CHAPTER 5

Figenvalues and Figenvectors

In Chapter 3 we studied linear maps from one vector space to an-
other vector space. Now we begin our investigation of linear maps from
a vector space to itself. Their study constitutes the deepest and most
important part of linear algebra. Most of the key results in this area
do not hold for infinite-dimensional vector spaces, so we work only on
finite-dimensional vector spaces. To avoid trivialities we also want to
eliminate the vector space {0} from consideration. Thus we make the
following assumption:

Recall that F denotes R or C.
Let’s agree that for the rest of the book
V will denote a finite-dimensional, nonzero vector space over F.
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CHAPTER 5. Eigenvalues and Eigenvectors

The most famous
unsolved problem in
functional analysis is
called the invariant
subspace problem. It
deals with invariant
subspaces of operators
on infinite-dimensional
vector spaces.

Invariant Subspaces

In this chapter we develop the tools that will help us understand the
structure of operators. Recall that an operator is a linear map from a
vector space to itself. Recall also that we denote the set of operators
on V by £(V); in other words, L(V) = L(V,V).

Let’s see how we might better understand what an operator looks
like. Suppose T € L(V). If we have a direct sum decomposition

5.1 V=U1& - 0Up,

where each U; is a proper subspace of V, then to understand the be-
havior of T, we need only understand the behavior of each T|y;; here
Tly; denotes the restriction of T to the smaller domain U;. Dealing
with Ty, should be easier than dealing with T because U; is a smaller
vector space than V. However, if we intend to apply tools useful in the
study of operators (such as taking powers), then we have a problem:
T|y; may not map Uj; into itself; in other words, T|y; may not be an
operator on U;. Thus we are led to consider only decompositions of
the form 5.1 where T maps each U; into itself.

The notion of a subspace that gets mapped into itself is sufficiently
important to deserve a name. Thus, for T € £(V) and U a subspace
of V, we say that U is invariant under T if u € U implies Tu € U.
In other words, U is invariant under T if T|y is an operator on U. For
example, if T is the operator of differentiation on ?;(R), then P4(R)
(which is a subspace of 77(R)) is invariant under T because the deriva-
tive of any polynomial of degree at most 4 is also a polynomial with
degree at most 4.

Let’s look at some easy examples of invariant subspaces. Suppose
T € L(V). Clearly {0} is invariant under T. Also, the whole space V is
obviously invariant under T. Must T have any invariant subspaces other
than {0} and V? Later we will see that this question has an affirmative
answer for operators on complex vector spaces with dimension greater
than 1 and also for operators on real vector spaces with dimension
greater than 2.

If T € £(V), then null T is invariant under T (proof: if u € null T,
then Tu = 0, and hence Tu € null T). Also, range T is invariant under T
(proof: if u € range T, then Tu is also in range T, by the definition of
range). Although null T and range T are invariant under T, they do not
necessarily provide easy answers to the question about the existence



Invariant Subspaces

77

of invariant subspaces other than {0} and V because null T may equal
{0} and range T may equal V (this happens when T is invertible).

We will return later to a deeper study of invariant subspaces. Now
we turn to an investigation of the simplest possible nontrivial invariant
subspaces—invariant subspaces with dimension 1.

How does an operator behave on an invariant subspace of dimen-
sion 1? Subspaces of V of dimension 1 are easy to describe. Take any
nonzero vector u € V and let U equal the set of all scalar multiples
of u:

5.2 U=1{au:a eF}.

Then U is a one-dimensional subspace of V, and every one-dimensional
subspace of V is of this form. If u € V and the subspace U defined
by 5.2 is invariant under T € £(V), then Tu must be in U, and hence
there must be a scalar A € F such that Tu = Au. Conversely, if u
is a nonzero vector in V such that Tu = Au for some A € F, then the
subspace U defined by 5.2 is a one-dimensional subspace of V invariant
under T.
The equation

5.3 Tu = Au,

which we have just seen is intimately connected with one-dimensional
invariant subspaces, is important enough that the vectors u and scalars
A satisfying it are given special names. Specifically, a scalar A € F
is called an eigenvalue of T € L£L(V) if there exists a nonzero vector
u € V such that Tu = Au. We must require u to be nonzero because
with u = 0 every scalar A € F satisfies 5.3. The comments above show
that T has a one-dimensional invariant subspace if and only if T has
an eigenvalue.

The equation Tu = Au is equivalent to (T — AI)u = 0, so A is an
eigenvalue of T if and only if T — Al is not injective. By 3.21, A is an
eigenvalue of T if and only if T — AI is not invertible, and this happens
if and only if T — AI is not surjective.

Suppose T € £L(V) and A € F is an eigenvalue of T. A vector u € V
is called an eigenvector of T (corresponding to A) if Tu = Au. Because
5.3 is equivalent to (T — AI)u = 0, we see that the set of eigenvectors
of T corresponding to A equals null(T — AI). In particular, the set of
eigenvectors of T corresponding to A is a subspace of V.

These subspaces are
loosely connected to
the subject of Herbert
Marcuse’s well-known
book One-Dimensional
Man.

The regrettable word
eigenvalue is
half-German,
half-English. The
German adjective eigen
means own in the sense
of characterizing some
intrinsic property.
Some mathematicians
use the term
characteristic value
instead of eigenvalue.
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Some texts define
eigenvectors as we
have, except that 0 is
declared not to be an
eigenvector. With the
definition used here,
the set of eigenvectors
corresponding to a
fixed eigenvalue is a
subspace.

Let’s look at some examples of eigenvalues and eigenvectors. If
a € F, then al has only one eigenvalue, namely, a, and every vector is
an eigenvector for this eigenvalue.

For a more complicated example, consider the operator T € £(F?)
defined by

5.4 T(w,z) =(—z,w).

If F = R, then this operator has a nice geometric interpretation: T is
just a counterclockwise rotation by 90° about the origin in R2. An
operator has an eigenvalue if and only if there exists a nonzero vector
in its domain that gets sent by the operator to a scalar multiple of itself.
The rotation of a nonzero vector in R? obviously never equals a scalar
multiple of itself. Conclusion: if F = R, the operator T defined by 5.4
has no eigenvalues. However, if F = C, the story changes. To find
eigenvalues of T, we must find the scalars A such that

T(w,z) =A(w,2)

has some solution other than w = z = 0. For T defined by 5.4, the
equation above is equivalent to the simultaneous equations

5.5 —-Zz=Aw, wW=Az.

Substituting the value for w given by the second equation into the first
equation gives
-z =A%z

Now z cannot equal O (otherwise 5.5 implies that w = 0; we are looking
for solutions to 5.5 where (w, z) is not the 0 vector), so the equation
above leads to the equation

-1 =A%

The solutions to this equation are A = i or A = —i. You should be
able to verify easily that i and —i are eigenvalues of T. Indeed, the
eigenvectors corresponding to the eigenvalue i are the vectors of the
form (w, —wi), with w € C, and the eigenvectors corresponding to the
eigenvalue —i are the vectors of the form (w,wi), with w € C.

Now we show that nonzero eigenvectors corresponding to distinct
eigenvalues are linearly independent.
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5.6 Theorem: Let T € L(V). Suppose A1,..., Ay, are distinct eigen-
values of T and Vvy,...,Vvy are corresponding nonzero eigenvectors.
Then (v1,...,Vm) is linearly independent.

PROOF: Suppose (vi,...,Vy) is linearly dependent. Let k be the
smallest positive integer such that

5.7 Vi € span(vy,..., Vi-1);

the existence of k with this property follows from the linear dependence
lemma (2.4). Thus there exist ai,...,ax-1 € F such that

5.8 Vg =a\vy + - -+ ak-1Vk-1-
Apply T to both sides of this equation, getting
AkVk = a1A1Vy + - -+ Ag-1Ak-1Vk-1-

Multiply both sides of 5.8 by Ay and then subtract the equation above,
getting
0=a1(Ag —A)vy+ -+ -+ ap-1(Ax — Ap_1) V1.

Because we chose k to be the smallest positive integer satisfying 5.7,
(v1,...,Vk-1) is linearly independent. Thus the equation above implies
that all the a’s are 0 (recall that Ay is not equal to any of Ay,..., Ax-1).
However, this means that vy equals O (see 5.8), contradicting our hy-
pothesis that all the v’s are nonzero. Therefore our assumption that
(V1,-..,Vm) is linearly dependent must have been false. [

The corollary below states that an operator cannot have more dis-
tinct eigenvalues than the dimension of the vector space on which it
acts.

5.9 Corollary: Each operator onV has at most dimV distinct eigen-
values.

PROOF: LetT € L(V). Suppose that Aq,..., A, are distinct eigenval-
ues of T. Let v1,...,Vy, be corresponding nonzero eigenvectors. The
last theorem implies that (vi,...,Vy) is linearly independent. Thus
m < dimV (see 2.6), as desired. [
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Polynomials Applied to Operators

The main reason that a richer theory exists for operators (which
map a vector space into itself) than for linear maps is that operators
can be raised to powers. In this section we define that notion and the
key concept of applying a polynomial to an operator.

If T € L(V), then TT makes sense and is also in £(V). We usually
write T2 instead of TT. More generally, if m is a positive integer, then
T™ is defined by

T =T...T.
-

m times

For convenience we define T to be the identity operator I on V.
Recall from Chapter 3 that if T is an invertible operator, then the
inverse of T is denoted by T~'. If m is a positive integer, then we define
T-™ tobe (T"H™.
You should verify that if T is an operator, then

Tan — Tm+n and (Tm)n — Tmn'

where m and n are allowed to be arbitrary integers if T is invertible
and nonnegative integers if T is not invertible.
If T € £(V) and p € P(F) is a polynomial given by

p(z) = a0+a12+a222 +o it amz™
for z € F, then p(T) is the operator defined by
p(T) =aol + a1 T + a2T2 + i+ amT™.

For example, if p is the polynomial defined by p(z) = z2 for z € F, then
p(T) = T?. This is a new use of the symbol p because we are applying
it to operators, not just elements of F. If we fix an operator T € L(V),
then the function from P(F) to L(V) given by p — p(T) is linear, as
you should verify.

If p and g are polynomials with coefficients in F, then pq is the
polynomial defined by

(pa)(z) =p(2)a(z)

for z € F. You should verify that we have the following nice multiplica-
tive property: if T € L(V), then
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(pa)(T) = p(T)a(T)

for all polynomials p and g with coefficients in F. Note that any two
polynomials in T commute, meaning that p(T)g(T) = q(T)p(T), be-
cause

p(T)a(T) = (pa)(T) = (qp)(T) = q(T)p(T).

Upper-Triangular Matvrices

Now we come to one of the central results about operators on com-
plex vector spaces.

5.10 Theorem: Every operator on a finite-dimensional, nonzero,
complex vector space has an eigenvalue.

PROOF: Suppose V is a complex vector space with dimension n > 0
and T € £(V). Choose v € V with v # 0. Then

v, Tv,T?>v,..., T"V)

cannot be linearly independent because V has dimension 7 and we have
n + 1 vectors. Thus there exist complex numbers ay, ..., ay, not all 0,
such that

O=apv+a1Tv +---+ap,T"v.

Let m be the largest index such that a,, # 0. Because v # 0, the
coefficients ai,...,a, cannot all be 0, so 0 < m < n. Make the a’s
the coefficients of a polynomial, which can be written in factored form
(see 4.8) as

apg+aiz+---+anz=c(z-2A1)...(z - An),

where c is a nonzero complex number, each A; € C, and the equation
holds for all z € C. We then have

O=apv+ar1Tv+---+anT™v
=(apl + a1 T+ - -+anT™)V
=c(T—-MAI)...(T - A Dv,

which means that T — A;I is not injective for at least one j. In other
words, T has an eigenvalue. ]

Compare the simple
proof of this theorem
given here with the
standard proof using
determinants. With the
standard proof, first
the difficult concept of
determinants must be
defined, then an
operator with 0
determinant must be
shown to be not
invertible, then the
characteristic
polynomial needs to be
defined, and by the
time the proof of this
theorem is reached, no
insight remains about
why it is true.
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The k™ column of the
matrix is formed from
the coefficients used to
write Ty as a linear
combination of the v'’s.

We often use * to
denote matrix entries
that we do not know
about or that are
irrelevant to the
questions being
discussed.

Recall that in Chapter 3 we discussed the matrix of a linear map
from one vector space to another vector space. This matrix depended
on a choice of a basis for each of the two vector spaces. Now that we are
studying operators, which map a vector space to itself, we need only
one basis. In addition, now our matrices will be square arrays, rather
than the more general rectangular arrays that we considered earlier.
Specifically, let T € L£(V). Suppose (vi,-..,Vy) is a basis of V. For
each k = 1,...,n, we can write

TV =ai Vi + - -+ ankVn,

where a;, € F for j = 1,...,n. The n-by-n matrix
ain e Alm
5.11
an1 --- Ann
is called the matrix of T with respect to the basis (v1,...,Vvy); we de-

note it by M(T, (v1,...,Vvs)) or just by M(T) if the basis (v1,...,Vy)
is clear from the context (for example, if only one basis is in sight).

If T is an operator on F" and no basis is specified, you should assume
that the basis in question is the standard one (where the j® basis vector
is 1 in the j™ slot and 0 in all the other slots). You can then think of
the j™ column of M(T) as T applied to the j basis vector.

A central goal of linear algebra is to show that given an operator
T € L(V), there exists a basis of V with respect to which T has a
reasonably simple matrix. To make this vague formulation (“reasonably
simple” is not precise language) a bit more concrete, we might try to
make M(T) have many 0’s.

If V is a complex vector space, then we already know enough to
show that there is a basis of V with respect to which the matrix of T
has 0’s everywhere in the first column, except possibly the first entry.
In other words, there is a basis of V with respect to which the matrix

of T looks like
A

0 *

0
here the % denotes the entries in all the columns other than the first
column. To prove this, let A be an eigenvalue of T (one exists by 5.10)



Upper-Triangular Matrices

83

and let v be a corresponding nonzero eigenvector. Extend (v) to a
basis of V. Then the matrix of T with respect to this basis has the form
above. Soon we will see that we can choose a basis of V with respect to
which the matrix of T has even more 0’s.

The diagonal of a square matrix consists of the entries along the
straight line from the upper left corner to the bottom right corner.
For example, the diagonal of the matrix 5.11 consists of the entries
ai,az2,...,ann-

A matrix is called upper triangular if all the entries below the di-
agonal equal 0. For example, the 4-by-4 matrix

7

[l elNe))
S oo
S NN =
o © w Ul

is upper triangular. Typically we represent an upper-triangular matrix

in the form
Aq *

0 An
the 0 in the matrix above indicates that all entries below the diagonal
in this n-by-n matrix equal 0. Upper-triangular matrices can be consid-
ered reasonably simple—for » large, an n-by-n upper-triangular matrix
has almost half its entries equal to O.

The following proposition demonstrates a useful connection be-
tween upper-triangular matrices and invariant subspaces.

5.12 Proposition: Suppose T € L£(V) and (vi,...,Vn) is a basis
of V. Then the following are equivalent:

(a) the matrix of T with respect to (v1,...,Vy) IS upper triangular;
(b) Tvy € span(vy,..., V) foreachk =1,...,n;

(c) span(vi,...,Vk) is invariant under T for eachk =1,...,n.

PROOF: The equivalence of (a) and (b) follows easily from the def-
initions and a moment’s thought. Obviously (c) implies (b). Thus to
complete the proof, we need only prove that (b) implies (c). So suppose
that (b) holds. Fix k € {1,...,n}. From (b), we know that
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This theorem does not
hold on real vector
spaces because the first
vector in a basis with
respect to which an
operator has an
upper-triangular matrix
must be an eigenvector
of the operator. Thus if
an operator on a real
vector space has no
eigenvalues (we have
seen an example on
R2), then there is no
basis with respect to
which the operator has
an upper-triangular
matrix.

yVik);

Tv, € span(vy,v2) C span(vy, ..., Vk);

Tv, € span(vy) C span(vy,...

Tvy € span(vy,...,Vk).

Thus if v is a linear combination of (vq,...,Vvk), then

Tv € span(vy,...,Vk).

In other words, span(vy,...,Vvk) is invariant under T, completing the
proof. ]

Now we can show that for each operator on a complex vector space,
there is a basis of the vector space with respect to which the matrix
of the operator has only 0’s below the diagonal. In Chapter 8 we will
improve even this result.

5.13 Theorem: Suppose V is a complex vector space and T € L(V).
Then T has an upper-triangular matrix with respect to some basis of V.

PROOF: We will use induction on the dimension of V. Clearly the
desired result holds if dimV = 1.

Suppose now that dimV > 1 and the desired result holds for all
complex vector spaces whose dimension is less than the dimension
of V. Let A be any eigenvalue of T (5.10 guarantees that T has an
eigenvalue). Let

U =range(T — Al).

Because T —AI is not surjective (see 3.21), dim U < dim V. Furthermore,
U is invariant under T. To prove this, suppose u € U. Then

Tu = (T — ADu + Au.

Obviously (T — AI)u € U (from the definition of U) and Au € U. Thus
the equation above shows that Tu € U. Hence U is invariant under T,
as claimed.

Thus Ty is an operator on U. By our induction hypothesis, there
is a basis (u1,...,u) of U with respect to which T|y has an upper-
triangular matrix. Thus for each j we have (using 5.12)

5.14 Tuj = (Tly)(uj) € span(ug,...,u;j).
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Extend (u1,...,Usm) to a basis (u1,...,Um,V1,...,Vn) of V. For
each k, we have

Tvy = (T — AI) Vi + AVg.

The definition of U shows that (T — AI)vy € U = span(uq,...,Um).
Thus the equation above shows that

5.15 Tvy € span(Uy, ..., Um, Vi, o, V).

From 5.14 and 5.15, we conclude (using 5.12) that T has an upper-
triangular matrix with respect to the basis (u1,..., Um, V1y---,Vy). B

How does one determine from looking at the matrix of an operator
whether the operator is invertible? If we are fortunate enough to have
a basis with respect to which the matrix of the operator is upper tri-
angular, then this problem becomes easy, as the following proposition
shows.

5.16 Proposition: Suppose T € L(V) has an upper-triangular matrix
with respect to some basis of V. Then T is invertible if and only if all
the entries on the diagonal of that upper-triangular matrix are nonzero.

PROOEF: Suppose (vi,...,Vy) is a basis of V with respect to which
T has an upper-triangular matrix

Al k

A2
5.17 M(T, (V1,...,vn)) =

0 An
We need to prove that T is not invertible if and only if one of the Ag’s
equals 0.

First we will prove that if one of the Ay’s equals 0, then T is not
invertible. If A; = 0, then Tv; = 0 (from 5.17) and hence T is not
invertible, as desired. So suppose that 1 < k < n and Ay = 0. Then,
as can be seen from 5.17, T maps each of the vectors vi,..., Vg1 into

span(vy,...,Vk-1)- Because Ay = 0, the matrix representation 5.17 also
implies that Tvy € span(vi,...,Vk_1). Thus we can define a linear map

S: span(vy,...,vk) — span(vy,..., Vik-1)
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Powerful numeric
techniques exist for
finding good
approximations to the
eigenvalues of an
operator from its
matrix.

by Sv = Tv for v € span(vy,..., V). In other words, S is just T
restricted to span(vy,..., Vk).

Note that span(vy,...,Vvx) has dimension k and span(vi,...,Vi_1)
has dimension k — 1 (because (v1,...,Vy) is linearly independent). Be-
cause span(vy,...,Vk) has a larger dimension than span(vy,...,Vk-1),
no linear map from span(vy,...,vk) to span(vy,...,Vk_1) is injective
(see 3.5). Thus there exists a nonzero vector v € span(vy,...,Vvk) such
that Sv = 0. Hence Tv = 0, and thus T is not invertible, as desired.

To prove the other direction, now suppose that T is not invertible.
Thus T is not injective (see 3.21), and hence there exists a nonzero
vector v € V such that Tv = 0. Because (vq,...,V;) is a basis of V, we
can write

YV =ai1Vy + -+ AV,

where ai,...,ax € F and ay # 0 (represent v as a linear combination
of (v1,...,vy) and then choose k to be the largest index with a nonzero
coefficient). Thus

0=Tv
0=T(a1vi+ -+ axvk)
=(aTvi+---+ar_1Tvi_1) + arTvg.

The last term in parentheses is in span(vy,...,vk_1) (because of the
upper-triangular form of 5.17). Thus the last equation shows that
axTvy € span(vy,...,Vk-1). Multiplying by 1/ag, which is allowed
because ay # 0, we conclude that Tvy € span(vi,...,vk-1). Thus

when Tvy is written as a linear combination of the basis (vq,...,Vvn),
the coefficient of v, will be 0. In other words, Ax in 5.17 must be 0,
completing the proof. ]

Unfortunately no method exists for exactly computing the eigenval-
ues of a typical operator from its matrix (with respect to an arbitrary
basis). However, if we are fortunate enough to find a basis with re-
spect to which the matrix of the operator is upper triangular, then the
problem of computing the eigenvalues becomes trivial, as the following
proposition shows.

5.18 Proposition: Suppose T € L(V) has an upper-triangular matrix
with respect to some basis of V. Then the eigenvalues of T consist
precisely of the entries on the diagonal of that upper-triangular matrix.
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PROOF: Suppose (vi,...,Vy) is a basis of V with respect to which
T has an upper-triangular matrix

Al *

A2
M(T, (V1,...,vn)) =
0 An
Let A € F. Then
AL —A *
Ar — A
M(T—AI,(Vl,...,Vn)) =

Hence T — Al is not invertible if and only if A equals one of the A;-s
(see 5.16). In other words, A is an eigenvalue of T if and only if A
equals one of the ?\}S, as desired. [

Diagonal Matrices

A diagonal matrix is a square matrix that is 0 everywhere except
possibly along the diagonal. For example,

8§ 0 0
02 0
0 0 5

is a diagonal matrix. Obviously every diagonal matrix is upper triangu-
lar, although in general a diagonal matrix has many more 0’s than an
upper-triangular matrix.

An operator T € £(V) has a diagonal matrix

A1 0
0 )\n

with respect to a basis (vi,...,v,) of V if and only
Tv, = )\1’V1

Tvy = ApVi;
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Later we will find other
conditions that imply
that certain operators

have a diagonal matrix

with respect to some

basis (see 7.9 and 7.13).

this follows immediately from the definition of the matrix of an opera-
tor with respect to a basis. Thus an operator T € £(V) has a diagonal
matrix with respect to some basis of V if and only if V has a basis
consisting of eigenvectors of T.

If an operator has a diagonal matrix with respect to some basis,
then the entries along the diagonal are precisely the eigenvalues of the
operator; this follows from 5.18 (or you may want to find an easier
proof that works only for diagonal matrices).

Unfortunately not every operator has a diagonal matrix with respect
to some basis. This sad state of affairs can arise even on complex vector
spaces. For example, consider T € £(C?) defined by

5.19 T(w,z) = (z,0).

As you should verify, 0 is the only eigenvalue of this operator and
the corresponding set of eigenvectors is the one-dimensional subspace
{(w,0) € C2:w € C}. Thus there are not enough linearly independent
eigenvectors of T to form a basis of the two-dimensional space C2.
Hence T does not have a diagonal matrix with respect to any basis
of C2.

The next proposition shows that if an operator has as many distinct
eigenvalues as the dimension of its domain, then the operator has a di-
agonal matrix with respect to some operator. However, some operators
with fewer eigenvalues also have diagonal matrices (in other words, the
converse of the next proposition is not true). For example, the operator
T defined on the three-dimensional space F? by

T(z1,22,23) = (421,422,523)

has only two eigenvalues (4 and 5), but this operator has a diagonal
matrix with respect to the standard basis.

5.20 Proposition: If T € £L(V) has dimV distinct eigenvalues, then
T has a diagonal matrix with respect to some basis of V.

PROOF: Suppose that T € L(V) has dimV distinct eigenvalues
A1,...,Agqmv. For each j, let v; € V be a nonzero eigenvector cor-
responding to the eigenvalue A;. Because nonzero eigenvectors cor-
responding to distinct eigenvalues are linearly independent (see 5.6),
(V1,...,Vdaimv) is linearly independent. A linearly independent list of
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dimV vectors in V is a basis of V (see 2.17); thus (vi1,...,Vaimy) is a
basis of V. With respect to this basis consisting of eigenvectors, T has
a diagonal matrix. [ ]

We close this section with a proposition giving several conditions
on an operator that are equivalent to its having a diagonal matrix with
respect to some basis.

5.21 Proposition: Suppose T € L(V). Let Ay,...,Ay denote the
distinct eigenvalues of T. Then the following are equivalent:

(a) T has a diagonal matrix with respect to some basis of V;
(b)  V has a basis consisting of eigenvectors of T;

(c) there exist one-dimensional subspaces Uy,...,U, of V, each in-
variant under T, such that

V=0Ue&- - oUy

d V=nul(T-ADe---onull(T-Au,l);
(e) dimV = dimnull(T — A1I) + - - - + dimnull(T — A, 1).

PROOF: We have already shown that (a) and (b) are equivalent.

Suppose that (b) holds; thus V has a basis (vy,-..,Vvy,) consisting of
eigenvectors of T. For each j, let U; = span(v;). Obviously each Uj;
is a one-dimensional subspace of V that is invariant under T (because
each v; is an eigenvector of T). Because (vy,...,Vvy) is a basis of V,
each vector in V can be written uniquely as a linear combination of
(v1,...,vn). In other words, each vector in V can be written uniquely
asasumuj + - -+ Uy, where eachu; € U;. Thus V =U; @ - - - ® Uy.
Hence (b) implies (c).

Suppose now that (c) holds; thus there are one-dimensional sub-
spaces Uy, ..., U, of V, each invariant under T, such that

V=U&:---&U,.

For each j, let v; be a nonzero vector in U;. Then each v; is an eigen-
vector of T. Because each vector in V can be written uniquely as a sum
Uy +- - -+ Uy, where each uj € U; (so each u; is a scalar multiple of v;),
we see that (vq,...,Vvy) is a basis of V. Thus (c) implies (b).

For complex vector
spaces, we will extend
this list of equivalences
later (see Exercises 16
and 23 in Chapter 8).
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At this stage of the proof we know that (a), (b), and (c) are all equiv-
alent. We will finish the proof by showing that (b) implies (d), that (d)
implies (e), and that (e) implies (b).

Suppose that (b) holds; thus V has a basis consisting of eigenvectors
of T. Thus every vector in V is a linear combination of eigenvectors
of T. Hence

5.22 V =null(T — A1) + - - - + null(T — Ay I).
To show that the sum above is a direct sum, suppose that
O=uy+---+uUm,

where each uj € null(T — A;I). Because nonzero eigenvectors corre-
sponding to distinct eigenvalues are linearly independent, this implies
(apply 5.6 to the sum of the nonzero vectors on the right side of the
equation above) that each u; equals 0. This implies (using 1.8) that the
sum in 5.22 is a direct sum, completing the proof that (b) implies (d).

That (d) implies (e) follows immediately from Exercise 17 in Chap-
ter 2.

Finally, suppose that (e) holds; thus

5.23 dimV = dimnull(T — A1) + - - - + dimnull(T — Ay, 1).

Choose a basis of each null(T — A;I); put all these bases together to
form alist (vy,...,Vvy) of eigenvectors of T, where n = dimV (by 5.23).
To show that this list is linearly independent, suppose

avi+ -+ apvy =0,

where a1,...,a, € F. For each j = 1,...,m, let u; denote the sum of
all the terms ayvy such that vy € null(T — A;I). Thus each u; is an
eigenvector of T with eigenvalue A;, and

U+ -+ uUm = 0.

Because nonzero eigenvectors corresponding to distinct eigenvalues
are linearly independent, this implies (apply 5.6 to the sum of the
nonzero vectors on the left side of the equation above) that each u;
equals 0. Because each u; is a sum of terms axVvk, where the vi’s
were chosen to be a basis of null(T — A;I), this implies that all the ax’s
equal 0. Thus (vy,...,Vy) is linearly independent and hence is a basis
of V (by 2.17). Thus (e) implies (b), completing the proof. [
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Invariant Subspaces on Real Vector Spaces

We know that every operator on a complex vector space has an eigen-
value (see 5.10 for the precise statement). We have also seen an example
showing that the analogous statement is false on real vector spaces. In
other words, an operator on a nonzero real vector space may have no
invariant subspaces of dimension 1. However, we now show that an
invariant subspace of dimension 1 or 2 always exists.

5.24 Theorem: Every operator on a finite-dimensional, nonzero, real
vector space has an invariant subspace of dimension 1 or 2.

PROOF: Suppose V is a real vector space with dimension n > 0 and
T € L(V). Choose v € V with v # 0. Then

vV, Tv, T*v,...,T"v)

cannot be linearly independent because V has dimension n and we have
n + 1 vectors. Thus there exist real numbers ao, ..., a,, not all 0, such
that

O=apv +a1Tv +---+a,T"v.

Make the a’s the coefficients of a polynomial, which can be written in
factored form (see 4.14) as

ap+aix +---+apx"

=c(x—A1) ... (x = Am) (X% + 01X + B1) ... (X% + axpx + Bur),

where c is anonzero real number, each A, «;, and Bjisreal, m+M > 1,
and the equation holds for all x € R. We then have

O=apv+a1Tv+---+a,T"v
=(apl +a1T+---+anT"V
=c(T-MD...(T=AnD)(T?> + 0T + B1I) ... (T? + anT + BuD)v,

which means that T — A;I is not injective for at least one j or that
(T? + ;T + B;I) is not injective for at least one j. If T — A;I is not
injective for at least one j, then T has an eigenvalue and hence a one-
dimensional invariant subspace. Let’s consider the other possibility. In
other words, suppose that (T2 + « ;T + B;I) is not injective for some j.
Thus there exists a nonzero vector u € V such that

Here either m or M
might equal 0.
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Py w is often called the
projection onto U with
null space W.

5.25 T?u + ojTu + Bju = 0.

We will complete the proof by showing that span(u, Tu), which clearly
has dimension 1 or 2, is invariant under T. To do this, consider a typical
element of span(u, Tu) of the form au+bTu,where a,b € R. Then

T(au +bTu) =aTu +bT?*u

=aTu-bxjTu—-bBju,

where the last equality comes from solving for T2u in 5.25. The equa-
tion above shows that T(au + bTu) € span(u, Tu). Thus span(u, Tu)
is invariant under T, as desired. ]

We will need one new piece of notation for the next proof. Suppose
U and W are subspaces of V with

V=UeW.
Each vector v € V can be written uniquely in the form
vV=u-+w,

where u € U and w € W. With this representation, define Py € L(V)
by
PU,WV =U.

You should verify that Py wv = v if and only if v € U. Interchanging
the roles of U and W in the representation above, we have Py yv = w.
Thus v = Pywv + Py yv for every v € V. You should verify that
PU,W2 = Py,w; furthermore range Py = U and null Py = W.

We have seen an example of an operator on R? with no eigenvalues.
The following theorem shows that no such example exists on R3.

5.26 Theorem: Every operator on an odd-dimensional real vector
space has an eigenvalue.

PROOF: Suppose V is a real vector space with odd dimension. We
will prove that every operator on V has an eigenvalue by induction (in
steps of size 2) on the dimension of V. To get started, note that the
desired result obviously holds if dimV = 1.

Now suppose that dimV is an odd number greater than 1. Using
induction, we can assume that the desired result holds for all operators
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on all real vector spaces with dimension 2 less than dimV. Suppose
T € L(V). We need to prove that T has an eigenvalue. If it does, we are
done. If not, then by 5.24 there is a two-dimensional subspace U of V
that is invariant under T. Let W be any subspace of V such that

V=UeW,

2.13 guarantees that such a W exists.

Because W has dimension 2 less than dim V, we would like to apply
our induction hypothesis to T|y. However, W might not be invariant
under T, meaning that T|y might not be an operator on W. We will
compose with the projection Py i to get an operator on W. Specifically,
define S € L(W) by

Sw = PW,U(TW)

for w € W. By our induction hypothesis, S has an eigenvalue A. We
will show that this A is also an eigenvalue for T.

Let w € W be a nonzero eigenvector for S corresponding to the
eigenvalue A; thus (S — AI)w = 0. We would be done if w were an
eigenvector for T with eigenvalue A; unfortunately that need not be
true. So we will look for an eigenvector of T in U + span(w). To do
that, consider a typical vector u + aw in U + span(w), where u € U
and a € R. We have

(T-AD)(u+aw) =Tu—-Au+a(Tw - Aw)
=Tu—-Au+aPyw(Tw) + Pwuy(Tw) — Aw)
=Tu—-Au+aPyw(Tw)+Sw —Aw)
=Tu—-Au+aPyw(Tw).

Note that on the right side of the last equation, Tu € U (because U
is invariant under T), Au € U (because u € U), and aPy w (Tw) € U
(from the definition of Py ). Thus T — AI maps U + span(w) into U.
Because U + span(w) has a larger dimension than U, this means that
(T = AD ly+span(w) 18 not injective (see 3.5). In other words, there exists
anonzero vector v € U + span(w) C V such that (T — AI)v = 0. Thus
T has an eigenvalue, as desired. ]
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Exercises

1. Suppose T € L(V). Prove that if Uy,..., U, are subspaces of V
invariant under T, then U; + - - - + Uy, is invariant under T.

2. Suppose T € L(V). Prove that the intersection of any collection
of subspaces of V invariant under T is invariant under T.

3. Prove or give a counterexample: if U is a subspace of V that is
invariant under every operator on V, then U = {0} or U = V.

4, Suppose that S, T € L£(V) are such that ST = TS. Prove that
null(T — AI) is invariant under S for every A € F.

5. Define T € L(F?) by

T(w,z) = (z,w).

Find all eigenvalues and eigenvectors of T.

6. Define T € £L(F?) by

T(z1,22,23) = (22,0, 523).

Find all eigenvalues and eigenvectors of T.

7. Suppose n is a positive integer and T € L(F") is defined by

T(X1,--yXn) = X1+ +Xpy--y X1+ -+ -+ Xn);

in other words, T is the operator whose matrix (with respect to
the standard basis) consists of all 1’s. Find all eigenvalues and
eigenvectors of T.

8. Find all eigenvalues and eigenvectors of the backward shift op-
erator T € L(F®) defined by

T(z1,22,23,...) = (22,23,...).

9. Suppose T € L(V) and dimrange T = k. Prove that T has at
most k + 1 distinct eigenvalues.

10. Suppose T € L(V) is invertible and A € F \ {0}. Prove that A is

an eigenvalue of T if and only if ; is an eigenvalue of T-".
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Suppose S, T € L(V). Prove that ST and TS have the same eigen-
values.

Suppose T € L(V) is such that every vector in V is an eigenvector
of T. Prove that T is a scalar multiple of the identity operator.

Suppose T € L(V) is such that every subspace of V with di-
mension dimV — 1 is invariant under T. Prove that T is a scalar
multiple of the identity operator.

Suppose S, T € L£(V) and S is invertible. Prove that if p € P(F)
is a polynomial, then

p(STS™') = Sp(T)S .

Suppose F =C, T € L(V), p € P(C), and a € C. Prove that a is
an eigenvalue of p(T) if and only if a = p(A) for some eigenvalue
Aof T.

Show that the result in the previous exercise does not hold if C
is replaced with R.

Suppose V is a complex vector space and T € L(V). Prove
that T has an invariant subspace of dimension j for each j =
1,...,dimV.

Give an example of an operator whose matrix with respect to
some basis contains only 0’s on the diagonal, but the operator is
invertible.

Give an example of an operator whose matrix with respect to
some basis contains only nonzero numbers on the diagonal, but
the operator is not invertible.

Suppose that T € £(V) has dimV distinct eigenvalues and that
S € L(V) has the same eigenvectors as T (not necessarily with
the same eigenvalues). Prove that ST = TS.

Suppose P € £(V) and P? = P. Prove that V = null P @ range P.

Suppose V = U e W, where U and W are nonzero subspaces of V.
Find all eigenvalues and eigenvectors of Py .

These two exercises
show that 5.16 fails
without the hypothesis
that an upper-
triangular matrix is
under consideration.
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23.

24.

Give an example of an operator T € £(R*) such that T has no
(real) eigenvalues.

Suppose V is a real vector space and T € L(V) has no eigenval-
ues. Prove that every subspace of V invariant under T has even
dimension.



