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A graph is a set of vertices with pairs connected by edges. Theinformation in a particular graph is contained in the choice
of vertices that are connected by edges. This simple combinatorial structure is surprisingly versatile and conveniently
models situations in which the relationship between parts is important.
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20 Trees

Graphs can be used to model and solve many problems.
Trees are special graphs. Today, we look at various prop-
erties of graphs as well as of trees.

Party problem. Suppose we choose six people at ran-
dom from a party. We call the peopleA throughF . Then,
one of the following must be true:

I. three of the people mutually know each other; or

II. three of the people mutually do not know each other.

We reformulate this claim using a graph representing the
situation. We draw six vertices, one for each person, and
we draw an edge between two vertices if the two people
know each other. We call this asimple graph. Thecomple-
ment graphconsists of the same six vertices but contains
an edge between two vertices iff the graph does not have
an edge between them. Property I says the graph contains
a triangle and Property II says the complement graph con-
tains a triangle. In Figure 24, we see two graphs on six
vertices. On the left, the graph contains a triangle and on
the right, the complement graph contains a triangle. We
can now reformulate the above claim.
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Figure 24: The two cases we consider in the party problem.

PARTY THEOREM. If a simple graph on six vertices
does not have a triangle then the complement graph on
the same six vertices has a triangle.

PROOF. We distinguish the case in whichA knows two
or fewer people from the case in whichA knows three or
more people. For the first case, we assume thatA possibly
knowsC andE but nobody else. IfA knows both andC
andE know each other, then we have a triangle. Other-
wise, considerB, D, F . If they do not all mutually know
each other, then without loss of generality, we can say that

B does not knowD. Thus, we have a triangle in the com-
plement graph sinceA, B, andD mutually do not know
each other. For the second case, assume thatA knowsB,
D, F , and possibly other people. If any two of the three
know each other then we have a triangle in the graph. Oth-
erwise, we have a triangle in the complement graph since
B, D, andF mutually do not know each other.

Simple graphs. In the above problem, we used graphs to
help us find the solution. A(simple) graph, G = (V, E),
is a finite set of vertices,V , together with a set of edges,
E, where an edge is an unordered pair of vertices. Two
vertices connected by an edge areadjacentand they are
neighborsof each other. Furthermore, we say the edge is
incidentto the vertices it connects. Sometimes we refer to
the vertices as nodes and the edges as arcs. For example,
Figure 25 shows thecomplete graphof five vertices, which
we denote asK5. This graph is complete since we cannot
add any more edges. Asubgraphof a graphG = (V, E) is

Figure 25: The complete graph of five vertices. It has
`
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= 10
edges.

a graphH = (W, F ) for which W ⊆ V andF ⊆ E. For
example, aclique in G is a subgraph that is a complete
graph if considered by itself. With this terminology, the
Party Theorem says that a graph on six vertices contains a
clique of three vertices or its complement graph contains
such a clique.

Connectivity. Suppose we have a graph where the nodes
are cities and an edge{a, b} exists if there is a train that
goes between these two cities. Where can you go if you
start at a cityx? We need some definitions to study this
question. Awalk is an alternating sequence of vertices
and edges such that

1. the sequence starts and ends with a vertex;

2. each edge connects the vertex that precedes the edge
with the vertex that succeeds the edge.
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Furthermore, apath is a walk such that no vertex appears
twice. If there exists a walk froma to b, then we know
that there also exists a path froma to b. Indeed, if a vertex
x appears twice, we can shorten the walk by removing all
edges and vertices between the two copies as well as one
copy of the vertexx. If the walk is finite, we get a path
after finitely many operations as described.

CLAIM . Having a connecting path is an equivalence re-
lation on the vertices of a graph.

PROOF. Let a, b, c be three vertices of a graphG. The
relation is reflexive because(a) is a path froma to a. The
relation is symmetric because reversing a path froma to b
gives a path fromb to a. Finally, the relation is transitive
because concatenating a path froma to b with a path from
b to c gives a path froma to c.

A graph isconnectedif there is a path between every
pair of its vertices. Aconnected componentof a not neces-
sarily connected graph is a maximal connected subgraph.
Equivalently, a connected component is an equivalence
class of vertices together with the edges between them.

Cycles and trees. A closed walkis a walk that starts and
ends at the same vertex. Acycleis a closed walk in which
no vertices are repeated. Alternatively, we can say that a
cycle is a path in which the start and the end vertices are
the same. Atree is a connected graph that does not have
any cycles.

PROPERTIES OFTREES. If T = (V, E) is a tree withn
vertices andm edges, then we have the following proper-
ties:

1. there is exactly one path between every pair of ver-
tices;

2. removing an edge disconnects the tree;

3. the number of edges ism = n − 1;

4. there exists at least one vertex that has precisely one
neighboring vertex.

Spanning trees. Sometimes the whole graph gives us
more information than we need or can process. In such a
case, we may reduce the graph while preserving the prop-
erty of interest. For example, if we are interested in con-
nectivity, we may remove as many edges as we can while
preserving the connectivity of the graph. This leads to the
concept of aspanning tree, that is, a subgraph that con-
tains all vertices and is itself a tree.

SPANNING TREE THEOREM. Every finite connected
graph contains a spanning tree.

PROOF. If there is a cycle in the graph, remove one edge
of the cycle. Repeat until no cycles remain.

There are a number of different algorithms for con-
structing a spanning tree. We may, for example, begin
with a vertexu0 ∈ V and grow a tree by adding an edge
and a vertex in each round. This is called Prim’s Algo-
rithm.

W = {u0}; F = ∅; X = V − {u0};
while ∃ edge{w, x} with w ∈ W andx ∈ X do

movex from X to W ; add{w, x} to F
endwhile;
if V = W then (W, F ) is spanning tree

else (V, E) is not connected
endif.

At the end of this algorithm, we have determined ifG is
connected. If it is connected, we have found a spanning
tree. Otherwise,(W, F ) is a spanning tree of the con-
nected component that containsu0.

Rooted trees. In many situations, it is convenient to
have the edges of a tree directed, from one endpoint to the
other. If we have an edge froma to b, we calla aparentof
b andb a child of a. A particularly important such struc-
ture is obtained if the edges are directed such that each
vertex has at most one parent. In a tree, the number of
edges is one less than the number of vertices. This implies
that each vertex has exactly one parent, except for one, the
root, which has no parent. Holding the root and letting
gravity work on the rest of the graph, we get a picture like
in Figure 26 in which the root is drawn at the top. The

Figure 26: The top vertex is the root and the square vertices are
the leaves of the rooted tree.

directions of the edges are now determined, namely from
top to bottom, leading away from the root. Each maximal
directed path starts at the root and ends at aleaf, that is,
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a vertex without children. Rooted trees are often used to
model or to support a search process. We start at the root
and choose an outgoing edge to direct the search to one of
the available subtrees. We then recurse, treating the new
vertex like the root. Repeating this step, we eventually ar-
rive at a leaf of the rooted tree. Similarly, we can give a
recursive definition of a rooted tree. We phrase this defi-
nition of the case of abinary tree, that is, a rooted tree in
which every vertex has at most two children. We thus talk
about a left child and a right child.

• an empty graph is a binary tree;

• a vertex (the root) with a binary tree as left subtree
and a binary tree as right subtree is a binary tree.

While uncommon in Mathematics, recursive definitions
are suggestive of algorithms and thus common in Com-
puter Science.

Summary. Today, we looked at graphs, subgraphs,
trees, and rooted trees. We used Prim’s algorithm to find a
spanning tree (if one exists).
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21 Tours

In this section, we study different ways to traverse a graph.
We begin with tours that traverse every edge exactly once
and end with tours that visit every vertex exactly once.

Bridges of Königsberg. The Pregel River goes through
the city of Königsberg, separating it into two large islands
and two pieces of mainland. There are seven bridges con-
necting the islands with the mainland, as sketched in Fig-
ure 27. Is it possible to find a closed walk that traverses

Figure 27: Left: schematic picture of the bridges connecting the
islands with the mainland in Königsberg. Right: representation
by a graph with four vertices and seven edges.

each bridge exactly once? We can formalize this question
by drawing a graph with four vertices, one for each island
and each piece of the mainland. We have an edge for each
bridge, as in Figure 27 on the right. The graph hasmulti-
edgesand is therefore not simple. More generally, we may
also allowloopsthat are edges starting and ending at the
same vertex. AEulerian tourof such a graph is a closed
walk that contains each edge exactly once.

Eulerian graphs. A graph isEulerianif it permits a Eu-
lerian tour. To decide whether or not a graph is Eulerian, it
suffices to look at the local neighborhood of each vertex.
The degreeof a vertex is the number of incident edges.
Here we count a loop twice because it touches a vertex at
both ends.

EULERIAN TOUR THEOREM. A graph is Eulerian iff it
is connected and every vertex has even degree.

PROOF. If a graph is Eulerian then it is connected and each
vertex has even degree just because we enter a vertex the
same number of times we leave it. The other direction is
more difficult to prove. We do it constructively. Given a
vertexu0 ∈ V , we construct a maximal walk,W0, that
leaves each vertex at a yet unused edge. Starting atu0, the

walk continues until we have no more edge to leave the last
vertex. Since each vertex has even degree, this last vertex
can only beu0. The walkW0 is thus necessarily closed.
If it is not a Eulerian tour then there are still some unused
edges left. Consider a connected component of the graph
consisting of these unused edges and the incident vertices.
It is connected and every vertex has even degree. Letu1 be
a vertex of this component that also lies onW0. Construct
a closed walk,W1, starting fromu1. Now concatenateW0

andW1 to form a longer closed walk. Repeating this step
a finite number of times gives a Eulerian tour.

All four vertices of the graph modeling the seven
bridges in Königsberg have odd degree. It follows there
is no closed walk that traverses each bridge exactly once.

Hamiltonian graphs. Consider thepentagon dodecahe-
dron, the Platonic solid bounded by twelve faces, each a
regular pentagon. Drawing the corners as vertices and the
sides of the pentagons as edges, we get a graph as in Fig-
ure 28. Recall that a cycle in a graph is a closed walk

Figure 28: A drawing of a pentagon dodecahedron in which the
lengths of the edges are not in scale.

in which no vertex is repeated. AHamiltonian cycleis a
closed walk that visits every vertex exactly once. As indi-
cated by the shading of some edges in Figure 28, the graph
of the pentagon dodecahedron has a Hamiltonian cycle. A
graph isHamiltonian if it permits a Hamiltonian cycle.
Deciding whether or not a graph is Hamiltonian turns out
to be much more difficult than deciding whether or not it
is Eulerian.
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A sufficient condition. The more edges we have, the
more likely it is to find a Hamiltonian cycle. It turns out
that beyond some number of edges incident to each vertex,
there is always a Hamiltonian cycle.

DIRAC’ S THEOREM. If G is a simple graph withn ≥ 3
vertices and each vertex has degree at leastn

2 thenG is
Hamiltonian.

PROOF. AssumeG has a maximal set of edges without
being Hamiltonian. Lettingx andy be two vertices not
adjacent inG, we thus have a path fromx to y that passes
through all vertices of the graph. We index the vertices
along this path, withu1 = x andun = y, as in Figure
29. Now supposex is adjacent to a vertexui+1. If y is

−1nx u u u u y2 i i+1

... ...

Figure 29: Ifx is adjacent toui+1 andy is adjacent toui then
we get a Hamiltonian cycle by adding these two edges to the path
and removing the edge connectingui to ui+1.

adjacent toui then we have a Hamiltonian cycle as shown
in Figure 29. Thus, for every neighborui+1 of x, we have
a non-neighborui of y. But x has at leastn2 neighbors
which implies thaty has at leastn2 non-neighbors. The
degree ofy is therefore at most(n−1)− n

2 = n
2 −1. This

contradicts the assumption and thus implies the claim.

The proof of Dirac’s Theorem uses a common tech-
nique, namely assuming an extreme counterexample and
deriving a contradiction from this assumption.

Summary. We have learned about Eulerian graphs
which have closed walks traversing each edge exactly
once. Such graphs are easily recognized, simply by check-
ing the degree of all the vertices. We have also learned
about Hamiltonian graphs which have closed walks visit-
ing each vertex exactly once. Such graphs are difficult to
recognize. More specifically, there is no known algorithm
that can decide whether a graph ofn vertices is Hamilto-
nian in time that is at most polynomial inn.
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22 Matching

Most of us are familiar with the difficult problem of find-
ing a good match. We use graphs to study the problem
from a global perspective.

Marriage problem. Suppose there aren boys andn
girls and we have a like-dislike relation between them.
Representing this data in a square matrix, as in Figure 30
on the left, we write an ‘x’ whenever the corresponding
boy and girl like each other. Alternatively, we may repre-
sent the data in form of a graph in which we draw an edge
for each ‘x’ in the matrix; see Figure 30 on the right. This
graph,G = (V, E), is bipartite, that is, we can partition
the vertex set asV = X ∪̇ Y such that each edge connects
a vertex inX with a vertex inY . The setsX andY are
thepartsof the graph.

... ...
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Figure 30: The matrix on the left and the bipartite graph on the
right both represent the same data.

The goal is to marry off the boys and girls based on the
relation. We formalize this using the bipartite graph rep-
resentation. Amatchingis a setM ⊆ E of vertex-disjoint
edges. The matching ismaximalif no matching properly
containsM . The matching ismaximumif no matching has
more edges thanM . Note that every maximum matching
is maximal but not the other way round. Maximal match-
ings are easy to find, eg. by greedily adding one edge at
a time. To construct a maximum matching efficiently, we
need to know more about the structure of matchings.

Augmenting paths. LetG = (V, E) be a bipartite graph
with partsX andY andM ⊆ E a matching. Analter-
nating pathalternates between edges inM and edges in
E − M . An augmenting pathis an alternating path that
begins and ends at unmatched vertices, that is, at vertices

that are not incident to edges inM . If we have an aug-
menting path, we can switch its edges to increase the size
of the matching, as in Figure 31.

t

s

Figure 31: The solid edges form a matching. The shaded edges
form an augmenting path. Trading its dashed for its solid edges,
we increase the size of the matching by one edge. If we adds and
t and direct the edges, the augmenting path becomes a directed
path connectings to t.

BERGE’ S THEOREM. The matchingM is maximum iff
there is no augmenting path.

PROOF. Clearly, if there is an augmenting path thenM is
not maximum. Equivalently, ifM is maximum then there
is no augmenting path. Proving the other direction is more
difficult. SupposeM is not maximum. Then there exists a
matchingN with |N | > |M |. We consider the symmetric
difference obtained by removing the duplicate edges from
their union,

M ⊕ N = (M ∪ N) − (M ∩ N).

Since both sets are matchings, the edges ofM are vertex-
disjoint and so are the edges ofN . It follows that each
connected component of the graph(V, M⊕N) is either an
alternating path or an alternating cycle. Every alternating
cycle has the same number of edges fromM and fromN .
SinceN has more edges thanM , it also contributes more
edges to the symmetric difference. Hence, at least one
component has more edges fromN than fromM . This is
an augmenting path.

Constructing a maximum matching. Berge’s Theorem
suggests we construct a maximum matching iteratively.
Starting with the empty matching,M = ∅, we find an aug-
menting path and increase the size of the matching in each
iteration until no further increase is possible. The number
of iterations is less than the number of vertices. To explain
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how we find an augmenting path, we add verticess andt
to the graph, connectings to all unmatched vertices inX
andt to all unmatched vertices inY . Furthermore, we di-
rect all edges: froms to X , from X to Y if the edge is in
E−M , fromY to X if the edge is inM , and fromY to t;
see Figure 31. An augmenting path starts and ends with an
edge inE−M . Prepending an edge froms and appending
an edge tot, we get a directed path froms to t in the di-
rected graph. Such a path can be found with breadth-first
search, which works by storing active vertices in a queue
and marking vertices that have already been visited. Ini-
tially, s is the only marked vertex and the only vertex in
the queue. In each iteration, we remove the last vertex,x,
from the end of the queue, mark all unmarked successors
of x, and add these at the front to the queue. We halt the
algorithm whent is added to the queue. If this never hap-
pens then there is no augmenting path and the matching
is maximum. Otherwise, we extract a path froms to t by
tracing it from the other direction, starting att, adding one
marked vertex at a time.

The breadth-first search algorithm takes constant time
per edge. The number of edges is less thann2, where
n = |V |. It follows that an augmenting path can be found
in time O(n2). The overall algorithms takes timeO(n3)
to construct a maximum matching.

Vertex covers. Running the algorithm to completion,
we get a maximum matching,M ⊆ E. Let Y0 contain
all vertices inY reachable froms andX0 all vertices inX
from which t is reachable; see Figure 32. No edge inM

t

s

XX0 1

Y0

Figure 32: Schematic picture of the vertex setD consisting of
the shaded portions ofX and ofY . The vertices are ordered so
that all edges inM are vertical.

connects a vertex inX0 with a vertex inY0, else we would
have an augmenting path. Furthermore,|X0 ∪ Y0| ≤ |M |
because each vertex in the union is incident to an edge in
the matching. LettingX1 contain the endpoints of the yet
untouched edges inM , we setD = X0 ∪ Y0 ∪ X1 and

note that|D| = |M |. Furthermore, we observe thatD
coversall edges inE, that is, each edge has at least one
endpoint inD.

We generalize this concept. Given a graphG = (V, E),
a vertex coveris a setC ⊆ V such that each edge inE
has at least one endpoint inC. It is minimal if it does
not properly contain another vertex cover andminimum
if there is no vertex cover with fewer vertices. Finding a
minimal vertex cover is easy, eg. by greedily removing one
vertex at a time, but finding a minimum vertex cover is a
difficult computational problem for which no polynomial-
time algorithm is known. However, ifG is bipartite, we
can use the maximum matching algorithm to construct a
minimum vertex cover.

K ÖNIG’ S THEOREM. If G = (V, E) is bipartite then
the size of a minimum vertex cover is equal to the size of
a maximum matching.

PROOF. Let X andY be the parts of the graph,C ⊆ V =
X ∪̇ Y a minimum vertex cover, andM ⊆ E a maximum
matching. Then|M | ≤ |C| becauseC coversM . Since
M is maximum, there is no augmenting path. It follows
that the setD ⊆ V (as defined above) covers all edges.
SinceC is minimum, we have|C| ≤ |D| = |M |, which
implies the claim.

Neighborhood sizes. If the two parts of the bipartite
graph have the same size it is sometimes possible to match
every last vertex. We call a matchingperfect if |M | =
|X | = |Y |. There is an interesting relationship between
the existence of a perfect matching and the number of
neighbors a set of vertices has. LetS ⊆ X and define
its neighborhoodas the setN(S) ⊆ Y consisting of all
vertices adjacent to at least one vertex inS.

HALL ’ S THEOREM. In a bipartite graphG = (V, E)
with equally large partsX andY , there is a perfect match-
ing iff |N(S)| ≥ |S| for everyS ⊆ X .

PROOF. If all vertices ofX can be matched then|N(S)| ≥
|S| simply becauseN(S) contains all matched vertices in
Y , and possibly more. The other direction is more difficult
to prove. We show that|N(S)| ≥ |S| for all S ⊆ X
implies thatX is a minimum vertex cover. By König’s
Theorem, there is a matching of the same size, and this
matching necessarily connects to all vertices inX .

Let nowC ⊆ X ∪̇ Y be a minimum vertex cover and
considerS = X − C. By definition of vertex cover, all
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neighbors of vertices inS are in Y ∩ C. Hence,|S| ≤
|N(S)| ≤ |Y ∩ C|. We therefore have

|C| = |C ∩ X | + |C ∩ Y |
≥ |C ∩ X | + |S|
= |C ∩ X | + |X − C|

which is equal to|X |. But X clearly covers all edges,
which implies|C| = |X |. Hence,X is a minimum vertex
cover, which implies the claim.

Summary. Today, we have defined the marriage prob-
lem as constructing a maximum matching in a bipartite
graph. We have seen that such a matching can be con-
structed in time cubic in the number of vertices. We have
also seen connections between maximum matchings, min-
imum vertex covers, and sizes of neighborhoods.
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23 Planar Graphs

Although we commonly draw a graph in the plane, us-
ing tiny circles for the vertices and curves for the edges, a
graph is a perfectly abstract concept. We now talk about
constraints on graphs necessary to be able to draw a graph
in the plane without crossings between the curves. This
question forms a bridge between the abstract and the geo-
metric study of graphs.

Drawings and embeddings. Let G = (V, E) be a
simple, undirected graph and letR2 denote the two-
dimensional real plane. Adrawing maps every vertex
u ∈ V to a pointε(u) in R2, and it maps every edge
uv ∈ E to a curve with endpointsε(u) andε(v); see Fig-
ure 33. The drawing is anembeddingif

1. vertices are mapped to distinct points;

2. edge are mapped to curves without self-intersections;

3. a curve does not pass through a point, unless the cor-
responding edge and vertex are incident, in which
case the point is an endpoint of the curve;

4. two curves are disjoint, unless the corresponding
edges are incident to a common vertex, in which case
the curves share a common endpoint.

Not every graph can be drawn without crossings between
the curves. The graphG is planar if it has an embedding
in the plane.

Figure 33: Three drawings ofK4. From left to right a drawing
that is not an embedding, an embedding with one curved edge,
and a straight-line embedding.

Euler’s Formula. Think of the plane as an infinite piece
of paper which you cut along the curves with a pair of scis-
sors. Each piece of the paper that remains connected after
the cutting is called afaceof the embedding. We write
n = |V |, m = |E|, andℓ for the number of faces. Euler’s
Formula is a linear relation between the three numbers.

EULER’ S FORMULA . For an embedding of a connected
graph we haven − m + ℓ = 2.

PROOF. Choose a spanning tree(V, T ) of (V, E). It has
n vertices,|T | = n − 1 edges, and one face. We have
n − (n − 1) + 1 = 2, which proves the formula ifG
is a tree. Otherwise, draw the remaining edges, one at a
time. Each edge decomposes one face into two. The num-
ber of vertices does not change,m increases by one, andℓ
increases by one. Since the graph satisfies the claimed lin-
ear relation before drawing the edge it satisfies the relation
also after drawing the edge.

We get bounds on the number of edges and faces, in
terms of the number of vertices, by consideringmaximally
connectedgraphs for which adding any other edge would
violate planarity. Every face of a maximally connected
planar graph with three or more vertices is necessarily a
triangle, for if there is a face with more than three edges
we can add an edge without crossing any other edge. Let
n ≥ 3 be the number of vertices, as before. Since every
face has three edges and every edge belong to two trian-
gles, we have3ℓ = 2m. We use this relation to rewrite
Euler’s Formula:n − m + 2m

3 = 2 andn − 3ℓ
2 + ℓ = 2

and thereforem = 3n − 6 andℓ = 2n − 4. Every planar
graph can be completed to a maximally connected planar
graph, which implies that it has at most these numbers of
edges and faces.

Note that the sum of vertex degrees is twice the number
of edges, and therefore

∑

u deg(u) ≤ 6n − 12. It fol-
lows that every planar graph has a vertex of degree less
than six. We will see uses of this observation in coloring
planar graphs and in proving that they have straight-line
embeddings.

Non-planarity. We can use the consequences of Euler’s
Formula to prove that the complete graph of five vertices
and the complete bipartite graph of three plus three ver-
tices are not planar. Consider firstK5, which is drawn in
Figure 34, left. It hasn = 5 vertices andm = 10 edges,

Figure 34:K5 on the left andK3,3 on the right.

contradicting the upper bound of at most3n−6 = 9 edges
for maximally connected planar graphs. Consider second
K3,3, which is drawn in Figure 34, right. It hasn = 6
vertices andm = 9 edges. Each cycle has even length,
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which implies that each face has four or more edges. We
get 4ℓ ≤ 2m andm ≤ 2n − 4 = 8 after plugging the
inequality into Euler’s Formula, again a contradiction.

In a sense,K5 and K3,3 are the quintessential non-
planar graphs. Two graphs arehomeomorphicif one can
be obtained from the other by a sequence of operations,
each deleting a degree-2 vertex and merging its two edges
into one or doing the inverse.

KURATOWSKI’ S THEOREM. A graphG is planar iff no
subgraph ofG is homeomorphic toK5 or to K3,3.

The proof of this result is a bit lengthy and omitted. We
now turn to two applications of the structural properties of
planar graphs we have learned.

Vertex coloring. A vertexk-coloring is a mapχ : V →
{1, 2, . . . , k} such thatχ(u) 6= χ(v) wheneveru andv are
adjacent. We callχ(u) thecolor of the vertexu. For pla-
nar graphs, the concept is motivated by coloring countries
in a geographic map. We model the problem by replacing
each country by a vertex and by drawing an edge between
the vertices of neighboring countries. A famous result is
that every planar graph has a4-coloring, but proving this
fills the pages of a thick book. Instead, we give a con-
structive argument for the weaker result that every planar
graph has a5-coloring. If the graph has five or fewer ver-
tices then we color them directly. Else we perform the
following four steps:

Step 1. Remove a vertexu ∈ V with degreek =
deg(u) ≤ 5, together with thek incident edges.

Step 2. If k = 5 then find two neighborsv andw of
the removed vertexu that are not adjacent and merge
them into a single vertex.

Step 3. Recursively construct a5-coloring of the
smaller graph.

Step 4. Add u back into the graph and assign a color
that is different from the colors of its neighbors.

Why do we know that verticesv andw in Step 2 exist? To
see that five colors suffice, we just need to observe that the
at most five neighbors ofu use up at most four colors. The
idea of removing a small-degree vertex, recursing for the
remainder, and adding the vertex back is generally useful.
We show that it can also be used to construct embeddings
with straight edges.

Convexity and star-convexity. We call a regionS in the
planeconvexif for all points x, y ∈ S the line segment
with endpointsx andy is contained inS. Figure 35 shows
examples of regions of either kind. We callS star-convex

x

y

z

Figure 35: A convex region on the left and a non-convex star-
convex region on the right.

if there is a pointz ∈ S such that for every pointx ∈ S the
line segment connectingx with z is contained inS. The
set of such pointsz is thekernelof S.

It is not too difficult to show that every pentagon is star-
convex: decompose the pentagon using two diagonals and
choosez close to the common endpoint of these diago-
nals, as shown in Figure 36. Note however that not every
hexagon is star-convex.

z

Figure 36: A (necessarily) star-convex pentagon and two non-
star-convex hexagons.

Straight-line embedding. A straight-line embedding
maps every (abstract) edge to the straight line segment
connecting the images of its two vertices. We prove that
every planar graph has a straight-line embedding using the
fact that it has a vertex of degree at most five. To sim-
plify the construction, we assume that the planar graph
G is maximally connected and we fix the ‘outer’ triangle
abc. Furthermore, we observe that ifG has at least four
vertices then it has a vertex of degree at most5 that is dif-
ferent froma, b andc. Indeed, the combined degree of
a, b, c is at least7. The combined degree of the othern−3
vertices is therefore at most6n − 19, which implies the
average is still less than6, as required.

Step 1. Remove a vertexu ∈ V − {a, b, c} with de-
greek = deg(u) ≤ 5, together with thek incident
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edges. Addk−3 edges to make the graph maximally
connected again.

Step 2. Recursively construct a straight-line embed-
ding of the smaller graph.

Step 3. Remove the addedk − 3 edges and mapu to
a pointε(u) inside the kernel of thek-gon. Connect
ε(u) with line segments to the vertices of thek-gon.

Figure 37 illustrates the recursive construction. It would
be fairly straightforward to turn the construction into a re-
cursive algorithm, but the numerical quality of the embed-
dings it gives is not great.

c

a

u

add back u

remove u

recurse

b

Figure 37: We fix the outer triangleabc, remove the degree-5
vertexu, recursively construct a straight-line embedding of the
rest, and finally add the vertex back.
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Sixth Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is 22 April 2009.

Question 1. (20 = 5 + 5 + 5 + 5 points). Choose ten of
your friends, and make a graph where the edges rep-
resent two friends being Facebook friends. (Do not
include yourself in the graph). Order your friends al-
phabetically, and label the verticesv1, v2, . . . , v10 re-
spectively. This will be most interesting if all of your
friends know each other. Now, answer the following
questions about the graph that you drew.

(a) What is the size of the largest clique?

(b) Find the shortest and longest paths fromv1 to
v10.

(c) Which vertex has the highest degree?

(d) Use Prim’s algorithm to find the minimum
spanning tree, and draw that tree.

Question 2. (20 points). (Problem 6.1-14 in our text-
book). Are there graphs withn vertices andn − 1
edges and no cycles that are not trees? Give a proof
to justify your answer.

Question 3. (20 points). Call a simple graph withn ≥ 3
vertices anOre graphif every pair of non-adjacent
vertices has a combined degree of at leastn. Is it true
that every Ore graph is Hamiltonian? Justify your
answer.

Question 4. (20 = 10+10 points). (Problems 6.4-12 and
13 in our textbook). Prove or give a counterexample:

(a) Every tree is a bipartite graph.

(b) A bipartite graph has no odd cycles.

Question 5. (20 = 5 + 15 points). Suppose you haven
pennies which you arrange flat on a table, without
overlap.

(a) How would you arrange the pennies to max-
imize the number of pennies that touch each
other?

(b) Prove that the number of touching pairs cannot
exceed3n.
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