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15 Inclusion-Exclusion

Today, we introduce basic concepts in probability theory
and we learn about one of its fundamental principles.

Throwing dice. Consider a simple example of a prob-
abilistic experiment: throwing two dice and counting the
total number of dots. Each die has six sides wiitto 6
dots. The result of a throw is thus a number betw2and
12. There are36 possible outcomes, for each die, which
we draw as the entries of a matrix; see Figure 15.

1 2 3 4 5 6
. 2] 3 4 5| 6 7

3| 4/ 5| 6| 7| 8
2 6/36 o

4/ 5| 6| 7| 8| 9 5/36 o o
8 4136 o o

5/ 6| 7| 8| 9|10 3/36 ] o
4 2/36 o o
B I I I I e el At N
6 7| 8| 9 10| 11|12 234567 89101112

Figure 15: Left: the two dice give the row and the column index
of the entry in the matrix. Right: the most likely sum7swith
probability % the length of the diagonal divided by the size of
the matrix.

Basic concepts. The set of possible outcomes of an ex-
periment is thesample spacedenoted ag). A possi-
ble outcome is arelementz € Q. A subset of out-
comes is arevenf A C Q. The probability or weight
of an element: is P(z), a real number betweebh and
1. For finite sample spaces, tpeobability of an event is

P(A) =3 pea P(2).

For example, in the two dice experiment, we Set=
{2,3,...,12}. An event could be to throw an even num-
ber. The probabilities of the different outcomes are given
in Figure 15 and we can compute

1+3+5+5+3+1
36

1
P(even 7

More formally, we call a functio® : 2 — R aprobabil-
ity distributionor aprobability measuréf

(i) P(x) > 0foreveryx € Q;

(i) P(AUB) = P(A) + P(B) for all disjoint events
ANB=10;

(i) P(Q) = 1.
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A common example is theniform probability distribution
defined byP(z) = P(y) forall x,y € €. Clearly, ifQ is
finite then

Al

P(A) 9]

for every eventd C Q.

Union of non-disjoint events. Suppose we throw two
dice and ask what is the probability that the outcome is
even or larger thafl. Write A for the event of having an
even number and for the event that the number exceeds
7. ThenP(A) = 3, P(B) = 32, andP(ANB) = 4.
The question asks for the probability of the union of
and B. We get this by adding the probabilities dfand

B and then subtracting the probability of the intersection,

because it has been added twice,

P(AUB) P(A)+ P(B)— P(ANB),
5 3

which gives% + 15— 35 = % If we had three events,

then we would subtract all pairwise intersections and add
back in the triplewise intersection, that is,
P(AUBUCQ) P(A)+ P(B) + P(C)
—P(ANB)—P(ANC)
—-P(BNC)+P(ANBNC).

Principle of inclusion-exclusion. We can generalize the
idea of compensating by subtractingit@vents.

PIE THEOREM (FOR PROBABILITY). The probability
of the union ofn events is

PQJAH

= > (DM P4, NN A,
k=1
where the second sum is over all subsets effents.

PROOF Letx be an elementit);"_, A; andH the subset

of {1,2,...,n} such thatr € A, iff i € H. The contri-
bution of z to the sum isP(z) for each odd subset off
and—P(z) for each even subset éf. If we includel) as

an even subset, then the number of odd and even subsets is
the same. We can prove this using the Binomial Theorem:

-1 = §<—1>i(?).

But in the claimed equation, we do not account for the
empty set. Hence, there is a surplus of one odd subset and
therefore a net contribution d?(z). This is true for every
element. The PIE Theorem for Probability follows.



Checking hats. Suppose: people get their hats returned

x € M hasn choices for its image, the choices are in-

in random order. What is the chance that at least one getsdependent, and therefore the number of functions’ts

the correct hat? Lefl; be the event that persargets the
correct hat. Then

Similarly,

(n—k)!

P(Ai]ﬂ... o

ﬂAik)

The event that at least one person gets the correct hat
the union of thed;. Writing P = P(U?:1 A;) for its
probability, we have

k

DD P4, N LN AL

o)

P

k

>t

i=1

n

k

(n—k)!
n!

1
1-— =
2+

1

g—...:lz

a.
Recall from Taylor expansion of real-valued functions that
e’ =1+z+2%/2+23/3'+ .. .. Hence,

P 1—e1=06...

Inclusion-exclusion for counting. The principle of
inclusion-exclusion generally applies to measuring thing
Counting elements in finite sets is an example.

PIE THEOREM (FOR COUNTING). For a collection of
n finite sets, we have

Ul
=1

where the second sum is over all subsets efents.

n

= Y DR AL 0L N,

k=1

The only difference to the PIE Theorem for probability is
we count one for each element,instead ofP(x).

Counting surjective functions. Let M and N be finite
sets, andn = | M| andn = | N| their cardinalities. Count-
ing the functions of the fornf : M — N is easy. Each
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How many of these functions are surjective? To answer
this question, letV = {y1, s, ...,y } and letA; be the
set of functions in whichy; is not the image of any ele-
ment in M. Writing A for the set of all functions and

for the set of all surjective functions, we have

isWe already knowA|. Similarly, |4;| = (n — 1)™. Fur-
thermore, the size of the intersectionkobf the A; is

We can now use inclusion-exclusion to get the number of
functions in the union, namely,

| 4l
i=1

To get the number of surjective functions, we subtract the
size of the union from the total number of functions,

n

_ Z(_l)kJrl

k=1

n

k) (n— k)™

Form < n, this number should b@é, and form = n, it
should ben!. Check whether this is indeed the case for
small values ofrn andn.



16 Conditional Probability Q

If we have partial information, this effectively shrinkseth
available sample space and changes the probabilities. We
begin with an example.

Monty Hall show. The setting is a game show in which
a prize is hidden behind one of three curtains. Call the

curtainsX, Y, andZ. You can win the prize by guessing  gigure 17: Assumings, the probability ofA is represented by
the right curtain. the fraction of the shaded regioR, that is dark shaded} N B.

STeEP 1. You choose a curtain.

SinceP(4 | B) = Z558) = P(A), we have

P(B) — % — P(B]| A).

This leaves two curtains you did not choose, and at least
one of them does not hide the prize. Monty Hall opens this
one curtain and this way demonstrates there is no prize
hidden there. Then he asks whether you would like to

reconsider. Would you? We thus see that independence is symmetric. However,

it fails to be an equivalence relation because it is neither

STEP 2A. You stick to your initial choice. reflexive not transitive. Combining the definition of condi-
_ . tional probability with the condition of independence, we
STEP2B. You change to the other available curtain. get a formula for the probability of two events occurring

o at the same time.
Perhaps surprisingly, Stepgds the better strategy. As

shown in Figure 16, it doubles your chance to win the

prize PRODUCT PRINCIPLE FORINDEPENDENTPROB. If A

andB are independenttheR(A N B) = P(A) - P(B).
2A

Trial processes. In many situations, a probabilistic ex-
periment is repeated, possibly many times. We call this a
trial process It is independenif the i-th trial is not influ-
enced by the outcomes of the preceding 1 trials, that

is,

Figure 16: Suppose the prize is behind curtdinThe chance of PA; |Ain...NnA;1) = P(A),
winning improves from in 2a to 2 in 2B. _
for each.

An example is picking a coin from an bag that contains
one nickel, two dimes, and two quarters. We have an in-
dependent trial process if we always return the coin before
the next draw. The choice we get a quarter is theregore
each time. The chance to pick the quarter three times in a
P(ANB) row is thereforg(2)® = 5= = 0.064. More generally, we

P(B) have the

Formalization. We are given a sample space, and
consider two eventsd, B C . The conditional prob-
ability of evenA given eventB is

P(A|B) =

We illustrate this definition in Figure 17. If we know that
the outcome of the experiment is i, the chance that it is
also inA is the fraction ofB occupied byA N B. We say
A and B areindependenif knowing B does not change
the probability ofA, that is,

INDEPENDENTTRIAL THEOREM. In an independent
trial process, the probability of a sequence of outcomes,
a1,a2,...,an, 1S P(ay) - P(az) - ...  P(ay).

Trial processes that are not independent are generally
P(A|B) = P(A). more complicated and we need more elaborate tools to
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compute the probabilities. A useful such tool is the tree
diagram as shown in Figure 18 for the coin picking exper-
iment in which we do not replace the picked coins.

1/30
2/30
2/30
1/30
1/30
2/30
1/30
2/30
2/30
2/30
2/30
2/30
1/30
2/30
2/30
2/30
1/30

2/30

Figure 18: What is the probability of picking the nickel irrdle
trials?

Medical test example. Probabilities can be counterintu-
itive, even in situations in which they are important. Con-
sider a medical test for a diseage, The test mostly gives
the right answer, but not always. Say its false-negative rat
is 1% and its false-positive rate &%, that is,

P(y|D) = 0.99;
P(n|D) = 0.01;
P(y|-D) = 0.2
P(n|-D) = 0.98.

Assume that the chance you have dise2ss only one in

a thousand, that is?(D) = 0.001. Now you take the test
and the outcome is positive. What is the chance that you
have the disease? In other words, whaPid | y)? As
illustrated in Figure 19,

P(DNy) 0.00099
P(y) 0.02097

This is clearly a case in which you want to get a second
opinion before starting a treatment.

P(D1y)

0.047.. ..
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0.0009¢

0.00001

0.0199¢

0.9790:

Figure 19: Tree diagram showing the conditional probaeasitn
the medical test question.

Summary. Today, we learned about conditional proba-
bilities and what it means for two events to be indepen-
dent. The Product Principle can be used to compute the
probability of the intersection of two events, if they are in
dependent. We also learned about trial processes and tree
diagrams to analyze them.



17 Random Variables ;

1
A random variablds a real-value function on the sample @ f() =P (A)
spaceX : Q — R. An example is the total number of dots
at rolling two dice, or the number of heads in a sequence 0

of ten coin flips. X

Figure 20: The distribution function of a random variableds-

Bernoulli trial process. Recall that an independent trial ~ Structed by mapping a real numbe, to the probability of the
process is a sequence of identical experiments in which the€vent that the random variable takes on the vaiue

outcome of each experiment is independent of the preced-
ing outcomes. A particular example is tBernoulli trial

i L) — (M\pk(1_\n—k i
processn which the probability of success is the same at thatis, P(X' = k) = (k)p (1=p)""". The corresponding

distribution function maps to the probability of having:

each trial: successes, that ig(k) = (7)p*(1 — p)"~*. We get the
P(success = p; expected number of successes by summing ovér. all
P(failure) = 1-—p. n
_ | E(X) = ) kf(k)
If we do a sequence of trials, we may defin& equal to k=0
the number of successes. HenQes the space of possi- n n
ble outcomes for a sequenceroffials or, equivalently, the = k<k>pk(1 —p)" "
set of binary strings of length. What is the probability k=0

of getting exactlyk successes? By the Independent Trial " /n—1
o . _ Z kfl(l )nfk
Theorem, the probability of having a sequencé:afuc- = np E—1/P p
cesses followed by — k failures isp* (1 —p)™~*. Now we kzll
just have tp multiply with the number of binary sequences . n—1 k(1 — pyr—kl
that containk successes. p )P p :
k=0

BINOMIAL PROBABILITY LEMMA. The probability of The sumin the last line is equal tp + (1 — p))" ! = 1.
having exactlyk successes in a sequencerotrials is Hence, the expected number of successeés is np.

P(X =k) = (R)p* (L -p)" "

As a sanity check, we make sure that the probabilities add Lin€arity of expectation. Note that the expected value
up to one. Using the Binomial Theorem, get of X can also be obtained by summing over all possible

outcomes, that is,
Sree=n = 3 ())ra-ort BX) = Y XEPL)
k=0 k=0 seQ

which is equal top + (1 — p))” = 1. Because of this  This leads to an easier way of computing the expected
connection, the probabilities in the Bernoulli trial prese  value. To this end, we exploit the following important

are called thdinomial probabilities property of expectations.

Expectation. The function that assigns to each € R LINEARITY OF EXPECTATION. Let X, Y : Q — R be
the probability thatX = z; is the distribution func-  two random variables. Then

tion of X, denoted agf : R — [0,1]; see Figure 20.

More formally, f(z;) = P(A), whered = X~ 1(x;). () EX+Y)=EX)+E(Y),

The expected valuef the random variable i&(X) = (i) E(cX) = cE(X), for every real number.

As an example, consider the Bernoulli trial process in The proof should be obvious. Is it? We use the prop-
which X counts the successes in a sequence tfals, erty to recompute the expected number of successes in
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a Bernoulli trial process. Foi from 1 to n, let X; be
the expected number of successes inittie trial. Since
there is only one-th trial, this is the same as the proba-
bility of having a success, that i%(X;) = p. Further-
more, X = X; + X5 + ... + X,,. Repeated applica-
tion of property (i) of the Linearity of Expectation gives
E(X) =", E(X;) = np, same as before.

Indication. The Linearity of Expectation does not de-
pend on the independence of the trials; it is also trug if
andY are dependent. We illustrate this property by going
back to our hat checking experiment. First, we introduce
a definition. Given an event, the correspondingjcator
random variablas 1 if the event happens aridbtherwise.
Thus,E(X) =P(X =1).

In the hat checking experiment, we retusrhats in a
random order. LeX be the number of correctly returned
hats. We proved that the probability of returning at least
one hat correctly isP(X > 1) = 1 —e ! = 06...

To compute the expectation from the definition, we would
have to determine the probability of returning exadtly
hats corrects, for each < k£ < n. Alternatively, we

whereX; is the expected number of assignments inithe

th step. We gefX; = 1 iff the i-th item, A[i], is smaller
than all preceding items. The chance for this to happen is
one ini. Hence,

E(X) E(X;)

. <.

M- 1:
[

| =

N
Il
-

The result of this sum is referred to as theéh harmonic
numberH, = 1+3+1+...+1. Wecanusg  =Inn

to show that the:-th harmonic number is approximately
the natural logarithm of.. More preciselyln(n + 1) <
H, <1+ Inn.

Waiting for success. Suppose we have again a Bernoulli
trial process, but this time we end it the first time we hit a
success. Defining’ equal to the index of the first success,
we are interested in the expected valdg X). We have
P(X =1i) = (1 —p)i~!pfor eachi. As a sanity check,
we make sure that the probabilities add up to one. Indeed,

can compute the expectation by decomposing the random

variable, X = X; + Xy + ... + X,,, whereX; is the
expected value that theth hat is returned correctly. Now,
X; is an indicator variable wittE(X;) % Note that
the X; are not independent. For example, if the fitst 1
hats are returned correctly then so is théh hat. In spite
of the dependence, we have

In words, the expected number of correctly returned hats
is one.

Example: computing the minimum. Consider the fol-
lowing algorithm for computing the minimum among
items stored in a linear array.

min = A[1];
fori=2tondo

i f min > Ali]t hen min = A[i] endi f
endi f .

dP(X=i) = Y (1-p'p
=1 i=1
- 1
Prr—a—ypy

Using the Linearity of Expectation, we get a similar sum
for the expected number of trials. First, we note that
Z;‘;O jad L There are many ways to derive this

— -2
equation, for example, by index transformation. Hence,

E(X) = ) iP(X =i)
=0
p - . i
= E;Z(l—l))
1—p (1-(1-p)*

which is equal to..

Summary. Today, we have learned about random vari-
able and their expected values. Very importantly, the ex-

Suppose the items are disti_nct and the array stores them inpectation of a sum of random variables is equal to the sum
a random sequence. By this we mean that each permutay the expectations. We used this to analyze the Bernoulli

tion of then items is equally likely. LetX be the number
of assignments tovin. We haveX = X1+ Xo+.. .+ X,
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18 Probability in Hashing

A popular method for storing a collection of items to sup-
port fast look-up is hashing them into a table. Trouble
starts when we attempt to store more than one item in the
same slot. The efficiency of all hashing algorithms de-
pends on how often this happens.

Birthday paradox. We begin with an instructive ques-
tion about birthdays. Consider a groupropeople. Each
person claims one particular day of the year as her birth-
day. For simplicity, we assume that nobody claims Febru-
ary 29 and we talk about years consisting:cf 365 days
only. Assume also that each day is equally likely for each
person. In other words,

P(person is born on dayj)

k?

for all 7 and allj. Collecting the birthdays of the peo-
ple, we get a multiset o days during the year. We are
interested in the evend, that at least two people have the
same birthday. Its probability is one minus the probability
that then birthdays are distinct, that is,

P(A) = 1-P(A)
_ ok kot k—n+1
- ko k k
k!
- 1_(l<:—n)!k:”'

The probability ofA surpasses one half whenexceeds
21, which is perhaps surprisingly early. See Figure 21 for
a display how the probability grows with increasing

0

0 10 20 30 40

Figure 21: The probability that at least two people in a grotip
n share the same birthday.

Hashing. The basic mechanism in hashing is the same
as in the assignment of birthdays. We havéems and
map each to one of slots. We assume the choices of
slots are independent. éollisionis the event that an item
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is mapped to a slot that already stores an item. A possible
resolution of a collision adds the item at the end of a linked
list that belongs to the slot, but there are others. We are
interested in the following quantities:

1. the expected number of items mapping to same slot;
2. the expected number of empty slots;

3. the expected number of collisions;

4. the expected number of items needed to filkallots.

Different hashing algorithms use different mechanisms for
resolving collisions. The above quantities have a lot to say
about the relative merits of these algorithms.

Items per slot. Since all slots are the same and none is
more preferred than any other, we might as well determine
the expected number of items that are mapped tolslot
Consider the corresponding indicator random variable,

v

The number of items mapped to slbis thereforeX =
X1+ X2+ ...+ X,. The expected value of; is 1, for
eachi. Hence, the expected number of items mapped to
slot1 is

1 ifitem ¢ is mapped to slot;
0 otherwise

But this is obvious in any case. As mentioned earlier, the
expected number of items is the same for every slot. Writ-
ing Y; for the number of items mapped to slgtwe have

Y =", Y; = n. Similarly,

E(Y) = Y EY;) = n.

Jj=1

Since the expectations are the same for all slots, we there-
fore haveE(Y;) = %, for eachy.

Empty slots. The probability that sloj remains empty
after mapping alh items is(1 — %)”. Defining

o |

we thus getE(X;) = (1 — ¢)n. The number of empty
slots isX = X; + X5 + ... + Xi. Hence, the expected

1 if slot j remains empty
0 otherwise



number of empty slots is

E(X) = iE(Xj) = k(l—%)n.

Fork = n, we havdim, (1 — 2)" = e~ = 0.367...
In this case, we can expect about a third of the slots to
remain empty.

Collisions. The number of collisions can be determined
from the number of empty slots. Writing for the num-
ber of empty slots, as before, we hdve X items hashed
without collision and therefore a total of — & + X col-
lisions. Writing Z for the number of collisions, we thus
get

E(Z) = n—k+E(X)
n—k—i—k(l—%)n.

Fork = n, we getlim, ... n(1 — £)" = 2. In words,
about a third of the items cause a collision.

Filling all slots. How many items do we need to map
to thek slots until they store at least one item each? For
obvious reasons, this question is sometimes referred to as
the coupons collector problem. The crucial idea here is
to defineX; equal to the number of items it takes to go
from j — 1 to j filled slots. Filling thej-th slot is an
infinite Bernoulli process with success probability equal

top = L Last lecture, we learned that the ex-
pected number of trials until the first succes%isHence,
E(X;) = k_—’;ﬂ The number of items needed to fill all

slotsisX = X; + X5 + ...+ Xi. The expected number
is therefore

k
E(X) = Y E(X))
j=1
k
k
- j;k—j+1
k

= k21
= kHy.

As mentioned during last lecture, this is approximately
times the natural logarithm d@f. More precisely, we have
kln(k+1) < kHp < k(1 +1nk).
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19 Probability Distributions

Although individual events based on probability are un-

zero or ten heads when we flip a coin ten times. To express
how surprised we should be we measure the spread of the
distribution. Let us first determine how close we expect a

predictable, we can predict patterns when we repeat theandom variable to be to its expectatidfi X — E(X)).

experiment many times. Today, we will look at the pattern

By linearity of expectation, we have

that emerges from independent random variables, such as

flipping a coin.

Coin flipping. Suppose we have a fair coin, that is, the
probability of getting head is precisely one half and the
same is true for getting tail. LeX’ count the times we get
head. If we flip the coim times, the probability that we

getk heads is
n n
b - ()

Figure 22 visualizes this distribution in the form of a his-
togram forn = 10. Recall that thelistribution function
maps every possible outcome to its probabilifyk) =

P(X

P(X = k). This makes sense when we have a discrete

domain. For a continuous domain, we consider ¢he
mulative distribution functiorthat gives the probability
of the outcome to be within a particular range, that is,

Jo_, f(x)de = P(a < X <0).

30 T

25 +

20 +

15 +

10 +

.05 +

[ -

0 1 2 3 4 5 6 7 8 9 10

Figure 22: The histogram that the shows the probability ¢f ge
ting 0, 1, ..., 10 heads when flipping a coin ten times.

Variance. Now that we have an idea of what a distribu-
tion function looks like, we wish to find succinct ways of
describing it. First, we note that= F(X) is the expected
value of our random variable. It is also referred to as the
meanor the averageof the distribution. In the example
above, whereX is the number of heads in ten coin flips,
we haveu = 5. However, we would not be surprised if we
had four or six heads but we might be surprised if we had
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E(X —p) = 0.

Hence, this measurement is not a good description of the
distribution. Instead, we use the expectation of the square
of the difference to the mean. Specifically, traianceof
arandom variablé&l', denoted a¥ (X)), is the expectation

E ((X — p)?). Thestandard deviatioris the square root

of the variance, that is7(X) = V(X)'2. If X, is the
number of heads we see in four coin flips, thes 2 and

— E(X)-B() =

1= p

L (=22 +4-(-1)*+4-1* +2%],

V(X4) 6

which is equal ta.. For comparison, leX; be the number
of heads that we see in one coin flip. Thes- % and

1 1, 1,
3 (0—5) +( —5) )

V(X1)

which is equal to one quarter. Here, we notice that the
variance of four flips is the sum of the variances for four
individual flips. However, this property does not hold in
general.

Variance for independent random variables. Let X
andY be independent random variables. Then, the prop-
erty that we observed above is true.

ADDITIVITY OF VARIANCE. If X andY are indepen-
dent random variables thén(X +Y) = V(X) + V(Y).

We first prove the following more technical result.

LEMMA. If X andY are independent random variables
thenE(XY) = E(X)E(Y).

PROOF By definition of expectationF (X )E(Y) is the
product of >, z; P(X = z;) and ), y; P(Y = y;).
Pushing the summations to the right, we get

BXEY) = 33 wwP(X =x)P(Y =)

y])a

> 2 P(X = 2;)P(Y

0]



where z;; = x;y;. Finally, we use the independence
of the random variables( andY to see thatP(X =
x;))P(Y =vy;) = P(XY = z;). With this, we conclude
that E(X)E(Y) = E(XY).

Now, we are ready to prove the Additivity of Variance,
thatis,V(X +Y) = V(X) + V(Y) wheneverX andY
are independent.

PrROOF By definition of variance, we have

V(X +Y)

E(X+Y - E(X+Y))?).

The right hand side is the expectation (O — ux)? +
2(X — pux)(Y — py) + (Y — py), wherepx and py

STANDARD LIMIT THEOREM. The probability of the
number of heads being between andbo from the mean
goes to

1 e q
— e 2 ¥
V 27 /;:a
as the number of flips goes to infinity.
For example, if we hava00 coin flips, theny = 50,

V(X) = 25, ando = 5. It follows that the probability
of having betweer5 and55 heads is about.68.

Summary. We used a histogram to visualize the proba-

are the expected values of the two random variables. With Pility that we will havek heads i flips of a coin. We

this, we get
V(X+Y) = E((X—px)’)+E(Y —py)?)
= V(X)+V(Y),
as claimed.

Normal distribution. If we continue to increase the
number of coin flips, then the distribution function ap-
proaches theormal distribution

1 2

x
= ez

This is the limit of the distribution as the number of coin
flips approaches infinity. For a large number of trials, the

Figure 23: The normal distribution with mean= 0 and stan-
dard deviationo = 1. The probability that the random variable
is between-o ando is 0.68, between-20 and2c is 0.955, and
between—3c and3c is 0.997.

normal distribution can be used to approximate the prob-

ability of the sum being betweenandb standard devia-
tions from the expected value.
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also used the meap, the standard deviatiom,, and the
variance,V (X)), to describe the distribution of outcomes.
As n approaches infinity, we see that this distribution ap-
proaches the normal distribution.



Fifth Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is 8 April 2009.

Question 1. (20 points). Use the Principle of Inclusion-
Exclusion to count the surjective functiofis M —
N, where where both sets are finite with = |M|
andn = |N]|.

Question 2. (20 = 6 + 7 + 7 points). (Problems 5.3-1 to
3 in our textbook). Suppose you have a fair coin, one
in which a flip gives head with probability one half
and tail with probability one half. You do three flips
with this coin.

(&) What s the probability that two flips in are row
are heads, given that there is an even number of
heads?

(b) Is the event that two flips in a row are heads
independent of the event that there is an even
number of heads?

(c) Is the event of getting at most one tail indepen-
dent of the event that not all flips are identical?

Question 3. (20 points). (Problem 5.4-16 in our text-
book). Suppose you have two nickels, two dimes,
and two quarters in a bag. You draw three coins from
the bag, without replacement. What is the expected
amount of money you get?

Question 4. (20 = 6 + 7 + 7 points). (Problem 5.5-8
in our textbook). Suppose you hashitems intok
locations.

(@) What is the probability that alt items has to
different locations?

(b) What is the probability that theth item gives
the first collision?

(c) What is the expected number of items you hash
until the first collision?

Question 5. (20 = 7 4+ 7 + 6 points). In the program-
ming language of your choice, write the following
two functions:

(@) GETMEAN
(a) GETVARIANCE
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These methods should take an array of values as input
(the experimental results for each trial) and return a
floating point number. Then, flip a coin 20 times (or
simulate this on the computer) and use these methods
to compute the mean and the variance of your trials.
Are the results what you would have expected?

Question 6. (20 = 10 + 10 points). (Problems 5.7-8 and

14 in our textbook).

(a) Show that ifX andY are independent, ard
andc are constant, the — b andY — ¢ are
independent.

(b) Given a random variabl& , how does the vari-
ance ofc X relate to that ofY ?



