
Maxima by Example: Ch.5: 2D Plots and Graphics using
qdraw ∗

Edwin L. Woollett

January 29, 2009

Contents
5 2D Plots and Graphics using qdraw 3

5.1 Quick Plots for Explicit Functions: ex(...) . 3
5.2 Quick Plots for Implicit Functions: imp(...) . 10
5.3 Contour Plots with contour(...) . 12
5.4 Density Plots with qdensity(...) . 14
5.5 Explicit Plots with Greater Control: ex1(...) . 17
5.6 Explicit Plots with ex1(...) and Log Scaled Axes . 19
5.7 Data Plots with Error Bars: pts(...) and errorbars(...) . 21
5.8 Implicit Plots with Greater Control: imp1(...) . 27
5.9 Parametric Plots with para(...) . 29
5.10 Polar Plots with polar(...) . 31
5.11 Geometric Figures: line(...) . 32
5.12 Geometric Figures: rect(...) . 34
5.13 Geometric Figures: poly(...) . 35
5.14 Geometric Figures: circle(...) and ellipse(...) . 38
5.15 Geometric Figures: vector(..) . 40
5.16 Geometric Figures: arrowhead(..) . 43
5.17 Labels with Greek Letters . 43

5.17.1 Enhanced Postscript Methods . 43
5.17.2 Windows Fonts Methods with jpeg Files . 47
5.17.3 Using Windows Fonts with the Gnuplot Console Window 48

5.18 Even More with more(...) . 49
5.19 Programming Homework Exercises . 50

5.19.1 General Comments . 50
5.19.2 XMaxima Tips . 51
5.19.3 Suggested Projects . 51

5.20 Acknowledgements . 52

∗This version uses Maxima 5.17.1. This is a live document. Check http://www.csulb.edu/�woollett/ for the latest
version of these notes. Send comments and suggestions to woollett@charter.net

1

COPYING AND DISTRIBUTION POLICY

This document is part of a series of notes titled �Maxima by Example� and is made available
via the author's webpage http://www.csulb.edu/�woollett/ to aid new users of the Maxima com-
puter algebra system.

NON-PROFIT PRINTING AND DISTRIBUTION IS PERMITTED.
You may make copies of this document and distribute them to others as long as you charge no more than the
costs of printing.

These notes (with some modi�cations) will be published in book form eventually via Lulu.com in an ar-
rangement which will continue to allow unlimited free download of the pdf �les as well as the option of ordering
a low cost paperbound version of these notes.

2

5 2D Plots and Graphics using qdraw
5.1 Quick Plots for Explicit Functions: ex(...)
This chapter provides an introduction to a new graphics interface developed by the author of the Maxima by
Example tutorial notes. The qdraw package (qdraw.mac: available for download on the Maxima by Example
webpage) is an interface to the draw package function draw2d; to obtain a plot you must load draw as well
as qdraw. You can just use load(qdraw) if you have the �le in your work folder and have set up your
�le search as described in Chap. 1. Otherwise just put qdraw.mac into your ...maxima...share\draw
folder where it will be found.

The primary motivation for the qdraw package is to provide �quick� (hence the �q� in �qdraw�) plotting
software which provides the kinds of plotting defaults which are of interest to students and researchers in the
physical sciences and engineering. There are two �quick� plotting functions you can use with qdraw: ex(...)
and imp(...).

An entry like

(%i1) load(draw)$
(%i2) load(qdraw)$
(%i3) qdraw(ex([x,x�2,x�3],x,-3,3))$

will produce a plot of the three explicit functions of x in the �rst argument list, using line width = 3, an
automatic rotating series of default colors, clearly visible x and y axes, and also a �grid� as well. The ex
function passes its arguments on to a series of calls to draw2d's explicit function.

-20

-10

 0

 10

 20

-3 -2 -1 0 1 2 3

1
2
3

Figure 1: Using ex() for x, x2, x3

Since 33 = 27, draw2d extends the vertical axis to ± 27 by default.

3

You can control the vertical range of the �canvas� with the yr(...) function, which passes its arguments to a
draw2d entry yrange = [y1,y2].

(%i4) qdraw(ex([x,x�2,x�3],x,-3,3),yr(-2,2))$

which produces the plot:

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1 0 1 2 3

1
2
3

Figure 2: Adding yr(−2, 2)

You can make the lines thinner or thicker than the default line width (3) by using the lw(n) option, which
only affects the quick plotting functions ex(...) and imp(...), as in

(%i5) qdraw(ex([x,x�2,x�3],x,-3,3),yr(-2,2), lw(6))$

to get:

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1 0 1 2 3

1
2
3

Figure 3: Adding lw(6)

4

You can place the plot �key� (legend) at the bottom right by using the key(bottom) option, as in:

(%i6) qdraw(ex([x,x�2,x�3],x,-3,3),yr(-2,2),lw(6),key(bottom))$

to get:

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1 0 1 2 3

1
2
3

Figure 4: Adding key(bottom)

You can remove the default grid and xy axes by adding cut(grid,xyaxes) as in:

(%i7) qdraw(ex([x,x�2,x�3],x,-3,3),yr(-2,2),
lw(6),key(bottom), cut(grid, xyaxes))$

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1 0 1 2 3

1
2
3

Figure 5: Adding cut(grid, xyaxes)

5

You can remove the grid, axes, the key, and all the borders using cut(all), as in:

(%i8) qdraw(ex([x,x�2,x�3],x,-3,3),yr(-2,2),
lw(6), cut(all))$

which results in a �clean� canvas:

Figure 6: Adding cut(all)

Restoring the (default) grid and axes, we can place points (default size 3 and color black) at the intersection
points using the pts(...) option, which passes a points list to draw2d's points function:

(%i9) qdraw(ex([x,x�2,x�3],x,-3,3),yr(-2,2),lw(6),
key(bottom),pts([[-1,-1],[0,0],[1,1]]))$

which produces:

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1 0 1 2 3

1
2
3

Figure 7: Adding pts(ptlist)

6

We can overide the default size and color of those points by including inside the pts function the optional
ps(n) and pc(c) arguments, as in:

(%i10) qdraw(ex([x,x�2,x�3],x,-3,3),yr(-2,2), lw(6),key(bottom),
pts([[-1,-1],[0,0],[1,1]],ps(2),pc(magenta)))$

which produces:

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1 0 1 2 3

1
2
3

Figure 8: Adding pts(ptlist, ps(2), pc(magenta))

We can include a key entry for the points using the pk(string) option for the pts function, as in:

(%i11) qdraw(ex([x,x�2,x�3],x,-3,3),yr(-2,2), lw(6),key(bottom),
pts([[-1,-1],[0,0],[1,1]],ps(2),pc(magenta),pk("intersections")))$

which produces:

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1 0 1 2 3

1
2
3

intersections

Figure 9: pts(ptlist, ps(2), pc(magenta), pk(”intersections”))

7

The �eps� �le ch5p9.eps used to get the last �gure in the Tex �le which is the source of this pdf �le was
produced using the pic(type, �lename) option to qdraw, as in:
(%i12) qdraw(ex([x,x�2,x�3],x,-3,3),yr(-2,2), lw(6),key(bottom),

line(-3,0,3,0,lw(2)),line(0,-2,0,2,lw(2)),
pts([[-1,-1],[0,0],[1,1]],ps(2),pc(magenta),pk("intersections")),

pic(eps,"ch5p9"))$

We have discussed, at the end of Chapter 1, Getting Started, how we insert such an �eps� �le into our Tex �le
in order to get the �gures you see here.

The extra, optional, arguments we have included inside qdraw can be entered in any order; in fact, all
arguments to qdraw are optional and can be entered in any order. For example
(%i13) qdraw(yr(-2,2),lw(6), ex([x,x�2,x�3],x,-3,3),

key(bottom), ex(sin(3*x)*exp(x/3),x,-3,3),
pts([[-1,-1],[0,0],[1,1]]))$

which adds sin(3 x) ex/3 with a separate ex(...) argument to qdraw, and produces

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1 0 1 2 3

1
2
3
4

Figure 10: Adding sin(3 x) ex/3

We next add a label �qdraw at work� to our plot.
Using Windows, the font size must be adjusted only after getting the plot drawn in a Gnuplot window by

right clicking the icon in the upper left hand corner, and selecting Options, Choose Font,... If you increase the
windows graphics font from the default value of 10 to 20, say, you will see a dramatic increase in the size of
the label, but also in the size of the x and y axis coordinate numbers, and also a large increase in size of any
features of the graphics which used a call to draw2d's points function (such as qdraw's pts function).

This behavior seems to be related to the limitations of the present incarnation of the adaptation of Gnuplot
to the Windows system, and hopefully will be addressed in the future by the volunteers who work on Gnuplot
software.

Our illustration of the use of labels will simply be what one gets by sending the graphics object to a graphics
�le �ch5p11.eps� and including that �le in our Tex/pdf �le. In Maxima, we use the code:
(%i14) qdraw(yr(-2,2),lw(6), ex([x,x�2,x�3],x,-3,3),

key(bottom), ex(sin(3*x)*exp(x/3),x,-3,3),
pts([[-1,-1],[0,0],[1,1]]) ,
label(["qdraw at work",-2.9,1.5]),
pic(eps,"ch5p11",font("Times-Bold",20)));

8

The resulting plot is then

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1 0 1 2 3

1
2
3
4

qdraw at work

Figure 11: Adding a label at (-2.9,1.5)

If you look in the html Maxima manual under the index item �font�, which takes you to a subsection of
the draw package documentation, you will �nd a listing of the available postscript fonts, which one can use
with the pic(eps, �lename, font(name, size)) function call. These options have the names Times-Roman,
Times-Bold, Helvetica, Helvetica-Bold, Courier, Courier-Bold, also -Italic options.

If you want to save the graphics as a jpeg �le, the font name should be a string containing the path to
the desired font �le. Using the Windows XP operating system, the available windows fonts are in the folder
c:\windows\fonts\. Here is Maxima code to get a jpeg graphics �le based on our present drawing:

(%i15) qdraw(yr(-2,2),lw(6), ex([x,x�2,x�3],x,-3,3),
key(bottom), ex(sin(3*x)*exp(x/3),x,-3,3),
pts([[-1,-1],[0,0],[1,1]]) ,
label(["qdraw at work",-2.9,1.5]),
pic(jpg,"ch5p11",font("c:/windows/fonts/timesbd.ttf",20)));

The resulting jpeg �le has thicker lines and bolder labels, so some experimentation may be called for to get the
desired result. The font �le requested corresponds to times roman bold. The font �le extension �ttf� stands for
�true type fonts�. If you look in the windows, fonts folder you can �nd other interesting choices.

9

5.2 Quick Plots for Implicit Functions: imp(...)
The quick plotting function imp(...) has the syntax

imp(eqnlist, x,x1,x2,y,y1,y2)
or imp(eqn, x,x1,x2,y,y1,y2) .
If the equation(s) are actually functions of (u,v) then x → u and y → v. The numbers (x1,x2) determine the
horizontal canvas extent, and the numbers (y1,y2) determine the vertical canvas extent. Here is an example
using the single equation form:

(%i16) qdraw(imp(sin(2*x)*cos(y)=0.4,x,-3,3,y,-3,3) ,
cut(key));

which produces the �implicit plot�:

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

Figure 12: Implicit plot of sin(2 x) cos(y)

which uses the default line width = 3, the �rst of the default rotating colors (blue), and, of course, the
default axes and grid. To remove the default key, we have used the cut function. Since the left hand side of
this equation will periodically return to the same numerical value in both the x and the y directions, there is no
�limit� to the solutions obtained by setting the left hand side equal to some numerical value between zero and
one.

This looks like one piece of a contour plot for the given function. We can add more contour lines using the
imp function by using the list of equations form:

(%i17) qdraw(imp([sin(2*x)*cos(y)=0.4,
sin(2*x)*cos(y)=0.7,
sin(2*x)*cos(y)=0.9] ,x,-3,3,y,-3,3) ,
cut(key));

The resulting plot with the default rotating color set is shown on the top of the next page.

10

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

Figure 13: contour plot of sin(2 x) cos(y) using imp()

Of course if we de�ne g, say, to be the expression sin(2 x) cos(y) �rst, we can use that binding to simplify
our call to imp(...) :

(%i18) g : sin(2*x)*cos(y)$
(%i19) qdraw(imp([g = 0.4,g = 0.7,g = 0.9] ,x,-3,3,y,-3,3) ,

cut(key));

to achieve the same plot.
We can also use symbols like %pi, which will evaluate to a real number, in our horizontal and vertical limit

slots, as in:

(%i20) qdraw(imp([g = 0.4,g = 0.7,g = 0.9] ,x,-%pi,%pi,y,-%pi,%pi) ,
cut(key));

We need to arrange that the horizontal canvas width is about 1.4 time the vertical canvas height in order that
geometrical shapes look closer to reality. For the present plot we simply change the numerical values of the
imp(...) function (x1,x2) parameters:

(%i21) qdraw(imp([g = 0.4,g = 0.7,g = 0.9] ,x,-4.2,4.2,y,-3,3) ,
cut(key));

which produces a slightly different looking plot:

-3

-2

-1

 0

 1

 2

 3

-4 -3 -2 -1 0 1 2 3 4

Figure 14: using (x1, x2) = (−4.2, 4.2)

11

5.3 Contour Plots with contour(...)
Since we are talking about contour plots, this is a natural place to give some examples of the qdraw package's
contour(...) function which has two forms:
contour(expr,x,x1,x2,y,y1,y2,cvals(v1,v2,...),options)
contour(expr,x,x1,x2,y,y1,y2, crange(n,min,max), options) .

where expr is assumed to be a function of (x,y) and the �rst form allows the setting of expr to the supplied
numerical values, while the second form allows one to supply the number of contours (n), the minimum value
for a contour (min) and the maximum value for a contour (max). If we use the most basic cvals(...) form
(ignoring options):

(%i22) qdraw(contour(g, x,-4.2,4.2, y,-3,3, cvals(0.4,0.7,0.9)));

we get a �plain jane� contour plot having line width 1, the key, grid, and xy-axes removed, in �black�: Since

-3

-2

-1

 0

 1

 2

 3

-4 -3 -2 -1 0 1 2 3 4

Figure 15: simplest default contour example

the quick plot functions ex and imp both use the rotating default colors which cannot be turned off, we would
have to use the imp1 function (which we have not yet discussed) with some of its options, to get the same
results as the default use of contour produces. The available �options� which can be used in any order but after
the required �rst eight arguments, are lw(n), lc(color), and add(options), where the �add options� are any or
all of the set [grid,xaxis,yaxis,xyaxes].

Thus the following invocation of contour:

(%i23) qdraw(contour(g,x,-4.2,4.2,y,-3,3,cvals(0.4,0.7,0.9),
lw(2),lc(brown)), ipgrid(15));

produces:

-3

-2

-1

 0

 1

 2

 3

-4 -3 -2 -1 0 1 2 3 4

Figure 16: adding lw(2), lc(brown)

12

We also added the separate qdraw function ipgrid with argument 15 to over-ride the qdraw default value of
the draw2d parameter ip_grid_in . The draw2d default for this parameter is 5, which results in some �jag-
gies� in implicit plots. The default value inside the qdraw package is 10, which generally produces smoother
plots, but the drawing process takes more time, of course. For our example here, we increased this parameter
from 10 to 15 to get a smoother plot at the price of increased drawing time.

Here is an example of using the second, �crange�, form of contour:

(%i24) qdraw(contour(g,x,-4.2,4.2,y,-3,3,crange(4,0.2,0.9),
lw(2),lc(brown)), ipgrid(15))$

which produces the plot:

-3

-2

-1

 0

 1

 2

 3

-4 -3 -2 -1 0 1 2 3 4

Figure 17: using crange(4, .2, .9)

A �nal example illustrates the contour option add:

(%i25) qdraw(contour(sin(x)*sin(y),x,-2,2,y,-2,2,crange(4,0.2,0.9),
lw(3),lc(blue),add(xyaxes)), ipgrid(15))$

with the plot:

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 18: using add(xyaxes)

13

5.4 Density Plots with qdensity(...)
A type of plot closely related to the contour plot is the density plot, which paints small regions of the graphics
window with a variable color chosen to highlight regions where the function of two variables takes on large
values. A completely separate density plotting function, qdensity, is supplied in the qdraw package. The
qdensity function in completely independent of the default conventions and syntax associated with the function
qdraw.

The syntax of qdensity is:
qdensity(expr,[x,x1,x2,dx],[y,y1,y2,dy], options palette(p),pic(..)) , where
the two optional arguments are palette(p) and pic(type,�lename). The x interval (x1,x2) is divided into
subintervals of size dx, and likewise the y interval (y1,y2) is divided into subintervals of size dy.

If the palette(p) option is not present, a default �shades of blue� density plot is drawn (which corresponds
to palette = [1,3,8]). To use the paletter option, the argument �p� can be either blue, gray, color,
or a three element list [n1,n2,n3], where (n1,n2,n3) are positive integers which select functions to apply
respectively to red, green, and blue.

To use the pic(...) option, the type is eps, eps color, jpg, or png, and the �lename is a string like �case5a�.
As usual, use �x� and �y� if expr depends explicitly on x and y, or use �u� and �v� if expr depends explicitly
on u and v, etc.

A simple function of two variables to try is f(x, y) = x y, which increases from zero at the origin to 1 at
(1,1).

(%i26) qdensity(x*y,[x,0,1,0.2],[y,0,1,0.2])$

This produces the density plot:

Figure 19: default palette density plot

14

If we use the gray palette opton

(%i27) qdensity(x*y,[x,0,1,0.2],[y,0,1,0.2],
palette(gray))$

we get

Figure 20: palette(gray) option

while if we use palette(color), we get

Figure 21: palette(color) option

15

To get a �ner sampling of the function, you should decrease the values of dx and dy to 0.05 or less. Using
the default palette choice with the interval choice 0.05,

(%i28) qdensity(x*y,[x,0,1,0.05],[y,0,1,0.05])$

yields a re�ned density plot with 20 x 20 = 400 painted rectangular panels.

Figure 22: interval set to 0.05

A more interesting function to look at is f(x, y) = sin(x) sin(y).

(%i29) qdensity(sin(x)*sin(y),[x,-2,2,0.05],[y,-2,2,0.05])$

which yields

Figure 23: sin(x) sin(y)

16

5.5 Explicit Plots with Greater Control: ex1(...)
If we are willing to deal with one explicit function or expression at a time, we get more control over the plot
elements if we use the qdraw function ex1(...), which has the syntax:
ex1(expr, x, x1,x2, lc(c), lw(n),lk(string)) .

As usual, if the expression expr is actually a function of u, then x → u. The �rst four arguments are
required and must be in the �rst four slots. The last three arguments are all optional and can be in any order.

Let's illustrate the use of ex1(...) by displaying a simple curve and the tangent and normal at one point of
the curve. We will use the curve y = x2 with the �slope� dy/dx = 2 x, and construct the tangent line tangent
at the point (x0, y0):

(y − y0) = m (x− x0)

where m is the slope at (x0, y0). As we discuss in the next chapter, the normal line through the same point is

(y − y0) = (−1/m) (x− x0).

For the point x0 = 1, y0 = 1,m = 2, the tangent line is y = 2 x− 1 and the normal line is y = −x/2 + 3/2.

(%i30) qdraw(xr(-1.4,2.8),yr(-1,2),
ex1(x�2,x,-2,2,lw(5),lc(brown),lk("X�2")),
ex1(2*x-1,x,-2,2,lw(2),lc(blue),lk("TANGENT")),
ex1(-x/2 + 3/2,x,-2,2,lw(2),lc(magenta),lk("NORMAL")) ,
pts([[1,1]],ps(2),pc(red)))$

Note that we were careful to force the x-range to be about 1.4 times as great as the y-range (to get the correct
geometry of the tangent and normal lines). The resulting plot is:

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5 0 0.5 1 1.5 2 2.5

X^2
TANGENT
NORMAL

Figure 24: plot using ex1(...)

17

Here we use ex1 to plot the �rst few Bessel functions of the �rst kind Jn(x) for integral n and real x,

(%i31) qdraw(ex1(bessel_j(0,x),x,0,20,lc(red),lw(6),lk("bessel_j (0, x)")),
ex1(bessel_j(1,x),x,0,20,lc(blue),lw(5),lk("bessel_j (1, x)")),
ex1(bessel_j(2,x),x,0,20,lc(brown),lw(4),lk("bessel_j (2, x)")),
ex1(bessel_j(3,x),x,0,20,lc(green),lw(3),lk("bessel_j (3, x)")))$

which produces the plot:

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

bessel_j (0, x)
bessel_j (1, x)
bessel_j (2, x)
bessel_j (3, x)

Figure 25: Jn(x)

Here is a plot of J0(
√

x):

(%i32) qdraw(line(0,0,50,0,lc(red),lw(2)),
ex1(bessel_j(0, sqrt(x)),x,0,50 ,lc(blue),
lw(7),lk("J0(sqrt(x))")))$

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

J0(sqrt(x))

Figure 26: J0(
√

x)

We chose to emphasize the axis y = 0 with a red line supplied by another of the qdraw functions, line,
which we will discuss later in the section on geometric �gures. Placing the line element before ex1(..) causes
the curve to write �over� the line, rather than the reverse.

18

5.6 Explicit Plots with ex1(...) and Log Scaled Axes
The name �log plot� usually refers to a plot of ln(y) vs x using linear graph paper, which is equivalent to a plot
of y vs x on graph paper which uses a �logarithmic scale� on the vertical axis. Given an expression g depend-
ing on x, you can either use the syntax qdraw(ex1(log(g),x,x1,x2), other options) to
generate such a �log plot� or qdraw(ex1(g, x, x1, x2), log(y) , other options).

Let's show the differences using the function f(x) = x e−x, but using an expression called g rather than a
Maxima function.

(%i33) g : x*exp(-x)$
(%i34) qdraw(ex1(log(g),x,0.001,10, lc(red)),yr(-8,0))$

which displays the plot

-8

-7

-6

-5

-4

-3

-2

-1

 0

 0 1 2 3 4 5 6 7 8 9 10

Figure 27: Linear Graph Paper Plot of ln(g)

The numbers on the vertical axis correspond to values of ln(g). Since g is singular at x = 0, we have
avoided that region by using x1 = 0.001.

The second way to get a �log plot� of g is to request �semi-log� graph paper which has the vertical axis
marked using a logarithmic scale for the values of g. Using the log(y) option of the qdraw function, we use:

(%i35) qdraw(ex1(g, x, 0.001,10,lc(red)),
yr(0.0001, 1), log(y))$

The yr(y1,y2) option takes into account the numerical limits of g over the x interval requested. The minimum
value of g is 0.005 which occurs at x = 10. The maximum value of g is about 0.37. The resulting plot is:

 0.0001

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5 6 7 8 9 10

Figure 28: Log Paper Plot of g

19

The name �log-linear plot� can be used to mean �x axis marked with a log scale, y axis marked with a linear
scale�. Using the same function, we generate this plot by using the log(x) option to qdraw:

(%i36) qdraw(ex1(g, x, 0.001,10,lc(red),lw(7)),
yr(0,0.4), log(x))$

This generates the plot

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.001 0.01 0.1 1 10

Figure 29: Log-Linear Plot of g

Scientists and engineers normally like to use a log scaled axis for a variable which varies over many powers
of ten, which is not the case for our example.

Finally, we can request �log-log paper� which has both axes marked with a log scale, by using the log(xy)
option to qdraw.

(%i37) qdraw(ex1(g, x, 0.001,10,lc(red)),
yr(0.0001,1), log(xy))$

which produces

 0.0001

 0.001

 0.01

 0.1

 1

 0.001 0.01 0.1 1 10

Figure 30: Log-Log Plot of g

20

5.7 Data Plots with Error Bars: pts(...) and errorbars(...)
In Chapter One of Maxima by Example, Section 1.5.8, we created a data �le called ��t1.dat�, which can be
downloaded from the author's webpage. We will use that data �le, together with ��t2.dat�, also available, to
illustrate making simple data plots using the qdraw functions pts(...) and errorbars(...). The syntax of pts(...)
is:
pts(pointlist, pc(c), ps(s), pt(t), pj(lw), pk(string))
The only required argument is the �rst argument �pointlist� which has the form:
[[x1,y1], [x2,y2], [x3,y3],...] .
The remaining arguments are all optional and may be entered in any order following the �rst required argu-
ment.
The optional argument pc(c) overrides the default color (black), for example, pc(red).
The optional argument ps(s) overrides the default size (3), and an example is ps(2).
The optional argument pt(t) overrides the default type (7, which is the integer used for �lled circle: see
the Maxima manual index entry for �point type�); an example would be pt(8), which would use an open
�up triangle� instead of a �lled circle.
The optional argument pj(lw), if present, will cause the points provided by the nested list �pointlist� to be
joined using a line whose width is given by the argument of pj; an example is pj(2) which would set the
line width to the value 2.
The optional argument pk(string) provides text for a key entry for the set of points represented by pointlist;
as example is pk("case x�2").

Before making the data plot, let's look at the data �le contents from inside Maxima:

(%i38) printfile("fit1.dat")$
1 1.8904
2 3.0708
3 3.9215
4 5.1813
5 5.9443
6 7.0156
7 7.8441
8 8.8806
9 9.8132
10 11.129

We next use Maxima's read nested list function to create a list of data points from the data �le.

(%i39) plist : read_nested_list("fit1.dat");
(%o39) [[1, 1.8904], [2, 3.0708], [3, 3.9215], [4, 5.1813], [5, 5.9443],

[6, 7.0156], [7, 7.8441], [8, 8.880599999999999], [9, 9.8132], [10, 11.129]]

21

The most basic plot of this data uses the pts(...) function defaults:

(%i40) qdraw(pts(plist))$

which produces:

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 1 2 3 4 5 6 7 8 9 10

Figure 31: Using pts(...) Defaults

We can use the qdraw functions xr(...) and yr(...) to override the default range selected by draw2d, and
decrease the point size:

(%i41) qdraw(pts(plist, ps(2)), xr(0,12),yr(0,15))$

with the result:

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12

Figure 32: Adding ps(2), xr(..), yr(..)

22

Now we add color and a key string, as well as simple error bars corresponding to an assumed uncertainty
of the y value of plus or minus 1 for all the data points.

(%i42) qdraw(pts(plist,pc(blue),pk("fit1"), ps(2)), xr(0,12),yr(0,15),
key(bottom), errorbars(plist, 1))$

which looks like:

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12

fit1

Figure 33: Adding pc(blue) and Simple Error Bars

The default error bar line width of 1 is almost too small to see, so we thicken the error bars and add color

(%i43) qdraw(pts(plist,pc(blue),pk("fit1"), ps(2)), xr(0,12),yr(0,15),
key(bottom), errorbars(plist, 1, lw(3),lc(red)))$

with the result:

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12

fit1

Figure 34: Adding lw(3), lc(red) to errorbars(...)

The difference in the fonts is due to my using pic(eps, "ch5p27h", font("Times-Roman",18))
to create the eps graphic instead of just pic(eps, "ch5p27h") as another argument to qdraw.

23

If the data set has individual uncertainties in the y value, we create a list dyl, say,
of the values dy1, dy2, dy3,... and use the syntax:

errorbars(pointlist, dylist, lw(n), lc(c))
Here is an example:

(%i44) dyl : [0.2,0.3,0.5,1.5,0.8,1,1.4,1.8,2,2];
(%o44) [0.2, 0.3, 0.5, 1.5, 0.8, 1, 1.4, 1.8, 2, 2]
(%i45) map(length,[plist,dyl]);
(%o45) [10, 10]
(%i46) qdraw(pts(plist,pc(blue),pk("fit1"), ps(2)), xr(0,12),yr(0,15),

key(bottom), errorbars(plist, dyl, lw(3),lc(red)))$

with the result

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12

fit1

Figure 35: Using a list of dy values with errorbars(..)

We now repeat the least squares �t of this data which we carried out in Chapter 1. See our discussion there
for an explanation of what we are doing here.

(%i47) display2d:false$
(%i48) pmatrix : apply('matrix, plist);
(%o48) matrix([1,1.8904],[2,3.0708],[3,3.9215],[4,5.1813],[5,5.9443],

[6,7.0156],[7,7.8441],[8,8.880599999999999],[9,9.8132],
[10,11.129])

(%i49) load(lsquares);
(%o49) "C:/PROGRA�1/MAXIMA�4.0/share/maxima/5.15.0/share/contrib/lsquares.mac"
(%i50) soln : (lsquares_estimates(pmatrix,[x,y],y=a*x+b,

[a,b]), float(%%));
(%o50) [[a = 0.99514787679748,b = 0.99576667381004]]
(%i51) [a,b] : (fpprintprec:5, map('rhs, soln[1]))$
(%i52) [a,b];
(%o52) [0.995,0.996]
(%i53) qdraw(pts(plist,pc(blue),pk("fit1"), ps(2)), xr(0,12),yr(0,15),

key(bottom), errorbars(plist, dyl, lw(3),lc(red)),
ex1(a*x + b,x,0,12, lc(brown),lk("linear fit")))$

24

We use the qdraw function ex1(...) to add the line f(x) = a x + b to the data plot. The resulting plot with
the least squares �t added is then:

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12

fit1
linear fit

Figure 36: Adding the Linear Fit Line

Now we add the data in the �le ��t2.dat�:
(%i54) printfile("fit2.dat");
1 0.9452
2 1.5354
3 1.9608
4 2.5907
5 2.9722
6 3.5078
7 3.9221
8 4.4403
9 4.9066
10 5.5645
(%o54) "fit2.dat"
(%i55) p2list: read_nested_list("fit2.dat");
(%o55) [[1,0.945],[2,1.5354],[3,1.9608],[4,2.5907],[5,2.9722],[6,3.5078],

[7,3.9221],[8,4.4403],[9,4.9066],[10,5.5645]]
(%i56) qdraw(pts(plist,pc(blue),pk("fit1"), ps(2)), xr(0,12),yr(0,15),

key(bottom), errorbars(plist, dyl, lw(3),lc(red)),
ex1(a*x + b,x,0,12, lc(brown),lk("linear fit 1")),
pts(p2list, pc(magenta),pk("fit2"),ps(2)),
errorbars(p2list,0.5,lw(3)))$

25

Here is the plot with the second data set:

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12

fit1
linear fit 1

fit2

Figure 37: Adding the Second Set of Data

We could then �nd the least squares �t to the data set 2 and again use the function ex1(...) to add that �t to
our plot, and add any other features desired.

26

5.8 Implicit Plots with Greater Control: imp1(...)
If we are willing to deal with one implicit equation of two variables at a time, we get more control over the plot
elements if we use the qdraw function imp1(...), which has the syntax:
imp1(eqn, x, x1,x2, y, y1,y2, lc(c), lw(n),lk(string)) .

As usual, if the equation eqn is actually a function of the pair of variables u and v, then let x → u, and
y → v. The �rst seven arguments are required and must be in the �rst seven slots. The last three arguments are
all optional and can be in any order.

Let's illustrate the use of imp1(...) by displaying a translated and rotated ellipse, together with the rotated x
and y axes. In the following, eqn1 describes the rotated ellipse, eqn2 describes the rotated x axis, and eqn3
describes the rotated y axis. The angle of rotation is about 63.4 deg (counter clockwise), which corresponds to
tan φ = 2. Notice that we take care to get the x-axis range about 1.4 times the y-axis range, in order to get the
geometry approximately right.

(%i1) eqn1 : 5*x�2 + 4*x*y + 8*y�2 - 16*x + 8*y - 16 = 0$
(%i2) eqn2 : y+1 = 2*(x-2)$
(%i3) eqn3 : y+1 = -(x-2)/2$
(%i4) qdraw(imp1(eqn1,x,-2,6.4,y,-4,2,lc(red),lw(6),lk("ELLIPSE")),

imp1(eqn2,x,-2,6.4,y,-4,2,lc(blue),lw(4),lk("ROT X AXIS")),
imp1(eqn3,x,-2,6.4,y,-4,2,lc(brown),lw(4),lk("ROT Y AXIS")),

pts([[2,-1]],ps(2),pc(magenta),pk("TRANSLATED ORIGIN")))$

We get the following �gure, if we increase the font size,

-4

-3

-2

-1

 0

 1

 2

-2 -1 0 1 2 3 4 5 6

ELLIPSE
ROT X AXIS
ROT Y AXIS

TRANSLATED ORIGIN

Figure 38: Rotated and Translated Ellipse

27

As a second example with imp1 we make a simple plot based on the equation y3 = x2.

(%i5) qdraw(imp1(y�3=x�2,x,-3,3,y,-1,3,lw(10),lc(dark-blue)))$

which produces the plot:

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-3 -2 -1 0 1 2 3

Y^3 = X^2

Figure 39: Implicit Plot of y3 = x2

Notice that you can use hyphenated color choices (see Maxima color index) without the double quotes, or
with the double quotes.

28

5.9 Parametric Plots with para(...)
The qdraw function para can be used to draw parametric plots and has the syntax
para(xofu,yofu,u,u1,u2,lw(n),lc(c),lk(string))
where, as usual, the line width, line color, and key string are optional and can be in any order. The parameter
�u� can, of course, be any symbol.

A simple example, in which we use �t� for the parameter, and let the x coordinate corresponding to some
value of t be sin(t), and let the y coordinate corresponding to that same value of t be sin(2 t) is:

(%i6) qdraw(xr(-1.5,2),yr(-2,2),
para(sin(t),sin(2*t),t,0,2*%pi) ,
pts([[sin(%pi/8),sin(%pi/4)]],ps(2),pc(blue),pk("t = pi/8")),
pts([[1,0]],ps(2),pc(red),pk("t = pi/2")))$

produces the plot:

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1.5 -1 -0.5 0 0.5 1 1.5 2

t = pi/8
t = pi/2

Figure 40: x = sin(t), y = sin(2 t)

29

A second example of a parametric plot has u as the parameter, x = 2 cos(u), and y = u2:

(%i7) qdraw(xr(-3,4),yr(-1,40), para(2*cos(u),u�2,u,0,2*%pi) ,
pts([[2,0]],ps(2),pc(blue),pk("u = 0")),
pts([[0,(%pi/2)�2]],ps(2), pc(red), pk("u = pi/2")),
pts([[-2,%pi�2]],ps(2),pc(green),pk("u = pi")),
pts([[0,(3*%pi/2)�2]],ps(2),pc(magenta),pk("u = 3*pi/2")))$

which yields the plot:

 0

 5

 10

 15

 20

 25

 30

 35

 40

-3 -2 -1 0 1 2 3 4

u = 0
u = pi/2

u = pi
u = 3*pi/2

Figure 41: x = 2 cos(u), y = u2

30

5.10 Polar Plots with polar(...)
A �polar plot� plots the points (x = r(θ) cos(θ), y = r(θ) sin(θ)), where the function r(θ) is supplied.

The qdraw function polar has the syntax:
polar(roftheta, theta, th1,th2, lc(c), lw(n), lk(string))
where theta, th1, and th2 are in radians, and the last three arguments are optional.

A simple example is provided by the hyperbolic spiral r(θ) = 10/θ.

(%i8) qdraw(polar(10/t,t,1,3*%pi,lc(brown),lw(5)),nticks(200),
xr(-4,6),yr(-3,9),key(bottom) ,

pts([[10*cos(1),10*sin(1)]],ps(3),pc(red),pk("t = 1 rad")),
pts([[5*cos(2),5*sin(2)]],ps(3),pc(blue),pk("t = 2 rad")),

line(0,0,5*cos(2),5*sin(2)))$

which looks like:

-2

 0

 2

 4

 6

 8

-4 -2 0 2 4 6

t = 1 rad
t = 2 rad

Figure 42: Polar Plot with r = 10/θ

31

5.11 Geometric Figures: line(...)
The qdraw function line has the syntax:

line(x1,y1,x2,y2, lc(c), lw(n), lk(string))
which draws a line from (x1,y1) to (x2,y2). The last three arguments are optional and can be in any order
after the �rst four arguments.

For example, line(0,0,1,1,lc(blue),lw(6),lk("radius")) will draw a line from (0, 0)
to (1, 1) in blue with line width 6 and with a key entry with the text 'radius'. The defaults are color black, line
width 3, and no key entry.

(%i9) qdraw(line(0,0,1,1))$

produces the default line with draw2d's default range:

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Figure 43: Default line(..)

Adding some options and extending the canvas range in both directions

(%i10) qdraw(line(0,0,1,1,lc(blue),lw(6),lk("radius")),
xr(0,2),yr(0,2),key(bottom),
pts([[1,1]] ,pc(red),pk("point")))$

produces a line to a point marked in red:

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2

radius
point

Figure 44: Adding options to line(..)

32

Here we de�ne a Maxima function �doplot1(n)� in a �le �doplot1.mac� which has the following contents:
/* file doplot1.mac */

disp("doplot1(nlw)")$

doplot1(nlw) := block([cc,qlist,x,val,i],
/* list of 20 single name colors */
cc : [aquamarine,beige,blue,brown,cyan,gold,goldenrod,green,khaki,

magenta,orange,pink,plum,purple,red,salmon,skyblue,turquoise,
violet,yellow],

qlist : [xr(-3.3,3)],
for i thru length(cc) do (
x : -3.3 + 0.3*i,
val : line(x,-1,x,1, lc(cc[i]),lw(nlw)),
qlist : append(qlist, [val])

),
qlist : append(qlist,[cut(all)]),
apply('qdraw, qlist)

)$

Here is a record of loading and using the function de�ned to produce a series of vertical colored lines.
(%i11) load(doplot1);

doplot1(nlw)
(%o11) c:/work2/doplot1.mac
(%i12) doplot1(20);

which produces the graphic (note use of cut(all) to get a blank canvas):

Figure 45: Using line(...) to Display Colors

33

5.12 Geometric Figures: rect(...)
The qdraw function rect has the syntax:

rect(x1,y1,x2,y2, lc(c), lw(n), fill(c))
which will draw a rectangle with opposite corners (x1,y1) and (x2,y2). The last three arguments are
optional; without them the rectangle is drawn in black with line thickness 3 and with no �ll color. An example
is rect(0,0,1,1,lc(brown),lw(2),fill(khaki)) . We start with the basic rectangle call:

(%i13) qdraw(xr(-1,2),yr(-1,2),rect(0,0,1,1))$

with the result

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5 0 0.5 1 1.5 2

Figure 46: Default rect(0,0,1,1)

We now add some color, thickness and �ll:

(%i14) qdraw(xr(-1,2),yr(-1,2),
rect(0,0,1,1,lw(5),lc(brown),fill(khaki)))$

with the output:

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5 0 0.5 1 1.5 2

Figure 47: rect(0,0,1,1,lc(brown),lw(5),�ll(khaki))

34

Finally, we use rect for a set of nested rectangles.

(%i15) qdraw(xr(-3,3),yr(-3,3), rect(-2.5,-2.5,2.5,2.5,lw(4),lc(blue)),
rect(-2,-2,2,2,lw(4),lc(red)),
rect(-1.5,-1.5,1.5,1.5,lw(4),lc(green)),
rect(-1,-1,1,1,lw(4),lc(brown)),
rect(-.5,-.5,.5,.5,lw(4),lc(magenta)),
cut(all))$

which produces:

Figure 48: Nested Rectangles using rect(..)

5.13 Geometric Figures: poly(...)
The qdraw function poly has the syntax:

poly(pointlist, lc(c), lw(n), fill(c))
in which �pointlist� has the same form as when used with pts:

[[x1,y1], [x2,y2], ... [xn,yn]] ,
and the arguments lc, lw, and �ll are optional and can be in any order after pointlist. The last point in the list
will be automatically connectd to the �rst.

The default call to poly has color black, line width 3 and no �ll color.

(%i16) qdraw(xr(-2,2),yr(-1,2),cut(all),
poly([[-1,-1],[1,-1], [2,2]]))$

35

This default use of poly produces a �plain jane� triangle:

Figure 49: Default use of poly(...)

Next we create the work �le �doplot2.mac� which contains the following Maxima function which will draw
eighteen right triangles in various colors:

/* eighteen triangles */
disp("doplot2()")$
print("eighteen colored triangles")$
doplot2() :=
block([cc, qlist,x1,x2,y1,y2,i,val],

cc : [aquamarine,beige,blue,brown,cyan,gold,goldenrod,green,khaki,
magenta,orange,pink,plum,purple,red,salmon,skyblue,turquoise,
violet,yellow],

qlist : [xr(-3.3,3.3), yr(-3.3,3.3)],
/* top row of triangles */

y1 : 1,
y2 : 3,
for i:0 thru 5 do (
x1 : -3 + i,
x2 : x1 + 1,
val : poly([[x1,y1],[x2,y1],[x1,y2]], fill(cc[i+1])),
qlist : append(qlist, [val])

),
/* middle row of triangles */

y1 : -1,
y2 : 1,
for i:0 thru 5 do (

x1 : -3 + i,
x2 : x1 + 1,
val : poly([[x1,y1],[x1,y2],[x2,y2]], fill(cc[i+7])),
qlist : append(qlist, [val])

),

36

/* bottom row of triangles */
y1 : -3,
y2 : -1,
for i:0 thru 5 do (
x1 : -3 + i,
x2 : x1 + 1,
val : poly([[x1,y1],[x2,y1],[x1,y2]], fill(cc[i+13])),
qlist : append(qlist, [val])

),
qlist : append(qlist,[cut(all)]),
apply('qdraw, qlist)

)$

Here is a record of use of this work �le:

(%i17) load(doplot2);
doplot2()

eighteen colored triangles
(%o17) c:/work2/doplot2.mac
(%i18) doplot2();

and the resulting �gure:

Figure 50: Using poly(...) with Color

For �homework�, use poly and pts to draw the following �gure. (Hint: you should also use xr(...)).

Figure 51: Homework Problem

37

5.14 Geometric Figures: circle(...) and ellipse(...)
The qdraw function circle has the syntax:

circle(xc,yc, r, lc(c), lw(n), fill(c))
to draw a circle centered at (xc,yc) and having radius r. The last three arguments are optional and may be
entered in any order after the required �rst three arguments. This object will not �look� like a circle unless you
take care to make the horizontal extent of the �canvas� about 1.4 times the vertical extent (by using xr(...) and
yr(...)).

Here is the default circle in black, with line width 3, and no �ll color.

(%i19) qdraw(xr(-2, 2), yr(-2, 2), circle(0, 0, 1))$

which looks like:

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 52: Default �circle�

By using xr(...) and yr(...) we try for a �round� circle and also add what should be a 45 degree line.

(%i20) qdraw(xr(-2.1,2.1),yr(-1.5,1.5),cut(all),
circle(0,0,1,lw(5),lc(brown),fill(khaki)),
line(-1.5,-1.5,1.5,1.5,lw(8), lc(red)),
key(bottom))$

with the result:

Figure 53: line over �round� circle

38

The line painted over the circle because of the order of the arguments to qdraw. If we reverse the order,
drawing the line before the circle:

(%i21) qdraw(xr(-2.1,2.1),yr(-1.5,1.5),cut(all),
line(-1.5,-1.5,1.5,1.5,lw(8),lc(red)),
circle(0,0,1,lw(8),lc(brown),fill(khaki)),

key(bottom))$

then the circle color will hide the line:

Figure 54: circle over line

The qdraw function ellipse has the syntax:
ellipse(xc,yc,xsma,ysma,th0deg,dthdeg, lw(n), lc(c), fill(c))

which will plot a partial or whole ellipse centered at (xc,yc), oriented with ellipse axes aligned along the x
and y axes, having horizontal semi-axis xsma, vertical semi-axis ysma, beginning at th0deg degrees measured
counter clockwise from the positive x axis, and drawn for dthdeg degrees in the counter clockwise direction.

The last three arguments are optional. The default is the outline of an ellipse for the speci�ed angular range
in color black, line width 3, and no �ll color.

Here is the default behavior:

(%i22) qdraw(xr(-4.2,4.2),yr(-3,3),
ellipse(0,0,3,2,90,270))$

-3

-2

-1

 0

 1

 2

 3

-4 -3 -2 -1 0 1 2 3 4

Figure 55: ellipse(0,0,3,2,90,270)

39

If we add color, �ll, and some curvy background, as in
(%i23) qdraw(xr(-5.6,5.6),yr(-4,4),ex1(x,x,-4,4,lc(blue),lw(5)),

ex1(4*cos(x),x,-4,4,lc(red),lw(5)),
ellipse(0,0,3,1,90,270,lc(brown),lw(5),fill(khaki)) ,

cut(all))$

we get

Figure 56: Filled Ellipse

5.15 Geometric Figures: vector(..)
The qdraw function vector has the syntax:
vector([x,y],[dx,dy],ha(thdeg),hb(v),hl(v),ht(t),lw(n),lc(c),lk(string))
which draws a vector with components [dx,dy] starting at [x,y].
The �rst two list arguments are required, all others are optional and can be entered in any order after the �rst
two required arguments.
The default �head angle� is 30 deg; change to 45 deg using ha(45) for example.
The default �head both� value is f for false; use hb(t) to set it to true, and hb(f) to return to false.
The default �head length� is 0.5; use hl(0.7) to change to 0.7.
The default �head type� is �no�lled�; use ht(e) for �empty�, ht(f) for ��lled�, and ht(n) to change back to
�no�lled�.
Once one of the �head properties� has been changed in a call to vector, the next calls to vector assume the
change is still in force.
The default line width is 3; use lw(5) to change to 5.
The default line color is black; use lc(brown) to change to brown.
The default is no key string; use lk(�A1�), for example, to create a text string for the key.

40

Here is a use of vector which accepts all defaults:

(%i24) qdraw(xr(-2,2), yr(-2,2), vector([-1,-1], [2,2]))$

with the result:

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 57: Default Vector

We can thicken and apply color to this basic vector with

(%i25) qdraw(xr(-2,2),yr(-2,2),
vector([-1,-1],[2,2],lw(5),lc(brown),lk("vec 1")),
key(bottom))$

which looks like:

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

vec 1

Figure 58: Adding Color, etc.

41

Next we can alter the �head� properties, but let's also make this vector shorter. We use ht(e) to set
head type to �empty�, hb(t) to set head both to �true�, and ha(45) to set head angle to 45 degrees.

(%i26) qdraw(xr(-2,2),yr(-2,2),
vector([0,0],[1,1],lw(5),lc(blue),lk("vec 1"),

ht(e),hb(t),ha(45)), key(bottom))$

which produces:

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

vec 1

Figure 59: Changing Head Properties

Once you invoke the head properties options, the new settings are used on your next calls to vector (unless
you deliberately change them). Here is an example of that memory feature at work:

(%i27) qdraw(xr(-2.8,2.8),yr(-2,2),
vector([0,0],[1,1],lw(5),lc(blue),lk("vec 1"),

ht(e),hb(t),ha(45)),
vector([0,0],[-1,-1],lw(5),lc(red),lk("vec 2")),
key(bottom))$

and we also used the x-range setting to get the geometry closer to reality, with the result:

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1 0 1 2

vec 1
vec 2

Figure 60: Head Properties Memory at Work

42

5.16 Geometric Figures: arrowhead(..)
The syntax of the qdraw function arrowhead is:

arrowhead(x, y, theta-degrees, s, lc(c), lw(n))
which will draw an arrow head with the vertex at (x,y).
The �rst four arguments are required and must be numbers.
The third argument theta is an angle in degrees and is the direction the arrowhead is to point relative to the
positive x axis, ccw from x axis taken as a positive angle.
The fourth argument s is the length of the sides of the arrowhead.
The arguments lc(c) and lw(n) are optional, and are used to alter the default color (black) and line width (3).
The opening half angle is hardwired to be phi = 25 deg = 0.44 radians.
The geometry will look better if the x-range is about 1.4 times the y-range.

Here are four arrow heads drawn with the default line widths and color and �size� 0.3, which show the use
of the direction argument in degrees.

(%i28) qdraw(xr(-2.8,2.8),yr(-2,2),
arrowhead(1.5,0,180,.3),arrowhead(0,1,270,.3),
arrowhead(-1.5,0,0,.3),arrowhead(0,-1,90,.3))$

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1 0 1 2

Figure 61: Using arrowhead(..)

5.17 Labels with Greek Letters
5.17.1 Enhanced Postscript Methods
Here we combine line(..), ellipse, arrowhead and label, using the enhanced postscript abilities of draw2d's
terminal = eps option, which became effective with the June 11, 2008 draw package update. This update
includes an extension of the terminal = eps abilities to include local conversion of font properties and
the use of Greek and some math characters. As of the writing of this section, it was necessary to download this
update from the webpage
http://maxima.cvs.sourceforge.net/maxima/maxima/share/draw/draw.lisp. On that
webpage you will see Log of /maxima/share/draw/draw.lisp, and the top entry is
Revision 1.31 - (view) (download) (annotate) - [select for diffs]
Wed Jun 11 18:19:55 2008 UTC. Click on the �download� link, and the text of draw.lisp will appear
in your browser with the top looking like:

43

;;; COPYRIGHT NOTICE
;;;
;;; Copyright (C) 2007 Mario Rodriguez Riotorto
;;;
;;; This program is free software; you can redistribute
;;; it and/or modify it under the terms of the
;;; etc

This is a program written in the Lisp language, and down near the bottom is a series of lines which provide for
the enhanced postscript behavior:

($eps (format cmdstorage "set terminal postscript eps enhanced �a
size �acm, �acm�%set out '�a.eps'"

(write-font-type) ; other alternatives are Arial, Courier
(get-option '$eps_width)
(get-option '$eps_height)
(get-option '$file_name)))

If you save this text �le with the name �draw.lisp� and place it in the draw package folder (on my Windows
computer, the rather complicated path:
drive c, program files, maxima-5.15.0, share, maxima, 5.15.0, share, draw)
to replace the old �draw.lisp� (which you could rename prior to the save as), then you can use the label syntax
inside strings as shown in the following.

(%i29) qdraw(xr(0,2.8),yr(0,2),
line(0,0,2.8,0,lw(2)),
line(0,0,2,2,lc(blue),lw(8)),

ellipse(0,0,1,1,0,45),
arrowhead(0.707,0.707,135,0.15),

label(["{/=36 {/Symbol q \\254 } The Incline Angle}",1,0.4]),
cut(all),
pic(eps,"ch5p52"));

The result looks like:

θ ← The Incline Angle

Figure 62: line(..), ellipse(..), arrowhead(..), label(..)

A summary of the enhanced postscript syntax can be downloaded:
http://www.telefonica.net/web2/biomates/maxima/gpdraw/ps/ps_guide.ps although
the examples of using the �characters� works for me only if I use two back slashes, as in the example just shown,

44

where the entry \\254 inside the {/Symbol } structure produces the leftward pointing arrow (thanks to the
draw package developer, Mario Rodriguez Riotorto, for the enhanced postscript abilities, and for aiding my
understanding of how to use these features). An example of creating text for a label which includes the integral
sign and Greek letters is given on the webpage:
http://www.telefonica.net/web2/biomates/maxima/gpdraw/ps/.

The entry {/Symbol q } by itself would produce just the Greek letter θ. Wrapping the text entry in the
structure {/=36 } accepts the default font type and sets the font size to 36 for the text inside the pair of
braces.

Here we make a lower case Latin to Greek conversion reminder using four instances of label, although we
could alternatively have used the syntax label([s1,x1,x2], [s2,x2,y2],...).

(%i30) qdraw(xr(-3,3),yr(-2,2),label_align(c),
label(["{/=48 a b c d e f g h i j k l m}",0,1.5]),
label(["{/Symbol=48 a b c d e f g h i j k l m}",0,0.5]),
label(["{/=48 n o p q r s t u v w x y z}",0,-.5]),
label(["{/Symbol=48 n o p q r s t u v w x y z}",0,-1.5]),
cut(all), pic(eps,"ch5p53"))$

Note how we increase the font size of the latin alphabet a,b,c.... Here is the resulting eps �gure:

a b c d e f g h i j k l m

α β χ δ ε φ γ η ι ϕ κ λ µ

n o p q r s t u v w x y z

ν ο π θ ρ σ τ υ ϖ ω ξ ψ ζ

Figure 63: Lower Case Latin to Greek

We can repeat that label �gure using upper case Latin letters:

(%i31) qdraw(xr(-3,3),yr(-2,2),label_align(c),
label(["{/=48 A B C D E F G H I J K L M}",0,1.5]),
label(["{/Symbol=48 A B C D E F G H I J K L M}",0,0.5]),
label(["{/=48 N O P Q R S T U V W X Y Z}",0,-.5]),
label(["{/Symbol=48 N O P Q R S T U V W X Y Z}",0,-1.5]),
cut(all), pic(eps,"ch5p54"))$

You can see the resulting �gure on the next page.
Useful character codes, used as {/Symbol \\abc \\rst etc }

or as {/Symbol=36 \\abc \\rst etc } are:
\\243 (less than or equal)
\\245 (in�nity symbol)
\\253 (double ended arrow)
\\254 (left arrow)
\\256 (right arrow)

45

\\261 (plus or minus)
\\263 (greater than or equal)
\\264 (times)
\\271 (not equal)
\\273 (approx equal)
\\345 (summation sign)
\\362 (integral sign)

A B C D E F G H I J K L M

Α Β Χ ∆ Ε Φ Γ Η Ι ϑ Κ Λ Μ

N O P Q R S T U V W X Y Z

Ν Ο Π Θ Ρ Σ Τ Υ ς Ω Ξ Ψ Ζ

Figure 64: Upper Case Latin to Greek

Here we use label to illustrate these possible symbols you can use:

(%i32) s1 : "{/Symbol=48 \\243 \\245 \\253 \\254 \\256}"$
(%i33) s2 : "{/Symbol=48 \\261 \\263 \\264 \\271 \\273 \\345 \\362}"$
(%i34) qdraw(xr(-3,3),yr(-2,2),label_align(c),

label([s1,0,1]), label([s2,0,-1]), cut(all), pic(eps,"ch5p55"))$

which produces the �gure:

≤ ∞ ↔ ← →

± ≥ × ≠ ≈ ∑ ∫

Figure 65: Useful Character Code Symbols

46

5.17.2 Windows Fonts Methods with jpeg Files
We can produce the Greek letter θ in a jpeg �le or a png �le by using the Greek font �les in the
c:\windows\fonts folder as follows:

(%i35) qdraw(xr(0,2.8),yr(0,2),
line(0,0,2.8,0),
line(0,0,2,2,lc(blue),lw(5)),

ellipse(0,0,1,1,0,45),
arrowhead(0.707,0.707,135,0.15),
label(["q",1,0.4]), cut(all),
pic(jpg,"ch5p52p",font("c:/windows/fonts/grii.ttf",36)));

which produces the �le ch5p52.jpg, which we converted to an eps �le using cygwin's convert function:
convert name.jpg name.eps which will also work to convert a png graphics �le.

Figure 66: Greek in jpg converted to eps

Here we use the label function to show all the greek letters available via the windows, fonts folder:

(%i36) qdraw(xr(-3,3),yr(-2,2),
label(["a b c d e f g h i j k l m",-2.5,1.5],

["n o p q r s t u v w x y z",-2.5,0.5],
["A B C D E F G H I J K L M",-2.5,-0.5],
["N O P Q R S T U V W X Y Z",-2.5,-1.5]),

cut(all),
pic(png,"ch5p60",font("c:/windows/fonts/grii.ttf",24)));

47

After conversion of the png to an eps graphics �le using Cygwin's convert function, we get:

Figure 67: windows fonts conv. of a - Z to Greek

5.17.3 Using Windows Fonts with the Gnuplot Console Window

In the default Windows Gnuplot console mode, you can convert some Latin letters to Greek as follows:

(%i37) qdraw(xr(0,2.8),yr(0,2),
line(0,0,2.8,0),
line(0,0,2,2,lc(blue),lw(5)),

ellipse(0,0,1,1,0,45),
arrowhead(0.707,0.707,135,0.15),
label(["q",1,0.4]), cut(all));

When the console graphics window appears, right click on the upper left corner icon and select Options, Choose
Font. In the Font panels, choose Graecall font, �regular� from the middle panel, and size 36 from the right panel
and click �ok�. The English letter �q� (lower case) is then converted to the Greek lower case theta. Use the
Gnuplot window menu again to save the resulting image to the clipboard, and open an image viewer. I use the
freely available Infanview. If you use View, Paste, the clipboard image appears inside Infanview, and you can
save the image as a jpeg �le in your choice of folder. Since I am using eps graphics �les for this latex �le, I
converted the jpg to eps using Cygwin's convert function:
convert name.jpg name.eps.

Here is the result:

Figure 68: Greek via Windows Clipboard

48

Unfortunately, saving the Gnuplot window image to the Window's clipboard also saves the current cursor
position, which is not desirable.

5.18 Even More with more(...)
You can use the qdraw function more(...), containing any legal draw2d elements, as we illustrate by adding a
label to the x-axis and a title. We focus here on producing an eps graphics �le to display the enhanced ability
to show subscripts and superscripts.

(%i38) qdraw(lw(8), ex([x,x�2,x�3],x,-2,2),
more(xlabel = "X AXIS", title="intersections of x, x�2, x�3"),

cut(key),line(-2,0,2,0,lw(2)),line(0,-8,0,8,lw(2)),
vector([-1,5],[-0.4,-2.7],lc(red),hl(0.1)),
label(["x�2",-0.9,6]),
vector([-1.2,-6],[-0.5,0],lc(turquoise),lw(8)),
label(["x�3", -1,-5.5]),
pts([[-1,-1],[0,0],[1,1]],ps(2),pc(magenta)),
pic(eps,"ch5p56",font("Times-Roman",28)))$

The lines for the x and y axes need special emphasis to show up clearly with an eps �le, so we have used
qdraw's line function for that task. We also need to increase the line width setting for the eps �le case, which
we have done with the qdraw top level function lw, which only affects the �quick plotting� functions ex and
imp. We have used qdraw's more function to provide an x-axis label and a title. The font setting in the pic
function supplies an overall drawing font type and size which affects all elements unless locally over-ridden
with the special enhanced postscript features. In the title and labels, x�n is converted automatically to xn.

Here is the resulting plot:

-8
-6
-4
-2
 0
 2
 4
 6
 8

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

X AXIS

intersections of x, x2, x3

x2

x3

Figure 69: Using more(...) for Title and X Axis Label

49

5.19 Programming Homework Exercises
5.19.1 General Comments

The �le qdraw.mac is a text �le which you can modify with a good text editor such as notepad2. This Maxima
code is heavily commented as an aid to passing on some Maxima language programming examples. You
can get some experience with the Maxima programming language elements by copying the �le qdraw.mac to
another name, say myqdraw.mac, and use that copy to make modi�cations to the code which might interest
you. By frequently loading in the modi�ed �le with load(myqdraw), you can let Maxima check for syntax
errors, which it does immediately.

The most common syntax errors involve parentheses and commas, with strange error messages such as
� BLANK IS NOT AN INFIX OPERATOR�, or �TOO MANY PARENTHESES�, etc. Placing a comma
just before a closing parenthsis is a fatal error which can nevertheless creep in. This sounds obvious, but
you may �nd it useful to insert some special debug printouts, such as print("in blank, a = ",a) or
display(a), perhaps at the end of a do loop, so you are working with the structure:

for i thru n do (
job1,
job2,
job3,

print(" i = ",i," blank = ",blank)
/* end do loop */

),
...program continues...

When you are �nished debugging a section, you either will comment out the debug printout or simply delete it
to clean up the code. If you are not fully awake, you might then load into Maxima

for i thru n do (
job1,
job2,
job3,
/* end do loop */

),
...program continues...

and, of course, Maxima will object, since that extra comma no longer makes sense.
It is crucial to use a good text editor which will �balance� parentheses, brackets, and braces to minimize

parentheses etc errors.
If you look at the general structure of qdraw, you will see that most of the real work is done by qdraw1.

If you call qdraw1 instead of qdraw, you will be presented with a rather long list of elements which are
understood by draw2d. Even if you use qdraw, you will see the same long list wrapped by �draw2d� if you
have not loaded the draw package.

One feature you should look at is how a function which takes an arbitrary number of arguments, depending
on the user (as does the function draw2d), is de�ned. If this seems strange to you, experiment with a toy
function having a variable number of arguments, and use printouts inside the function to see what Maxima is
doing.

50

5.19.2 XMaxima Tips

It is useful to �rst try out a small code idea directly in XMaxima, even if the code is ten or �fteen lines long,
since the XMaxima interface has been greatly improved. When you want to edit your previous �try�, use
Alt-p to enter your previous code, and immediately backspace over the �nal); or)$. You can then cursor
up to an area where you want to add a new line of code, and with the cursor placed just after a comma, press
ENTER to create a new (blank) line. Since the block of code has not been properly concluded with either a);
or)$, Maxima will not try to �run� with the version you are working on when you press ENTER. Once you
have made the changes you want, cursor your way to the end and put back the correct ending and then pressing
ENTER will send your code to the Maxima engine.

The use of HOME, END, PAGEUP, PAGEDOWN, CNTRL-HOME, and CNTRL-END greatly speeds up work-
ing with XMaxima. For example to copy a code entry up near the top of your current workspace, �rst enter
HOME to put the cursor at the beginning of the current line, then PAGEUP or CNTRL-HOME to get up to the
top fast, then drag over the code (don't include the (%i5) part) to the end but not to the concluding); or)$.
You can hold down the SHIFT key and use the right (and left) cursor key to help you select a region to copy.
Then press CNTRL-C to copy the selected code to Window's clipboard. Then press CTRL-END to have the
cursor move to the bottom of your workspace where XMaxima is waiting for your next input. Press CNTRL-V
to paste your selection. If the selection extends over multiple lines, use the down cursor key to �nd the end
of the selection which should be without the proper code ending); or)$. You are then in the driver's seat
and can cursor your way around the code and make any changes without danger of XMaxima pre-emptively
sending your work to the computing engine until you go to that end and provide the proper ending.

5.19.3 Suggested Projects

You will have noticed that we used the qdraw function more in order to insert axis labels and a title into
our plot. Design qdraw functions xlabel(string), ylabel(string), and title(string). Place
them in the �scan 3� section of qdraw and try them out. You will need to pay attention to how new elements get
passed to draw2d. In particular, look at the list drlist, using your text editor search function (in notepad2,
Ctrl-f) to see how that list is constructed based on the user input.

A second small project would be to add a �line type� option for the qdraw function line. My experience
is that setting line_type = dots in draw2d produces no immediate change in the Windows Gnuplot
console window, produces a �nely dotted line for jpeg and png image �les, and produces a dashed line with
eps image �les. Your addition to qdraw should follow the present style, so the user would use the syn-
tax line(x1,y1,x2,y2,lc(c),lw(n),lk(string),lt(type)), where type is either s or d (for
solid or dots).

A third small project would be to design a function triangle for qdraw, including the options which are
presently in poly.

A fourth small project would be to include the option cbox(..) in the qdensity function. The present default
is to include the colorbox key next to the density plot, but if the user entered qdensity(....,cbox(f)) ,
the colorbox would be removed.

A more challenging project would be to write a qdraw function which would directly access the creation of
bar charts. These notes are written with the needs of the typical physical science or engineering user in mind,
so no attention has been paid to bar charts here. Naturally, if you frequently construct bar charts, this project
would be interesting for you. Start this project by �rst working with draw2d directly, to get familiar with what
is already available, and to avoid �re-creating the wheel�.

One general principle to keep in mind is that the Maxima language is an �interpretive language�; Maxima
does not make multiple passes over your code to reconcile function references, such as a compiler does. This
means that if a part of your code �calls� some user de�ned function, Maxima needs to have already read about
that function de�nition in your code.

51

5.20 Acknowledgements
The author would like to thank Mario Rodriguez Riotorto, the creator of Maxima's draw graphics interface
to Gnuplot, for his encouragement and advice at crucial stages in the development of the qdraw interface to
draw2d. The serious graphics user should spend time with the many powerful features of the draw package,
and the examples provided on the draw webpages,
http://www.telefonica.net/web2/biomates/maxima/gpdraw/.
These examples go far beyond the simple graphics in this chapter. The recent updating of the draw package
to allow use of Gnuplot's enhanced postscript features makes Maxima a more attractive tool for the creation of
educational diagrams.

52

