CHAPTER 7

Operators on
Inner-Product Spaces

The deepest results related to inner-product spaces deal with the
subject to which we now turn—operators on inner-product spaces. By
exploiting properties of the adjoint, we will develop a detailed descrip-
tion of several important classes of operators on inner-product spaces.

Recall that F denotes R or C.
Let’s agree that for this chapter
V is a finite-dimensional, nonzero, inner-product space over F.
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CHAPTER 7. Operators on Inner-Product Spaces

Instead of self-adjoint,
some mathematicians
use the term Hermitian
(in honor of the French
mathematician Charles
Hermite, who in 1873
published the first
proof that e is not the
root of any polynomial
with integer
coefficients).

If F =R, then by
definition every
eigenvalue is real, so
this proposition is
interesting only when
F=C.

Self-Adjoint and Normal Operators

An operator T € L(V) is called self-adjoint if T = T*. For example,
if T is the operator on F2 whose matrix (with respect to the standard

basis) is
2 b
3 7|

then T is self-adjoint if and only if b = 3 (because M(T) = M(T*) if and
only if b = 3; recall that M(T*) is the conjugate transpose of M(T)—
see 6.47).

You should verify that the sum of two self-adjoint operators is self-
adjoint and that the product of a real scalar and a self-adjoint operator
is self-adjoint.

A good analogy to keep in mind (especially when F = C) is that
the adjoint on L(V) plays a role similar to complex conjugation on C.
A complex number z is real if and only if z = Z; thus a self-adjoint
operator (T = T*) is analogous to a real number. We will see that
this analogy is reflected in some important properties of self-adjoint
operators, beginning with eigenvalues.

7.1 Proposition: Every eigenvalue of a self-adjoint operator is real.

PROOF: Suppose T is a self-adjoint operator on V. Let A be an
eigenvalue of T, and let v be a nonzero vector in V such that Tv = Av.
Then

AllvI? = (Av,v)
=(Tv,V)
={v,Tv)
=(v,Av)

= AlvI2.
Thus A = A, which means that A is real, as desired. n

The next proposition is false for real inner-product spaces. As an
example, consider the operator T € £(R?) that is a counterclockwise
rotation of 90° around the origin; thus T(x,y) = (-y,x). Obviously
Tv is orthogonal to v for every v € R?, even though T is not 0.
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7.2  Proposition: If V is a complex inner-product space and T is an
operator on V such that
(Tv,v)=0

forallv e V,then T = 0.

PROOF: Suppose V is a complex inner-product space and T € L(V).
Then

(Tu+w),u+w)—(T(u—-—w),u—w)
4
(T(u+iw),u +iw) —(T(u—iw),u —iw) ,
+ 7] i

(Tu,w) =

for all u,w € V, as can be verified by computing the right side. Note
that each term on the right side is of the form (Tv,v) for appropriate
v eV.If(Tv,v) =0forallv € V, then the equation above implies that
(Tu,w) = 0 for all u,w € V. This implies that T = 0 (take w = Tu). m

The following corollary is false for real inner-product spaces, as
shown by considering any operator on a real inner-product space that

is not self-adjoint.

7.3 Corollary: Let V be a complex inner-product space and let  This corollary provides

T € L(V). Then T is self-adjoint if and only if another example of
how self-adjoint
(Tv,v) eR operators behave like
real numbers.

for every v € V.

PROOF: Letv € V. Then

(Tv,v) —(Tv,v) =(Tv,v) — (v, Tv)
=A{(Tv,v) —{T*v,v)
= {(T -T*)v,Vv).

If (Tv,v) € R for every v € V, then the left side of the equation above
equals 0, so ((T — T*)v,v) = 0 for every v € V. This implies that
T — T* =0 (by 7.2), and hence T is self-adjoint.

Conversely, if T is self-adjoint, then the right side of the equation
above equals 0, so (Tv,Vv) = (Tv,v) for every v € V. This implies that
(Tv,v) € R for every v € V, as desired. [
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On a real inner-product space V, a nonzero operator T may satisfy
(Tv,v) = 0 for all v € V. However, the next proposition shows that
this cannot happen for a self-adjoint operator.

7.4  Proposition: IfT is a self-adjoint operator on V such that
(Tv,v)=0
forallveV,thenT = 0.

PROOF: We have already proved this (without the hypothesis that
T is self-adjoint) when V is a complex inner-product space (see 7.2).
Thus we can assume that V is a real inner-product space and that T is
a self-adjoint operator on V. For u,w € V, we have

(T(u+w),u+w) —(T(u-w),u—w),
4 b
this is proved by computing the right side, using

7.5 (Tu,w) =

(Tw,u) ={(w,Tu)
= (Tu,w),

where the first equality holds because T is self-adjoint and the second
equality holds because we are working on a real inner-product space.
If (Tv,v) =0 for all v € V, then 7.5 implies that (Tu,w) = 0 for all
u,w € V. This implies that T = O (take w = Tu). [

An operator on an inner-product space is called normal if it com-
mutes with its adjoint; in other words, T € £(V) is normal if

TT* =T*T.

Obviously every self-adjoint operator is normal. For an example of a
normal operator that is not self-adjoint, consider the operator on F?
whose matrix (with respect to the standard basis) is

2 -3
3 2 |
Clearly this operator is not self-adjoint, but an easy calculation (which
you should do) shows that it is normal.
We will soon see why normal operators are worthy of special at-

tention. The next proposition provides a simple characterization of
normal operators.
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7.6 Proposition: An operator T € L£(V) is normal if and only if
ITv| = [IT*v|

forallv eV.

PROOF: Let T € L(V). We will prove both directions of this result
at the same time. Note that

Tisnormal = T*T -TT* =0
= ((T*T-TT*)v,v)=0 forallv eV
= (T*Tv,v) =(TT*v,v) forallveV
< ||Tv||? = IT*V|?® forallv eV,

where we used 7.4 to establish the second equivalence (note that the
operator T*T — TT* is self-adjoint). The equivalence of the first and
last conditions above gives the desired result. ]

Compare the next corollary to Exercise 28 in the previous chapter.
That exercise implies that the eigenvalues of the adjoint of any operator
are equal (as a set) to the complex conjugates of the eigenvalues of the
operator. The exercise says nothing about eigenvectors because an
operator and its adjoint may have different eigenvectors. However, the
next corollary implies that a normal operator and its adjoint have the
same eigenvectors.

7.7  Corollary: Suppose T € L(V) is normal. If v € V is an eigen-
vector of T with eigenvalue A € F, then v is also an eigenvector of T*
with eigenvalue A.

PROOF: Suppose v € V is an eigenvector of T with eigenvalue A.
Thus (T — AI)v = 0. Because T is normal, so is T — AI, as you should
verify. Using 7.6, we have

0= (T —-ADv|l = (T - AD*v| = [[(T* - ADv|,
and hence v is an eigenvector of T* with eigenvalue A, as desired. m

Because every self-adjoint operator is normal, the next result applies
in particular to self-adjoint operators.

Note that this
proposition implies
that null T = null T*
for every normal
operator T.
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7.8 Corollary: If T € L(V) is normal, then eigenvectors of T
corresponding to distinct eigenvalues are orthogonal.

PROOF: Suppose T € L(V) is normal and «, 8 are distinct eigen-
values of T, with corresponding eigenvectors u,v. Thus Tu = xu and
Tv = Bv. From 7.7 we have T*v = fv. Thus

(= B){u,v) = {au,v) — (u, fv)
={(Tu,v) —{u, T*v)
= 0.

Because « # B, the equation above implies that (u,v) = 0. Thus u and
v are orthogonal, as desired. [

The Spectral Theorem

Recall that a diagonal matrix is a square matrix that is 0 everywhere
except possibly along the diagonal. Recall also that an operator on V
has a diagonal matrix with respect to some basis if and only if there is
a basis of V consisting of eigenvectors of the operator (see 5.21).

The nicest operators on V are those for which there is an ortho-
normal basis of V with respect to which the operator has a diagonal
matrix. These are precisely the operators T € L(V) such that there is
an orthonormal basis of V' consisting of eigenvectors of T. Our goal
in this section is to prove the spectral theorem, which characterizes
these operators as the normal operators when F = C and as the self-
adjoint operators when F = R. The spectral theorem is probably the
most useful tool in the study of operators on inner-product spaces.

Because the conclusion of the spectral theorem depends on F, we
will break the spectral theorem into two pieces, called the complex
spectral theorem and the real spectral theorem. As is often the case in
linear algebra, complex vector spaces are easier to deal with than real
vector spaces, so we present the complex spectral theorem first.

As an illustration of the complex spectral theorem, consider the
normal operator T € £(C?) whose matrix (with respect to the standard

basis) is
2 -3
3 2 '

You should verify that
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(i,1) (—i,1)
(N7 =7
is an orthonormal basis of C? consisting of eigenvectors of T and that
with respect to this basis, the matrix of T is the diagonal matrix

2+ 31 0
0 2-3i |’
7.9 Complex Spectral Theorem: Suppose that V is a complex

inner-product space and T € L(V). Then V has an orthonormal basis
consisting of eigenvectors of T if and only if T is normal.

PROOF: First suppose that V has an orthonormal basis consisting of
eigenvectors of T. With respect to this basis, T has a diagonal matrix.
The matrix of T* (with respect to the same basis) is obtained by taking
the conjugate transpose of the matrix of T; hence T* also has a diag-
onal matrix. Any two diagonal matrices commute; thus T commutes
with T*, which means that T must be normal, as desired.

To prove the other direction, now suppose that T is normal. There
is an orthonormal basis (eq,...,e,) of V with respect to which T has
an upper-triangular matrix (by 6.28). Thus we can write

al,1 ain

7.10 M(T, (e1,...,en)) =

0 ann

We will show that this matrix is actually a diagonal matrix, which means
that (ey, ..., ey) is an orthonormal basis of V consisting of eigenvectors
of T.

We see from the matrix above that

I Te1ll? = a1 ?
and
IT*e1ll? = la111? + la12]® + + - - + la1nl?.

Because T isnormal, | Te; || = ||[T*e;|| (see 7.6). Thus the two equations
above imply that all entries in the first row of the matrix in 7.10, except
possibly the first entry a1, equal 0.

Now from 7.10 we see that

[ Texll* = lap|?

Because every
self-adjoint operator is
normal, the complex
spectral theorem
implies that every
self-adjoint operator on
a finite-dimensional
complex inner-product
space has a diagonal
matrix with respect to
some orthonormal
basis.
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This technique of
completing the square
can be used to derive
the quadratic formula.

(because a > = 0, as we showed in the paragraph above) and
IT*exll? = laz2l? + lazs|® + - - - + laznl®

Because T is normal, ||Tez|| = ||T*ez||. Thus the two equations above
imply that all entries in the second row of the matrix in 7.10, except
possibly the diagonal entry a2, equal O.

Continuing in this fashion, we see that all the nondiagonal entries
in the matrix 7.10 equal 0, as desired. n

We will need two lemmas for our proof of the real spectral theo-
rem. You could guess that the next lemma is true and even discover its
proof by thinking about quadratic polynomials with real coefficients.
Specifically, suppose &, € R and «? < 4. Let x be a real number.
Then

.2 o
X2 +oax+p= (x+§) +(B_Z)
> 0.

In particular, x? + ox + B is an invertible real number (a convoluted
way of saying that it is not 0). Replacing the real number x with a
self-adjoint operator (recall the analogy between real numbers and self-
adjoint operators), we are led to the lemma below.

7.11 Lemma: Suppose T € L(V) is self-adjoint. If «,8 € R are such
that «? < 48, then
T? + «T + BI

is invertible.

PROOF: Suppose «, B € R are such that «® < 4. Let v be anonzero
vector in V. Then

(T? + «T + BDVv,v) = (T*v,v) + &(Tv, V) + B(v,V)

=(Tv, TV) + «(Tv,v) + Bl|VI|?
> [ TvII? = [ ITVIIIVI + BlIvI?

2
_ |0(|||V||)2 + (B_ %)“Vllz

= (ITvl >

> 0,
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where the first inequality holds by the Cauchy-Schwarz inequality (6.6).
The last inequality implies that (T? + «T + BI)v # 0. Thus T? + «T + BI
is injective, which implies that it is invertible (see 3.21). ]

We have proved that every operator, self-adjoint or not, on a finite-
dimensional complex vector space has an eigenvalue (see 5.10), so the
next lemma tells us something new only for real inner-product spaces.

7.12 Lemma: Suppose T € L(V) is self-adjoint. Then T has an
eigenvalue.

PROOF: As noted above, we can assume that V is a real inner-
product space. Let n = dimV and choose v € V with v # 0. Then

v, Tv, T®v,...,T™V)

cannot be linearly independent because V has dimension n and we have
n + 1 vectors. Thus there exist real numbers ao,...,a,, not all 0, such
that

O=apv+a1Tv +---+a,T"v.

Make the a’s the coefficients of a polynomial, which can be written in
factored form (see 4.14) as
ap+aix +---+apx"
=c(x®+oux+B1) ... (x> + axux + Bm)(x — A1) ... (X — Aw),
where ¢ is a nonzero real number, each «;, ;, and A; is real, each

16 12 <4Bj, m + M = 1, and the equation holds for all real x. We then
have

O=apv+a1Tv+---+a,T"v

(apl + a1 T+ ---+anT"Vv
c(T?+ 0T+ Bil) ... (T? + ey T + BuD) (T — A1) ... (T — A D) V.

Each T? + «;T + B,I is invertible because T is self-adjoint and each
«;j? < 4B; (see 7.11). Recall also that ¢ # 0. Thus the equation above
implies that

0=(T-MID)...(T-AwIv.

Hence T — AjI is not injective for at least one j. In other words, T has
an eigenvalue. ™

Here we are imitating
the proof that T has an
invariant subspace of
dimension 1 or 2

(see 5.24).
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As an illustration of the real spectral theorem, consider the self-
adjoint operator T on R3 whose matrix (with respect to the standard
basis) is

14 -13 8
-13 14 8
8 8 -7

You should verify that

((11_1,0) (]-,]-1]-) (]-1]-1_2)>

V2ol o3 e
is an orthonormal basis of R3 consisting of eigenvectors of T and that
with respect to this basis, the matrix of T is the diagonal matrix

27 0 0
0 9 0
0 0 -15

Combining the complex spectral theorem and the real spectral the-
orem, we conclude that every self-adjoint operator on V has a diagonal
matrix with respect to some orthonormal basis. This statement, which
is the most useful part of the spectral theorem, holds regardless of
whether F = C or F = R.

7.13 Real Spectral Theorem: Suppose that V is a real inner-product
space and T € L(V). Then V has an orthonormal basis consisting of
eigenvectors of T if and only if T is self-adjoint.

PROOF: First suppose that V has an orthonormal basis consisting of
eigenvectors of T. With respect to this basis, T has a diagonal matrix.
This matrix equals its conjugate transpose. Hence T = T* and so T is
self-adjoint, as desired.

To prove the other direction, now suppose that T is self-adjoint. We
will prove that V has an orthonormal basis consisting of eigenvectors
of T by induction on the dimension of V. To get started, note that our
desired result clearly holds if dimV = 1. Now assume that dimV > 1
and that the desired result holds on vector spaces of smaller dimen-
sion.

The idea of the proof is to take any eigenvector u of T with norm 1,
then adjoin to it an orthonormal basis of eigenvectors of T|,;.. Now
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for the details, the most important of which is verifying that T, is
self-adjoint (this allows us to apply our induction hypothesis).

Let A be any eigenvalue of T (because T is self-adjoint, we know
from the previous lemma that it has an eigenvalue) and let u € V
denote a corresponding eigenvector with ||u|| = 1. Let U denote the
one-dimensional subspace of V consisting of all scalar multiples of u.
Note that a vector v € V is in U+ if and only if (u,v) = 0.

Suppose v € UL. Then because T is self-adjoint, we have

(u, Tv) = (Tu,v) = (Au,v) = A{u,v) =0,

and hence Tv € U+. Thus Tv € U+ whenever v € U*. In other words,
U+ is invariant under T. Thus we can define an operator S € £L(U*') by
S=Tly.. Ifv,w e U+, then

(Sv,w) =(Tv,w) = (v, Tw) = (v,Sw),

which shows that S is self-adjoint (note that in the middle equality
above we used the self-adjointness of T). Thus, by our induction hy-
pothesis, there is an orthonormal basis of U' consisting of eigenvec-
tors of S. Clearly every eigenvector of S is an eigenvector of T (because
Sv = Tv for every v € U+t). Thus adjoining u to an orthonormal basis
of Ut consisting of eigenvectors of S gives an orthonormal basis of V
consisting of eigenvectors of T, as desired. ]

For T € L(V) self-adjoint (or, more generally, T € L(V) normal
when F = C), the corollary below provides the nicest possible decom-
position of V into subspaces invariant under T. On each null(T — A;I),
the operator T is just multiplication by A;.

7.14 Corollary: Suppose that T € L(V) is self-adjoint (or that F = C
and that T € L(V) is normal). Let Ay, ..., Ay, denote the distinct eigen-
values of T. Then

V=null(T — A1) & ---enull(T — A,I).

Furthermore, each vector in each null(T — A;I) is orthogonal to all vec-
tors in the other subspaces of this decomposition.

PROOF: The spectral theorem (7.9 and 7.13) implies that V has a
basis consisting of eigenvectors of T. The desired decomposition of V
now follows from 5.21.

The orthogonality statement follows from 7.8. ]

To get an eigenvector
of norm 1, take any
nonzero eigenvector
and divide it by its
norm.
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Novmal Operators on Real
Inner-Product Spaces

The complex spectral theorem (7.9) gives a complete description
of normal operators on complex inner-product spaces. In this section
we will give a complete description of normal operators on real inner-
product spaces. Along the way, we will encounter a proposition (7.18)
and a technique (block diagonal matrices) that are useful for both real
and complex inner-product spaces.

We begin with a description of the operators on a two-dimensional
real inner-product space that are normal but not self-adjoint.

7.15 Lemma: Suppose V is a two-dimensional real inner-product
space and T € L(V). Then the following are equivalent:

(a) T is normal but not self-adjoint;
(b)  the matrix of T with respect to every orthonormal basis of V

has the form
a -b
b a ’

with b + 0;
(c) the matrix of T with respect to some orthonormal basis of V has
the form
a -b
b a |’
with b > 0.

PROOF: First suppose that (a) holds, so that T is normal but not
self-adjoint. Let (e, e2) be an orthonormal basis of V. Suppose

a c
7.16 M(T, (e1,e2)) = [ b od ]
Then ||Te; |2 = a® + b? and ||T*e; |2 = a? + c2. Because T is normal,
ITe1]l = ||IT*e1ll (see 7.6); thus these equations imply that b2 = c2.
Thus ¢ = b or ¢ = —b. But ¢ # b because otherwise T would be self-

adjoint, as can be seen from the matrix in 7.16. Hence ¢ = —b, so

717 M(T, (e1,e2)) = [ Z _db ]
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Of course, the matrix of T* is the transpose of the matrix above. Use
matrix multiplication to compute the matrices of TT* and T*T (do it
now). Because T is normal, these two matrices must be equal. Equating
the entries in the upper-right corner of the two matrices you computed,
you will discover that bd = ab. Now b # 0 because otherwise T would
be self-adjoint, as can be seen from the matrix in 7.17. Thus d = a,
completing the proof that (a) implies (b).

Now suppose that (b) holds. We want to prove that (c) holds. Choose
any orthonormal basis (e1, e»>) of V. We know that the matrix of T with
respect to this basis has the form given by (b), with b # 0. If b > 0,
then (c) holds and we have proved that (b) implies (c). If b < 0, then,
as you should verify, the matrix of T with respect to the orthonormal
basis (e;, —e») equals [ 4 g], where —b > 0; thus in this case we also
see that (b) implies (c).

Now suppose that (c) holds, so that the matrix of T with respect to
some orthonormal basis has the form given in (c) with b > 0. Clearly
the matrix of T is not equal to its transpose (because b # 0), and hence
T is not self-adjoint. Now use matrix multiplication to verify that the
matrices of TT* and T*T are equal. We conclude that TT* = T*T, and
hence T is normal. Thus (c) implies (a), completing the proof. ]

As an example of the notation we will use to write a matrix as a
matrix of smaller matrices, consider the matrix

1 1 2 2 2
11 2 2 2
D=]0 0 3 3 3
0 0 3 3 3
0O 0 3 3 3
We can write this matrix in the form Often we can
A B understand a matrix
D = , better by thinking of it
¢
as composed of smaller
where matrices. We will use

this technique in the
1 1 2 2 2 next proposition and in
A= 1 1| B = 2 2 2| ¢= later chapters.

and 0 denotes the 3-by-2 matrix consisting of all 0’s.

w w w
w w w
w w w
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Without normality, an
easier result also holds:
if Te L(V)and U
invariant under T, then
U+ is invariant under
T*; see Exercise 29 in
Chapter 6.

The next result will play a key role in our characterization of the
normal operators on a real inner-product space.

7.18 Proposition: Suppose T € L(V) is normal and U is a subspace
of V that is invariant under T. Then

(a) U+ is invariant under T;

(b) U is invariant under T*;

© (Tly)* =(THIy;

d) T|y is a normal operator on U;

(e) T|y: is a normal operator on U+.

PROOF: First we will prove (a). Let (eq,...,e;) be an orthonormal
basis of U. Extend to an orthonormal basis (e1,...,em, f1,.-.,fn) of V
(this is possible by 6.25). Because U is invariant under T, each Te; is
a linear combination of (e, ..., e, ). Thus the matrix of T with respect
to the basis (e1,...,em, f1,--., fn) is of the form

€1 ... @m f1 fn

€1
A B
M(T) = ‘}’f ;
: 0 C
fu |

here A denotes an m-by-m matrix, 0 denotes the n-by-m matrix con-
sisting of all 0’s, B denotes an m-by-n matrix, C denotes an n-by-n
matrix, and for convenience the basis has been listed along the top and
left sides of the matrix.

Foreachj e {1,...,m}, || Te; |2 equals the sum of the squares of the
absolute values of the entries in the j™ column of A (see 6.17). Hence

m
the sum of the squares of the absolute
719 > |ITe;)? = €
a values of the entries of A.
For each j € {1,...,m}, [T*e;|?> equals the sum of the squares of the
absolute values of the entries in the j™ rows of A and B. Hence
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the sum of the squares of the absolute

m
%, 012 _
7.20 ; 1T ejl values of the entries of A and B.

Because T is normal, [|Te;|| = [|[T*e;|| for each j (see 7.6); thus
m m
D I Tejll* = > IT*e;1*.
Jj=1 j=1

This equation, along with 7.19 and 7.20, implies that the sum of the
squares of the absolute values of the entries of B must equal 0. In
other words, B must be the matrix consisting of all 0’s. Thus

€1 ... €m f1 fn

el i l
A 0
em
7.21 M(T) = f
1
: 0 C
Fn |

This representation shows that T fi is in the span of (f1,..., fn) for
each k. Because (f1,..., fn) is a basis of U+, this implies that Tv € U+
whenever v € U+. In other words, U+ is invariant under T, completing
the proof of (a).

To prove (b), note that M(T*) has a block of 0’s in the lower left
corner (because M(T), as given above, has a block of 0’s in the upper
right corner). In other words, each T*e; can be written as a linear
combination of (e1,...,ey). Thus U is invariant under T*, completing
the proof of (b).

To prove (c), let S = T|y. Fix v € U. Then

(Su,v) =(Tu,v)
= {(u, T*v)

for all u € U. Because T*v € U (by (b)), the equation above shows that
S*v = T*v. In other words, (T|y)* = (T*)|y, completing the proof
of (c).

To prove (d), note that T commutes with T* (because T is normal)
and that (T'|y)* = (T*)|y (by (c)). Thus T|y commutes with its adjoint
and hence is normal, completing the proof of (d).
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The key step in the
proof of the last
proposition was

showing that M(T) is
an appropriate block
diagonal matrix;

see 7.21.

To prove (e), note that in (d) we showed that the restriction of T to
any invariant subspace is normal. However, U+ is invariant under T
(by (a)), and hence T|y: is normal. [

In proving 7.18 we thought of a matrix as composed of smaller ma-
trices. Now we need to make additional use of that idea. A block diag-
onal matrix is a square matrix of the form

Ay 0
0 Am
where Aq,..., A, are square matrices lying along the diagonal and all

the other entries of the matrix equal 0. For example, the matrix

4 0 0 0 O

02 -3 0 O
7.22 A=]10 3 2 0 O
o0 0 1 -7
o0 0 7 1
is a block diagonal matrix with
A 0
A= A )
0 Az

where

2 -3 1 -7
723 A =[4], A2=[3 2], A3=[7 ) ]

If A and B are block diagonal matrices of the form

Al 0 By 0
A = 5 B = ]
0 Am 0 B
where A; has the same size as Bj for j = 1,...,m, then AB is a block

diagonal matrix of the form
A1B; 0
7.24 AB = .
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as you should verify. In other words, to multiply together two block
diagonal matrices (with the same size blocks), just multiply together the
corresponding entries on the diagonal, as with diagonal matrices.

A diagonal matrix is a special case of a block diagonal matrix where
each block has size 1-by-1. At the other extreme, every square matrix is
a block diagonal matrix because we can take the first (and only) block
to be the entire matrix. Thus to say that an operator has a block di-
agonal matrix with respect to some basis tells us nothing unless we
know something about the size of the blocks. The smaller the blocks,
the nicer the operator (in the vague sense that the matrix then contains
more 0’s). The nicest situation is to have an orthonormal basis that
gives a diagonal matrix. We have shown that this happens on a com-
plex inner-product space precisely for the normal operators (see 7.9)
and on a real inner-product space precisely for the self-adjoint opera-
tors (see 7.13).

Our next result states that each normal operator on a real inner-
product space comes close to having a diagonal matrix—specifically,
we get a block diagonal matrix with respect to some orthonormal basis,
with each block having size at most 2-by-2. We cannot expect to do bet-
ter than that because on a real inner-product space there exist normal
operators that do not have a diagonal matrix with respect to any basis.
For example, the operator T € L£(R?) defined by T(x,y) = (-y,x) is
normal (as you should verify) but has no eigenvalues; thus this partic-
ular T does not have even an upper-triangular matrix with respect to
any basis of R2.

Note that the matrix in 7.22 is the type of matrix promised by the
theorem below. In particular, each block of 7.22 (see 7.23) has size
at most 2-by-2 and each of the 2-by-2 blocks has the required form
(upper left entry equals lower right entry, lower left entry is positive,
and upper right entry equals the negative of lower left entry).

7.25 Theorem: Suppose that V is a real inner-product space and
T € L(V). Then T is normal if and only if there is an orthonormal
basis of V with respect to which T has a block diagonal matrix where
each block is a 1-by-1 matrix or a 2-by-2 matrix of the form

a -b
(7]

with b > 0.

Note that if an operator
T has a block diagonal
matrix with respect to
some basis, then the
entry in any 1-by-1
block on the diagonal
of this matrix must be
an eigenvalue of T.
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In a real vector space
with dimension 1, there
are precisely two
vectors with norm 1.

Many mathematicians
also use the term
positive semidefinite
operator, which means
the same as positive
operator.

PROOF: To prove the easy direction, first suppose that there is an
orthonormal basis of V such that the matrix of T is a block diagonal
matrix where each block is a 1-by-1 matrix or a 2-by-2 matrix of the
form 7.26. With respect to this basis, the matrix of T commutes with
the matrix of T* (which is the conjugate of the matrix of T), as you
should verify (use formula 7.24 for the product of two block diagonal
matrices). Thus T commutes with T*, which means that T is normal.

To prove the other direction, now suppose that T is normal. We will
prove our desired result by induction on the dimension of V. To get
started, note that our desired result clearly holds if dim V = 1 (trivially)
orif dimV = 2 (if T is self-adjoint, use the real spectral theorem 7.13;
if T is not self-adjoint, use 7.15).

Now assume that dimV > 2 and that the desired result holds on
vector spaces of smaller dimension. Let U be a subspace of V of di-
mension 1 that is invariant under T if such a subspace exists (in other
words, if T has a nonzero eigenvector, let U be the span of this eigen-
vector). If no such subspace exists, let U be a subspace of V of dimen-
sion 2 that is invariant under T (an invariant subspace of dimension 1
or 2 always exists by 5.24).

If dimU = 1, choose a vector in U with norm 1; this vector will
be an orthonormal basis of U, and of course the matrix of T|y is a
1-by-1 matrix. If dimU = 2, then T|y is normal (by 7.18) but not self-
adjoint (otherwise T' |y, and hence T, would have a nonzero eigenvector;
see 7.12), and thus we can choose an orthonormal basis of U with re-
spect to which the matrix of T|y has the form 7.26 (see 7.15).

Now U+ is invariant under T and T|y. is a normal operator on U+
(see 7.18). Thus by our induction hypothesis, there is an orthonormal
basis of U+ with respect to which the matrix of T|y. has the desired
form. Adjoining this basis to the basis of U gives an orthonormal basis
of V with respect to which the matrix of T has the desired form. [ ]

Positive Operators

An operator T € L(V) is called positive if T is self-adjoint and
(Tv,v) =0

for all v € V. Note that if V is a complex vector space, then the
condition that T be self-adjoint can be dropped from this definition
(by 7.3).
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You should verify that every orthogonal projection is positive. For
another set of examples, look at the proof of 7.11, where we showed
that if T € L£(V) is self-adjoint and «, 8 € R are such that &? < 48,
then T2 + «T + BI is positive.

An operator S is called a square root of an operator T if S? = T.
For example, if T € L£(F3) is defined by T(z1, z2,z3) = (23,0,0), then
the operator S € £(F3) defined by S(z1, 22, z3) = (22, z3,0) is a square
root of T.

The following theorem is the main result about positive operators.
Note that its characterizations of the positive operators correspond to
characterizations of the nonnegative numbers among C. Specifically,
a complex number z is nonnegative if and only if it has a nonnegative
square root, corresponding to condition (c) below. Also, z is nonnega-
tive if and only if it has a real square root, corresponding to condition
(d) below. Finally, z is nonnegative if and only if there exists a complex
number w such that z = ww, corresponding to condition (e) below.

727 Theorem: LetT € L(V). Then the following are equivalent:

(a) T is positive;

(b) T is self-adjoint and all the eigenvalues of T are nonnegative;
() T has a positive square root;

(d) T has a self-adjoint square root;

(e) there exists an operator S € L(V) such that T = §*8S.

PROOF: We will prove that (a) = (b) = (c) = (d) = (e) = (a).

First suppose that (a) holds, so that T is positive. Obviously T is
self-adjoint (by the definition of a positive operator). To prove the other
condition in (b), suppose that A is an eigenvalue of T. Let v be anonzero
eigenvector of T corresponding to A. Then

0<(Tv,Vv)
= (Av,V)
= A{v,V),

and thus A is a nonnegative number. Hence (b) holds.
Now suppose that (b) holds, so that T is self-adjoint and all the eigen-
values of T are nonnegative. By the spectral theorem (7.9 and 7.13),

The positive operators
correspond, in some
sense, to the numbers
[0, »), so better
terminology would call
these nonnegative
instead of positive.
However, operator
theorists consistently
call these the positive
operators, so we will
follow that custom.
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A positive operator can
have infinitely many
square roots (though
only one of them can
be positive). For
example, the identity
operator on V has
infinitely many square
roots if dimV > 1.

there is an orthonormal basis (ei,...,en) of V consisting of eigen-
vectors of T. Let Ay,...,A, be the eigenvalues of T corresponding to
ei,...,en, so that each A; is a nonnegative number. Define S € L(V)

by
Sej = JAse;

for j = 1,...,n. Then § is a positive operator, as you should verify.
Furthermore, S?¢; = Ajej = Te; for each j, which implies that $? = T.
Thus S is a positive square root of T, and hence (c) holds.

Clearly (c) implies (d) (because, by definition, every positive operator
is self-adjoint).

Now suppose that (d) holds, meaning that there exists a self-adjoint
operator S on V such that T = S2. Then T = S$*S (because S* = S), and
hence (e) holds.

Finally, suppose that (e) holds. Let S € £(V) be such that T = §*S.
Then T* = (§*S)* = §*(S*)* = §*S = T, and hence T is self-adjoint.
To complete the proof that (a) holds, note that

(Tv,v) =(S*Sv,Vv)

=(Sv,Sv)
>0

for every v € V. Thus T is positive. [ ]

Each nonnegative number has a unique nonnegative square root.
The next proposition shows that positive operators enjoy a similar
property. Because of this proposition, we can use the notation /T
to denote the unique positive square root of a positive operator T, just
as /A denotes the unique nonnegative square root of a nonnegative
number A.

7.28 Proposition: Every positive operator on'V has a unique positive
square root.

PROOF: Suppose T € L(V) is positive. Let Aq,...,A;; denote the
distinct eigenvalues of T; because T is positive, all these numbers are
nonnegative (by 7.27). Because T is self-adjoint, we have

7.29 V=null(T — A1I) & - - - e null(T — A D);

see 7.14.
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Now suppose S € L(V) is a positive square root of T. Suppose « is
an eigenvalue of S. If v € null(S — «I), then Sv = «v, which implies
that

7.30 Tv = S%v = &°v,

so v € null(T — «?I). Thus «? is an eigenvalue of T, which means
that o> must equal some Aj. In other words, & = \/E for some j.
Furthermore, 7.30 implies that

7.31 null(S — ;1) € null(T — A;).

In the paragraph above, we showed that the only possible eigenval-
ues for S are +/A1,...,+/A,. Because S is self-adjoint, this implies that

7.32 V =null(S —\AiD) @ - - - & null(S — A l);
see 7.14. Now 7.29, 7.32, and 7.31 imply that
null(S — A;1) = null(T — A;I)

for each j. In other words, on null(T — A;I), the operator S is just
multiplication by \/RTJ . Thus S, the positive square root of T, is uniquely
determined by T. [ ]

Isometries

An operator § € L(V) is called an isometry if
ISvI =1

for all v € V. In other words, an operator is an isometry if it preserves
norms. For example, Al is an isometry whenever A € F satisfies |A| = 1.
More generally, suppose Ay,..., Ay are scalars with absolute value 1 and
S € L(V) satisfies S(e;) = Aje; for some orthonormal basis (e, ..., e,)
of V. Suppose v € V. Then

7.33 v ={(v,e1)er +---+(v,exden
and

7.34 V12 = [{v,e)]? + -+ + [{v,en)]?,

The Greek word isos
means equal; the Greek
word metron means
measure. Thus
isometry literally
means equal measure.
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An isometry on a real
inner-product space is
often called an
orthogonal operator.
An isometry on a
complex inner-product
space is often called a
unitary operator. We
will use the term
isometry so that our
results can apply to
both real and complex
inner-product spaces.

where we have used 6.17. Applying S to both sides of 7.33 gives

Sv ={(v,e1)Se; +---+(v,ey)Se,
=A1(v,er)er + - -+ Ay(v,en)en.

The last equation, along with the equation |A;| = 1, shows that
7.35 [SVIZ = [(v,e)]* + - - - + [(v,en)|*.

Comparing 7.34 and 7.35 shows that ||v]|| = ||Sv||. In other words, S is
an isometry.

For another example, let & € R. Then the operator on R? of coun-
terclockwise rotation (centered at the origin) by an angle of 9 is an
isometry (you should find the matrix of this operator with respect to
the standard basis of R?).

If S € £(V) is an isometry, then S is injective (because if Sv = 0,
then ||v| = [|Sv] = 0, and hence v = 0). Thus every isometry is
invertible (by 3.21).

The next theorem provides several conditions that are equivalent
to being an isometry. These equivalences have several important in-
terpretations. In particular, the equivalence of (a) and (b) shows that
an isometry preserves inner products. Because (a) implies (d), we see
that if S is an isometry and (es,...,ey) is an orthonormal basis of V,
then the columns of the matrix of S (with respect to this basis) are or-
thonormal; because (e) implies (a), we see that the converse also holds.
Because (a) is equivalent to conditions (i) and (j), we see that in the last
sentence we can replace “columns” with “rows”.

7.36 Theorem: Suppose S € L(V). Then the following are equiva-
lent:

(@) S is an isometry;
(b) (Su,Sv) = (u,v) forall u,v € V;

(c) S*S =1;

(d) (Sey,...,Sey) is orthonormal whenever (eq,...,ey) is an ortho-
normal list of vectors in V;

(e) there exists an orthonormal basis (ei,...,ey,) of V such that
(Seq,...,Sey) is orthonormal;

(f) S* is an isometry;
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(®  ($Tu,Sv) = (u,v) forallu,v € V;

th) SS*=1I;

@) (S*eq,...,S*e,) is orthonormal whenever (ey,...,ey,) IS an or-
thonormal list of vectors in V;

G) there exists an orthonormal basis (ej,...,e,) of V such that
(S*eq,...,S*ey) is orthonormal.

PROOF: First suppose that (a) holds. If V is a real inner-product
space, then for every u,v € V we have

(Su,Sv) = (ISu+Sv|>—|ISu—-Sv|*) /4
= (IS +W% = IS(u-v)I?) /4
= (lu+vI? - llu-vl?)/4

=(u,v),

where the first equality comes from Exercise 6 in Chapter 6, the second
equality comes from the linearity of S, the third equality holds because
S is an isometry, and the last equality again comes from Exercise 6 in
Chapter 6. If V is a complex inner-product space, then use Exercise 7
in Chapter 6 instead of Exercise 6 to obtain the same conclusion. In
either case, we see that (a) implies (b).

Now suppose that (b) holds. Then

((S*S —Du,v) = (Su,Sv) — (u,v)
=0

for every u,v € V. Taking v = (§*S — I)u, we see that $*S — I = 0.
Hence $*S = I, proving that (b) implies (c).

Now suppose that (c) holds. Suppose (ey,...,ey) is an orthonormal
list of vectors in V. Then

(Sej,Sex) = (S*Sej, ex)

= (ej,ek).

Hence (Se,...,Sey) is orthonormal, proving that (c) implies (d).
Obviously (d) implies (e).
Now suppose (e) holds. Let (eq,...,e,) be an orthonormal basis of V
such that (Sey,...,Se;,) is orthonormal. If v € V, then
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ISVIIZ = 1IS({(v,e1)er + - - - + (v, en)en)?

= l{v,e1)Sey + -+ - + (v,en)Sen||?
= [{(v,e) ]2+ + [(v,en)]?

= lvIi%,

where the first and last equalities come from 6.17. Taking square roots,
we see that S is an isometry, proving that (e) implies (a).

Having shown that (a) = (b) = (c) = (d) = (e) = (a), we know at this
stage that (a) through (e) are all equivalent to each other. Replacing S
with $*, we see that (f) through (j) are all equivalent to each other. Thus
to complete the proof, we need only show that one of the conditions
in the group (a) through (e) is equivalent to one of the conditions in
the group (f) through (j). The easiest way to connect the two groups of
conditions is to show that (c) is equivalent to (h). In general, of course,
S need not commute with $*. However, $*S = [ if and only if SS* =T,
this is a special case of Exercise 23 in Chapter 3. Thus (c) is equivalent
to (h), completing the proof. ]

The last theorem shows that every isometry is normal (see (a), (c),
and (h) of 7.36). Thus the characterizations of normal operators can
be used to give complete descriptions of isometries. We do this in the
next two theorems.

7.37 Theorem: Suppose V is a complex inner-product space and
S € L(V). Then S is an isometry if and only if there is an orthonormal
basis of V consisting of eigenvectors of S all of whose corresponding
eigenvalues have absolute value 1.

PROOF: We already proved (see the first paragraph of this section)
that if there is an orthonormal basis of V consisting of eigenvectors of S
all of whose eigenvalues have absolute value 1, then S is an isometry.

To prove the other direction, suppose S is an isometry. By the com-
plex spectral theorem (7.9), there is an orthonormal basis (ey,...,ex)
of V consisting of eigenvectors of S. For j € {1,...,n}, let A be the
eigenvalue corresponding to e;. Then

IAjl = l1Ajejll = 1ISejll = llejll = 1.

Thus each eigenvalue of S has absolute value 1, completing the proof. m
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If 0 € R, then the operator on R? of counterclockwise rotation (cen-
tered at the origin) by an angle of 0 has matrix 7.39 with respect to
the standard basis, as you should verify. The next result states that ev-
ery isometry on a real inner-product space is composed of pieces that
look like rotations on two-dimensional subspaces, pieces that equal the
identity operator, and pieces that equal multiplication by —1.

7.38 Theorem: Suppose that V is a real inner-product space and
S € L(V). Then S is an isometry if and only if there is an orthonormal
basis of V with respect to which S has a block diagonal matrix where
each block on the diagonal is a 1-by-1 matrix containing 1 or —1 or a
2-by-2 matrix of the form

cos@® —sin0
7.39 [ sin@ cos@ ]’

with 0 € (0, 1T).

PROOF: First suppose that S is an isometry. Because S is normal,
there is an orthonormal basis of V such that with respect to this basis
S has a block diagonal matrix, where each block is a 1-by-1 matrix or a
2-by-2 matrix of the form

a -b
(o]
with b > 0 (see 7.25).

If A is an entry in a 1-by-1 along the diagonal of the matrix of S (with
respect to the basis mentioned above), then there is a basis vector e;
such that Se; = Ae;. Because S is an isometry, this implies that |A| = 1.
Thus A = 1 or A = —1 because these are the only real numbers with
absolute value 1.

Now consider a 2-by-2 matrix of the form 7.40 along the diagonal of
the matrix of S. There are basis vectors e, e;;1 such that

Sej =aej+beji.

Thus
1= llejll* = ||Se;lI? = a® + b,

The equation above, along with the condition b > 0, implies that there
exists a number 0 € (0, 1) such that a = cos 0 and b = sin 0. Thus the

This theorem implies
that an isometry on an
odd-dimensional real
inner-product space
must have 1 or —1 as
an eigenvalue.
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matrix 7.40 has the required form 7.39, completing the proof in this
direction.

Conversely, now suppose that there is an orthonormal basis of V
with respect to which the matrix of S has the form required by the
theorem. Thus there is a direct sum decomposition

V=U®---0Up,

where each Uj is a subspace of V' of dimension 1 or 2. Furthermore,
any two vectors belonging to distinct U’s are orthogonal, and each S|y;
is an isometry mapping U; into U;. If v € V, we can write

V=ui+- -+ uUnm,

where each uj € U;. Applying S to the equation above and then taking
norms gives

ISVI? = ISur + - - - + Sumll®
= ISurll® + - - + ISuml®
= luall® + - - + llwmll®
= lIvI.

Thus § is an isometry, as desired. [

Polar and Singular-Value Decompositions

Recall our analogy between C and £(V). Under this analogy, a com-
plex number z corresponds to an operator T, and Z corresponds to T*.
The real numbers correspond to the self-adjoint operators, and the non-
negative numbers correspond to the (badly named) positive operators.
Another distinguished subset of C is the unit circle, which consists of
the complex numbers z such that |z| = 1. The condition |z| = 1 is
equivalent to the condition Zz = 1. Under our analogy, this would cor-
respond to the condition T*T = I, which is equivalent to T being an
isometry (see 7.36). In other words, the unit circle in C corresponds to
the isometries.

Continuing with our analogy, note that each complex number z ex-
cept O can be written in the form
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where the first factor, namely, z/|z|, is an element of the unit circle. Our
analogy leads us to guess that any operator T € £(V) can be written
as an isometry times /T*T. That guess is indeed correct, as we now
prove.

7.41 Polar Decomposition: If T € £(V), then there exists an isom-
etry S € L(V) such that
T =S5VT*T.

PROOF: Suppose T € L(V). If v € V, then

ITvII? = (Tv,Tv)
=(T*Tv,Vv)
= (VT*TJT*Tv,v)
= (NT*Tv,JT*Tv)

= |VT*Tv|.
Thus
7.42 ITvII = INT*Tv||
forall v e V.

Define a linear map S;: range vT*T — range T by

7.43 S1IVT*Tv) = Tw.

The idea of the proof is to extend S; to an isometry S € £(V) such that
T = S/T*T. Now for the details.

First we must check that S; is well defined. To do this, suppose
v1,Vv2 € V are such that /T*Tv; = VT*Tv,. For the definition given
by 7.43 to make sense, we must show that Tv, = Tv>. However,

ITvy = Tvall = IT(v1 —v2)ll
= IVT*T (vy = v2)ll
= IVT*Tvi — VT*Tvy||
= 0’
where the second equality holds by 7.42. The equation above shows

that Tvq, = Tv», so S; is indeed well defined. You should verify that S;
is a linear map.

If you know a bit of
complex analysis, you
will recognize the
analogy to polar
coordinates for
complex numbers:
every complex number
can be written in the
form e?'v, where

0 e€[0,2m) and v > 0.
Note that e?! is in the
unit circle,
corresponding to S
being an isometry, and
v IS nonnegative,
corresponding to
VT*T being a positive
operator.
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In the rest of the proof
all we are doing is
extending S; to an

isometry S on all of V.

We see from 7.43 that S$; maps range v T*T onto range T. Clearly
7.42 and 7.43 imply that ||Syu|| = |Ju|l for all u € range/T*T. In
particular, S; is injective. Thus from 3.4, applied to S;, we have

dimrange vT*T = dimrange T.

This implies that dim(range T*T)* = dim(range T)* (see Exercise 15
in Chapter 6). Thus orthonormal bases (e1,...,e,,) of (range VT*T)*
and (f1,..., fm) of (range T)* can be chosen; the key point here is that
these two orthonormal bases have the same length. Define a linear map
S>: (range VT*T)* — (range T)* by

So(arer + -+ -+ amem) = arfi + -+ - + amfm.

Obviously ||Sow|| = ||w|| for all w € (range vT*T)>.

Now let S be the operator on V that equals S; on range vT*T and
equals S» on (range/T*T)L. More precisely, recall that each v € V
can be written uniquely in the form

7.44 V=Uu-+w,

where u € range v T*T and w € (range vT*T)* (see 6.29). Forv e V
with decomposition as above, define Sv by

Sv =851u+ Sow.
For each v € V we have
S(VT*Tv) = 8§ (VT*Tv) =T,

soT = S+/T*T, as desired. All that remains is to show that S is an isom-
etry. However, this follows easily from the two uses of the Pythagorean
theorem: if v € V has decomposition as in 7.44, then

ISVIZ = [IS1u + Sawl|?
= [S1ull® + [1S2w?
= lull® + llw|?

= |vI?,

where the second equality above holds because S1u € rangeT and
Sou € (range T)*. m



Polar and Singular-Value Decompositions

155

The polar decomposition (7.41) states that each operator on V is the
product of an isometry and a positive operator. Thus we can write each
operator on V as the product of two operators, each of which comes
from a class that we have completely described and that we under-
stand reasonably well. The isometries are described by 7.37 and 7.38;
the positive operators (which are all self-adjoint) are described by the
spectral theorem (7.9 and 7.13).

Specifically, suppose T = ST*T is the polar decomposition of
T € L(V), where S is an isometry. Then there is an orthonormal basis
of V with respect to which S has a diagonal matrix (if F = C) or a block
diagonal matrix with blocks of size at most 2-by-2 (if F = R), and there
is an orthonormal basis of V with respect to which +/T*T has a diag-
onal matrix. Warning: there may not exist an orthonormal basis that
simultaneously puts the matrices of both S and ~/T*T into these nice
forms (diagonal or block diagonal with small blocks). In other words, S
may require one orthonormal basis and /T*T may require a different
orthonormal basis.

Suppose T € L(V). The singular values of T are the eigenvalues
of +/T*T, with each eigenvalue A repeated dimnull(/T*T — AI) times.
The singular values of T are all nonnegative because they are the eigen-
values of the positive operator +/T*T.

For example, if T € £(F*) is defined by

7.45 T(z1,22,23,24) = (0,321,222, —324),

then T*T(z1,22,23,24) = (921,425,0,9z24), as you should verify. Thus
VT*T(z1,22,23,24) = (321,222,0,324),

and we see that the eigenvalues of /T*T are 3,2, 0. Clearly

dimnull(vVT*T-3I) = 2, dimnull(vVT*T-2]) = 1, dimnull VT*T = 1.

Hence the singular values of T are 3,3,2,0. In this example —3 and 0
are the only eigenvalues of T, as you should verify.

Each T € £(V) has dim V singular values, as can be seen by applying
the spectral theorem and 5.21 (see especially part (e)) to the positive
(hence self-adjoint) operator /T*T. For example, the operator T de-
fined by 7.45 on the four-dimensional vector space F# has four singular
values (they are 3, 3, 2,0), as we saw in the previous paragraph.

The next result shows that every operator on V has a nice descrip-
tion in terms of its singular values and two orthonormal bases of V.
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7.46 Singular-Value Decomposition: Suppose T € L(V) has sin-
gular values sy, ..., Sy. Then there exist orthonormal bases (eq,...,ey)
and (f1,..., fn) of V such that
747 Tv =si{(v,e1) fi+ - +sp{v,en)fn
for everyv €V,

PROOF: By the spectral theorem (also see 7.14) applied to vT*T,
there is an orthonormal basis (e,...,e,) of V such that /T*Te; = sje;
for j =1,...,m1. We have

v ={(v,e1)e1 + - +(v,en)en
for every v € V (see 6.17). Apply T*T to both sides of this equation,
getting
T*Tv =s1{v,e1)e; + -+ sp{Vv,enlen
This proof illustrates ~ for every v € V. By the polar decomposition (see 7.41), there is an

the usefulness of the
polar decomposition.

isometry S € £(V) such that T = S/T*T. Apply S to both sides of the
equation above, getting

Tv =s1(v,e1)Se1 + - - + sp{V,en)Sey,

for every v € V. For each j, let f; = Se;. Because S is an isometry,
(f1,...,fn) is an orthonormal basis of V (see 7.36). The equation above
now becomes

Tv = s1{v,e1) f1 + - +sp(V,en) fun

for every v € V, completing the proof. ]

When we worked with linear maps from one vector space to a second
vector space, we considered the matrix of a linear map with respect
to a basis for the first vector space and a basis for the second vector
space. When dealing with operators, which are linear maps from a
vector space to itself, we almost always use only one basis, making it
play both roles.

The singular-value decomposition allows us a rare opportunity to
use two different bases for the matrix of an operator. To do this, sup-
pose T € L(V). Let s1,...,5, denote the singular values of T, and let
(e1,...,en) and (f1,..., fn) be orthonormal bases of V such that the
singular-value decomposition 7.47 holds. Then clearly



Polar and Singular-Value Decompositions

157

S1 0

M(T, (e1,.-ren), (fiyeeey fu)) =
0 Sn

In other words, every operator on V has a diagonal matrix with respect
to some orthonormal bases of V, provided that we are permitted to
use two different bases rather than a single basis as customary when
working with operators.

Singular values and the singular-value decomposition have many ap-
plications (some are given in the exercises), including applications in
computational linear algebra. To compute numeric approximations to
the singular values of an operator T, first compute T*T and then com-
pute approximations to the eigenvalues of T*T (good techniques exist
for approximating eigenvalues of positive operators). The nonnegative
square roots of these (approximate) eigenvalues of T* T will be the (ap-
proximate) singular values of T (as can be seen from the proof of 7.28).
In other words, the singular values of T can be approximated without
computing the square root of T*T.
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Exercises
1. Make P, (R) into an inner-product space by defining

1
(p,a) = JO p(x)q(x)dx.

Define T € L(P>(R)) by T(ag + a1 x + a»>x?) = a; x.
(@  Show that T is not self-adjoint.
(b)  The matrix of T with respect to the basis (1, x, x2) is

0 0 O
010
0 0 O

This matrix equals its conjugate transpose, even though T
is not self-adjoint. Explain why this is not a contradiction.

Prove or give a counterexample: the product of any two self-
adjoint operators on a finite-dimensional inner-product space is
self-adjoint.

(@)  Show that if V is a real inner-product space, then the set
of self-adjoint operators on V is a subspace of L(V).

(b)  Show that if V is a complex inner-product space, then the
set of self-adjoint operators on V is not a subspace of
L(V).

Suppose P € £(V) is such that P2 = P. Prove that P is an orthog-
onal projection if and only if P is self-adjoint.

Show that if dimV > 2, then the set of normal operators on V is
not a subspace of £(V).

Prove that if T € £(V) is normal, then

range T = range T*.

Prove that if T € £(V) is normal, then
null T* =null T and rangeT* =range T

for every positive integer k.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

Prove that there does not exist a self-adjoint operator T € L£L(R3)
such that T(1,2,3) = (0,0,0) and T(2,5,7) = (2,5,7).

Prove that a normal operator on a complex inner-product space
is self-adjoint if and only if all its eigenvalues are real.

Suppose V is a complex inner-product space and T € L£(V) is a
normal operator such that T2 = T8. Prove that T is self-adjoint
and T? = T.

Suppose V is a complex inner-product space. Prove that every
normal operator on V has a square root. (An operator S € £(V)
is called a square root of T € L(V) if S = T.)

Give an example of a real inner-product space Vand T € L(V)
and real numbers «, 8 with «? < 48 such that T2 + «T + BI is
not invertible.

Prove or give a counterexample: every self-adjoint operator on
V has a cube root. (An operator S € L(V) is called a cube root
of Te L(V)ifS?=T.)

Suppose T € L(V) is self-adjoint, A € F, and € > 0. Prove that if
there exists v € V such that ||v| = 1 and

ITv — Av| <€,
then T has an eigenvalue A’ such that [A — A’| < €.

Suppose U is a finite-dimensional real vector space and T €
L(U). Prove that U has a basis consisting of eigenvectors of T if
and only if there is an inner product on U that makes T into a
self-adjoint operator.

Give an example of an operator T on an inner product space such
that T has an invariant subspace whose orthogonal complement
is not invariant under T.

Prove that the sum of any two positive operators on V is positive.

Prove thatif T € £(V) is positive, then so is T* for every positive
integer k.

Exercise 9 strengthens
the analogy (for normal
operators) between
self-adjoint operators
and real numbers.

This exercise shows
that the hypothesis
that T is self-adjoint is
needed in 7.11, even
for real vector spaces.

This exercise shows
that 7.18 can fail
without the hypothesis
that T is normal.
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Exercise 24 shows that
if we write T as the
product of an isometry
and a positive operator
(as in the polar
decomposition), then
the positive operator
must equal \/T*T.

19.

20.

21.

22.

23.

24,

25.

26.

27,

28.

29.

30.

Suppose that T is a positive operator on V. Prove that T is in-
vertible if and only if
(Tv,v) >0

for every v € V \ {0}.

Prove or disprove: the identity operator on F2 has infinitely many
self-adjoint square roots.

Prove or give a counterexample: if S € L£(V) and there exists
an orthonormal basis (e1,...,en) of V such that [|Se;ll = 1 for
each ej, then § is an isometry.

Prove thatif S € £(R3) is anisometry, then there exists anonzero
vector x € R3 such that S%x = x.

Define T € £L(F?) by
T(z1,22,23) = (23,221,322).
Find (explicitly) an isometry S € £(F3) such that T = S/T*T.

Suppose T € L(V), S € L(V) is an isometry, and R € L(V) is a
positive operator such that T = SR. Prove that R = /T*T.

Suppose T € L(V). Prove that T is invertible if and only if there
exists a unique isometry S € £(V) such that T = S/T*T.

Prove that if T € L(V) is self-adjoint, then the singular values
of T equal the absolute values of the eigenvalues of T (repeated
appropriately).

Prove or give a counterexample: if T € £(V), then the singular
values of T2 equal the squares of the singular values of T.

Suppose T € L(V). Prove that T is invertible if and only if O is
not a singular value of T.

Suppose T € L(V). Prove that dimrange T equals the number of
nonzero singular values of T.

Suppose S € L(V). Prove that S is an isometry if and only if all
the singular values of S equal 1.
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31.

32.

33.

34.

Suppose T;,T, € L(V). Prove that T} and T, have the same
singular values if and only if there exist isometries S;,S> € L(V)
such that T; = $1125>.

Suppose T € L(V) has singular-value decomposition given by
Tv =si(v,e1)f1+ -+ +sn(v,en)fn

for every v € V, where s1,..., s, are the singular values of T and
(e1,...,en) and (f1,..., fn) are orthonormal bases of V.

(a) Prove that
T*v = s1{v, fi)er + - - - + sp{V, fu)en

for every v € V.

(b) Prove that if T is invertible, then

(V’fl)el et (V’fn)en
S Sn

T v =
for everyv € V.

Suppose T € L(V). Let § denote the smallest singular value of T,
and let s denote the largest singular value of T. Prove that

SIviE < ITvI = slivl
for everyv € V.

Suppose T',T"" € L(V). Let s’ denote the largest singular value
of T’, let s denote the largest singular value of T'’, and let s
denote the largest singular value of T'+T"'. Prove thats < s'+5"".



