CHAPTER 4

Polynomials

This short chapter contains no linear algebra. It does contain the
background material on polynomials that we will need in our study
of linear maps from a vector space to itself. Many of the results in
this chapter will already be familiar to you from other courses; they
are included here for completeness. Because this chapter is not about
linear algebra, your instructor may go through it rapidly. You may not
be asked to scrutinize all the proofs. Make sure, however, that you
at least read and understand the statements of all the results in this
chapter—they will be used in the rest of the book.

|Recall that F denotes R or C. |
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When necessary, use
the obvious arithmetic
with —oo. For example,

—o0 < m and

—o00 + m = —oo for
every integer m. The 0
polynomial is declared
to have degree — > so
that exceptions are not
needed for various
reasonable results. For
example, the degree of
pq equals the degree of
p plus the degree of q
evenifp = 0.

Degree

Recall that a function p: F — F is called a polynomial with coeffi-
cients in F if there exist ag,...,am, € F such that

p(z)=ao+a1z+axz’+ -+ +amz™

forall z € F. If p can be written in the form above with a,,, # 0, then we
say that p has degree m. If all the coefficients ay, ..., am equal 0, then
we say that p has degree —oo. For all we know at this stage, a polynomial
may have more than one degree because we have not yet proved that
the coefficients in the equation above are uniquely determined by the
function p.

Recall that P(F) denotes the vector space of all polynomials with
coefficients in F and that P, (F) is the subspace of P(F) consisting of
the polynomials with coefficients in F and degree at most m. A number
A € F is called a root of a polynomial p € P(F) if

p(A) = 0.

Roots play a crucial role in the study of polynomials. We begin by
showing that A is a root of p if and only if p is a polynomial multiple
of z - A.

4.1 Proposition: Suppose p € P(F) is a polynomial with degree
m > 1. Let A € F. Then A is a root of p if and only if there is a
polynomial q € P(F) with degree m — 1 such that

4.2 p(z)=(z-A)q(z)

for all z € F.

PROOF: One direction is obvious. Namely, suppose there is a poly-
nomial g € P(F) such that 4.2 holds. Then

p(A) = (A-A)q(A) =0,

and hence A is a root of p, as desired.
To prove the other direction, suppose that A € F is a root of p. Let
ao,...,am € F be such that a,, # 0 and

p(z) =ap+aiz+az*+ - +amz"



Degree

for all z € F. Because p(A) = 0, we have
0=ao+aiA+aA?+ - +amA™.
Subtracting the last two equations, we get
p(z) =ai(z—A) +ax(z> =A%) + -+ + am(z™ - A™)
for all z € F. For each j = 2,...,m, we can write
zl - A =(z-2)qj-1(2)

for all z € F, where q;_1 is a polynomial with degree j — 1 (specifically,
take gj_1(z) = 271+ 2/72A + - - - + 2A/72 + AJ~1). Thus

p(z) = (z-A) (a1 +a2q2(2) + - - - + Amqm-1(2))
a(z)

for all z € F. Clearly g is a polynomial with degree m — 1, as desired. m
Now we can prove that polynomials do not have too many roots.

4.3 Corollary: Supposep € P(F) is a polynomial with degree m = 0.
Then p has at most m distinct roots in F.

PROOF: If m = 0, then p(z) = ag # 0 and so p has no roots. If
m = 1, then p(z) = ap + a1z, with a; # 0, and p has exactly one
root, namely, —ag/a;. Now suppose m > 1. We use induction on m,
assuming that every polynomial with degree m — 1 has at most m — 1
distinct roots. If p has no roots in F, then we are done. If p has a root
A € F, then by 4.1 there is a polynomial g with degree m — 1 such that

p(z) =(z-A)q(z)

for all z € F. The equation above shows that if p(z) = 0, then either
z = Aor q(z) = 0. In other words, the roots of p consist of A and the
roots of g. By our induction hypothesis, g has at most m — 1 distinct
roots in F. Thus p has at most m distinct roots in F. ]

The next result states that if a polynomial is identically 0, then all
its coefficients must be 0.
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Think of 4.6 as giving
the remainder v when
q is divided by p.

4.4  Corollary: Suppose ag,...,a;, €F. If
Ao+ a1z+asz’+---+amz™ =0

forall zeF,thenag=---=am=0.

PROOF: Suppose ap+ai1z+a>z%+---+amz™ equals 0 forall z € F.
By 4.3, no nonnegative integer can be the degree of this polynomial.
Thus all the coefficients equal O. ]

The corollary above implies that (1, z,...,z™) is linearly indepen-
dentin P (F) for every nonnegative integer m. We had noted this earlier
(in Chapter 2), but now we have a complete proof. This linear indepen-
dence implies that each polynomial can be represented in only one way
as a linear combination of functions of the form z/. In particular, the
degree of a polynomial is unique.

If p and g are nonnegative integers, with p # 0, then there exist
nonnegative integers s and * such that

qa=sp+r.

and » < p. Think of dividing g by p, getting s with remainder ». Our
next task is to prove an analogous result for polynomials.

Let deg p denote the degree of a polynomial p. The next result is
often called the division algorithm, though as stated here it is not really
an algorithm, just a useful lemma.

4.5 Division Algorithm: Suppose p,q € P(F), with p # 0. Then
there exist polynomials s,v € P(F) such that

4.6 q=Sp+r
and degr < degp.

PROOF: Choose s € P(F) such that g — sp has degree as small as
possible. Let ¥ = g — sp. Thus 4.6 holds, and all that remains is to
show that deg v < deg p. Suppose that degr > degp. If c €F and j is
a nonnegative integer, then

a-(s+czyp=r—czip.

Choose j and c so that the polynomial on the right side of this equation
has degree less than deg r (specifically, take j = deg+ —deg p and then
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choose ¢ so that the coefficients of z4°8” in » and in cz/p are equal).
This contradicts our choice of s as the polynomial that produces the
smallest degree for expressions of the form g — sp, completing the
proof. ]

Complex Coefficients

So far we have been handling polynomials with complex coefficients
and polynomials with real coefficients simultaneously through our con-
vention that F denotes R or C. Now we will see some differences be-
tween these two cases. In this section we treat polynomials with com-
plex coefficients. In the next section we will use our results about poly-
nomials with complex coefficients to prove corresponding results for
polynomials with real coefficients.

Though this chapter contains no linear algebra, the results so far
have nonetheless been proved using algebra. The next result, though
called the fundamental theorem of algebra, requires analysis for its
proof. The short proof presented here uses tools from complex anal-
ysis. If you have not had a course in complex analysis, this proof will
almost certainly be meaningless to you. In that case, just accept the
fundamental theorem of algebra as something that we need to use but
whose proof requires more advanced tools that you may learn in later
courses.

4.7 Fundamental Theorem of Algebra: Every nonconstant polyno-
mial with complex coefficients has a root.

PROOF: Let p be a nonconstant polynomial with complex coeffi-
cients. Suppose that p has no roots. Then 1/p is an analytic function
on C. Furthermore, p(z) — c as z — oo, which implies that 1/p — 0 as
z — oo. Thus 1/p is abounded analytic function on C. By Liouville’s the-
orem, any such function must be constant. But if 1/p is constant, then
p is constant, contradicting our assumption that p is nonconstant. =

The fundamental theorem of algebra leads to the following factor-
ization result for polynomials with complex coefficients. Note that
in this factorization, the numbers Ai,...,A;, are precisely the roots
of p, for these are the only values of z for which the right side of 4.9
equals 0.

This is an existence
theorem. The quadratic
formula gives the roots
explicitly for
polynomials of

degree 2. Similar but
more complicated
formulas exist for
polynomials of degree
3 and 4. No such
formulas exist for
polynomials of degree
5 and above.



68

CHAPTER 4. Polynomials

4.8 Corollary: If p € P(C) is a nonconstant polynomial, then p
has a unique factorization (except for the order of the factors) of the
form

4.9 p(z) =c(z—-A1)...(2 - Aw),

where c,Aq,...,Am € C.

PROOF: Let p € P(C) and let m denote the degree of p. We will use
induction on m. If m = 1, then clearly the desired factorization exists
and is unique. So assume that m > 1 and that the desired factorization
exists and is unique for all polynomials of degree m — 1.

First we will show that the desired factorization of p exists. By the
fundamental theorem of algebra (4.7), p has aroot A. By 4.1, there is a
polynomial g with degree m — 1 such that

p(z) =(z-Aq(z)

for all z € C. Our induction hypothesis implies that g has the desired
factorization, which when plugged into the equation above gives the
desired factorization of p.

Now we turn to the question of uniqueness. Clearly c is uniquely
determined by 4.9—it must equal the coefficient of z™ in p. So we need
only show that except for the order, there is only one way to choose
ALy ey, A IF

z-AD)...z-An)=(Z-T1T1)...(Z2—Twm)

for all z € C, then because the left side of the equation above equals 0
when z = Ay, one of the T’s on the right side must equal A;. Relabeling,
we can assume that T; = A;. Now for z # A1, we can divide both sides
of the equation above by z — A1, getting

(z=A))...z=-Ap) =(z—-T2)...(z—Tim)

for all z € C except possibly z = A;. Actually the equation above
must hold for all z € C because otherwise by subtracting the right side
from the left side we would get a nonzero polynomial that has infinitely
many roots. The equation above and our induction hypothesis imply
that except for the order, the A’s are the same as the T’s, completing
the proof of the uniqueness. ]
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Real Coefficients

Before discussing polynomials with real coefficients, we need to
learn a bit more about the complex numbers.

Suppose z = a + bi, where a and b are real numbers. Then a is
called the real part of z, denoted Re z, and b is called the imaginary
part of z, denoted Im z. Thus for every complex number z, we have

z=Rez+ (Imz)i.

The complex conjugate of z € C, denoted Z, is defined by Note that z = Zz if and
only if z is a real

Z=Rez - (Imz)i. number.

For example, 2 + 3i = 2 — 31i.
The absolute value of a complex number z, denoted |z|, is defined

by

2] = (Re2)2 + (Im 2)2.
For example, |1 + 2i|] = /5. Note that |z| is always a nonnegative
number.

You should verify that the real and imaginary parts, absolute value,
and complex conjugate have the following properties:

additivity of real part
Re(w +z) =Rew +Rez for all w,z € C;

additivity of imaginary part
Im(w +z) =Imw +Imz for all w,z € C;

sum of z and Z
z+z=2Rezforall z € C;

difference of z and Z
z—2=2Imz)iforall z € C;

product of z and z
zz=|z|?forall z € C;

additivity of complex conjugate
w+z=w+zforalw,zeC;

multiplicativity of complex conjugate
wz =wz forall w,z € C;
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A polynomial with real
coefficients may have
no real roots. For
example, the
polynomial 1 + x? has
no real roots. The
failure of the
fundamental theorem
of algebra for R
accounts for the
differences between
operators on real and
complex vector spaces,
as we will see in later
chapters.

Think about the
connection between the
quadratic formula and
this proposition.

conjugate of conjugate
zZ=zforallz €C;

multiplicativity of absolute value
lwz| = |w||z| forall w,z € C.

In the next result, we need to think of a polynomial with real coef-
ficients as an element of (C). This makes sense because every real
number is also a complex number.

4,10 Proposition: Suppose p is a polynomial with real coefficients.
If A € C is aroot of p, then so is A.

PROOF: Let
p(z)=ap+aiz+ - +amz",

where ay, ..., an, are real numbers. Suppose A € C is aroot of p. Then

ap+aid+ -+ and"™ =0.
Take the complex conjugate of both sides of this equation, obtaining
ao+aid+ -+ +ayA™ =0,

where we have used some of the basic properties of complex conjuga-
tion listed earlier. The equation above shows that A is arootof p. =

We want to prove a factorization theorem for polynomials with real
coefficients. To do this, we begin by characterizing the polynomials
with real coefficients and degree 2 that can be written as the product
of two polynomials with real coefficients and degree 1.

4.11 Proposition: Let «,B € R. Then there is a polynomial factor-
ization of the form

4.12 X2+ ox + B = (x—A1)(x —Ap),

with A1, A»> € R, if and only if «? = 48.

PROOF: Notice that

oy

4.13 x2+o<x+B=(x+%)2+(,8—4
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First suppose that o«®> < 4B. Then clearly the right side of the
equation above is positive for every x € R, and hence the polynomial
x2 4+ ax + B has no real roots. Thus no factorization of the form 4.12,
with A1, A2 € R, can exist.

Conversely, now suppose that &> > 4. Thus there is a real number

¢ such that c? = % — B. From 4.13, we have

o
x2+o<x+3=(x+§)2—c2

=(x+%+c)(x+%—c),

which gives the desired factorization. [ ]

In the following theorem, each term of the form x? + « ix + Bj, with
1o 12 < 4B, cannot be factored into the product of two polynomials with
real coefficients and degree 1 (by 4.11). Note that in the factorization
below, the numbers Ay, ..., Ay, are precisely the real roots of p, for these
are the only real values of x for which the right side of the equation
below equals O.

4.14 Theorem: If p € P(R) is a nonconstant polynomial, then p
has a unique factorization (except for the order of the factors) of the
form

p(x) =cx —A1) ... (X = Am) (X% + 01X + B1) ... (X% + axux + Bum),

where ¢,A1,...,Am € R and (a1, B1), ..., (am, Bu) € R? with &2 < 4B;
for each j.

PROOF: Let p € P(R) be a nonconstant polynomial. We can think
of p as an element of P(C) (because every real number is a complex
number). The idea of the proof is to use the factorization 4.8 of p as a
polynomial with complex coefficients. Complex but nonreal roots of p
come in pairs; see 4.10. Thus if the factorization of p as an element
of P(C) includes terms of the form (x — A) with A a nonreal complex
number, then (x — A) is also a term in the factorization. Combining
these two terms, we get a quadratic term of the required form.

The idea sketched in the paragraph above almost provides a proof
of the existence of our desired factorization. However, we need to
be careful about one point. Suppose A is a nonreal complex number

Here either m or M
may equal 0.
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Here we are not
dividing by 0 because
the roots of

x2 —2(Red)x + |A]?
are A and A, neither of
which is real.

and (x — A) is a term in the factorization of p as an element of P(C).
We are guaranteed by 4.10 that (x — A) also appears as a term in the
factorization, but 4.10 does not state that these two factors appear
the same number of times, as needed to make the idea above work.
However, all is well. We can write

p(x) = (x - A)(x - A)q(x)
= (x? = 2(ReAd)x + [A|*)q(x)

for some polynomial g € P(C) with degree two less than the degree
of p. If we can prove that g has real coefficients, then, by using induc-
tion on the degree of p, we can conclude that (x — A) appears in the
factorization of p exactly as many times as (x — A).

To prove that q has real coefficients, we solve the equation above
for q, getting

p(x)

x2 —2(ReAd)x + |A|2
for all x € R. The equation above implies that g(x) € R for all x € R.
Writing

q(x) =

a(x) =ap+aix +---+an_ox"?,

where ag,...,an—» € C, we thus have
0=Imgq(x) = Imag) + Ima)x + -+ + (Ima,_»)x"

for all x € R. This implies that Imay,...,Ima, » all equal O (by 4.4).
Thus all the coefficients of g are real, as desired, and hence the desired
factorization exists.

Now we turn to the question of uniqueness of our factorization. A
factor of p of the form x2+ ox +  with «? < 4 can be uniquely written
as (x — A)(x — A) with A € C. A moment’s thought shows that two
different factorizations of p as an element of (R) would lead to two
different factorizations of p as an element of (C), contradicting 4.8. m
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Exercises

1.

Suppose m and » are positive integers with m < n. Prove that
there exists a polynomial p € P, (F) with exactly m distinct
roots.

Suppose that zy,...,zm,41 are distinct elements of F and that
Wi,---,Wm+1 € F. Prove that there exists a unique polynomial
p € P,,(F) such that

p(zj) =w;
forj=1,...,m+1.

Prove that if p,q € P(F), with p # 0, then there exist unique
polynomials s, € P(F) such that

q=sp+vr

and degr < degp. In other words, add a uniqueness statement
to the division algorithm (4.5).

Suppose p € P(C) has degree m. Prove that p has m distinct
roots if and only if p and its derivative p” have no roots in com-
mon.

Prove that every polynomial with odd degree and real coefficients
has a real root.



