then
determine what messages appear on the com-
puter screen before the booting process actually
begins. What software writes these messages?

Suppose a multiprogramming operating system
allocated time slices of 10 milliseconds and the
machine executed an average of five instruc-
tions per nanosecond. How many instructions
could be executed in a single time slice?

If a typist types sixty words per minute
(where a word is considered five characters),
how much time would pass between typing
each character? If a multiprogramming oper-
ating system allocated time slices in

10 millisecond units and we ignore the time
required for process switches, how many time
slices could be allocated between characters
being typed?

Suppose a multiprogramming operating sys-
tem is allotting time slices of 50 milliseconds.
If it normally takes 8 milliseconds to position a
disk’s read/write head over the desired track
and another 17 milliseconds for the desired
data to rotate around to the read/write head,
how much of a program’s time slice can be
spent waiting for a read operation from a disk
to take place? If the machine is capable of exe-
cuting ten instructions each nanosecond, how
many instructions can be executed during this
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waiting period? (This is why when a process
performs an operation with a peripheral
device, a multiprogramming system terminates
that process’s time slice and allows another
process to run while the first process is waiting
for the services of the peripheral device.)

List five resources to which a multitasking oper-
ating system might have to coordinate access.

A process is said to be I/0-bound if it requires
a lot of I/O operations, whereas a process that
consists of mostly computations within the
CPU/memory system is said to be compute-
bound. If both a compute-bound process and
an I/O-bound process are waiting for a time
slice, which should be given priority? Why?

Would greater throughput be achieved by a
system running two processes in a multi-
programming environment if both processes
were I/O-bound (refer to Problem 25) or if one
were 1/0-bound and the other were compute-
bound? Why?

Write a set of directions that tells an operating
system’s dispatcher what to do when a
process'’s time slice is over.

What information is contained in the state of a
process?

Identify a situation in a multiprogramming
system in which a process does not consume
the entire time slice allocated to it.

List in chronological order the major events
that take place when a process is interrupted.

Answer each of the following in terms of an

operating system that you use:

a. How do you ask the operating system to
copy a file from one location to another?

b. How do you ask the operating system to
show you the directory on a disk?

c. How do you ask the operating system to
execute a program?

Answer each of the following in terms of an

operating system that you use:

a. How does the operating system restrict
access to only those who are approved users?

b. How do you ask the operating system to
show you what processes are currently in
the process table?
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c. How do you tell the operating system that
you do not want other users of the machine
to have access to your files?

Explain an important use for the test-and-set
instruction found in many machine languages.
Why is it important for the entire test-and-set
process to be implemented as a single instruction?

A banker with only $100,000 loans $50,000 to
each of two customers. Later, both customers
return with the story that before they can repay
their loans they must each borrow another
$10,000 to complete the business deals in which
their previous loans are involved. The banker
resolves this deadlock by borrowing the addi-
tional funds from another source and passing
on this loan (with an increase in the interest rate)
to the two customers. Which of the three condi-
tions for deadlock has the banker removed?

Students who want to enroll in Model Railroad-
ing IT at the local university are required to
obtain permission from the instructor and pay
a laboratory fee. The two requirements are ful-
filled independently in either order and at
different locations on campus. Enrollment is
limited to twenty students; this limit is main-
tained by both the instructor, who will grant
permission to only twenty students, and the
financial office, which will allow only twenty
students to pay the laboratory fee. Suppose that
this registration system has resulted in nineteen
students having successfully registered for the
course, but with the final space being claimed
by two students—one who has only obtained
permission from the instructor and another
who has only paid the fee. Which requirement
for deadlock is removed by each of the follow-
ing solutions to the problem?

a. Both students are allowed in the course.

b. The class size is reduced to nineteen, so
neither of the two students is allowed to
register for the course.

c. The competing students are both denied
entry to the class and a third student is
given the twentieth space.

d. Tt is decided that the only requirement for
entry into the course is the payment of the
fee. Thus the student who has paid the fee
gets into the course, and entry is denied to
the other student.
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Since each area on a computer’s display can
be used by only one process at a time (other-
wise the image on the screen would be
unreadable), these areas are nonshareable
resources that are allocated by the window
manager. Which of the three conditions neces-
sary for deadlock does the window manager
remove in order to avoid deadlock?

Suppose each nonshareable resource in a com-
puter system is classified as a level 1, level 2,
or level 3 resource. Moreover, suppose each
process in the system is required to request
the resources it needs according to this classifi-
cation. That is, it must request all the required
level 1 resources at once before requesting any
level 2 resources. Once it receives the level 1
resources, it can request all the required level
2 resources, and so on. Can deadlock occur in
such a system? Why or why not?

Each of two robot arms is programmed to lift
assemblies from a conveyor belt, test them for
tolerances, and place them in one of two bins
depending on the results of the test. The assem-
blies arrive one at a time with a sufficient inter-
val between them. To keep both arms from
trying to grab the same assembly, the comput-
ers controlling the arms share a common mem-
ory cell. If an arm is available as an assembly
approaches, its controlling computer reads the
value of the common cell. If the value is
nonzero, the arm lets the assembly pass. Other-
wise, the controlling computer places a nonzero
value in the memory cell, directs the arm to
pick up the assembly, and places the value 0
back into the memory cell after the action is
complete. What sequence of events could lead
to a tug-of-war between the two arms?

Identify the use of a queue in the process of
spooling output to a printer.

A process that is waiting for a time slice is said to

suffer starvation if it is never given a time slice.

a. The pavement in the middle of an intersec-
tion can be considered as a nonshareable
resource for which cars approaching the
intersection compete. A traffic light rather
than an operating system is used to control
the allocation of the resource. If the light is
able to sense the amount of traffic arriving
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from each direction and is programmed to
give the green light to the heavier traffic,
the lighter traffic might suffer from starva-
tion. How is starvation avoided?

b. In what sense can a process starve if the dis-
patcher always assigns time slices according
to a priority system in which the priority of
each process remains fixed? (Hint: What is
the priority of the process that just com-
pleted its time slice in comparison to the
processes that are waiting, and conse-
quently which routine gets the next time
slice?) How, would you guess, do many
operating systems avoid this problem?

What is the similarity between deadlock and
starvation? (Refer to Problem 40.) What is the
difference between deadlock and starvation?

The following is the “dining philosophers” prob-
lem that was originally proposed by E. W. Dijkstra
and is now a part of computer science folklore.

Five philosophers are sitting at a round table.
In front of each is a plate of spaghetti. There
are five forks on the table, one between each
plate. Each philosopher wants to alternate
between thinking and eating. To eat, a philoso-
pher requires possession of both the forks that
are adjacent to the philosopher’s plate.

Identify the possibilities of deadlock and star-
vation (see Problem 40) that are present in the
dining philosophers problem.

What problem arises as the lengths of the
time slices in a multiprogramming system are
made shorter and shorter? What about as
they become longer and longer?

As computer science has developed, machine
languages have been extended to provide
specialized instructions. Three such machine
instructions were introduced in Section 3.4
that are used extensively by operating sys-
tems. What are these instructions?

Identity two activities that can be performed
by an operating system’s administrator but not
by a typical user.

How does an operating system keep a process
from accessing another process's memory space?

Suppose a password consisted of a string of
nine characters from the English alphabet
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(twenty-six characters). If each possible pass- 51. What is a multi-core operating system?
word could be tested in a millisecond, how long 52
would it take to test all possible passwords?

48. Why are CPUs that are designed for multitask- 53
ing operating systems capable of operating at
different privilege levels?

. What is the difference between a firmware
update and an operating system update?

. How is the window manager related to the
operating system?

54. Is Internet Explorer a part of Microsoft's

49. Identify two activities that are typically Windows operating system?

requested by privileged instructions. o )
55. What special issues might an embedded

50. Identify three ways in which a process could operating system address?

challenge the security of a computer system if
not prevented from doing so by the operating
system.

Social Issues

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

1. Suppose you are using a multiuser operating system that allows you to view
the names of the files belonging to other users as well as to view the contents
of those files that are not otherwise protected. Would viewing such informa-
tion without permission be similar to wandering through someone’s un-
locked home without permission, or would it be more like reading materials
placed in a common lounge such as a physician’s waiting room?

2. When you have access to a multiuser computer system, what responsibilities
do you have when selecting your password?

3. If a flaw in an operating system’s security allows a malicious programmer to
gain unauthorized access to sensitive data, to what extent should the devel-
oper of the operating system be held responsible?

4. Ts it your responsibility to lock your house in such a way that intruders can-
not get in, or is it the public’s responsibility to stay out of your house unless
invited? Is it the responsibility of an operating system to guard access to a
computer and its contents, or is it the responsibility of hackers to leave the
machine alone?

5. In Walden, Henry David Thoreau argues that we have become tools of our
tools; that is, instead of benefiting from the tools that we have, we spend our
time obtaining and maintaining our tools. To what extent is this true with
regard to computing? For example, if you own a personal computer, how much
time do you spend earning the money to pay for it, learning how to use its
operating system, learning how to use its utility and application software,
maintaining it, and downloading upgrades to its software in comparison to the
amount of time you spend benefiting from it? When you use it, is your time
well spent? Are you more socially active with or without a personal computer?



Additional Reading

Additional Reading

Bishop, M. Introduction to Computer Security. Boston, MA: Addison-Wesley, 2005.

Davis, W. S. and T. M. Rajkumar. Operating Systems: A Systematic View, 6th ed.
Boston, MA: Addison-Wesley, 2005.

Deitel, H. M., P. J. Deitel, and D. R. Choffnes. Operating Systems, 3rd ed. Upper
Saddle River, NJ: Prentice-Hall, 2005.

Nutt, G. Operating Systems: A Modern Approach, 3rd ed. Boston, MA: Addison-
Wesley, 2004.

Rosenoer, J. CyberLaw, The Law of the Internet. New York: Springer, 1997.

Silberschatz, A., P. B. Galvin, and G. Gagne. Operating System Concepts, 8th ed.,
New York: Wiley, 2008.

Stallings, W. Operating Systems, 5th ed. Upper Saddle River, NJ: Prentice-Hall, 2006.

Tanenbaum, A. S. Modern Operating Systems, 3rd ed. Upper Saddle River, NJ:
Prentice-Hall, 2008.

137



	Chapter 3 Operating Systems
	3.1 The History of Operating Systems
	3.2 Operating System Architecture
	A Software Survey
	Components of an Operating System
	Getting It Started

	3.3 Coordinating the Machine’s Activities
	The Concept of a Process
	Process Administration

	3.4 Handling Competition Among Processes
	Semaphores
	Deadlock

	3.5 Security
	Attacks from the Outside
	Attacks from Within



