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We use the need to send secret messages as the motivation to study questions in number theory. The main tool for this
purpose is modular integer arithmetic.
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4 Modular Arithmetic

We begin the chapter on number theory by introducing
modular integer arithmetic. One of its uses is in the en-
cryption of secret messages. In this section, all numbers
are integers.

Private key cryptography. The problem of sending se-
cret messages is perhaps as old as humanity or older. We
have asenderwho attempts to encrypt a message in such a
way that the intendedreceiveris able to decipher it but any
possibleadversaryis not. Following the traditional proto-
col, the sender and receiver agree on a secret code ahead
of time, and they use it to both encrypt and decipher the
message. The weakness of the method is the secret code,
which may be stolen or cracked.

As an example, considerCeasar’s cipher, which con-
sists of shifting the alphabet by some fixed number of po-
sitions, e.g.,

A B C . . . V W X Y Z
↓ ↓ ↓ . . . ↓ ↓ ↓ ↓ ↓
E F G . . . Z A B C D.

If we encode the letters as integers, this is the same as
adding a fixed integer but then subtracting26, the number
of letters, if the sum exceeds this number. We consider
this kind of integer arithmetic more generally.

Public key cryptography. Today, we use more power-
ful encryption methods that give a more flexible way to
transmit secret information. We call thispublic key cryp-
tographywhich roughly works as follows. As before, we
have a sender, called Alice, and a receiver, called Bob.
Both Alice and Bob have apublic key, KPA andKPB,
which they publish for everyone to see, and asecret key,
KSA andKSB, which is only known to themselves. They
do not exchange the secret key even among each other.
The keys are used to change messages so we can think of
them as functions. The function that corresponds to the
public and the secret keys are inverses of each other, that
is,

SA(PA(x)) = PA(SA(x)) = x;

SB(PB(x)) = PB(SB(x)) = x.

The crucial point is thatPA is easy to compute for every-
body andSA is easy to compute for Alice but difficult for
everybody else, including Bob. Symmetrically,PB is easy
for everybody butSB is easy only for Bob. Perhaps this

sound contradictory since everybody knowsPA andSA is
just its inverse, but it turns out that there are pairs of func-
tions that satisfy this requirement. Now, if Alice wants to
send a message to Bob, she proceeds as follows:

1. Alice gets Bob’s public key,PB .

2. Alice applies it to encrypt her message,y = PB(x).

3. Alice sendsy to Bob, publically.

4. Bob appliesSB(y) = SB(PB(x)) = x.

We note that Alice does not need to know Bob’s secret
key to encrypt her message and she does not need secret
channels to transmit her encrypted message.

Arithmetic modulo n. We begin by defining what it
means to take one integer,m, modulo another integer,n.

DEFINITION. Letting n ≤ 1, m mod n is the smallest
integerr ≥ 0 such thatm = nq + r for some integerq.

Given m andn ≥ 1, it is not difficult to see thatq and
r exist. Indeed,n partitions the integers into intervals of
lengthn:

. . . ,−n, . . . , 0, . . . , n, . . . , 2n, . . .

The numberm lies in exactly one of these intervals. More
precisely, there is an integerq such thatqn ≤ m < ((q +
1)n. The integerr is the amount by whichm exceedsqn,
that is,r = m−qn. We see thatq andr are unique, which
is known as

EUCLID ’ S DIVISION THEOREM. Letting n ≥ 1, for
everym there are unique integersq and0 ≤ r < n such
thatm = nq + r.

Computations. It is useful to know that modulos can
be taken anywhere in the calculation if it involves only
addition and multiplication. We state this more formally.

LEMMA 1. Lettingn ≥ 1, i mod n = (i+ kn) mod n.

This should be obvious because addingk timesn moves
the integeri to the right byk intervals but maintains its
relative position within the interval.

LEMMA 2. Lettingn ≥ 1, we have

(i + j) mod n = (i mod n) + (j mod n) mod n;

(i · j) mod n = (i mod n) · (j mod n) mod n.
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PROOF. By Euclid’s Division Theorem, there are unique
integersqi, qj and0 ≤ ri, rj < n such that

i = qin + ri;

j = qjn + rj .

Plugging this into the left hand side of the first equation,
we get

(i + j) mod n = (qi + qj)n + (ri + rj) mod n

= (ri + rj) mod n

= (i mod n) + (j mod n) mod n.

Similarly, it is easy to show that(ij) mod n =
(rirj) mod n, which implies the second equation.

Algebraic structures. Before we continue, we intro-
duce some notation. LetZn = {0, 1, . . . , n−1} and write
+n for addition modulon. More formally, we have an
operation that maps two numbers,i ∈ Zn andj ∈ Zn, to
their sum,i+n j = (i+j) mod n. This operation satisfies
the following four properties:

• it is associative, that is,(i+n j)+n k = i+n (j+n k)
for all i, j, k ∈ Zn;

• 0 ∈ Zn is theneutral element, that is,0 +n i = i for
all i ∈ Zn;

• everyi ∈ Zn has aninverse elementi′, that is,i +n

i′ = 0;

• it is commutative, that is, i +n j = j +n i for all
i, j ∈ Zn.

The first three are the defining property of agroup, and if
the fourth property is also satisfied we have acommutative
or Abelian group. Thus,(Zn, +n) is an Abelian group.
We have another operation mappingi andj to their prod-
uct, i ·n j = (ij) mod n. This operation has a similar list
of properties:

• it is associative, that is,(i ·n j) ·n k = i ·n (j ·n k) for
all i, j, k ∈ Zn;

• 1 ∈ Zn is theneutral element, that is,1 ·n i = i for
all i ∈ Zn;

• it is commutative, that is,i ·n j = j ·n i for all i, j ∈
Zn.

Under some circumstances, we also have inverse elements
but not in general. Hence,(Zn, ·n) is generally not a
group. Considering the interaction of the two operations,
we note that

• multiplication distributesover addition, that is,i ·n
(j +n k) = (i ·n j) +n (i ·n k) for all i, j, k ∈ Zn.

These are the eight defining properties of acommutative
ring. Had we also a multiplicative inverse for every non-
zero element then the structure would be called afield.
Hence,(Zn, +n, ·n) is a commutative ring. We will see in
the next section that it is a field ifn is a prime number.

Addition and multiplication modulo n. We may be
tempted to use modular arithmetic for the purpose of trans-
mitting secret messages. As a first step, the message is in-
terpreted as an integer, possibly a very long integer. For
example, we may write each letter in ASCII and read the
bit pattern as a number. Then we concatenate the numbers.
Now suppose Alice and Bob agree on two integers,n ≥ 1
anda, and they exchange messages using

P (x) = x +n a;

S(y) = y +n (−a) = y −n a.

This works fine but not as a public key cryptography sys-
tem. Knowing thatP is the same as addinga modulon,
it is easy to determine its inverse,S. Alternatively, let us
use multiplication instead of addition,

P (x) = x ·n a;

S(y) = y ·n (−a) = y :n a.

The trouble now is that division modulon is not as
straightforward an operation as for integers. Indeed, if
n = 12 anda = 4, we have0 · 4 = 3 · 4 = 6 · 4 =
9 · 4 = 0 mod n. Since multiplication with4 is not in-
jective, the inverse operation is not well defined. Indeed,
0 :n 4 could be0, 3, 6, or 9.

Summary. We learned about private and public key
cryptography, ways to to send a secret message from a
sender to a receiver. We also made first steps into number
theory, introducing modulo arithmetic and Euclid’s Divi-
sion Theorem. We have seem that addition and multiplica-
tion modulon are both commutative and associative, and
that multiplication distributes over addition, same as in or-
dinary integer arithmetic.
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5 Inverses

In this section, we study under which conditions there is a
multiplicative inverse in modular arithmetic. Specifically,
we consider the following four statements.

I. The integera has a multiplicative inverse inZn.

II. The linear equationa ·n x = b has a solution inZn.

III. The linear equationax+ny = 1 has a solution in the
integers.

IV. The integersa andn are relative prime.

We will see that all four statements are equivalent, and
we will prove all necessary implications to establish this,
except for one, which we will prove in the next section.

Examples. Before starting the proofs, we compute mul-
tiplicative inverses for a few values ofn anda; see Table
1. Except fora = 0, all values ofa have multiplicative in-

n = 2 a 0 1
a
′ 1

n = 3 a 0 1 2
a
′ 1 2

n = 4 a 0 1 2 3
a
′ 1 3

n = 5 a 0 1 2 3 4
a
′ 1 2 3 4

n = 6 a 0 1 2 3 4 5
a
′ 1 5

n = 7 a 0 1 2 3 4 5 6
a
′ 1 4 5 2 3 6

n = 8 a 0 1 2 3 4 5 6 7
a
′ 1 3 5 7

n = 9 a 0 1 2 3 4 5 6 7 8
a
′ 1 5 7 2 4 8

Table 1: Values ofn for which a has a multiplicative inversea′.
Black entries indicate the inverse does not exist.

verses ifn = 2, 3, 5, 7 but not ifn = 4, 6, 8, 9. In the latter
case, we have multiplicative inverses for some values ofa
but not for all. We will later find out that the characterizing
condition for the existence of the multiplicative inverse is
thatn anda have no non-trivial common divisor.

Linear equations modulon. Here we prove I⇐⇒ II.
Themultiplicative inverseof an integera ∈ Zn is another
integera′ ∈ Zn such thata′ ·n a = a ·n a′ = 1. We
note that the multiplicative inverse is unique, if it exists.
Indeed, ifa′′ ·n a = 1 then we can multiply witha′ from

the right and geta′ ·n(a·na′) = a′′ ·n(a·na′) and therefore
a′ = a′′. If a has a multiplicative inverse, we can use it to
solve a linear equation. Multiplying with the inverse from
the left and using associativity, we get

a ·n x = b;

(a′ ·n a) ·n x = a′ ·n b;

x = a′ ·n b.

Since the multiplicative inverse is unique, so is the solu-
tion x = a′ ·n b to the linear equation. We thus proved a
little bit more than I=⇒ II, namely also the uniqueness
of the solution.

A. If a has a multiplicative inversea′ in Zn then for
every b ∈ Zn, the equationa ·n x = b has the unique
solutionx = a′ ·n b.

Every implication has an equivalent contrapositive form.
For a statement I=⇒ II this form is¬II =⇒ ¬I. We state
the contrapositive form in this particular instance.

A’. If a ·n x = b has no solution inZn thena does not
have a multiplicative inverse.

To prove A’ we just need to assume that it is false, that is,
that¬II and I both hold. But if we have I then we also have
II. Now we have¬II as well as II. But this is a contradic-
tion with they cannot both be true. What we have seen
here is a very simple version of a proof by contradiction.
More complicated versions will follow later.

By setting b = 1, we getx = a′ as a solution to
a ·n x = 1. In other words,a′ ·n a = a ·n a′ = 1. Hence,
II =⇒ I. This particuar implication is called the converse
of I =⇒ II, which should not be confused with the contra-
positive. The converse is a new, different statement, while
the contrapositive is logically eqivalent to the original im-
plication, no matter what the specifics of the implication
are.

Linear equations in two variables. Here we prove
II ⇐⇒ III. Recall that a ·n x = 1 is equivalent to
ax mod n = 1. Writing ax = qn+ r with 0 ≤ r < n, we
see thatax mod n = 1 is equivalent to the existence of an
integerq such thatax = qn + 1. Writing y = −q we get

ax + ny = 1.

All steps in the above derivation are reversible. Hence, we
proved that II is equivalent to III. We state the specific
result.
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B. The equationa ·n x = b has a solution inZn iff there
exist integersx andy such thatax + ny = 1.

Implications are transitive, that is, if I implies II and II
implies III then I implies III. We can do the same chain
of implications in the other direction as well. Hence, if
I ⇐⇒ II and II ⇐⇒ III, as we have established above, we
also have I⇐⇒ III. We again state this specific result for
clarity.

C. The integera has a multiplicative inverse inZn iff
there exist integersx andy such thatax + ny = 1.

Greatest common divisors. Here we prove III=⇒ IV.
We will prove IV =⇒ III later. We say an integeri factors
another integerj if j/i is an integer. Furthermore,j is
a prime numberif its only factors are±j and±1. The
greatest common divisorof two integersj andk, denoted
asgcd(j, k), is the largest integerd that is a factor of both.
We sayj andk andrelative primeif gcd(j, k) = 1.

D. Given integersa andn, if there exist integersx and
y such thatax + ny = 1 thengcd(a, n) = 1.

PROOF. Supposegcd(a, n) = k. Then we can writea =
ik andn = jk. Substituting these into the linear equation
gives

1 = ax + ny

= k(ix + jy).

But thenk is a factor of1 and thereforek = ±1. This
implies that the only common factors ofa andn are±1
and thereforegcd(a, n) = 1.

Summary. We have proved relationships between the
statements I, II, III, IV; see Figure 5. We will see later that

III

II

I

IV
D

C

A

B

Figure 5: Equivalences between statements.

the implication proved by D can also be reversed. Thus
computing the greatest common divisor gives a test for the
existence of a multiplicative inverse.
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6 Euclid’s Algorithm

In this section, we present Euclid’s algorithm for the great-
est common divisor of two integers. An extended version
of this algorithm will furnish the one implication that is
missing in Figure 5.

Reduction. An important insight is Euclid’s Division
Theorem stated in Section 4. We use it to prove a relation-
ship between the greatest common divisors of numbersj
andk when we replacek by its remainder moduloj.

LEMMA . Let j, k, q, r > 0 with k = jq + r. Then
gcd(j, k) = gcd(r, j).

PROOF. We begin by showing that every common factor
of j andk is also a factor ofr. Lettingd = gcd(j, k) and
writing j = Jd andk = Kd, we get

r = k − jq = (K − Jq)d.

We see thatr can be written as a multiple ofd, so d is
indeed a factor ofr. Next, we show that every common
factor ofr andj is also a factor ofk. Lettingd = gcd(r, j)
and writingr = Rd andj = Jd, we get

k = jq + r = (Jq + R)d.

Hence,d is indeed a factor ofk. But this implies thatd is
a common factor ofj andk iff it is a common factor ofr
andj.

Euclid’s gcd algorithm. We use the Lemma to compute
the greatest common divisor of positive integersj andk.
The algorithm is recursive and reduces the integers until
the remainder vanishes. It is convenient to assume that
both integers,j andk, are positive and thatj ≤ k.

integer GCD(j, k)
q = k div j; r = k − jq;
if r = 0 then return j

else return GCD(r, j)
endif.

If we call the algorithm forj > k then the first recursive
call is for k andj, that is, it reverses the order of the two
integers and keeps them ordered as assumed from then on.
Note also thatr < j. In words, the first parameter,j,
shrinks in each iterations. There are only a finite num-
ber of non-negative integers smaller thanj which implies

that after a finite number of iterations the algorithm halts
with r = 0. In other words, the algorithm terminates after
a finite number of steps, which is something one should
always check, in particular for recursive algorithms.

Last implication. We modify the algorithm so it also
returns the integersx andy for whichgcd(j, k) = jx+ky.
This provides the missing implication in Figure 5.

D’. If gcd(a, n) = 1 then the linear equationax+ny =
1 has a solution.

This finally verifies that the gcd is a test for the existence
of a multiplicative inverse in modular arithmetic. More
specifically,x mod n is the multiplicative inverse ofa in
Zn. Do you see why? We can thus update the relationship
between the statements I, II, III, IV listed at the beginning
of Section 5; see Figure 6.

III

II

I

IV

C

A

B

D, D’

Figure 6: Equivalences between the statements listed at thebe-
ginning of Section 5.

Extended gcd algorithm. If r = 0 then the above algo-
rithm returnsj as the gcd. In the extended algorithm, we
also returnx = 1 andy = 0. Now supposer > 0. In this
case, we recurse and get

gcd(r, j) = rx′ + jy′

= (k − jq)x′ + jy′

= j(y′ − qx′) + kx′.

We thus returng = gcd(r, j) as well asx = y′ − qx′ and
y = x′. As before, we assume0 < j ≤ k when we call
the algorithm.

integer3 XGCD(j, k)
q = k div j; r = k − jq;
if r = 0 then return (j, 1, 0)

else (g, x′, y′) = XGCD(r, j);
return (g, y′ − qx′, x′)

endif.
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To illustrate the algorithm, we run it forj = 14 and
k = 24. The values ofj, k, q, r, g = gcd(j, k), x, y at
the various levels of recursion are given in Table 2.

j k q r g x y
14 24 1 10 2 -5 3
10 14 1 4 2 3 -2
4 10 2 2 2 -2 1
2 4 2 0 2 1 0

Table 2: Running the extended gcd algorithm onj = 14 and
k = 24.

Computing inverses. We have established that the inte-
gera has a multiplicative inverse inZn iff gcd(a, n) = 1.
Assumingn = p is a prime number, this is the case when-
evera < p is positive.

COROLLARY. If p is prime then every non-zeroa ∈ Zp

has a multiplicative inverse.

It is straightforward to compute the multiplicative inverse
using the extended gcd algorithm. As before, we assume
p is a prime number and0 < a < p.

integer INVERSE(a, p)
(g, x, y) = XGCD(a, p);
assert g = 1; return x mod p.

The assert statement makes sure thata andp are indeed
relative prime, for else the multiplicative inverse would
not exist. We have seen thatx can be negative so it is
necessary to takex modulop before we report it as the
multiplicative inverse.

Multiple moduli. Sometimes, we deal with large inte-
gers, larger then the ones that fit into a single computer
word (usually32 or 64 bits). In this situation, we have to
find a representation that spreads the integer over several
words. For example, we may represent an integerx by its
remainders modulo3 and modulo5, as shown in Table 3.
We see that the first15 non-negative integers correspond

x 0 1 2 3 4 . . . 13 14 15

x mod 3 0 1 2 0 1 . . . 1 2 0
x mod 5 0 1 2 3 4 . . . 3 4 0

Table 3: Mapping the integers from0 to15 to pairs of remainders
after dividing with3 and with5.

to different pairs of remainders. The generalization of this
insight to relative prime numbersm andn is known as the

CHINESE REMAINDER THEOREM. Let m, n > 0 be
relative prime. Then for everya ∈ Zm andb ∈ Zn, the
system of two linear equations

x mod m = a;

x mod n = b

has a unique solution inZmn.

There is a further generalization to more then two moduli
that are pairwise relative prime. The proof of this theorem
works as suggested by the example, namely by showing
thatf : Zmn → Zm × Zn defined by

f(x) = (x mod m, x mod n)

is injective. Since bothZmn andZm × Zn have sizemn,
this implies thatf is a bijection. Hence,(a, b) ∈ Zm×Zn

has a unique preimage, the solution of the two equations.

To use this result, we would take two large integers,x
andy, and represent them as pairs,(x mod m, x mod n)
and (x mod m, x mod n). Arithmetic operations can
then be done on the remainders. For example,x times
y would be represented by the pair

xy mod m = [(x mod m)(y mod m)] mod m;

xy mod n = [(x mod n)(y mod n)] mod n.

We would choosem andn small enough so that multi-
plying two remainders can be done using conventional,
single-word integer multiplication.

Summary. We discussed Euclid’s algorithm for com-
puting the greatest common divisor of two integers, and its
extended version which provides the missing implication
in Figure 5. We have also learned the Chinese Remainder
Theorem which can be used to decompose large integers
into digestible junks.
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7 RSA Cryptosystem

Addition and multiplication modulon do not offer the
computational difficulties needed to build a viable cryp-
tographic system. We will see that exponentiation modulo
n does.

Operations as functions. Recall that+n and ·n each
read two integers and return a third integer. If we fix one of
the two input integers, we get two functions. Specifically,
fixing a ∈ Zn, we have functionsA : Zn → Zn and
M : Zn → Zn defined by

A(x) = x +n a;

M(x) = x ·n a;

see Table 4. Clearly,A is injective for every choice of

x 0 1 2 3 4 5
A(x) 2 3 4 5 0 1
M(x) 0 2 4 0 2 4

Table 4: The functionA defined by addinga = 2 modulon = 6
is injective. In contrast, the functionM defined by multiplying
with a = 2 is not injective.

n > 0 anda ∈ Zn. On the other hand,M is injective
iff gcd(a, n) = 1. In particular,M is injective for every
non-zeroa ∈ Zn if n is prime.

Exponentiation. Yet another function we may consider
is takinga to thex-th power. LetE : Zn → Zn be defined
by

E(x) = ax mod n

= a ·n a ·n . . . ·n a,

where we multiplyx copies ofa together. We see in Table
5 that for some values ofa andn, the restriction ofE to
the non-zero integers is injective and for others it is not.
Perhaps surprisingly, the last column of Table 5 consists
of 1s only.

FERMAT’ S L ITTLE THEOREM. Let p be prime. Then
ap−1 mod p = 1 for every non-zeroa ∈ Zp.

PROOF. Sincep is prime, multiplication witha gives an
injective function for every non-zeroa ∈ Zp. In other
words, multiplying witha permutes the non-zero integers

ax 0 1 2 3 4 5 6
1 1 1 1 1 1 1 1
2 1 2 4 1 2 4 1
3 1 3 2 6 4 5 1
4 1 4 2 1 4 2 1
5 1 5 4 6 2 3 1
6 1 6 1 6 1 6 1

Table 5: Exponentiation modulon = 7. We writex from left to
right anda from top to bottom.

in Zp. Hence,

X = 1 ·p 2 ·p . . . ·p (p − 1)

= (1 ·p a) ·p (2 ·p a) ·p . . . ·p ((p − 1) ·p a)

= X ·p (ap−1 mod p).

Multiplying with the inverse ofX givesap−1 mod p = 1.

One-way functions. The RSA cryptosystem is based on
the existence ofone-way functionsf : Zn → Zn defined
by the following three properties:

• f is easy to compute;

• its inverse,f−1 : Zn → Zn, exists;

• without extra information,f−1 is hard to compute.

The notions of ‘easy’ and ‘hard’ computation have to be
made precise, but this is beyond the scope of this course.
Roughly, it means that givenx, computingy = f(x) takes
on the order of a few seconds while computingf−1(y)
takes on the order of years. RSA uses the following recipe
to construct one-way functions:

1. choose large primesp andq, and letn = pq;

2. choosee 6= 1 relative prime to(p− 1)(q − 1) and let
d be its multiplicative inverse modulo(p−1)(q−1);

3. the one-way function is defined byf(x) = xe mod n
and its inverse is defined byg(y) = yd mod n.

According to the RSA protocol, Bob publishese andn and
keepsd private. To exchange a secret message,x ∈ Zn,

4. Alice computesy = f(x) and publishesy;

5. Bob readsy and computesz = g(y).

To show that RSA is secure, we would need to prove
that without knowingp, q, d, it is hard to computeg. We
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leave this to future generations of computer scientists. In-
deed, nobody today can prove that computingp andq from
n = pq is hard, but then nobody knows how to factor large
integers efficiently either.

Correctness. To show that RSA works, we need to
prove thatz = x. In other words,g(y) = f−1(y) for every
y ∈ Zn. Recall thaty is computed asf(x) = xe mod n.
We needyd mod n = x but we first prove a weaker result.

LEMMA . yd mod p = x mod p for everyx ∈ Zn.

PROOF. Sinced is the multiplicative inverse ofe modulo
(p − 1)(q − 1), we can writeed = (p − 1)(q − 1)k + 1.
Hence,

yd mod p = xed mod p

= xk(p−1)(q−1)+1 mod p.

Suppose first thatxk(q−1) mod p 6= 0. Then Fermat’s
Little Theorem impliesxk(p−1)(q−1) mod p = 1. But
this implies yd mod p = x mod p, as claimed. Sup-
pose second thatxk(q−1) mod p = 0. Sincep is prime,
every power of a non-zero integer is non-zero. Hence,
x mod p = 0. But this impliesyd mod p = 0 and thus
yd mod p = x mod p, as before.

By symmetry, we also haveyd mod q = x mod q.
Hence,

(yd − x) mod p = 0;

(yd − x) mod q = 0.

By the Chinese Remainder Theorem, this system of two
linear equations has a unique solution inZn, wheren =
pq. Sinceyd − x = 0 is a solution, there can be no other.
Hence,

(yd − x) mod n = 0.

The left hand side can be written as((yd mod n) −
x) mod n. This finally impliesyd mod n = x, as desired.

Summary. We talked about exponentiation modulon
and proved Fermat’s Little Theorem. We then described
how RSA uses exponentiation to construct one-way func-
tions, and we proved it correct. A proof that RSA is secure
would be nice but is beyond what is currently known.

21



Second Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is February 6.

Question 1. (20 = 10 + 10 points). (Problem 2.1-12 in
our textbook). We recall that a prime number,p, that
divides a product of integers divides one of the two
factors.

(a) Let1 ≤ a ≤ p − 1. Use the above recollection
to show that asb runs through the integers from
0 to p − 1, the productsa ·p b are all different.

(b) Explain why every positive integer less thanp
has a unique multiplicative inverse inZp.

Question 2. (20 points). (Problem 2.2-19 in our text-
book). Theleast common multipleof two positive
integersi andj, denoted aslcm(i, j), is the smallest
positive integerm such thatm/i andm/j are both
integer. Give a formula forlcm(i, j) that involves
gcd(i, j).

Question 3. (20 = 10 + 10 points). (Problem 2.2-17 in
our textbook). Recall the Fibonacci numbers defined
by F0 = 0, F1 = 1, andFi = Fi−1 + Fi−2 for all
i ≥ 2.

(a) Run the extended gcd algorithm forj = F10

andk = F11, showing the values of all param-
eters at all levels of the recursion.

(b) Running the extended gcd algorithm forj = Fi

andk = Fi+1, how many recursive calls does it
take to get the result?

Question 4. (20 points). Let n ≥ 1 be a nonprime
andx ∈ Zn such thatgcd(x, n) 6= 1. Prove that
xn−1 mod n 6= 1.
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