CHAPTER 8

Operators on
Complex Vector Spaces

In this chapter we delve deeper into the structure of operators on
complex vector spaces. An inner product does not help with this ma-
terial, so we return to the general setting of a finite-dimensional vector
space (as opposed to the more specialized context of an inner-product
space). Thus our assumptions for this chapter are as follows:

Recall that F denotes R or C.
Also, V is a finite-dimensional, nonzero vector space over F.

Some of the results in this chapter are valid on real vector spaces,
so we have not assumed that V is a complex vector space. Most of the
results in this chapter that are proved only for complex vector spaces
have analogous results on real vector spaces that are proved in the next
chapter. We deal with complex vector spaces first because the proofs
on complex vector spaces are often simpler than the analogous proofs
on real vector spaces.
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Generalized Figenvectors

Unfortunately some operators do not have enough eigenvectors to
lead to a good description. Thus in this section we introduce the con-
cept of generalized eigenvectors, which will play a major role in our
description of the structure of an operator.

To understand why we need more than eigenvectors, let’s examine
the question of describing an operator by decomposing its domain into
invariant subspaces. Fix T € £(V). We seek to describe T by finding a
“nice” direct sum decomposition

8.1 V=U1&:--0Up,

where each Uj is a subspace of V invariant under T. The simplest pos-
sible nonzero invariant subspaces are one-dimensional. A decompo-
sition 8.1 where each Uj is a one-dimensional subspace of V invariant
under T is possible if and only if V has a basis consisting of eigenvectors
of T (see 5.21). This happens if and only if V has the decomposition

8.2 V=nul(T -A1) & - - & null(T — A1),

where Aq,..., A, are the distinct eigenvalues of T (see 5.21).

In the last chapter we showed that a decomposition of the form
8.2 holds for every self-adjoint operator on an inner-product space
(see 7.14). Sadly, a decomposition of the form 8.2 may not hold for
more general operators, even on a complex vector space. An exam-
ple was given by the operator in 5.19, which does not have enough
eigenvectors for 8.2 to hold. Generalized eigenvectors, which we now
introduce, will remedy this situation. Our main goal in this chapter is
to show that if V is a complex vector space and T € L(V), then

V = null(T — All)djmv DD null(T _ Aml)dimV'

where Aj,..., Ay are the distinct eigenvalues of T (see 8.23).
Suppose T € L(V) and A is an eigenvalue of T. A vector v € V is
called a generalized eigenvector of T corresponding to A if

8.3 (T-ADIv =0

for some positive integer j. Note that every eigenvector of T is a gen-
eralized eigenvector of T (take j = 1 in the equation above), but the
converse is not true. For example, if T € £(C3) is defined by
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T(z1,22,23) = (22,0, z3),

then T?%(z1,z2,0) = O for all z1,z> € C. Hence every element of C3
whose last coordinate equals O is a generalized eigenvector of T. As
you should verify,

C® = {(z1,22,0) : 21,22 € C} ® {(0,0, z3) : z3 € C},

where the first subspace on the right equals the set of generalized eigen-
vectors for this operator corresponding to the eigenvalue 0 and the sec-
ond subspace on the right equals the set of generalized eigenvectors
corresponding to the eigenvalue 1. Later in this chapter we will prove
that a decomposition using generalized eigenvectors exists for every
operator on a complex vector space (see 8.23).

Though j is allowed to be an arbitrary integer in the definition of a
generalized eigenvector, we will soon see that every generalized eigen-
vector satisfies an equation of the form 8.3 with j equal to the dimen-
sion of V. To prove this, we now turn to a study of null spaces of
powers of an operator.

Suppose T € £(V) and k is a nonnegative integer. If TX¥v = 0, then
Tk+1y = T(T*v) = T(0) = 0. Thus null T¥ ¢ null T*¥*!. In other words,
we have

8.4 {0} =null T cnull T c -+~ cnull T c null T+ - - - .

The next proposition says that once two consecutive terms in this se-
quence of subspaces are equal, then all later terms in the sequence are
equal.

8.5 Proposition: If T € £L(V) and m is a nonnegative integer such
that null T™ = null T™*!, then

null T’ cnull T ¢ - - - cnull T = null T+ = null T2 = - - - .

PROOF: Suppose T € L(V) and m is a nonnegative integer such
that null T™ = null T™*!. Let k be a positive integer. We want to prove
that

null 7% = pull TmHk+1,

We already know that null 7"** ¢ null T"*k+1, To prove the inclusion
in the other direction, suppose that v € null T™*¥*!, Then

Note that we do not
define the concept of a
generalized eigenvalue
because this would not
lead to anything new.
Reason: if (T — AI)/ is
not injective for some
positive integer j, then
T — Al is not injective,
and hence A is an
eigenvalue of T.
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This corollary implies
that the set of
generalized
eigenvectors of

T e L(V)
corresponding to an
eigenvalue A is a
subspace of V.

0= Tm+k+1’V _ Tm+1(Tk’V).

Hence
Tkv € null T = null T™.

Thus 0 = T™(Tkv) = T™*ky, which means that v € null T*k, This
implies that null 7*%*1 ¢ null T"*¥, completing the proof. m

The proposition above raises the question of whether there must ex-
ist a nonnegative integer m such that null T"* = null T"**!. The propo-
sition below shows that this equality holds at least when m equals the
dimension of the vector space on which T operates.

8.6 Proposition: If T € £L(V), then

null 74V = pu]] 7MYV = ) dmVE2 L

PROOF: Suppose T € L(V). To get our desired conclusion, we need
only prove that null 74mV = pull T79mV+1 (hy 8.5). Suppose this is not
true. Then, by 8.5, we have

0} =null T c null T! < - - - ¢ null T9™V ¢ pull TAmV+L

where the symbol ¢ means “contained in but not equal to”. At each of
the strict inclusions in the chain above, the dimension must increase by
at least 1. Thus dimnull T4mV+1 > dim V + 1, a contradiction because
a subspace of V cannot have a larger dimension than dim V. ]

Now we have the promised description of generalized eigenvectors.

8.7 Corollary: SupposeT € £(V) and A is an eigenvalue of T. Then
the set of generalized eigenvectors of T corresponding to A equals
null(T — AT)4mV,

PROOF: If v € null(T — AI)4mV  then clearly v is a generalized
eigenvector of T corresponding to A (by the definition of generalized
eigenvector).

Conversely, suppose that v € V is a generalized eigenvector of T
corresponding to A. Thus there is a positive integer j such that

v € null(T — AT/,

From 8.5 and 8.6 (with T — AT replacing T), we get v € null(T — AT)dmV
as desired. ]
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An operator is called nilpotent if some power of it equals 0. For
example, the operator N € £(F*) defined by

N(z1,22,23,24) = (23,24,0,0)

is nilpotent because N2 = 0. As another example, the operator of dif-
ferentiation on P,, (R) is nilpotent because the (m + 1)3t derivative of
any polynomial of degree at most m equals 0. Note that on this space of
dimension m + 1, we need to raise the nilpotent operator to the power
m + 1 to get 0. The next corollary shows that we never need to use a
power higher than the dimension of the space.

8.8 Corollary: Suppose N € £(V) is nilpotent. Then N4™V = (.

PROOF: Because N is nilpotent, every vector in V is a generalized
eigenvector corresponding to the eigenvalue 0. Thus from 8.7 we see
that null N9mV = v ag desired. n

Having dealt with null spaces of powers of operators, we now turn
our attention to ranges. Suppose T € L(V) and k is a nonnegative
integer. If w € range T**!, then there exists v € V with

w = Tk1y = T*(Tv) e range T*.
Thus range T¥*! ¢ range T*. In other words, we have
V =rangeT® DrangeT' o - - - Drange T¥ D range T**' 5 - - -

The proposition below shows that the inclusions above become equal-
ities once the power reaches the dimension of V.

89 Proposition: If T € L(V), then
range T9™V = range T9™V+! = range T4MV+2 = ...
PROOF: We could prove this from scratch, but instead let’s make use

of the corresponding result already proved for null spaces. Suppose
m > dimV. Then

dimrange T™ = dimV — dimnull T™
= dimV - dimnull 79™"

= dimrange T9™V|

The Latin word nil
means nothing or zero;
the Latin word potent
means power. Thus
nilpotent literally
means zero power.

These inclusions go in
the opposite direction
from the corresponding
inclusions for null
spaces (8.4).
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If T happens to have a
diagonal matrix A with
respect to some basis,
then A appears on the
diagonal of A precisely
dimnull(T — AI) times,
as you should verity.

where the first and third equalities come from 3.4 and the second equal-
ity comes from 8.6. We already know that range T4™V > range T™. We
just showed that dimrange T4™V = dimrange T™, so this implies that
range T9MV = range T™, as desired. [

The Characteristic Polynomial

Suppose V is a complex vector space and T € L(V). We know that
V has a basis with respect to which T has an upper-triangular matrix
(see 5.13). In general, this matrix is not unique—V may have many
different bases with respect to which T has an upper-triangular matrix,
and with respect to these different bases we may get different upper-
triangular matrices. However, the diagonal of any such matrix must
contain precisely the eigenvalues of T (see 5.18). Thus if T has dimV
distinct eigenvalues, then each one must appear exactly once on the
diagonal of any upper-triangular matrix of T.

What if T has fewer than dimV distinct eigenvalues, as can easily
happen? Then each eigenvalue must appear at least once on the diag-
onal of any upper-triangular matrix of T, but some of them must be
repeated. Could the number of times that a particular eigenvalue is
repeated depend on which basis of V we choose?

You might guess that a number A appears on the diagonal of an
upper-triangular matrix of T precisely dimnull(T — AI) times. In gen-
eral, this is false. For example, consider the operator on C?> whose
matrix with respect to the standard basis is the upper-triangular matrix

o5

For this operator, dimnull(T — 5I) = 1 but 5 appears on the diago-
nal twice. Note, however, that dimnull(T — 5I)?2 = 2 for this oper-
ator. This example illustrates the general situation—a number A ap-
pears on the diagonal of an upper-triangular matrix of T precisely
dimnull(T — AI4mV times, as we will show in the following theorem.
Because null(T — AI)4™V depends only on T and A and not on a choice
of basis, this implies that the number of times an eigenvalue is repeated
on the diagonal of an upper-triangular matrix of T is independent of
which particular basis we choose. This result will be our key tool in
analyzing the structure of an operator on a complex vector space.
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8.10 Theorem: Let T € L(V) and A € F . Then for every basis of V
with respect to which T has an upper-triangular matrix, A appears on
the diagonal of the matrix of T precisely dimnull(T — AI)4™Y times.

PROOF: We will assume, without loss of generality, that A = 0 (once
the theorem is proved in this case, the general case is obtained by re-
placing T with T — AlI).

For convenience let n = dim V. We will prove this theorem by induc-
tion on n. Clearly the desired result holds if n = 1. Thus we can assume
that n > 1 and that the desired result holds on spaces of dimension
n-—1.

Suppose (vi,...,Vy,) is a basis of V with respect to which T has an
upper-triangular matrix

Aq *
8.11
An—l
0 An
Let U = span(vy,...,Vuy-1). Clearly U is invariant under T (see 5.12),

and the matrix of T'|y with respect to the basis (vi,...,vy_1) is

Al k
8.12 .
0 An—l
Thus, by our induction hypothesis, 0 appears on the diagonal of 8.12

dimnull(T|)"! times. We know that null(T|)"~! = null(T|y)" (be-
cause U has dimension n — 1; see 8.6). Hence

8.13 0 appears on the diagonal of 8.12 dimnull(T|y)" times.

The proof breaks into two cases, depending on whether A,, = 0. First
consider the case where A,, # 0. We will show that in this case

8.14 null 7" c U.

Once this has been verified, we will know thatnull 7" = null(T|y)", and

hence 8.13 will tell us that 0 appears on the diagonal of 8.11 exactly

dimnull T" times, completing the proof in the case where A;, # 0.
Because M (T) is given by 8.11, we have

Recall that an asterisk
is often used in
matrices to denote
entries that we do not
know or care about.
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Aln *

M(T™) = M(T))" =
An—ln
0 A
This shows that

for some u € U. To prove 8.14 (still assuming that A,, # 0), suppose
v € null T". We can write v in the form

vV =10+ avy,
where #1 € U and a € F. Thus
0=T"v =T"0L +aT™v, = T"iL + au + aA," va.

Because T™ and au are in U and v,, ¢ U, this implies that aA,” = 0.
However, A;, # 0, so a = 0. Thus v = @i € U, completing the proof
of 8.14.

Now consider the case where A,, = 0. In this case we will show that

8.15 dimnull T" = dimnull(T|y)™ + 1,

which along with 8.13 will complete the proof when A;, = 0.
Using the formula for the dimension of the sum of two subspaces
(2.18), we have

dimnull T" = dim(U nnull T") + dim(U + null T") — dim U
= dimnull(T|y)" + dim(U + null T") — (n - 1).

Suppose we can prove that null T" contains a vector not in U. Then
n=dmV >dimU +null T") > dimU =n -1,

which implies that dim(U + null T") = n, which when combined with
the formula above for dimnull T" gives 8.15, as desired. Thus to com-
plete the proof, we need only show that null T contains a vector not
in U.

Let’s think about how we might find a vector in null T" that is not
in U. We might try a vector of the form

U — Vy,
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where u € U. At least we are guaranteed that any such vector is not
in U. Can we choose u € U such that the vector above is in null T"?
Let’s compute:

T u — vn) = T"u — T™v,,.

To make the above vector equal 0, we must choose (if possible) u € U
such that T"u = T"v,. We can do thisif T"v,, € range(T|y)". Because
8.11 is the matrix of T with respect to (v1,...,Vs), we see that Tv,, € U
(recall that we are considering the case where A;, = 0). Thus

T"v, = T" (Tv,) € range(T|y)""! = range(T|y)",

where the last equality comes from 8.9. In other words, we can indeed
choose u € U such that u — v, € null T", completing the proof. (]

Suppose T € £(V). The multiplicity of an eigenvalue A of T is de-
fined to be the dimension of the subspace of generalized eigenvectors
corresponding to A. In other words, the multiplicity of an eigenvalue A
of T equals dimnull(T — AI)Y™V_If T has an upper-triangular matrix
with respect to some basis of V (as always happens when F = C), then
the multiplicity of A is simply the number of times A appears on the
diagonal of this matrix (by the last theorem).

As an example of multiplicity, consider the operator T € L(F?) de-
fined by

8.16 T(z1,22,23) = (0,21, 523).

You should verify that 0 is an eigenvalue of T with multiplicity 2, that
5 is an eigenvalue of T with multiplicity 1, and that T has no additional
eigenvalues. As another example, if T € £(F3) is the operator whose
matrix is

6
8.17 0
0

S O N

7
7,
7

then 6 is an eigenvalue of T with multiplicity 2 and 7 is an eigenvalue
of T with multiplicity 1 (this follows from the last theorem).

In each of the examples above, the sum of the multiplicities of the
eigenvalues of T equals 3, which is the dimension of the domain of T.
The next proposition shows that this always happens on a complex
vector space.

Our definition of
multiplicity has a clear
connection with the
geometric behavior

of T. Most texts define
multiplicity in terms of
the multiplicity of the
roots of a certain
polynomial defined by
determinants. These
two definitions turn
out to be equivalent.
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Most texts define the
characteristic
polynomial using
determinants. The
approach taken here,
which is considerably
simpler, leads to an
easy proof of the
Cayley-Hamilton
theorem.

8.18 Proposition: If V is a complex vector spaceand T € L(V), then
the sum of the multiplicities of all the eigenvalues of T equals dimV.

PROOF: Suppose V is a complex vector space and T € £(V). Then
there is a basis of V with respect to which the matrix of T is upper
triangular (by 5.13). The multiplicity of A equals the number of times A
appears on the diagonal of this matrix (from 8.10). Because the diagonal
of this matrix has length dim V, the sum of the multiplicities of all the
eigenvalues of T must equal dim V. ]

Suppose V is a complex vector space and T € L(V). Let Aq,..., A
denote the distinct eigenvalues of T. Let d; denote the multiplicity
of A; as an eigenvalue of T. The polynomial

(z=ADY .. (2= Apy)m

is called the characteristic polynomial of T. Note that the degree of
the characteristic polynomial of T equals dim V' (from 8.18). Obviously
the roots of the characteristic polynomial of T equal the eigenvalues
of T. As an example, the characteristic polynomial of the operator
T € £(C3) defined by 8.16 equals z2(z — 5).

Here is another description of the characteristic polynomial of an
operator on a complex vector space. Suppose V is a complex vector
space and T € L£(V). Consider any basis of V with respect to which T
has an upper-triangular matrix of the form

A] *
8.19 M(T) =
0 An

Then the characteristic polynomial of T is given by
(z=A1)...(z-Ap);

this follows immediately from 8.10. As an example of this procedure,
if T € £(C3) is the operator whose matrix is given by 8.17, then the
characteristic polynomial of T equals (z — 6)%(z — 7).

In the next chapter we will define the characteristic polynomial of
an operator on a real vector space and prove that the next result also
holds for real vector spaces.
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8.20 Cayley-Hamilton Theorem: Suppose that V is a complex vector
space and T € L(V). Let q denote the characteristic polynomial of T.
Then q(T) = 0.

PROOF: Suppose (vi,...,Vy) is a basis of V with respect to which
the matrix of T has the upper-triangular form 8.19. To prove that
q(T) = 0, we need only show that q(T)v; = 0 for j = 1,...,n. To
do this, it suffices to show that

8.21 (T-MD)...(T-Aj)vj=0

forj=1,...,n.

We will prove 8.21 by induction on j. To get started, suppose j = 1.
Because M(T, (v1,...,Vvy)) is given by 8.19, we have Tv, = A1V, giving
8.21 when j = 1.

Now suppose that 1 < j < n and that

0= (T—)\lI)’Vl
= (T—)\lf)(T— /\2[)V2

= (T—AlI)... (T — ?\j_lI)Vj_l.

Because M(T, (v1,...,Vy)) is given by 8.19, we see that

(T - ADvj € span(vy,...,Vj-1).

Thus, by our induction hypothesis, (T — AiI)...(T — A;_1I) applied to
(T —A;I)v; gives 0. In other words, 8.21 holds, completing the proof. m

Decomposition of an Operator

We saw earlier that the domain of an operator might not decompose
into invariant subspaces consisting of eigenvectors of the operator,
even on a complex vector space. In this section we will see that every
operator on a complex vector space has enough generalized eigenvec-
tors to provide a decomposition.

We observed earlier that if T € £(V), then null T is invariant un-
der T. Now we show that the null space of any polynomial of T is also
invariant under T.

The English
mathematician Arthur
Cayley published three
mathematics papers
before he completed
his undergraduate
degree in 1842. The
Irish mathematician
William Hamilton was
made a professor in
1827 when he was 22
years old and still an
undergraduate!



174

CHAPTER 8. Operators on Complex Vector Spaces

822 Proposition: If T € L(V) and p € P(F), then null p(T) is
invariant under T.

PROOF: Suppose T € L(V) and p € P(F). Letv € null p(T). Then
p(T)v = 0. Thus

(p(T)(Tv) =T(p(T)v) =T(0) =0,

and hence Tv € nullp(T). Thus null p(T) is invariant under T, as
desired. -

The following major structure theorem shows that every operator on
a complex vector space can be thought of as composed of pieces, each
of which is a nilpotent operator plus a scalar multiple of the identity.
Actually we have already done all the hard work, so at this point the
proof is easy.

8.23 Theorem: SupposeV is a complex vector space and T € L(V).
Let Aq,..., Ay be the distinct eigenvalues of T, and let Uy,...,Uy,, be
the corresponding subspaces of generalized eigenvectors. Then

(a) V=U®--®Uy;
(b)  each U, is invariant under T;

() each (T — AjI)|y, is nilpotent.

PROOF: Note that U; = null(T — A;1)4™V for each j (by 8.7). From
8.22 (with p(z) = (z — A;)4mY), we get (b). Obviously (c) follows from
the definitions.

To prove (a), recall that the multiplicity of A; as an eigenvalue of T
is defined to be dim U; . The sum of these multiplicities equals dim V'
(see 8.18); thus

8.24 dimV =dimU; + - - - + dim Uy,.

Let U = Uy + - - - + Up. Clearly U is invariant under T. Thus we can
define S € L(U) by
S=Tly.

Note that S has the same eigenvalues, with the same multiplicities, as T
because all the generalized eigenvectors of T are in U, the domain of S.
Thus applying 8.18 to S, we get
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dimU =dimU; + - - - + dim Uy,.

This equation, along with 8.24, shows that dimV = dim U. Because U
is a subspace of V, this implies that V = U. In other words,

V=U+:-+Un.

This equation, along with 8.24, allows us to use 2.19 to conclude that
(a) holds, completing the proof. ]

As we know, an operator on a complex vector space may not have
enough eigenvectors to form a basis for the domain. The next result
shows that on a complex vector space there are enough generalized
eigenvectors to do this.

8.25 Corollary: SupposeV is a complex vector space and T € L(V).
Then there is a basis of V consisting of generalized eigenvectors of T.

PROOF: Choose a basis for each U; in 8.23. Put all these bases
together to form a basis of V consisting of generalized eigenvectors
of T. ]

Given an operator T on V, we want to find a basis of V so that the
matrix of T with respect to this basis is as simple as possible, meaning
that the matrix contains many 0’s. We begin by showing that if N is
nilpotent, we can choose a basis of V such that the matrix of N with
respect to this basis has more than half of its entries equal to 0.

8.26 Lemma: Suppose N is a nilpotent operator on V. Then there is
a basis of V with respect to which the matrix of N has the form

0 *

8.27 ;
0 0

here all entries on and below the diagonal are 0’s.

PROOF: First choose a basis of null N. Then extend this to a basis
of null N2. Then extend to a basis of null N3. Continue in this fashion,
eventually getting a basis of V (because null N =V for m sufficiently
large).

If V is complex vector
space, a proof of this
lemma follows easily
from Exercise 6 in this
chapter, 5.13, and 5.18.
But the proof given
here uses simpler ideas
than needed to prove
5.13, and it works for
both real and complex
vector spaces.
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Now let’s think about the matrix of N with respect to this basis. The
first column, and perhaps additional columns at the beginning, consists
of all 0’s because the corresponding basis vectors are in null N. The
next set of columns comes from basis vectors in null N2. Applying N
to any such vector, we get a vector in null N; in other words, we get a
vector that is a linear combination of the previous basis vectors. Thus
all nonzero entries in these columns must lie above the diagonal. The
next set of columns come from basis vectors in null N3. Applying N
to any such vector, we get a vector in null N?; in other words, we get a
vector that is a linear combination of the previous basis vectors. Thus,
once again, all nonzero entries in these columns must lie above the
diagonal. Continue in this fashion to complete the proof. ]

Note that in the next theorem we get many more zeros in the matrix
of T than are needed to make it upper triangular.

8.28 Theorem: SupposeV is a complex vector space and T € L(V).
Let Aq,..., Ay be the distinct eigenvalues of T. Then there is a basis
of V with respect to which T has a block diagonal matrix of the form

Ay 0
0 Am
where each Aj is an upper-triangular matrix of the form

AJ' k
8.29 Aj= ..
0 Aj

PrROOF: For j =1,...,m,let U; denote the subspace of generalized
eigenvectors of T corresponding to A;. Thus (T — A;I)|y; is nilpotent
(see 8.23(c)). For each j, choose a basis of U; such that the matrix of
(T — A;I) |y, with respect to this basis is as in 8.26. Thus the matrix of
Ty, with respect to this basis will look like 8.29. Putting the bases for
the U;’s together gives a basis for V (by 8.23(a)). The matrix of T with
respect to this basis has the desired form. [
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Square Roots

Recall that a square root of an operator T € £(V) is an operator
S € £(V) such that §2 = T. As an application of the main structure
theorem from the last section, in this section we will show that every
invertible operator on a complex vector space has a square root.

Every complex number has a square root, but not every operator on
a complex vector space has a square root. An example of an operator
on C3 that has no square root is given in Exercise 4 in this chapter.
The noninvertibility of that particular operator is no accident, as we
will soon see. We begin by showing that the identity plus a nilpotent
operator always has a square root.

830 Lemma: Suppose N € L(V) is nilpotent. Then I + N has a
square root.

PROOF: Consider the Taylor series for the function /1 + x:
8.31 Vitx=1+a1x+apx®+---.

We will not find an explicit formula for all the coefficients or worry
about whether the infinite sum converges because we are using this
equation only as motivation, not as a formal part of the proof.
Because N is nilpotent, N = 0 for some positive integer m. In 8.31,
suppose we replace x with N and 1 with I. Then the infinite sum on
the right side becomes a finite sum (because N/ = 0 for all j > m). In
other words, we guess that there is a square root of I + N of the form

I+aN+axN°+---+apu_ N

Having made this guess, we can try to choose a,as,...,am,-1 so that
the operator above has its square equal to I + N. Now

(I+aN + asN? + asN3 + - - - + @y N™ 12
=I+2a1N + (2az + a1*>)N? + (2az + 2a1a2)N3 + - - -
+ (2am—1 + terms involving a,...,am-»)N™ L.

We want the right side of the equation above to equal I + N. Hence
choose a; so that 2a; = 1 (thus a; = 1/2). Next, choose a» so that
2a> +a;? = 0 (thus a; = —1/8). Then choose a3 so that the coefficient
of N3 on the right side of the equation above equals 0 (thus az = 1/16).

Because a; = 1/2, this
formula shows that
1+ x/2is agood
estimate for /1 + x
when x is small.
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On real vector spaces
there exist invertible
operators that have no
square roots. For
example, the operator
of multiplication by —1
onR has no square
root because no real
number has its square
equal to —1.

Continue in this fashion for j = 4,...,m — 1, at each step solving for
a; so that the coefficient of N7 on the right side of the equation above
equals 0. Actually we do not care about the explicit formula for the
aj’s. We need only know that some choice of the a;’s gives a square
root of I + N. |

The previous lemma is valid on real and complex vector spaces.
However, the next result holds only on complex vector spaces.

8.32 Theorem: Suppose V is a complex vector space. If T € L(V)
is invertible, then T has a square root.

PROOF: Suppose T € L(V) is invertible. Let Aq,...,A;;, be the dis-
tinct eigenvalues of T, and let Uy,..., Uy be the corresponding sub-
spaces of generalized eigenvectors. For each j, there exists a nilpotent
operator N;j € L(Uj) such that T|y; = A;I + N; (see 8.23(c)). Because T
is invertible, none of the A;’s equals 0, so we can write

T|Uj = AJ’(I+ %)
J
for each j. Clearly N;/A; is nilpotent, and so I + N;/A; has a square
root (by 8.30). Multiplying a square root of the complex number A; by
a square root of I + N;/Aj, we obtain a square root S; of Tly;.
A typical vector v € V can be written uniquely in the form

V=ui+- -+ Unm,

where each u; € Uj (see 8.23). Using this decomposition, define an
operator S € L(V) by

Sv=8S1u+- -+ Snun.

You should verify that this operator S is a square root of T, completing
the proof. ]

By imitating the techniques in this section, you should be able to
prove that if V is a complex vector space and T € L(V) is invertible,
then T has a k™-root for every positive integer k.
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The Minimal Polynomial

As we will soon see, given an operator on a finite-dimensional vec-
tor space, there is a unique monic polynomial of smallest degree that
when applied to the operator gives 0. This polynomial is called the
minimal polynomial of the operator and is the focus of attention in
this section.

Suppose T € L(V), where dimV = n. Then

(I, T,T?,...,T")
cannot be linearly independent in £(V) because £(V) has dimension n?
(see 3.20) and we have n? + 1 operators. Let m be the smallest positive
integer such that

8.33 (I, T, T%,...,T™)

is linearly dependent. The linear dependence lemma (2.4) implies that
one of the operators in the list above is a linear combination of the
previous ones. Because m was chosen to be the smallest positive in-
teger such that 8.33 is linearly dependent, we conclude that T™ is
a linear combination of (I, T,T?,...,T™ !). Thus there exist scalars
ag,ai,ar,...,am—1 € F such that

aol + a1 T+ arT? + -+ -+ am 1 T™ L+ T™ = 0.

The choice of scalars ag,ai,a»,...,am—1 € F above is unique because
two different such choices would contradict our choice of m (subtract-
ing two different equations of the form above, we would have a linearly
dependent list shorter than 8.33). The polynomial

Ao+ a1z +arz%+ -+ +am1z2™ 1 +2zm

is called the minimal polynomial of T. It is the monic polynomial
p € P(F) of smallest degree such that p(T) = 0.

For example, the minimal polynomial of the identity operator I is
z — 1. The minimal polynomial of the operator on F2 whose matrix
equals [‘0* },] is 20 — 9z + z?, as you should verify.

Clearly the degree of the minimal polynomial of each operator on V
is at most (dimV)?2. The Cayley-Hamilton theorem (8.20) tells us that
if V is a complex vector space, then the minimal polynomial of each
operator on V has degree at most dim V. This remarkable improvement
also holds on real vector spaces, as we will see in the next chapter.

A monic polynomial is
a polynomial whose
highest degree
coefficient equals 1.
For example,

2 +3z% + z% is a monic
polynomial.



180

CHAPTER 8. Operators on Complex Vector Spaces

Note that (z — A)
divides a polynomial q
if and only if A is a
root of q. This follows
immediately from 4.1.

A polynomial p € P(F) is said to divide a polynomial q € P(F) if
there exists a polynomial s € P(F) such that g = sp. In other words,
p divides g if we can take the remainder » in 4.6 to be 0. For exam-
ple, the polynomial (1 + 3z)2 divides 5 + 32z + 57z2 + 1823 because
5+ 32z + 5722 +182z3 = (2z + 5)(1 + 3z)2. Obviously every nonzero
constant polynomial divides every polynomial.

The next result completely characterizes the polynomials that when
applied to an operator give the 0 operator.

8.34 Theorem: Let T € L(V) and let q € P(F). Then q(T) = 0 if
and only if the minimal polynomial of T divides q.

PROOF: Let p denote the minimal polynomial of T.
First we prove the easy direction. Suppose that p divides gq. Thus
there exists a polynomial s € P(F) such that g = sp. We have

a(T) =s(T)p(T) =s(T)0 =0,

as desired.
To prove the other direction, suppose that g(T) = 0. By the division
algorithm (4.5), there exist polynomials s, € P(F) such that

8.35 q=sp+vr
and degr < deg p. We have
0=q(T) =s(T)p(T) +7r(T) =r(T).
Because p is the minimal polynomial of T and deg+ < deg p, the equa-

tion above implies that ¥ = 0. Thus 8.35 becomes the equation g = sp,
and hence p divides g, as desired. ]

Now we describe the eigenvalues of an operator in terms of its min-
imal polynomial.

8.36 Theorem: Let T € L(V). Then the roots of the minimal poly-
nomial of T are precisely the eigenvalues of T.
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PROOF: Let
p(z)=ao+aiz+ Az’ + - +amzmt+zm

be the minimal polynomial of T.
First suppose that A € Fis aroot of p. Then the minimal polynomial
of T can be written in the form

p(z) = (z-A)q(z),

where g is a monic polynomial with coefficients in F (see 4.1). Because
p(T) = 0, we have
0=(T-AD(q(T)v)

for all v € V. Because the degree of g is less than the degree of the
minimal polynomial p, there must exist at least one vector v € V such
that g(T)v # 0. The equation above thus implies that A is an eigenvalue
of T, as desired.

To prove the other direction, now suppose that A € F is an eigen-
value of T. Let v be anonzero vector in V such that Tv = Av. Repeated
applications of T to both sides of this equation show that T/v = AJv
for every nonnegative integer j. Thus

0=p(Mv=(ap+arT+aT>+ - - +am T +TM)v
=(@g+ A+ ad’+ -+ am AL+ Ay
=pAd)v.
Because v # 0, the equation above implies that p(A) = 0, as desired. m
Suppose we are given, in concrete form, the matrix (with respect to

some basis) of some operator T € £(V). To find the minimal polyno-
mial of T, consider

(M), M(T), M(T)?,..., M(T)"™)

for m = 1,2,... until this list is linearly dependent. Then find the
scalars ag,ai,ay,...,am—1 € F such that

aoM(I) + arM(T) + asM(T)? + -+ + A M(T)™ L + M(T)™ = 0.

The scalars ag,ai,az,...,am-1,1 will then be the coefficients of the
minimal polynomial of T. All this can be computed using a familiar
process such as Gaussian elimination.

You can think of this as
a system of (dimV)?
equations in m

variables

aAg, A1y

;am—l-
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For example, consider the operator T on C> whose matrix is given
by

00 0 0 -3
1 0 0 0 6
8.37 01 0 0 O
0010 O
00 01 O

Because of the large number of 0’s in this matrix, Gaussian elimination
is not needed here. Simply compute powers of M(T) and notice that
there is no linear dependence until the fifth power. Do the computa-
tions and you will see that the minimal polynomial of T equals

8.38 2> — 6z + 3.

Now what about the eigenvalues of this particular operator? From 8.36,
we see that the eigenvalues of T equal the solutions to the equation

2> —-6z+3=0.

Unfortunately no solution to this equation can be computed using ra-
tional numbers, arbitrary roots of rational numbers, and the usual rules
of arithmetic (a proof of this would take us considerably beyond linear
algebra). Thus we cannot find an exact expression for any eigenvalues
of T in any familiar form, though numeric techniques can give good ap-
proximations for the eigenvalues of T. The numeric techniques, which
we will not discuss here, show that the eigenvalues for this particular
operator are approximately

-1.67, 0.51, 1.40, -0.12+1.59i, -0.12-1.59i.

Note that the nonreal eigenvalues occur as a pair, with each the complex
conjugate of the other, as expected for the roots of a polynomial with
real coefficients (see 4.10).

Suppose V is a complex vector space and T € L(V). The Cayley-
Hamilton theorem (8.20) and 8.34 imply that the minimal polynomial
of T divides the characteristic polynomial of T. Both these polynomials
are monic. Thus if the minimal polynomial of T has degree dim V/, then
it must equal the characteristic polynomial of T. For example, if T is
the operator on C> whose matrix is given by 8.37, then the character-
istic polynomial of T, as well as the minimal polynomial of T, is given
by 8.38.
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Jordan Form

We know that if V is a complex vector space, then forevery T € L(V)
there is a basis of V with respect to which T has a nice upper-triangular
matrix (see 8.28). In this section we will see that we can do even better—
there is a basis of V with respect to which the matrix of T contains zeros
everywhere except possibly on the diagonal and the line directly above
the diagonal.

We begin by describing the nilpotent operators. Consider, for ex-
ample, the nilpotent operator N € L(F") defined by

N(Zli""zn) = (0’217---127’1—1)-

If v = (1,0,...,0), then clearly (v,Nv,...,N*1v) is a basis of F* and
(N"1v) is a basis of null N, which has dimension 1.

As another example, consider the nilpotent operator N € £(F) de-
fined by

8.39 N(z1,22,23,24,25) = (0,21,22,0, 24).

Unlike the nilpotent operator discussed in the previous paragraph, for
this nilpotent operator there does not exist a vector v € F°> such that
(v,Nv,N2v,N3v,N*v) is a basis of F>. However, if v; = (1,0,0,0,0)
and v» = (0,0,0,1,0), then (vi,Nvi,N2vi,v>, Nv») is a basis of F?
and (N2v1,Nv») is a basis of null N, which has dimension 2.

Suppose N € L£(V) is nilpotent. For each nonzero vector v € V, let
m(v) denote the largest nonnegative integer such that N™)v # 0. For
example, if N € £(F°) is defined by 8.39, then m(1,0,0,0,0) = 2.

The lemma below shows that every nilpotent operator N € L(V)
behaves similarly to the example defined by 8.39, in the sense that there
is a finite collection of vectors vi,...,vx € V such that the nonzero
vectors of the form N/v, form a basis of V; here v varies from 1 to k
and j varies from 0 to m(vy).

8.40 Lemma: If N € L(V) is nilpotent, then there exist vectors
Vi,...,Vk € V such that

@  (vi,Nvy,..., Ny v Nvg, ..., Ny js abasisof V;

()  (NMmOWyy o NMmWVy) s a basis of null N.

Obviously m(v)
depends on N as well
as on v, but the choice
of N will be clear from
the context.
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The existence of a
subspace W with this
property follows from
2.13.

PROOF: Suppose N is nilpotent. Then N is not injective and thus
dimrange N < dimV (see 3.21). By induction on the dimension of V,
we can assume that the lemma holds on all vector spaces of smaller
dimension. Using range N in place of V and N |range v in place of N, we

thus have vectors u1,...,u; € range N such that
@d) (U, Nuy,...,N™wy, ui Nuj,...,N*Wiy ) is a basis of
J J J
range N;

(i)  (N™yy, . N™Wi)y ;) is a basis of null N N range N.

Because each u, € rangeN, we can choose vq,...,v; € V such that
Nv, = u, for each . Note that m(v,) = m(u,) + 1 for each r.
Let W be a subspace of null N such that

8.41 nullN = (nullN nrangeN) & W
and choose a basis of W, which we will label (vj.1,...,vk). Because
Vjil,-.-,Vk € NUlIN, we have m(vj1) = - - - = m(vy) =

Having constructed vi,..., vk, we now need to show that (a) and

(b) hold. We begin by showing that the alleged basis in (a) is linearly
independent. To do this, suppose

m(vy)

k
8.42 0=> > ar:N*(v),
r=1 s=0

where each a, ; € F. Applying N to both sides of the equation above,
we get

||
||P¢jw

v,
Z ar,sNS“(w)

"qu“’

m(u,
z ar,sNS(ur)-

The last equation, along with (i), implies that a, ; = 0 for 1 < r < j,
0 <s <m(v,) — 1. Thus 8.42 reduces to the equation

0 :lll,m(vl)Nm(Vl)yl 4o aj,m(vj)Nm(Vj)Vj

+aj+1,0Vj+1 + -0+ Ak oVk-
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The terms on the first line on the right are all in null N n range N; the
terms on the second line are all in W. Thus the last equation and 8.41
imply that

0= al,m(vl)Nm(Vl)Vl o4 ‘lj,m(vj)Nm(w)Vj

8.43 = a1 me) N Uy + - 4 @) Ny

and

8.44 0=aj1,0Vjs1 + -+ + Ak oVk.

Now 8.43 and (ii) imply that ai,m,) = - -+ = djmn;) = 0. Because
(Vj+1,...,Vk) is abasis of W, 8.44 implies thataj 10 =--- = ako = 0.

Thus all the a’s equal 0, and hence the list of vectors in (a) is linearly
independent.

Clearly (ii) implies that dim(null N nrange N) = j. Along with 8.41,
this implies that

8.45 dimnull N = k.

Clearly (i) implies that

J
dimrangeN = > (m(u,) + 1)

r=0
J
8.46 = > mvy).
r=0
The list of vectors in (a) has length

k J
> (mvy)+1) =k+ > m(vy)
r=0 r=0

= dimnull N + dimrange N
=dimYV,

where the second equality comes from 8.45 and 8.46, and the third
equality comes from 3.4. The last equation shows that the list of vectors
in (a) has length dim V; because this list is linearly independent, it is a
basis of V (see 2.17), completing the proof of (a).

Finally, note that

(NMOVD gy Ny ) = (N Wy N M)y vy, v,
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To understand why
each A; must be an
eigenvalue of T,
see 5.18.

The French
mathematician Camille
Jordan first published a
proof of this theorem
in 1870.

Now (ii) and 8.41 show that the last list above is a basis of null N, com-
pleting the proof of (b). ]

Suppose T € L(V). A basis of V is called a Jordan basis for T if
with respect to this basis T has a block diagonal matrix

Ay 0
0 Am
where each A; is an upper-triangular matrix of the form
Aj 1 0
Aj=
0 Aj

In each Aj, the diagonal is filled with some eigenvalue A; of T, the line
directly above the diagonal is filled with 1’s, and all other entries are 0
(A;j may be just a 1-by-1 block consisting of just some eigenvalue).

Because there exist operators on real vector spaces that have no
eigenvalues, there exist operators on real vector spaces for which there
is no corresponding Jordan basis. Thus the hypothesis that V is a com-
plex vector space is required for the next result, even though the pre-
vious lemma holds on both real and complex vector spaces.

8.47 Theorem: Suppose V is a complex vector space. If T € L(V),
then there is a basis of V that is a Jordan basis for T.

PROOF: First consider a nilpotent operator N € £(V) and the vec-
tors vi,..., vk € V given by 8.40. For each j, note that N sends the first
vector in the list (Nm(Vf)vj, ..., Nvj,v;) to 0 and that N sends each vec-
tor in this list other than the first vector to the previous vector. In other
words, if we reverse the order of the basis given by 8.40(a), then we ob-
tain a basis of V with respect to which N has a block diagonal matrix,
where each matrix on the diagonal has the form

0 1 0
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Thus the theorem holds for nilpotent operators.

Now suppose T € L(V). Let Ay,...,A; be the distinct eigenval-
ues of T, with Uy,..., Uy, the corresponding subspaces of generalized
eigenvectors. We have

V=U®:- - &Un,

where each (T — A;I)|y; is nilpotent (see 8.23). By the previous para-
graph, there is a basis of each Uj; that is a Jordan basis for (T — A;I)|y;.
Putting these bases together gives a basis of V that is a Jordan basis
for T. [ ]
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Exercises

1.

Define T € £(C?) by
T(w,z) =(z,0).
Find all generalized eigenvectors of T.
Define T € £(C?) by
T(w,z) =(-z,w).
Find all generalized eigenvectors of T.

Suppose T € L(V), m is a positive integer, and v € V is such
that T~ 'v # 0 but T"™v = 0. Prove that

v, Tv,T?v,..., T ly)
is linearly independent.

Suppose T € £(C3) is defined by T(z1, z2,z3) = (22, z3,0). Prove
that T has no square root. More precisely, prove that there does
not exist S € £(C3) such that $? = T.

Suppose S, T € L(V). Prove that if ST is nilpotent, then TS is
nilpotent.

Suppose N € L(V) is nilpotent. Prove (without using 8.26) that
0 is the only eigenvalue of N.

Suppose V is an inner-product space. Prove that if N € £(V) is
self-adjoint and nilpotent, then N = 0.

Suppose N € £(V) is such that null N4mV-1 o py]] N4mV  prove
that N is nilpotent and that

dimnull N/ = j
for every integer j with 0 < j < dimV.
Suppose T € L(V) and m is a nonnegative integer such that
range T™ = range T™"!,

Prove that range T¥ = range T™ for all k > m.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

Prove or give a counterexample: if T € L(V), then

V=nullT & range T.

Prove thatif T € £(V), then
V =null T" @ range T",
where n = dimV.

Suppose V is a complex vector space, N € L(V), and 0 is the only
eigenvalue of N. Prove that N is nilpotent. Give an example to
show that this is not necessarily true on a real vector space.

Suppose that V is a complex vector space with dimV = »n and
T € L(V) is such that

null 72 # null 71,
Prove that T has at most two distinct eigenvalues.

Give an example of an operator on C* whose characteristic poly-
nomial equals (z — 7)%(z — 8)2.

Suppose V is a complex vector space. Suppose T € £L(V) is such
that 5 and 6 are eigenvalues of T and that T has no other eigen-
values. Prove that

(T -5D"(T-6DN"""1=0,
where n = dimV.

Suppose V is a complex vector space and T € L(V). Prove that
V has a basis consisting of eigenvectors of T if and only if every
generalized eigenvector of T is an eigenvector of T.

Suppose V is an inner-product space and N € £(V) is nilpotent.
Prove that there exists an orthonormal basis of V with respect to
which N has an upper-triangular matrix.

Define N € L(F°) by
N(x1,x2,x3,X4,X5) = (2x2,3X3, —X4,4x5,0).

Find a square root of I + N.

For complex vector
spaces, this exercise
adds another
equivalence to the list
given by 5.21.
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For complex vector
spaces, this exercise
adds another
equivalence to the list
given by 5.21.

This exercise shows
that every monic
polynomial is the
characteristic
polynomial of some
operator.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Prove that if V is a complex vector space, then every invertible
operator on V has a cube root.

Suppose T € L(V) is invertible. Prove that there exists a polyno-
mial p € P(F) such that T~! = p(T).

Give an example of an operator on C? whose minimal polynomial
equals z2.

Give an example of an operator on C* whose minimal polynomial
equals z(z — 1)2.

Suppose V is a complex vector space and T € L(V). Prove that
V has a basis consisting of eigenvectors of T if and only if the
minimal polynomial of T has no repeated roots.

Suppose V is an inner-product space. Prove thatif T € L(V) is
normal, then the minimal polynomial of T has no repeated roots.

Suppose T € L(V) and v € V. Let p be the monic polynomial of
smallest degree such that

p(T)v =0.
Prove that p divides the minimal polynomial of T.

Give an example of an operator on C* whose characteristic and
minimal polynomials both equal z(z — 1)2(z - 3).

Give an example of an operator on C* whose characteristic poly-
nomial equals z(z — 1)2(z — 3) and whose minimal polynomial
equals z(z — 1)(z — 3).

Suppose ag,...,an-1 € C. Find the minimal and characteristic
polynomials of the operator on C"* whose matrix (with respect to
the standard basis) is

[ 0 —ay
1 0 —ai
1 . —ay
0 -an-2
L 1 ~Aan-1 .
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29.

30.

31.

Suppose N € L(V) is nilpotent. Prove that the minimal poly-
nomial of N is z™*!, where m is the length of the longest con-
secutive string of 1’s that appears on the line directly above the
diagonal in the matrix of N with respect to any Jordan basis for N.

Suppose V is a complex vector space and T € L£(V). Prove that
there does not exist a direct sum decomposition of V into two
proper subspaces invariant under T if and only if the minimal
polynomial of T is of the form (z — A)4™V for some A € C.

Suppose T € L(V) and (vy,-..,Vy) is abasis of V that is a Jordan
basis for T. Describe the matrix of T with respect to the basis
(Vn,...,v1) obtained by reversing the order of the v’s.



