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15 Inclusion-Exclusion

Today, we introduce basic concepts in probability theory
and we learn about one of its fundamental principles.

Throwing dice. Consider a simple example of a prob-
abilistic experiment: throwing two dice and counting the
total number of dots. Each die has six sides with1 to 6
dots. The result of a throw is thus a number between2 and
12. There are36 possible outcomes,6 for each die, which
we draw as the entries of a matrix; see Figure 15.
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Figure 15: Left: the two dice give the row and the column index
of the entry in the matrix. Right: the most likely sum is7, with
probability 1

6
, the length of the diagonal divided by the size of

the matrix.

Basic concepts. The set of possible outcomes of an ex-
periment is thesample space, denoted asΩ. A possi-
ble outcome is anelement, x ∈ Ω. A subset of out-
comes is anevent, A ⊆ Ω. The probability or weight
of an elementx is P (x), a real number between0 and
1. For finite sample spaces, theprobability of an event is
P (A) =

∑

x∈A P (x).

For example, in the two dice experiment, we setΩ =
{2, 3, . . . , 12}. An event could be to throw an even num-
ber. The probabilities of the different outcomes are given
in Figure 15 and we can compute

P (even) =
1 + 3 + 5 + 5 + 3 + 1

36
=

1

2
.

More formally, we call a functionP : Ω → R a probabil-
ity distributionor aprobability measureif

(i) P (x) ≥ 0 for everyx ∈ Ω;

(ii) P (A ∪̇ B) = P (A) + P (B) for all disjoint events
A ∩ B = ∅;

(iii) P (Ω) = 1.

A common example is theuniform probability distribution
defined byP (x) = P (y) for all x, y ∈ Ω. Clearly, if Ω is
finite then

P (A) =
|A|
|Ω|

for every eventA ⊆ Ω.

Union of non-disjoint events. Suppose we throw two
dice and ask what is the probability that the outcome is
even or larger than7. Write A for the event of having an
even number andB for the event that the number exceeds
7. ThenP (A) = 1

2 , P (B) = 15
36 , andP (A ∩ B) = 9

36 .
The question asks for the probability of the union ofA
andB. We get this by adding the probabilities ofA and
B and then subtracting the probability of the intersection,
because it has been added twice,

P (A ∪ B) = P (A) + P (B) − P (A ∩ B),

which gives 6
12 + 5

12 − 3
12 = 2

3 . If we had three events,
then we would subtract all pairwise intersections and add
back in the triplewise intersection, that is,

P (A ∪ B ∪ C) = P (A) + P (B) + P (C)

−P (A ∩ B) − P (A ∩ C)

−P (B ∩ C) + P (A ∩ B ∩ C).

Principle of inclusion-exclusion. We can generalize the
idea of compensating by subtracting ton events.

PIE THEOREM (FOR PROBABILITY). The probability
of the union ofn events is

P (

n
⋃

i=1

Ai) =

n
∑

k=1

(−1)k+1
∑

P (Ai1 ∩ . . . ∩ Aik
),

where the second sum is over all subsets ofk events.

PROOF. Let x be an element in
⋃n

i=1 Ai andH the subset
of {1, 2, . . . , n} such thatx ∈ Ai iff i ∈ H . The contri-
bution ofx to the sum isP (x) for each odd subset ofH
and−P (x) for each even subset ofH . If we include∅ as
an even subset, then the number of odd and even subsets is
the same. We can prove this using the Binomial Theorem:

(1 − 1)n =

n
∑

i=0

(−1)i

(

n

i

)

.

But in the claimed equation, we do not account for the
empty set. Hence, there is a surplus of one odd subset and
therefore a net contribution ofP (x). This is true for every
element. The PIE Theorem for Probability follows.
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Checking hats. Supposen people get their hats returned
in random order. What is the chance that at least one gets
the correct hat? LetAi be the event that personi gets the
correct hat. Then

P (Ai) =
(n − 1)!

n!
=

1

n
.

Similarly,

P (Ai1 ∩ . . . ∩ Aik
) =

(n − k)!

n!
.

The event that at least one person gets the correct hat is
the union of theAi. Writing P = P (

⋃n
i=1 Ai) for its

probability, we have

P =

k
∑

i=1

(−1)k+1
∑

P (Ai1 ∩ . . . ∩ Aik
)

=

k
∑

i=1

(−1)k+1

(

n

k

)

(n − k)!

n!

=

k
∑

i=1

(−1)k+1 1

k!

= 1 − 1

2
+

1

3!
− . . . ± 1

n!
.

Recall from Taylor expansion of real-valued functions that
ex = 1 + x + x2/2 + x3/3! + . . .. Hence,

P = 1 − e−1 = 0.6 . . .

Inclusion-exclusion for counting. The principle of
inclusion-exclusion generally applies to measuring things.
Counting elements in finite sets is an example.

PIE THEOREM (FOR COUNTING). For a collection of
n finite sets, we have

|
n
⋃

i=1

Ai| =
n
∑

k=1

(−1)k+1
∑

|Ai1 ∩ . . . ∩ Aik
|,

where the second sum is over all subsets ofk events.

The only difference to the PIE Theorem for probability is
we count one for each element,x, instead ofP (x).

Counting surjective functions. Let M andN be finite
sets, andm = |M | andn = |N | their cardinalities. Count-
ing the functions of the formf : M → N is easy. Each

x ∈ M hasn choices for its image, the choices are in-
dependent, and therefore the number of functions isnm.
How many of these functions are surjective? To answer
this question, letN = {y1, y2, . . . , yn} and letAi be the
set of functions in whichyi is not the image of any ele-
ment inM . Writing A for the set of all functions andS
for the set of all surjective functions, we have

S = A −
n
⋃

i=1

Ai.

We already know|A|. Similarly, |Ai| = (n − 1)m. Fur-
thermore, the size of the intersection ofk of theAi is

|Ai1 ∩ . . . ∩ Aik
| = (n − k)m.

We can now use inclusion-exclusion to get the number of
functions in the union, namely,

|
n
⋃

i=1

Ai| =

n
∑

k=1

(−1)k+1

(

n

k

)

(n − k)m.

To get the number of surjective functions, we subtract the
size of the union from the total number of functions,

|S| =
n
∑

i=0

(−1)k

(

n

k

)

(n − k)m.

For m < n, this number should be0, and form = n, it
should ben!. Check whether this is indeed the case for
small values ofm andn.
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16 Conditional Probability

If we have partial information, this effectively shrinks the
available sample space and changes the probabilities. We
begin with an example.

Monty Hall show. The setting is a game show in which
a prize is hidden behind one of three curtains. Call the
curtainsX , Y , andZ. You can win the prize by guessing
the right curtain.

STEP 1. You choose a curtain.

This leaves two curtains you did not choose, and at least
one of them does not hide the prize. Monty Hall opens this
one curtain and this way demonstrates there is no prize
hidden there. Then he asks whether you would like to
reconsider. Would you?

STEP 2A . You stick to your initial choice.

STEP 2B. You change to the other available curtain.

Perhaps surprisingly, Step 2B is the better strategy. As
shown in Figure 16, it doubles your chance to win the
prize.

2A 2B
1/3

1/3

1/3

1

1

1

1/3

1/3

1/3

1

1

1

X X

Y Y

Z Z

X

X

Z

Y

Z X

Figure 16: Suppose the prize is behind curtainX. The chance of
winning improves from1

3
in 2A to 2

3
in 2B.

Formalization. We are given a sample space,Ω, and
consider two events,A, B ⊆ Ω. The conditional prob-
ability of evenA given eventB is

P (A | B) =
P (A ∩ B)

P (B)
.

We illustrate this definition in Figure 17. If we know that
the outcome of the experiment is inB, the chance that it is
also inA is the fraction ofB occupied byA ∩ B. We say
A andB are independentif knowing B does not change
the probability ofA, that is,

P (A | B) = P (A).

B

A

Ω

Figure 17: AssumingB, the probability ofA is represented by
the fraction of the shaded region,B, that is dark shaded,A ∩ B.

SinceP (A | B) = P (A ∩ B)
P (B) = P (A), we have

P (B) =
P (B ∩ A)

P (A)
= P (B | A).

We thus see that independence is symmetric. However,
it fails to be an equivalence relation because it is neither
reflexive not transitive. Combining the definition of condi-
tional probability with the condition of independence, we
get a formula for the probability of two events occurring
at the same time.

PRODUCT PRINCIPLE FORINDEPENDENTPROB. If A
andB are independent thenP (A ∩ B) = P (A) · P (B).

Trial processes. In many situations, a probabilistic ex-
periment is repeated, possibly many times. We call this a
trial process. It is independentif the i-th trial is not influ-
enced by the outcomes of the precedingi − 1 trials, that
is,

P (Ai | A1 ∩ . . . ∩ Ai−1) = P (Ai),

for eachi.

An example is picking a coin from an bag that contains
one nickel, two dimes, and two quarters. We have an in-
dependent trial process if we always return the coin before
the next draw. The choice we get a quarter is therefore2

5
each time. The chance to pick the quarter three times in a
row is therefore(2

5 )3 = 8
125 = 0.064. More generally, we

have the

INDEPENDENTTRIAL THEOREM. In an independent
trial process, the probability of a sequence of outcomes,
a1, a2, . . . , an, is P (a1) · P (a2) · . . . · P (an).

Trial processes that are not independent are generally
more complicated and we need more elaborate tools to
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compute the probabilities. A useful such tool is the tree
diagram as shown in Figure 18 for the coin picking exper-
iment in which we do not replace the picked coins.
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Figure 18: What is the probability of picking the nickel in three
trials?

Medical test example. Probabilities can be counterintu-
itive, even in situations in which they are important. Con-
sider a medical test for a disease,D. The test mostly gives
the right answer, but not always. Say its false-negative rate
is 1% and its false-positive rate is2%, that is,

P (y | D) = 0.99;

P (n | D) = 0.01;

P (y | ¬D) = 0.02;

P (n | ¬D) = 0.98.

Assume that the chance you have diseaseD is only one in
a thousand, that is,P (D) = 0.001. Now you take the test
and the outcome is positive. What is the chance that you
have the disease? In other words, what isP (D | y)? As
illustrated in Figure 19,

P (D | y) =
P (D ∩ y)

P (y)
=

0.00099

0.02097
= 0.047 . . . .

This is clearly a case in which you want to get a second
opinion before starting a treatment.
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0.999

0.99

0.02
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0.01
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0.00001

0.01998

0.97902
D

D
n

n

y

y

Figure 19: Tree diagram showing the conditional probabilities in
the medical test question.

Summary. Today, we learned about conditional proba-
bilities and what it means for two events to be indepen-
dent. The Product Principle can be used to compute the
probability of the intersection of two events, if they are in-
dependent. We also learned about trial processes and tree
diagrams to analyze them.
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17 Random Variables

A random variableis a real-value function on the sample
space,X : Ω → R. An example is the total number of dots
at rolling two dice, or the number of heads in a sequence
of ten coin flips.

Bernoulli trial process. Recall that an independent trial
process is a sequence of identical experiments in which the
outcome of each experiment is independent of the preced-
ing outcomes. A particular example is theBernoulli trial
processin which the probability of success is the same at
each trial:

P (success) = p;

P (failure) = 1 − p.

If we do a sequence ofn trials, we may defineX equal to
the number of successes. Hence,Ω is the space of possi-
ble outcomes for a sequence ofn trials or, equivalently, the
set of binary strings of lengthn. What is the probability
of getting exactlyk successes? By the Independent Trial
Theorem, the probability of having a sequence ofk suc-
cesses followed byn−k failures ispk(1−p)n−k. Now we
just have to multiply with the number of binary sequences
that containk successes.

BINOMIAL PROBABILITY LEMMA . The probability of
having exactlyk successes in a sequence ofn trials is
P (X = k) =

(

n
k

)

pk(1 − p)n−k.

As a sanity check, we make sure that the probabilities add
up to one. Using the Binomial Theorem, get

n
∑

k=0

P (X = k) =
n
∑

k=0

(

n

k

)

pk(1 − p)n−k,

which is equal to(p + (1 − p))n = 1. Because of this
connection, the probabilities in the Bernoulli trial process
are called thebinomial probabilities.

Expectation. The function that assigns to eachxi ∈ R

the probability thatX = xi is the distribution func-
tion of X , denoted asf : R → [0, 1]; see Figure 20.
More formally, f(xi) = P (A), whereA = X−1(xi).
The expected valueof the random variable isE(X) =
∑

i xiP (X = xi).

As an example, consider the Bernoulli trial process in
which X counts the successes in a sequence ofn trials,

i x
0

1

(  )         (   )

Ω

f  x   =  P  A 

A

Figure 20: The distribution function of a random variable iscon-
structed by mapping a real number,xi, to the probability of the
event that the random variable takes on the valuexi.

that is,P (X = k) =
(

n
k

)

pk(1−p)n−k. The corresponding
distribution function mapsk to the probability of havingk
successes, that is,f(k) =

(

n
k

)

pk(1 − p)n−k. We get the
expected number of successes by summing over allk.

E(X) =

n
∑

k=0

kf(k)

=

n
∑

k=0

k

(

n

k

)

pk(1 − p)n−k

= np

n
∑

k=1

(

n − 1

k − 1

)

pk−1(1 − p)n−k

= np

n−1
∑

k=0

(

n − 1

k

)

pk(1 − p)n−k−1.

The sum in the last line is equal to(p + (1 − p))n−1 = 1.
Hence, the expected number of successes isX = np.

Linearity of expectation. Note that the expected value
of X can also be obtained by summing over all possible
outcomes, that is,

E(X) =
∑

s∈Ω

X(s)P (s).

This leads to an easier way of computing the expected
value. To this end, we exploit the following important
property of expectations.

L INEARITY OF EXPECTATION. Let X, Y : Ω → R be
two random variables. Then

(i) E(X + Y ) = E(X) + E(Y );

(ii) E(cX) = cE(X), for every real numberc.

The proof should be obvious. Is it? We use the prop-
erty to recompute the expected number of successes in
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a Bernoulli trial process. Fori from 1 to n, let Xi be
the expected number of successes in thei-th trial. Since
there is only onei-th trial, this is the same as the proba-
bility of having a success, that is,E(Xi) = p. Further-
more, X = X1 + X2 + . . . + Xn. Repeated applica-
tion of property (i) of the Linearity of Expectation gives
E(X) =

∑n
i=1 E(Xi) = np, same as before.

Indication. The Linearity of Expectation does not de-
pend on the independence of the trials; it is also true ifX
andY are dependent. We illustrate this property by going
back to our hat checking experiment. First, we introduce
a definition. Given an event, the correspondingindicator
random variableis 1 if the event happens and0 otherwise.
Thus,E(X) = P (X = 1).

In the hat checking experiment, we returnn hats in a
random order. LetX be the number of correctly returned
hats. We proved that the probability of returning at least
one hat correctly isP (X ≥ 1) = 1 − e−1 = 0.6 . . .
To compute the expectation from the definition, we would
have to determine the probability of returning exactlyk
hats corrects, for each0 ≤ k ≤ n. Alternatively, we
can compute the expectation by decomposing the random
variable,X = X1 + X2 + . . . + Xn, whereXi is the
expected value that thei-th hat is returned correctly. Now,
Xi is an indicator variable withE(Xi) = 1

n . Note that
theXi are not independent. For example, if the firstn− 1
hats are returned correctly then so is then-th hat. In spite
of the dependence, we have

E(X) =

n
∑

i=1

E(Xi) = 1.

In words, the expected number of correctly returned hats
is one.

Example: computing the minimum. Consider the fol-
lowing algorithm for computing the minimum amongn
items stored in a linear array.

min = A[1];
for i = 2 to n do
if min > A[i] then min = A[i] endif

endif.

Suppose the items are distinct and the array stores them in
a random sequence. By this we mean that each permuta-
tion of then items is equally likely. LetX be the number
of assignments tomin. We haveX = X1+X2+. . .+Xn,

whereXi is the expected number of assignments in thei-
th step. We getXi = 1 iff the i-th item,A[i], is smaller
than all preceding items. The chance for this to happen is
one ini. Hence,

E(X) =

n
∑

i=1

E(Xi)

=

n
∑

i=1

1

i
.

The result of this sum is referred to as then-th harmonic
number, Hn = 1+ 1

2+ 1
3+. . .+ 1

n . We can use
∫ n

x=1
= lnn

to show that then-th harmonic number is approximately
the natural logarithm ofn. More precisely,ln(n + 1) ≤
Hn ≤ 1 + lnn.

Waiting for success. Suppose we have again a Bernoulli
trial process, but this time we end it the first time we hit a
success. DefiningX equal to the index of the first success,
we are interested in the expected value,E(X). We have
P (X = i) = (1 − p)i−1p for eachi. As a sanity check,
we make sure that the probabilities add up to one. Indeed,

∞
∑

i=1

P (X = i) =

∞
∑

i=1

(1 − p)i−1p

= p · 1

1 − (1 − p)
.

Using the Linearity of Expectation, we get a similar sum
for the expected number of trials. First, we note that
∑∞

j=0 jxj = x
(1−x)2 . There are many ways to derive this

equation, for example, by index transformation. Hence,

E(X) =

∞
∑

i=0

iP (X = i)

=
p

1 − p

∞
∑

i=0

i(1 − p)i

=
p

1 − p
· 1 − p

(1 − (1 − p))2
,

which is equal to1
p .

Summary. Today, we have learned about random vari-
able and their expected values. Very importantly, the ex-
pectation of a sum of random variables is equal to the sum
of the expectations. We used this to analyze the Bernoulli
trial process.
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18 Probability in Hashing

A popular method for storing a collection of items to sup-
port fast look-up is hashing them into a table. Trouble
starts when we attempt to store more than one item in the
same slot. The efficiency of all hashing algorithms de-
pends on how often this happens.

Birthday paradox. We begin with an instructive ques-
tion about birthdays. Consider a group ofn people. Each
person claims one particular day of the year as her birth-
day. For simplicity, we assume that nobody claims Febru-
ary 29 and we talk about years consisting ofk = 365 days
only. Assume also that each day is equally likely for each
person. In other words,

P (personi is born on dayj) =
1

k
,

for all i and allj. Collecting the birthdays of then peo-
ple, we get a multiset ofn days during the year. We are
interested in the event,A, that at least two people have the
same birthday. Its probability is one minus the probability
that then birthdays are distinct, that is,

P (A) = 1 − P (Ā)

= 1 − k

k
· k − 1

k
· . . . · k − n + 1

k

= 1 − k!

(k − n)!kn
.

The probability ofA surpasses one half whenn exceeds
21, which is perhaps surprisingly early. See Figure 21 for
a display how the probability grows with increasingn.
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Figure 21: The probability that at least two people in a groupof
n share the same birthday.

Hashing. The basic mechanism in hashing is the same
as in the assignment of birthdays. We haven items and
map each to one ofk slots. We assume then choices of
slots are independent. Acollision is the event that an item

is mapped to a slot that already stores an item. A possible
resolution of a collision adds the item at the end of a linked
list that belongs to the slot, but there are others. We are
interested in the following quantities:

1. the expected number of items mapping to same slot;

2. the expected number of empty slots;

3. the expected number of collisions;

4. the expected number of items needed to fill allk slots.

Different hashing algorithms use different mechanisms for
resolving collisions. The above quantities have a lot to say
about the relative merits of these algorithms.

Items per slot. Since all slots are the same and none is
more preferred than any other, we might as well determine
the expected number of items that are mapped to slot1.
Consider the corresponding indicator random variable,

Xi =

{

1 if item i is mapped to slot1;
0 otherwise.

The number of items mapped to slot1 is thereforeX =
X1 + X2 + . . . + Xn. The expected value ofXi is 1

k , for
eachi. Hence, the expected number of items mapped to
slot1 is

E(X) =
n
∑

i=1

E(Xi) =
n

k
.

But this is obvious in any case. As mentioned earlier, the
expected number of items is the same for every slot. Writ-
ing Yj for the number of items mapped to slotj, we have
Y =

∑k
j=1 Yj = n. Similarly,

E(Y ) =

k
∑

j=1

E(Yj) = n.

Since the expectations are the same for all slots, we there-
fore haveE(Yj) = n

k , for eachj.

Empty slots. The probability that slotj remains empty
after mapping alln items is(1 − 1

k )n. Defining

Xj =

{

1 if slot j remains empty;
0 otherwise,

we thus getE(Xj) = (1 − 1
k )n. The number of empty

slots isX = X1 + X2 + . . . + Xk. Hence, the expected
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number of empty slots is

E(X) =

k
∑

j=1

E(Xj) = k

(

1 − 1

k

)n

.

Fork = n, we havelimn→∞(1− 1
n )n = e−1 = 0.367 . . .

In this case, we can expect about a third of the slots to
remain empty.

Collisions. The number of collisions can be determined
from the number of empty slots. WritingX for the num-
ber of empty slots, as before, we havek−X items hashed
without collision and therefore a total ofn − k + X col-
lisions. WritingZ for the number of collisions, we thus
get

E(Z) = n − k + E(X)

= n − k + k

(

1 − 1

k

)n

.

For k = n, we getlimn→∞ n(1 − 1
n )n = n

e . In words,
about a third of the items cause a collision.

Filling all slots. How many items do we need to map
to thek slots until they store at least one item each? For
obvious reasons, this question is sometimes referred to as
the coupons collector problem. The crucial idea here is
to defineXj equal to the number of items it takes to go
from j − 1 to j filled slots. Filling thej-th slot is an
infinite Bernoulli process with success probability equal
to p = k−j+1

k . Last lecture, we learned that the ex-
pected number of trials until the first success is1

p . Hence,

E(Xj) = k
k−j+1 . The number of items needed to fill all

slots isX = X1 + X2 + . . . + Xk. The expected number
is therefore

E(X) =
k
∑

j=1

E(Xj)

=

k
∑

j=1

k

k − j + 1

= k

k
∑

j=1

1

j

= kHk.

As mentioned during last lecture, this is approximatelyk
times the natural logarithm ofk. More precisely, we have
k ln(k + 1) ≤ kHk ≤ k(1 + ln k).
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19 Probability Distributions

Although individual events based on probability are un-
predictable, we can predict patterns when we repeat the
experiment many times. Today, we will look at the pattern
that emerges from independent random variables, such as
flipping a coin.

Coin flipping. Suppose we have a fair coin, that is, the
probability of getting head is precisely one half and the
same is true for getting tail. LetX count the times we get
head. If we flip the coinn times, the probability that we
getk heads is

P (X = k) =

(

n

k

)

/2n.

Figure 22 visualizes this distribution in the form of a his-
togram forn = 10. Recall that thedistribution function
maps every possible outcome to its probability,f(k) =
P (X = k). This makes sense when we have a discrete
domain. For a continuous domain, we consider thecu-
mulative distribution functionthat gives the probability
of the outcome to be within a particular range, that is,
∫ b

x=a f(x) dx = P (a ≤ X ≤ b).
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Figure 22: The histogram that the shows the probability of get-
ting 0, 1, . . . ,10 heads when flipping a coin ten times.

Variance. Now that we have an idea of what a distribu-
tion function looks like, we wish to find succinct ways of
describing it. First, we note thatµ = E(X) is the expected
value of our random variable. It is also referred to as the
meanor theaverageof the distribution. In the example
above, whereX is the number of heads in ten coin flips,
we haveµ = 5. However, we would not be surprised if we
had four or six heads but we might be surprised if we had

zero or ten heads when we flip a coin ten times. To express
how surprised we should be we measure the spread of the
distribution. Let us first determine how close we expect a
random variable to be to its expectation,E(X − E(X)).
By linearity of expectation, we have

E(X − µ) = E(X) − E(µ) = µ − µ = 0.

Hence, this measurement is not a good description of the
distribution. Instead, we use the expectation of the square
of the difference to the mean. Specifically, thevarianceof
a random variableX , denoted asV (X), is the expectation
E
(

(X − µ)2
)

. Thestandard deviationis the square root
of the variance, that is,σ(X) = V (X)1/2. If X4 is the
number of heads we see in four coin flips, thenµ = 2 and

V (X4) =
1

16

[

(−2)2 + 4 · (−1)2 + 4 · 12 + 22
]

,

which is equal to1. For comparison, letX1 be the number
of heads that we see in one coin flip. Thenµ = 1

2 and

V (X1) =
1

2

[

(0 − 1

2
)2 + (1 − 1

2
)2
]

,

which is equal to one quarter. Here, we notice that the
variance of four flips is the sum of the variances for four
individual flips. However, this property does not hold in
general.

Variance for independent random variables. Let X
andY be independent random variables. Then, the prop-
erty that we observed above is true.

ADDITIVITY OF VARIANCE. If X andY are indepen-
dent random variables thenV (X + Y ) = V (X) + V (Y ).

We first prove the following more technical result.

LEMMA . If X andY are independent random variables
thenE(XY ) = E(X)E(Y ).

PROOF. By definition of expectation,E(X)E(Y ) is the
product of

∑

i xiP (X = xi) and
∑

j yjP (Y = yj).
Pushing the summations to the right, we get

E(X)E(Y ) =
∑

i

∑

j

xiyjP (X = xi)P (Y = yj)

=
∑

i,j

zijP (X = xi)P (Y = yj),
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where zij = xiyj . Finally, we use the independence
of the random variablesX and Y to see thatP (X =
xi)P (Y = yj) = P (XY = zij). With this, we conclude
thatE(X)E(Y ) = E(XY ).

Now, we are ready to prove the Additivity of Variance,
that is,V (X + Y ) = V (X) + V (Y ) wheneverX andY
are independent.

PROOF. By definition of variance, we have

V (X + Y ) = E
(

(X + Y − E(X + Y ))2
)

.

The right hand side is the expectation of(X − µX)2 +
2(X − µX)(Y − µY ) + (Y − µY ), whereµX andµY

are the expected values of the two random variables. With
this, we get

V (X + Y ) = E
(

(X − µX)2
)

+ E
(

(Y − µY )2
)

= V (X) + V (Y ),

as claimed.

Normal distribution. If we continue to increase the
number of coin flips, then the distribution function ap-
proaches thenormal distribution,

f(x) =
1√
2π

e−
x
2

2 .

This is the limit of the distribution as the number of coin
flips approaches infinity. For a large number of trials, the

.4
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Figure 23: The normal distribution with meanµ = 0 and stan-
dard deviationσ = 1. The probability that the random variable
is between−σ andσ is 0.68, between−2σ and2σ is 0.955, and
between−3σ and3σ is 0.997.

normal distribution can be used to approximate the prob-
ability of the sum being betweena andb standard devia-
tions from the expected value.

STANDARD L IMIT THEOREM. The probability of the
number of heads being betweenaσ andbσ from the mean
goes to

1√
2π

∫ b

x=a

e−
x
2

2 dx

as the number of flips goes to infinity.

For example, if we have100 coin flips, thenµ = 50,
V (X) = 25, andσ = 5. It follows that the probability
of having between45 and55 heads is about0.68.

Summary. We used a histogram to visualize the proba-
bility that we will havek heads inn flips of a coin. We
also used the mean,µ, the standard deviation,σ, and the
variance,V (X), to describe the distribution of outcomes.
As n approaches infinity, we see that this distribution ap-
proaches the normal distribution.
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Fifth Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is 8 April 2009.

Question 1. (20 points). Use the Principle of Inclusion-
Exclusion to count the surjective functionsf : M →
N , where where both sets are finite withm = |M |
andn = |N |.

Question 2. (20 = 6 + 7 + 7 points). (Problems 5.3-1 to
3 in our textbook). Suppose you have a fair coin, one
in which a flip gives head with probability one half
and tail with probability one half. You do three flips
with this coin.

(a) What is the probability that two flips in are row
are heads, given that there is an even number of
heads?

(b) Is the event that two flips in a row are heads
independent of the event that there is an even
number of heads?

(c) Is the event of getting at most one tail indepen-
dent of the event that not all flips are identical?

Question 3. (20 points). (Problem 5.4-16 in our text-
book). Suppose you have two nickels, two dimes,
and two quarters in a bag. You draw three coins from
the bag, without replacement. What is the expected
amount of money you get?

Question 4. (20 = 6 + 7 + 7 points). (Problem 5.5-8
in our textbook). Suppose you hashn items intok
locations.

(a) What is the probability that alln items has to
different locations?

(b) What is the probability that thei-th item gives
the first collision?

(c) What is the expected number of items you hash
until the first collision?

Question 5. (20 = 7 + 7 + 6 points). In the program-
ming language of your choice, write the following
two functions:

(a) GETMEAN

(a) GETVARIANCE

These methods should take an array of values as input
(the experimental results for each trial) and return a
floating point number. Then, flip a coin 20 times (or
simulate this on the computer) and use these methods
to compute the mean and the variance of your trials.
Are the results what you would have expected?

Question 6. (20 = 10 + 10 points). (Problems 5.7-8 and
14 in our textbook).

(a) Show that ifX andY are independent, andb
andc are constant, thenX − b andY − c are
independent.

(b) Given a random variableX , how does the vari-
ance ofcX relate to that ofX?
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