I NUMBER THEORY

We use the need to send secret messages as the motivationlyagsiestions in number theory. The main tool for this
purpose is modular integer arithmetic.
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4 Modular Arithmetic sound contradictory since everybody knaiRg andS 4 is
just its inverse, but it turns out that there are pairs of func

We begin the chapter on number theory by introducing tions that satisfy this requirement. Now, if Alice wants to
modular integer arithmetic. One of its uses is in the en- S€Nd a message to Bob, she proceeds as follows:
cryption of secret messages. In this section, all numbers

are integers. 1. Alice gets Bob’s public keyP’s.

2. Alice applies it to encrypt her message= Pg(z).

Private key cryptography. The problem of sending se- 3. Alice sendgy to Bob, publically.

cret messages is perhaps as old as humanity or older. We 4. Bob appliesSy(y) = Sp(Pp(z)) = .

have asendemwho attempts to encrypt a message in such a .

way that the intendextceiveris able to decipher itbutany ~ We note that Alice does not need to know Bob's secret
possibleadversaryis not. Following the traditional proto- K€Y to encrypt her message and she does not need secret
col, the sender and receiver agree on a secret code ahea@hannels to transmit her encrypted message.

of time, and they use it to both encrypt and decipher the

message. The weakness of the method is the secret codey rithmetic modulo .

i We begin by defining what it
which may be stolen or cracked.

means to take one integer, modulo another integen,
As an example, consid&leasar’s cipherwhich con-
sists of shifting the alphabet by some fixed number of po- DEFINITION. Lettingn < 1, m mod n is the smallest

sitions, e.g., integerr > 0 such thatn = nq + r for some integey.
A B C ... VW XY Z Givenm andn > 1, it is not difficult to see that; and
R 2 T A A r exist. Indeedn partitions the integers into intervals of
F F G ... Z A B C D. |engthn:

If we encode the letters as integers, this is the same as ey =Ny, 0,00 0 0, 20,

adding a fixed integer but then subtract2g the number
of letters, if the sum exceeds this number. We consider
this kind of integer arithmetic more generally.

The numbern lies in exactly one of these intervals. More
precisely, there is an integersuch thayn < m < ((¢ +
1)n. The integer is the amount by whicln exceedgn,
thatis,r = m — gn. We see thag andr are unique, which
Public key cryptography. Today, we use more power- is known as

ful encryption methods that give a more flexible way to

transmit secret information. We call thigiblic key cryp- EucLID’s DIvISION THEOREM. Lettingn > 1, for
tographywhich roughly works as follows. As before, we everym there are unique integegsand0 < r < n such
have a sender, called Alice, and a receiver, called Bob. thatm = ng + r.

Both Alice and Bob have aublic key K P4 and K P,

which they publish for everyone to see, andexret key ) _
K S andK S, which is only known to themselves. They Computations. It is useful to know that modulos can
do not exchange the secret key even among each otherP€ taken anywhere in the calculation if it involves only
The keys are used to change messages so we can think ofddition and multiplication. We state this more formally.
them as functions. The function that corresponds to the _ . .
public and the secret keys are inverses of each other, that LEMMA 1. Lettingn > 1,4 mod n = (i+ kn) mod n.
is, . . .

This should be obvious because addintimesn moves

Sa(Pa(x)) = Pa(Sa(z)) = the integeri to the right byk intervals but maintains its
Sp(Ps(z)) = Pg(Sp(x) = a relative position within the interval.
The crucial point is thaP, is easy to compute for every- LEMMA 2. Lettingn > 1, we have
body andS 4 is easy to compute for Alice but difficult for S . . )
everybody else, including Bob. Symmetricallyj is easy (i +3) modn = (z_ mod 1) + Q mod n) mod n;
for everybody butS is easy only for Bob. Perhaps this (i-j)modn = (imodn)-(jmodn)modn.

14



PrRoOF By Euclid’s Division Theorem, there are unique
integersy;, ¢; and0 < r;,r; < n such that

’L’ =

j =

@n +ri;
qin +r;.

Plugging this into the left hand side of the first equation,
we get

(i+j)modn = (¢ +gj)n+ (ri+r;)modn
= (ri+r;) modn
= (i mod n) + (j mod n) mod n.
Similarly, it is easy to show that(ij) mod n

(r;rj) mod n, which implies the second equation.

Algebraic structures. Before we continue, we intro-
duce some notation. L&, = {0,1,...,n— 1} and write
+, for addition modulon. More formally, we have an
operation that maps two numbeiss Z,, andj € Z,, to
their sum;i+,,j = (i+7j) mod n. This operation satisfies
the following four properties:

e itis associativethatis,(i+,7)+nk = i+, (j+n k)
foralli,j, k € Zy;

e 0 € Z, is theneutral elementthat is,0 +,, i = ¢ for

alieZ,;

e everyi € Z, has annverse element, that is,i +,,
i’ =0;

e it is commutativethat is,i +, j = j +, ¢ for all
i,j € L.

The first three are the defining property ofjeoup, and if
the fourth property is also satisfied we haveoamutative
or Abelian group Thus,(Z,,+,) is an Abelian group.
We have another operation mappingnd; to their prod-
uct,i -, 7 = (ij) mod n. This operation has a similar list
of properties:

e itis associativethat is,(i -, j) -nk =i, (j - k) for

alli,j, k € Zy;

e 1 € Z, is theneutral elementthat is,1 -,, i« = 7 for
alli e Z,;

e itis commutativethatis,i-, j = j-,iforalli,j €
Loy,

e multiplication distributesover addition, that isj -,
(J4nk)=(inj)+n(ink)forali jkeZ,.

These are the eight defining properties afanmutative
ring. Had we also a multiplicative inverse for every non-
zero element then the structure would be callefie&l.
Hence(Z,,, +, -») is a commutative ring. We will see in
the next section that it is a fieldf is a prime number.

Addition and multiplication modulo »n. We may be
tempted to use modular arithmetic for the purpose of trans-
mitting secret messages. As a first step, the message is in-
terpreted as an integer, possibly a very long integer. For
example, we may write each letter in ASCII and read the
bit pattern as a number. Then we concatenate the numbers.
Now suppose Alice and Bob agree on two integers; 1

anda, and they exchange messages using

P(x)
S(y)

This works fine but not as a public key cryptography sys-
tem. Knowing thatP is the same as addirngmodulon,

it is easy to determine its inversg, Alternatively, let us
use multiplication instead of addition,

T+, a;

Y +n (—a)

Y —na.

P(z)
S(y)

T p a5

Y-n (_a) = Yina.

The trouble now is that division module is not as
straightforward an operation as for integers. Indeed, if
n = 12anda = 4, we have0 -4 =3-4 =6-4 =
9-4 = 0 mod n. Since multiplication with4 is not in-
jective, the inverse operation is not well defined. Indeed,
0 :,, 4 could be0, 3, 6, or 9.

Summary. We learned about private and public key
cryptography, ways to to send a secret message from a
sender to a receiver. We also made first steps into number
theory, introducing modulo arithmetic and Euclid’s Divi-
sion Theorem. We have seem that addition and multiplica-
tion modulon are both commutative and associative, and
that multiplication distributes over addition, same asrin o
dinary integer arithmetic.

Under some circumstances, we also have inverse elements

but not in general. HenceZ,,-,) is generally not a
group. Considering the interaction of the two operations,
we note that
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5 Inverses

the rightand get’,, (a-,a’) = a”-,, (a-,a’) and therefore
a’ = a”. If a has a multiplicative inverse, we can use it to

In this section, we study under which conditions there is a S°lve a linear equation. Multiplying with the inverse from

multiplicative inverse in modular arithmetic. Specifigall
we consider the following four statements.

I. The integer has a multiplicative inverse if,, .
[I. The linear equatiom -, z = b has a solution itZ,,.

Ill. The linear equatiomz +ny = 1 has a solution in the

integers.

IV. The integers: andn are relative prime.

We will see that all four statements are equivalent, and

we will prove all necessary implications to establish this,
except for one, which we will prove in the next section.

Examples. Before starting the proofs, we compute mul-
tiplicative inverses for a few values afanda; see Table
1. Except fora = 0, all values ofa have multiplicative in-

n=2|a 0o 1
a’ 1
n=3 | a o 1 2
a’ 1 2
n=4 | a o 1 2 3
a’ 1 3
n=51|a o 1 2 3 4
a’ 1 2 3 4
n=6|a 0O 1 2 3 4 5
a’ 1 5
n=71|a 0O 1 2 3 4 5 6
a’ 1 4 5 2 3 6
n=8 | a o 1 2 3 4 5 6 7
a’ 1 3 5 7
n=9 | a o 1 2 3 4 5 6 7 8
a’ 1 5 7 2 4 8

Table 1: Values of: for which a has a multiplicative inverse'.
Black entries indicate the inverse does not exist.

versesifn = 2,3,5, 7butnotifn = 4,6, 8,9. Inthe latter
case, we have multiplicative inverses for some values of
but not for all. We will later find out that the characterizing
condition for the existence of the multiplicative inverse i
thatn anda have no non-trivial common divisor.

Linear equations modulon. Here we prove k= II.
Themultiplicative inversef an integer € Z,, is another
integera’ € Z, such thate’ -, a = a -, o’ = 1. We
note that the multiplicative inverse is unique, if it exists
Indeed, ifa” -,, a = 1 then we can multiply withz’ from
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the left and using associativity, we get

anxr = b
/ . / b
(@ na)nper = d b
xr = a0

Since the multiplicative inverse is unique, so is the solu-
tionz = o' -, b to the linear equation. We thus proved a
little bit more than |— Il, namely also the uniqueness

of the solution.

A. If a has a multiplicative inverse’ in Z,, then for
everyb € Z,, the equatioru -, z = b has the unique
solutionz = a’ -,, b.

Every implication has an equivalent contrapositive form.
For a statement4=- |l this form is—Il = —I. We state
the contrapositive form in this particular instance.

A'. If a-, x = bhas no solution ir%,, thena does not
have a multiplicative inverse.

To prove A we just need to assume that it is false, that is,
that—ll and | both hold. But if we have | then we also have
II. Now we have-ll as well as II. But this is a contradic-
tion with they cannot both be true. What we have seen
here is a very simple version of a proof by contradiction.
More complicated versions will follow later.

By settingb = 1, we getz = o/ as a solution to
a-,x = 1. Inotherwordsg’ -, a =a -, a’ = 1. Hence,
Il = I. This particuar implication is called the converse
of | = Il, which should not be confused with the contra-
positive. The converse is a new, different statement, while
the contrapositive is logically egivalent to the originaki
plication, no matter what the specifics of the implication
are.

Linear equations in two variables. Here we prove
Il < Illl. Recall thata -, x 1 is equivalent to
ax mod n = 1. Writing az = gn+r with 0 < r < n, we
see thatz mod n = 1 is equivalent to the existence of an
integerqg such thatur = gn + 1. Writing y = —q we get

ar+ny = 1.

All steps in the above derivation are reversible. Hence, we
proved that Il is equivalent to Ill. We state the specific
result.



B. The equatiom -, x = b has a solution itZ,, iff there
exist integers: andy such thatr + ny = 1.

Implications are transitive, that is, if | implies Il and I

implies Il then | implies Ill. We can do the same chain
of implications in the other direction as well. Hence, if
| < Il and Il < lll, as we have established above, we
also have k= lll. We again state this specific result for
clarity.

C. The integer has a multiplicative inverse i, iff
there exist integers andy such thauz + ny = 1.

Greatest common divisors. Here we prove lll= IV.
We will prove IV = Ill later. We say an integerfactors
another integey if j/i is an integer. Furthermorg, is
a prime numbeiif its only factors aret+j and+1. The
greatest common divisaf two integersj andk, denoted
asged(y, k), is the largest integet that is a factor of both.
We sayj andk andrelative primeif ged(j, k) = 1.

D. Given integers andn, if there exist integers and
y such thatuz + ny = 1 thenged(a, n) = 1.

PROOF Supposecd(a,n) = k. Then we can writes =
ik andn = jk. Substituting these into the linear equation
gives
1 = ar+ny
= k(iz + jy).
But thenk is a factor ofl and thereforét = +1. This

implies that the only common factors afandn are+1
and thereforgcd(a,n) = 1.

Summary. We have proved relationships between the
statements |, 11, lll, IV; see Figure 5. We will see later that

Figure 5: Equivalences between statements.

the implication proved by D can also be reversed. Thus
computing the greatest common divisor gives a test for the
existence of a multiplicative inverse.
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6 Euclid’s Algorithm that after a finite number of iterations the algorithm halts
with » = 0. In other words, the algorithm terminates after

In this section, we present Euclid’s algorithm for the great & finite number of steps, which is something one should
est common divisor of two integers. An extended version always check, in particular for recursive algorithms.
of this algorithm will furnish the one implication that is

missing in Figure 5. Last implication. We modify the algorithm so it also

returns the integersandy for whichged(j, k) = jx+ky.

Reduction. An important insight is Euclid’s Division  1his provides the missing implication in Figure 5.
Theorem stated in Section 4. We use it to prove a relation-

ship between the greatest common divisors of numpers  D’. If gcd(a, n) = 1thenthe linear equationz +ny =
andk when we replacé by its remainder modulg. 1 has a solution.

LEMMA. Let j.k.q.r > O with k = jq + r. Then This flnall_y yenﬁes_that the.gcd is a test forthe_emstence
oL ! of a multiplicative inverse in modular arithmetic. More
ged(g, k) = ged(r, j). - . e O .
specifically,z mod n is the multiplicative inverse ofi in
Z,,. Do you see why? We can thus update the relationship
between the statements I, 11, I, 1V listed at the beginning
of Section 5; see Figure 6.

PROOFE We begin by showing that every common factor
of j andk is also a factor of-. Lettingd = ged(j, k) and
writing j = Jd andk = Kd, we get

ro= k—jq = (K- Jg)d OB
We see that- can be written as a multiple of, sod is N b, b
indeed a factor of. Next, we show that every common A @ <= @
factor ofr andj is also a factor ok. Lettingd = ged(r, j) /7
and writingr = Rd andj = Jd, we get B

®

Figure 6: Equivalences between the statements listed dtethe
ginning of Section 5.

k = jg+r = (Jg+ R)d.

Henced is indeed a factor of. But this implies thatl is
a common factor of and# iff it is a common factor of-
andj.

. . Extended gcd algorithm. If » = 0 then the above algo-
Euclid's gcd algorithm.  We use the Lemma to compute  ithm returns; as the ged. In the extended algorithm, we

the greatest common divisor of positive integgmnd k. also returnz = 1 andy = 0. Now suppose > 0. In this
The algorithm is recursive and reduces the integers until case, we recurse and get
the remainder vanishes. It is convenient to assume that
both integers; andk, are positive and that < k. ged(r,j) = ra' 45y

. GCD(. k) = (k—joz' +jy’

I nt eger j YA / /

} ) = —qx ) + ka'.

g=k div j, r=k—jq Iy =)

ifr=0thenreturny We thus returry = ged(r, j) as wellast = y' — ¢z’ and
el sereturn GCD(r,j) y = 2. As before, we assunme < j < k when we call

endi f. the algorithm.

If we call the algorithm forj > £ then the first recursive i nt eger® XxGCD(j, k)

call is for k andy, that is, it reverses the order of the two g=Fk div j;, r=k—jq

integers and keeps them ordered as assumed from then on. ifr=0thenreturn(j,1,0)

Note also that- < j. In words, the first parametey, el se (g,2',y") = xGCD(r, j);

shrinks in each iterations. There are only a finite num- return(g,y —qa’,2')

ber of non-negative integers smaller thawhich implies endi f .
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To illustrate the algorithm, we run it foj = 14 and to different pairs of remainders. The generalization of thi
k = 24. The values ofj, k,q,r,g = ged(j, k), z,y at insight to relative prime numbers andn is known as the
the various levels of recursion are given in Table 2.

151 2]1| (i 16| g ;g y3 CHINESE REMAINDER THEOREM. Let m,n > 0 be
10 141 al2 '3 > relative prime. Then for every € Z,, andb € Z,, the
) system of two linear equations
4 1002 2|2 2 1 y inear equat
2 412 0|12 1 o0 zmodm = a
Table 2: Running the extended gcd algorithmjor= 14 and zmodn = b

k=24 ) o
has a unique solution iA,,,,,.

o ) ) There is a further generalization to more then two moduli
Computing inverses. We have established that the inte-  {hat are pairwise relative prime. The proof of this theorem

gera has a multiplicative inverse ifi,, iff ged(a,n) = 1. works as suggested by the example, namely by showing
Assumingn = p is a prime number, this is the case when- that f : Zywm — Zm X Zn, defined by

evera < p is positive.
f(x) = (z modm,z modn)
COROLLARY. If pis prime then every non-zeroc Z,

has a multiplicative inverse is injective. Since bot#.,,,,, andZ,, x Z,, have sizenn,

this implies thatf is a bijection. Hencga, b) € Z,,, X Z,,

It is straightforward to compute the multiplicative invers has a unique preimage, the solution of the two equations.

using the extended gcd algorithm. As before, we assume  To use this result, we would take two large integers,

pis a prime numberand < a < p. andy, and represent them as paifs,mod m, x mod n)
and (x mod m,z mod n). Arithmetic operations can
i nt eger INVERSEa, p) then be done on the remainders. For exampléimes
(9,,y) = XGCD(a, p); y would be represented by the pair
assert g=1; returnx mod p.
zymodm = [(x mod m)(y mod m)] mod m;
The assert statement makes sure thandp are indeed zymodn = [(zmod n)(y mod n)] mod n.

relative prime, for else the multiplicative inverse would ,
not exist. We have seen thatcan be negative so it is V& would choosen andn small enough so that multi-

necessary to take modulop before we report it as the plying two remainders can be done using conventional,
multiplicative inverse single-word integer multiplication.

Multiple moduli. Sometimes, we deal with large inte- Summary. We discussed El_“?"d,s algorl_thm for com-
gers, larger then the ones that fit into a single computer PUting the greatestcommon divisor of two integers, and its
word (usually32 or 64 bits). In this situation, we have to €Xtended version which provides the missing implication
find a representation that spreads the integer over several Figure 5. We have also learned the Chinese Remainder
words. For example, we may represent an integhy its .Theor.em v_vhlch can be used to decompose large integers
remainders moduld and modulds, as shown in Table 3. Nt digestible junks.

We see that the first5 non-negative integers correspond

T || 0O 1 2 3 4 13 14 15
zmod3| 0 1 2 0 1 ... 1 2 0
zmodb5| 0 1 2 3 4 3 4 0

Table 3: Mapping the integers frodrto 15 to pairs of remainders
after dividing with3 and with5.
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7 RSA Cryptosystem

Addition and multiplication modulo: do not offer the
computational difficulties needed to build a viable cryp-
tographic system. We will see that exponentiation modulo
n does.

Operations as functions. Recall that+,, and-, each
read two integers and return a third integer. If we fix one of
the two input integers, we get two functions. Specifically,
fixing « € Z,, we have functionsA : Z,, — Z, and
M : Z,, — Z, defined by

T+ a;

Ty @

see Table 4. ClearlyA is injective for every choice of

x |01 2 3 45
Az) |2 3 4 5 0 1
M) |0 2 4 0 2 4

Table 4: The functiom defined by adding = 2 modulon = 6
is injective. In contrast, the functioh/ defined by multiplying
with a = 2 is not injective.

n > 0anda € Z,. On the other hand)/ is injective
iff ged(a,n) = 1. In particular,M is injective for every
non-zerau € Z, if n is prime.

Exponentiation. Yet another function we may consider
is takinga to thez-th power. LetE : Z,, — 7Z,, be defined

by

E(z) a® mod n

= AQ'pQp...na,
where we multiplyx copies ofa together. We see in Table
5 that for some values af andn, the restriction ofE to

the non-zero integers is injective and for others it is not.

Perhaps surprisingly, the last column of Table 5 consists

of 1s only.

FERMAT'SLITTLE THEOREM. Let p be prime. Then
a?~! mod p = 1 for every non-zera € Z,.

PROOFE Sincep is prime, multiplication witha gives an
injective function for every non-zero € Z,. In other
words, multiplying witha permutes the non-zero integers

20

|10 1 2 3 4 5 6
11 1 1 1 1 1 1
211 2 4 1 2 4 1
3|1 3 2 6 4 5 1
411 4 2 1 4 2 1
5|1 5 4 6 2 3 1
6|(]1 6 1 6 1 6 1

Table 5: Exponentiation module = 7. We writez from left to
right anda from top to bottom.

in Z,. Hence,

X

Lp2p..p(p—1)
(Lpa)p(2pa)op...
X - (@® mod p).

p((P—1)pa)

Multiplying with the inverse ofX givesa,_; mod p = 1.

One-way functions. The RSA cryptosystemis based on
the existence obne-way functiong : Z,, — Z,, defined
by the following three properties:

e fis easyto compute;
e itsinverse,f~!:Z, — Z,, exists;
e without extra informationf—! is hard to compute.

The notions of ‘easy’ and ‘hard’ computation have to be
made precise, but this is beyond the scope of this course.
Roughly, it means that given computingy = f(x) takes

on the order of a few seconds while computifig! (y)
takes on the order of years. RSA uses the following recipe
to construct one-way functions:

1. choose large primesandgq, and letn. = pq;

2. choose: # 1 relative prime top — 1)(¢ — 1) and let
d be its multiplicative inverse module — 1)(¢—1);

3. the one-way functionis defined Byz) = ¢ mod n

and its inverse is defined yy) = y? mod n.

According to the RSA protocol, Bob publisheandn and
keepsd private. To exchange a secret message,Z,,,

4. Alice computeg = f(z) and publisheg;
5. Bob readg and computes = g(y).

To show that RSA is secure, we would need to prove
that without knowingp, ¢, d, it is hard to computg. We



leave this to future generations of computer scientists. In
deed, nobody today can prove that compugirggndg from

n = pq is hard, but then nobody knows how to factor large
integers efficiently either.

Correctness. To show that RSA works, we need to
prove that = z. In otherwordsg(y) = f~!(y) forevery
y € Z,. Recall thaty is computed ag () = 2° mod n.
We need;? mod n = z but we first prove a weaker result.

LEMMA. 3¢ mod p = 2 mod p for everyz € Z,.

PROOFE Sinced is the multiplicative inverse of modulo
(p—1)(g — 1), we can writeed = (p — 1)(¢ — 1)k + 1.
Hence,

y?’modp = 2 modp
FE=D=D+1 od p.

Suppose first that*(@=Y mod p # 0. Then Fermat’s
Little Theorem impliesz*®=1(¢=1) mod p = 1. But
this impliesy? mod p = z mod p, as claimed. Sup-
pose second that*(*~Y) mod p = 0. Sincep is prime,
every power of a non-zero integer is non-zero. Hence,
2 mod p = 0. But this impliesy? mod p = 0 and thus

y® mod p = x mod p, as before.

By symmetry, we also havg? mod ¢ = x mod gq.
Hence,

(y" —x)modp = 0;
d

(y*—z)modqg = 0.

By the Chinese Remainder Theorem, this system of two
linear equations has a unique solutiorZp, wheren =

pq. Sincey? — 2 = 0 is a solution, there can be no other.
Hence,

(y* —z)modn = 0.

The left hand side can be written &$y? mod n) —
x) mod n. This finally impliesy? mod n = =, as desired.

Summary. We talked about exponentiation moduto
and proved Fermat’s Little Theorem. We then described
how RSA uses exponentiation to construct one-way func-
tions, and we proved it correct. A proofthat RSA is secure
would be nice but is beyond what is currently known.
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Second Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is February 6.

Question 1. (20 = 10 + 10 points). (Problem 2.1-12 in
our textbook). We recall that a prime numbgrthat
divides a product of integers divides one of the two
factors.

() Letl < a < p— 1. Use the above recollection
to show that a$ runs through the integers from
0top — 1, the products, -, b are all different.

(b) Explain why every positive integer less than
has a unique multiplicative inverse %),.

Question 2. (20 points). (Problem 2.2-19 in our text-
book). Theleast common multiplef two positive
integersi andyj, denoted asm(i, j), is the smallest
positive integerm such thatn/i andm/j are both
integer. Give a formula fotcm(i, j) that involves

ged(i, ).

Question 3. (20 = 10 + 10 points). (Problem 2.2-17 in
our textbook). Recall the Fibonacci numbers defined
by Fp =0, Fy = 1,andF; = F;_1 + F;_» for all
i > 2.

(a) Run the extended gcd algorithm fpr=Fjq
andk = Fi1, showing the values of all param-
eters at all levels of the recursion.

(b) Running the extended gcd algorithm foe F;
andk = F; 1, how many recursive calls does it
take to get the result?

Question 4. (20 points). Letn > 1 be a nonprime
andx € Z, such thatgcd(xz,n) # 1. Prove that
2" ' mod n # 1.
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