| COUNTING

Counting things is a central problem in Discrete Mathensatidnce we can count, we can determine the likelihood of a
particular even and we can estimate how long a computeritiigotakes to complete a task.
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1 Sets and Lists

Sets and lists are fundamental concepts that arise in var-
ious contexts, including computer algorithms. We study
basic counting problems in terms of these concepts.

Sorting. A common computational task is to rearrange
elements in order. Given a linear arrdyl..n] of integers,
rearrange them such thdfi] < A[i + 1] for1 <i < n.

fori=1ton—1do

for j=i+1downto2do
if Alj] > Alj —1]then
auz = Aljl; Alj] = A[j — 1]; Alj] = auz
endi f

endf or

endf or.

We wish to count the number of comparisons made in this
algorithm. For example, sorting an array of five elements
usesl5 comparisons. In general, we make- 2 + - - - +

(n-1)=x"

—1 . .
i~ i comparisons.

Sums. We now derive a closed form for the above sum
by adding it to itself. Arranging the second sum in reverse
order and adding the terms in pairs, we get

M+n-1)]+...4[(n-1)+1]

Since each number of the original sum is added twice, we
divide by two to obtain

Yoot

As with many mathemat|cal proofs, this is not the only
way to derive this sum. We can think of the sum as two

n(n —

n—l)

Figure 1: The number of squares in the grid is twice the sum

from1to8.

Sets. A setis an unordered collection of distinct ele-
ments. Theunion of two sets is the set of elements that
are in one set or the other, thatid,u B = {z | = €
Aorz € B}. Theintersectionof the same two sets is the
set of elements that are in both, that 50 B = {z |

x € Aandz € B}. We say thatd and B are disjoint if
AN B = (). Thedifferenceis the set of elements that be-
long to the first but not to the second set, thatds; B =

{z | = € Aandz ¢ B}. Thesymmetric differences the
set of elements that belong to exactly one of the two sets,
thatis,A®@B = (A—B)U(B—A) = (AUB)—(ANB).
Look at Figure 2 for a visual description of the sets that

R Slel

Figure 2: From left to right: the union, the intersectiore tfif-

sets of stairs that stack together, as in Figure 1. At the,base ference, and the symmetric difference of two sets represiss

we haven — 1 gray blocks and one white block. At each
level, one more block changes from gray to white, until
we have one gray block and— 1 white blocks. Together,
the stairs form a rectangle divided into- 1 by n squares,
with exactly half the squares gray and the other half white.

Thus,>" i = M1 same as before. Notice that this
sum can appear in other forms, for example,
n—1
i = 14+2+...+(n-1)
=1
= n-1D+mn-2)+...+1
n—1
= Z(n —1)
1=1

disks in the plane.

result from the four types of operations. The number of
elements in a sefl is denoted a$A|. It is referred to as
the sizeor thecardinality of A. The number of elements
in the union of two sets cannot be larger than the sum of
the two sizes.

SuMm PRINCIPLE 1. |A U B < |A] 4 |B| with equality
if A andB are disjoint.

To generalize this observation to more than two sets, we
call the setsSy, Ss, ..., S,, acoveringof S = S; U Sy U
. US,. IfS;nS; = 0forall i # j, then the covering



is called apartition. To simplify the notation, we write
U;ZlSi:Sl USoU---US,,.

SuM PRINCIPLE 2. Let Sy, 5,...,.5,, be a covering
of S. Then,|S| < >, |S;|, with equality if the cov-
ering is a partition.

Matrix multiplication.  Another common computa-
tional task is the multiplication of two matrices. As-
suming the first matrix is stored in a two-dimensional
array A[l..p,1..q] and the second matrix is stored in
BJ1..q,1..r], we match up rows ofd with the columns
of B and form the sum of products of corresponding ele-
ments. For example, multiplying

- 1
_ [ !

3

A 2

with

—_
[\
ot

results in

11 8 20
18 4 14

c - | |

The algorithm we use to gét from A andB is described
in the following pseudo-code.

fori=1topdo
for j=1tordo
Cli, j] = 0;
for k=1toqdo
endf or
endf or
endf or.

We are interested in counting how many multiplications
the algorithm takes. In the example, each entry of the re-
sult uses three multiplications. Since there are six entrie
in C, there are a total of - 3 = 18 multiplications. In
general, there are multiplications for each opr entries

of the result. Thus, there aggr multiplications in total.
We state this observation in terms of sets.

PRODUCT PRINCIPLE 1. LetS = [J!", S;. If the sets
S1,82,...,5, form a partition andS;| = n for each
1 <i < mthen|S| = nm.

We can also encode each multiplication by a triplet of inte-
gers, the row number id, the column number ial which

is also the row number if, and the column number iR.
There arep possibilities for the first numbeg,for the sec-
ond, and- for the third number. We generalize this method
as follows.

PRODUCTPRINCIPLE 2. If S is a set of lists of length
m with ¢; possibilities for positiory, for 1 < j < m, then
S| =1 dg - im =[]y 45

We can use this rule to count the number of cartoon char-
acters that can be created from a book giving choices for
head, body, and feet. If there gsehoices for the head,
choices for the body, andchoices for the legs, then there
arepqr different cartoon characters we can create.

Number of passwords. We apply these principles to
count the passwords that satisfy some conditions. Sup-
pose a valid password consists of eight characters, each
a digit or a letter, and there must be at least two digits.
To count the number of valid passwords, we first count the
number of eight character passwords without the digit con-
straint: (26+10)® = 368. Now, we subtract the number of
passwords that fail to meet the digit constraint, namely the
passwords with one or no digit. There &€ passwords
without any digits. To count the passwords with exactly
one digit, we note that there a6” ways to choose an
ordered set of letters,10 ways to choose one digit, ad
places to put the digit in the list of letters. Thereforeythe
are267 - 10 - 8 passwords with only one digit. Thus, there
are36% — 268 — 267 - 10 - 8 valid passwords.

Lists. A list is an ordered collection of elements which
are not necessarily different from each other. We note two
differences between lists and sets:

(1) alistis ordered, but a set is not;
(2) alist can have repeated elements, but a set can not.

Lists can be expressed in terms of another mathematical
concept in which we map elements of one set to elements
of another set. Aunctionf from adomainD to arange

R, denoted ag : D — R, associates exactly one element
in R to each element € D. A list of k£ elements is a
function{1,2,...,k} — R. For example, the function in
Figure 3 corresponds to the listd, ¢, b, 2, 1, 3, 3. We can

use the Product Principle 2 to count the number of differ-
ent functions from a finite domair, to a finite rangeR.
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b
c
d
1
2
3
z

Figure 3: A function representing a list.

Specifically, we have a list of lengttD| with |R| possi-
bilities for each position. Hence, the number of different
functions fromD to Riis | R|I”!.

Bijections. The functionf : D — R isinjectiveor one-
to-oneif f(x) # f(y) forall = # y. Itis surjectiveor
ontoif for every r € R, there exists some € D with
f(z) = r. The function ishijectiveor aone-to-one corre-
spondencd it is both injective and surjective.

BIJECTION PRINCIPLE. Two setsD and R have the
same size if and only if there exists a bijectipn D — R.

Thus, asking how many bijections there are frénto R

only makes sense if they have the same size. Suppose this
size is finite, that is|D| = |R| = n. Then being injective

is the same as being bijective. To count the number of
bijections, we assign elements Bfto elements ofD, in
sequence. We hawve choices for the first element in the
domain,n — 1 choices for the second,— 2 for the third,

and so on. Hence the number of different bijections from
DtoRisn-(n—1)-...-1=nl

Summary. Today, we began with the building blocks of
counting: sets and lists. We went through some examples
using the sum and product principles: counting the num-
ber of times a loop is executed, the number of possible
passwords, and the number of combinations. Finally, we
talked about functions and bijections.



2 Binomial Coefficients

In this section, we focus on counting the number of ways
sets and lists can be chosen from a given set.

Permutations. A permutatioris a bijection from a finite
setDtoitself, f : D — D. Forexample, the permutations
of {1,2,3} are: 123,132,213,231,312, and321. Here

we list the permutations in lexicographic order, same as
they would appear in a dictionary. AssuminB| = k,
there are:! permutations or, equivalently, orderings of the
set. To see this, we note that there &rehoices for the
first element/ — 1 choices for the second,— 2 for the
third, and so on. The total number of choices is therefore
k(k—1)-...-1, which is the definition ok!.

Let N = {1,2,...,n}. Fork < n, ak-element per-
mutationis an injection{1,2,...,k} — N. In other
words, ak-element permutation is a list @f distinct el-
ements fromV. For example, th8-element permutations
of {1,2,3,4} are

123, 124, 132, 134, 142, 143,
213, 214, 231, 234, 241, 243,
312, 314, 321, 324, 341, 342,
412, 413, 421, 423, 431, 432

There are24 permutations in this list. There are six or-
derings of the subseftl, 2,3} in this list. In fact, each
3-element subset occurs six times. In general, we wiite
for the number of-element permutations of a set of size
n. We have
k—1
| § )
=0
nn—1)---(n—(k—=1))

n!

(n— k)

Subsets. The binomial coefficient(}), pronouncedn
choosek, is by definition the number of-element sub-
sets of a size: set. Since there are ways to order a set
of sizek, we know that:® = (}') - k! which implies

) = ormm

We fill out the following tables with values c(f;‘) where
the row index is the values of and the column index is
the value ofk. Values of(}) for k > n are all zero and
are omitted from the table.
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10 10 5 1

By studying this table, we notice several patterns.

° (3) = 1. Inwords, there is exactly one way to choose

no item from a list ofn items.
° (Z) = 1. Inwords, there is exactly one way to choose
all n items from a list ofn items.
n
(nfk)'

This table is also known as Pascal’s Triangle. If we draw
it symmetric between left and right then we see that each
entry in the triangle is the sum of the two entries above it
in the previous row.

e Each row is symmetric, that i§})

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

Pascal’s Relation. We express the above recipe of con-
structing an entry as the sum of two previous entries more
formally. For convenience, we defir(g) = 0 whenever
k<0,n<0,0rn <k.

PascAL's RELATION. (V) = (771) + ("2 1)

PROOFE We give two arguments for this identity. The first
works by algebraic manipulations. We get

<:) (n—k)(n — 1) + k(n — 1)!

(n — k)!E!
(n—1)! (n—1)!
(n—Fk—1%" " (n—Fk)!(k-1)

n—1 n—1
(") Go)
For the second argument, we partition the sets.|Bét=
n and leta be an arbitrary but fixed element frof1 (7)
counts the number df-element subsets &. To get the
number of subsets that contain we count thelk — 1)-

element subsets ¢f — {a}, and to get the number of sub-
sets that do not contain we count thek-element subsets



3 2

of S — {a}. The formeris(}_;) and the latter ig", ). COROLLARY 3. Y7 | i2 =12 + -+
Since the subsets that contaiare different from the sub-

sets that do not contaim, we can use the Sum Principle  PRooF We first express the summands in terms of bino-
1 to get the number ok-element subsets &f equal to mial coefficients and then use Corollary 2 to get the result.
(=) + ("1, as required.

o3

n

Y2 = 2Zn:2 2_2+zn:z

Binomials. We use binomial coefficients to find a for- i=1 i=1

i=1
mula for(z + y)™. First, let us look at an example. "/ "/
: - 220) % 0)
(z+y)” = (z+y)(z+y) i—1 i=1
= xx+yr+ay+yy _ n+1)+<n+1)
= 2% 422y + 9> N 3 2
Notice that the coefficients in the last line are the same _ 2ntDn(n—1) + (n+ Ln
as in the second line of Pascal’s Triangle. This is more . 1.2 32 1-2
generally the case and known as the _ n-on ni+4n
3 2
BINOMIAL THEOREM. (z +y)" = Y21, (7)2""y". This implies the claimed identity.
PROOF If we write each term of the result before combin-
ing like terms, we list every possible way to selecter®  summary. The binomial coefficient”), counts the dif-
oney from each factor. Thus, the coefficientof 'y’ is ferent ways we can choogeelements from a set of. We

equalto(,”,) = (?) In words, it is the number of ways  saw how it can be used to compuite+ y)". We proved
we can select — i factors to ber and have the remaining  several corollaries and saw that describing the identities

i factors to bey. This is equivalent to selectingactorsto a5 counting problems can lead us to different, sometimes
bey and have the remaining factors be simpler proofs.

Corollaries. The Binomial Theorem can be used to de-
rive a number of other interesting sums. We prove three
such consequences.

CoroLLARY 1. 37 (%) =2".

PROOF Letz = y = 1. Then, by the Binomial Theorem

we have
n _ - n n—iqt
(1+1)" = g(l)l 1%,
This implies the claimed identity.

CoroLLARY 2. 37, (1) = (35)).
PROOFE We use Pascal’s Relation to prove this identity. It
is instructive to trace our steps graphically, in the tri@ng
above. In a first step, we repla¢g’}) by () and(,’, ).
Keeping the first term, we replace the secofyd,, ), by

(".1) and (7). Repeating this operation, we finally re-

k1
place(; 1) by (}) = 1and(,%,) = 0. In other words,
(7f1) is equal to the sum of thg/) for j running fromn
down tok.



3 Equivalence Relations

Equivalence relations are a way to partition a set into sub-
sets of equivalent elements. Being equivalent is then in-

Equivalence relations. We now formalize the above
method of counting. Arelation on a setS is a collec-
tion R of ordered pairs(z, y). We writez: ~ y if the pair
(z,y) isin R. We say that a relation is

terpreted as being the same, such as different views of the

same object or different ordering of the same elements,
etc. By counting the equivalence classes, we are able to
count the items in the set that are different in an essential

way.

Labeling. To begin, we ask how many ways are there
to label three of five elements red and the remaining two
elements blue? Without loss of generality, we can call
ourelementsi, B, C, D, E. Alabeling is an function that

e reflexivelf x ~ x forall z € S,
e symmetridf = ~ y impliesy ~ x;
e transitiveif x ~ y andy ~ z imply z ~ z.

We say that the relation is aquivalence relatiofif R is
reflexive, symmetric, and transitive. $f is a set and? an
equivalence relation of, then theequivalence classf an
elementr € S'is

(]

lye S|y~ x}.

associates a color to each element. Suppose we look at _
a permutation of the five elements and agree to color the We note here that i: ~ y then[z] = [y]. In the above
first three red and the last two blue. Then the permutation labeling exampley5 is the set of permutations of the ele-

ABDCE would correspond to coloring, B, D red and
C, E blue. However, we get the same labeling with other
permutations, namely

ABD;CE BAD;CE DAB;CE
ABD;EC BAD;EC DAB;EC
ADB;CE BDA;CE DBA;CE
ADB;EC BDA;EC DBA;EC.

Indeed, we have3!2! 12 permutations that give the
same labeling, simply because there arevays to or-
der the red elements arid ways to order the blue ele-
ments. Similarly, every other labeling correspondd 20
permutations. In total, we hav@ = 120 permutations
of five elements. The set d20 permutations can thus be
partitioned into% = 10 blocks such that any two per-
mutations in the same block give the same labeling. Any
two permutations from different blocks give different la-
belings, which implies that the number of different label-
ings is10. More generally, the number of ways we can
label & of n elements red and the remaining— & ele-
ments blue ISW = (}). This is also the number of
k-element subsets of a setioklements.

Now suppose we have three labels, red, green, and blue.

We count the number of different labelings by dividing
the total number of orderings by the orderings within in
the color classes. There ang permutations of the, el-
ements. We want elements red; elements blue, and

k = n — 1 — j elements green. We agree that a permuta-
tion corresponding to the labeling we get by coloring the
firsti elements red, the nextelements blue, and the ldst

mentsA, B, C, D, E and two permutations are equivalent
if they give the same labeling. Recalling that we color the
first three elements red and the last two blue, the equiva-
lence classes afel\ BC'; DE|, [ABD; CE), [ABE; CD],
[ACD; BE), [ACE;BD)], [ADE;BC), [BCD;AE],
[BCE; AD], |[BDE; AC], [CDE; AB].

Not all relations are equivalence relations. Indeed, there
are relations that have none of the above three properties.
There are also relations that satisfy any subset of the three
properties but none of the rest.

An example: modular arithmetic. We say an integer
is congruento another integer modulo a positive integer
n, denoted ag = b mod n, if b — a is an integer multiple
of n. To illustrate this definition, let = 3 and letS be the
set of integers fronf to 11. Thenz = y mod 3 if 2 and
y both belong taS, = {0, 3, 6,9} or both belong to5; =
{1,4,7,10} or both belong toS> = {2,5,8,11}. This
can be easily verified by testing each pair. Congruence
modulo3 is in fact an equivalence relation ¢ To see
this, we show that congruence modadleatisfies the three
required properties.

reflexive. Sincex —x = 0-3, we know thatr = x mod 3.

symmetric.If x = y mod 3 thenz andy belong to the
same subsed;. Hencey = x mod 3.

transitive. Let x = y mod 3 andy = z mod 3. Hencex
andy belong to the same subsgt and so da; and
z. It follows thatx andz belong to the same subset.

elements green. The number of repeated labelings is thusMore generally, congruence modulois an equivalence

! timesj! timesk! and we have;% different labelings.

10

relation on the integers.



Block decomposition. An equivalence class of elements For example, leh = 3. Then, we have + ¢ + r = k.
is sometimes called Block The importance of equiva- The choices fop are from0 to k. Oncep is chosen, the
lence relations is based on the fact that the blocks partitio choices forg are fewer, namely from to & — p. Finally,
the set. if p andg are chosen then is determined, namely =
k — p — gq. The number of ways to writé as a sum of

THEOREM. Let R be an equivalence relation on some (1ré€ non-negative integers is therefore

setS. Then the blocks, = {y € S |z ~ y,y € S} for v ki X
all x € S partitionS. 1 = E—p+1
,,;q; ,,;( p+1)
PROOF. In order to prove thatJ, S, = S, we need to ft1
show two things, namely), .S, C S and{J,cg 5= 2 _ Zp
S. EachS, is a subset of which implies the first inclu- e
sion. Furthermore, each € S belongs toS, which im- k42
plies the second inclusion. Additionally,$f, # S,, then = < )
Sz NS, = 0 sincez € S, impliesz ~ z, which means 2
thatS, = S., which means tha$. 7 5,. Thereforez is There is another (simpler) way of finding this solution.
not related tay, and saz ¢ S, Suppose we line up our books, then placg — 1 dividers

Symmetrically, a partition of defines an equivalence between them. The number of books betweeni itreand
relation. If the blocks are all of the same size then it is the (i — 1)-st dividers is equal to the number of books on
easy to count them. thei-th shelf; see Figure 4. We thus hawet & — 1 ob-

jects,k books plus: — 1 dividers. The number of ways to

QUOTIENT PRINCIPLE. If a setS of sizep can be parti-

tioned intoq classes of size each, themp = ¢r or, equiv-
alently,q = . 6' I I

Multisets. The difference between a set andnaltiset
is that the latter may contain the same element multiple
times. In other words, a multiset is an unordered collec- Figure 4: The above arrangement of books and blocks repsesen

tion of elements, possibly with repetitions. We can list the two books placed on the first and last shelves, and one book on
' the second shelf. As a sum, this figure representsl + 0 + 2.

repetitions,
{(e, 0.4 0,7)) choosen — 1 dividers fromn + k — 1 objects is(" "7 ").
or we can specify the multiplicities, We can easily see that this formula agrees with the result

we found forn = 3.
m(c) =1,m(o) = 2,m(r) = 1.

Thesizeof a multiset is the sum of the multiplicities. We  Summary. We defined relations and equivalence rela-
show how to count multisets by considering an example, tions, investigating several examples of both. In partic-

the ways to distributé (identical) books among (differ- ular, modular arithmetic creates equivalence classesof th
ent) shelves. The number of ways is equal to integers. Finally, we looked at multisets, and saw that
counting the number of size-multisets ofn elements is
e the number of sizé- multisets of the: shelves; equal to the number of ways to writeas a sum ofi non-
e the number of ways to writé¢ as a sum of:. non- negative integers.

negative integers.

We count the ways to writé as a sum of non-negative
integers as follows. Choose the first integer of the sum
to bep. Now we have reduced the problem to counting
the ways to writek — p as the sum of — 1 non-negative
integers. For small values af we can do this.
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First Homework Assignment

Write the solution to each question on a single page. The
deadline for handing in solutions is January 26.

Question 1. (20 = 10 + 10 points). Ifn basketball teams
play each other team exactly once, how many games
will be played in total? If the teams then compete
in a single elimination tournament (similar to March
Madness), how many additional games are played?

Question 2. (20 = 10 + 10 points).

(a) (Problem 1.2-7 in our textbook). LéD| =
|R| = n. Show that the following statement
is true: The functiory : D — R is surjective if
and only if f is injective.

(b) Is the functionf : R — R defined byf(z) =
3z + 2 a bijection? Prove or give a counterex-
ample.

Question 3. (20 = 6 + 7 + 7 points).
(@) What is the coefficient of the® term of (z —
2)302
(b) What is the coefficient of the’y’ z* term of
(x+y+2)"?
(c) Showthat(}) = (,",).

Question 4. (20 = 6+7+7 points). For (a) and (b), prove
or disprove that the relations given are equivalence
relations. For (c), be sure to justify your answer.

(a) Choose somé € Z. Letx,y € Z. We say
x~yif z =y mod k.

(b) Letx,y be positive integers. We say ~ y if
the greatest common factorefandy is greater
thanl.

(c) How many ways can you distributeidentical
cookies ton children?
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