
Maxima by Example:
Ch.9: Bigfloats and Arbitrary Precision Quadrature ∗

Edwin L. Woollett

February 3, 2011

Contents
9.1 Introduction . 3
9.2 The Use of Bigfloat Numbers in Maxima . 3

9.2.1 Bigfloat Numbers Using bfloat, fpprec, and fpprintprec 3
9.2.2 Using print and printf with Bigfloats . 7
9.2.3 Adding Bigfloats Having Differing Precision . 10
9.2.4 Polynomial Roots Using bfallroots . 11
9.2.5 Bigfloat Number Gaps and Binary Arithmetic . 15
9.2.6 Effect of Floating Point Precision on Function Evaluation 16

9.3 Arbitrary Precision Quadrature with Maxima . 17
9.3.1 Using bromberg for Arbitrary Precision Quadrature 17
9.3.2 A Double Exponential Quadrature Method for a ≤ x < ∞ 20
9.3.3 The tanh-sinh Quadrature Method for a ≤ x ≤ b 23
9.3.4 The Gauss-Legendre Quadrature Method for a ≤ x ≤ b 29

∗This version uses Maxima 5.18.1 except for the revised section on bfallroots, which uses Maxima 5.23.2. The author would like
to thank the Maxima developers for their friendly help via the Maxima mailing list, and Michel Talon for feedback about bfallroots
behavior.This is a live document. Check http://www.csulb.edu/˜woollett/ for the latest version of these notes. Send
comments and suggestions to woollett@charter.net

1

Preface

COPYING AND DISTRIBUTION POLICY
This document is part of a series of notes titled
"Maxima by Example" and is made available
via the author’s webpage http://www.csulb.edu/˜woollett/
to aid new users of the Maxima computer algebra system.

NON-PROFIT PRINTING AND DISTRIBUTION IS PERMITTED.

You may make copies of this document and distribute them
to others as long as you charge no more than the costs of printing.

These notes (with some modifications) will be published in book form
eventually via Lulu.com in an arrangement which will continue
to allow unlimited free download of the pdf files as well as the option
of ordering a low cost paperbound version of these notes.

Feedback from readers is the best way for this series of notes to become more helpful to new users of Maxima.
All comments and suggestions for improvements will be appreciated and carefully considered.

LOADING FILES
The defaults allow you to use the brief version load(brmbrg) to load in the
Maxima file brmbrg.lisp.
To load in your own file, such as qbromberg.mac (used in this chapter),
using the brief version load(qbromberg), you either need to place
qbromberg.mac in one of the folders Maxima searches by default, or
else put a line like:

file_search_maxima : append(["c:/work3/###.{mac,mc}"],file_search_maxima)$

in your personal startup file maxima-init.mac (see Ch. 1, Introduction to Maxima
for more information about this).

Otherwise you need to provide a complete path in double quotes,
as in load("c:/work3/qbromberg.mac"),

We always use the brief load version in our examples, which are generated
using the Xmaxima graphics interface on a Windows XP computer, and copied
into a fancy verbatim environment in a latex file which uses the fancyvrb
and color packages.

We use qdraw.mac for plots (see Ch.5), which uses draw2d defined
in share/draw/draw.lisp.

Maxima, a Computer Algebra System.
Some numerical results depend on the Lisp version used.
This chapter uses Version 5.18.1 (2009) using Lisp GNU
Common Lisp (GCL) GCL 2.6.8 (aka GCL).
http://maxima.sourceforge.net/

2

3

9.1 Introduction
This chapter is divided into two sections.

In the first section we discuss the use of bfloat, including examples which also involve fpprec, bfloatp,
bfallroots, fpprintprec, print, and printf. The second section of Chapter 9 presents examples of
the use of Maxima for arbitrary precision quadrature (numerical integration). (In Chapter 8, we gave numerous
examples of numerical integration using the Quadpack functions such as quad_qags as well as romberg.
Those examples all accepted the default floating point precision of Maxima).

Chapter 10 covers both Fourier transform and Laplace transform type integrals. Chapter 11 presents tools for
the use of fast Fourier transforms with examples of use.

Software files developed for Ch. 9 and available on the author’s web page include:
1. fdf.mac, 2. qbromberg.mac. ,
3. quad_de.mac, 4. quad_ts.mac, 5. quad_gs.mac.

9.2 The Use of Bigfloat Numbers in Maxima
9.2.1 Bigfloat Numbers Using bfloat, fpprec, and fpprintprec

bfloat(expr) converts all numbers and functions of numbers in expr to bigfloat numbers. You can enter explicit
bigfloat numbers using the notation 2.38b0, or 2.38b7, or 2.38b-4, for example. bfloatp(val) returns true if
val is a bigfloat number, otherwise false is returned.

The number of significant digits in the resulting bigfloat is specified by the parameter fpprec, whose default
value is 16. The setting of fpprec does not affect computations on ordinary floating point numbers.

The underlying Lisp code has two variables: 1. $fpprec, which defines the Maxima variable fpprec (which
determines the number of DECIMAL digits requested for arithmetic), and 2. fpprec which is related to the
number of bits used for the fractional part of the bigfloat, and which can be accessed from Maxima using
?fpprec. We can also use the :lisp foobar construct to look at a lisp variable foobar from “inside” the Lisp
interpreter. You do not end with a semi-colon; you just press ENTER to get the response, and the input line
number of the Maxima prompt does not advance.

(%i1) fpprec;
(%o1) 16
(%i2) ?fpprec;
(%o2) 56
(%i3) :lisp $fpprec
16
(%i3) :lisp fpprec
56

We discuss some effects of the fact that computer arithmetic is carried out with binary bit representation of
decimal numbers in Sec. 9.2.5.

4

Controlling Printed Digits with fpprintprec

When using bigfloat numbers, the screen can quickly fill up with numbers with many digits, and fpprintprec
allows you to control how many digits are displayed. For bigfloat numbers, when fpprintprec has a value be-
tween 2 and fpprec (inclusive), the number of digits printed is equal to fpprintprec. Otherwise, fpprintprec
can be 0, or greater than fpprec, in which case the number of digits printed is equal to fpprec. fpprintprec
cannot be 1. The setting of fpprintprec does not affect the precision of the bigfloat arithmetic carried out, only
the setting of fpprec matters.

The parameter fpprec can be used as a local variable in a function defined using block, and set to a local
value which does not affect the global setting. Such a locally defined value of fpprec governs the bigfloat
calculations in that function and in any functions called by that function, and in any third layer functions
called by the secondary layer functions, etc. fpprintprec can be set to a value inside a function defined with
block,without changing the global value, provided you include the name fpprintprec in the local variables
bracket []:

(%i1) [fpprec,fpprintprec];
(%o1) [16, 0]
(%i2) piby2 : block([fpprintprec,fpprec:30,val],

val:bfloat(%pi/2),
fpprintprec:8,
disp(val),
print(" ",val),
val);

1.5707963b0

1.5707963b0
(%o2) 1.57079632679489661923132169164b0
(%i3) [fpprec,fpprintprec];
(%o3) [16, 0]

For simple bfloat uses in interactive mode, one can use the syntax bfloat-job, fpprec:fp ; which implicitly
uses the ev(...) construct with temporary settings of global flags as in

(%i1) bfloat(%pi),fpprec:20;
(%o1) 3.1415926535897932385b0
(%i2) slength(string(%));
(%o2) 23
(%i3) fpprec;
(%o3) 16
(%i4) bfloat(%pi),fpprec:40;
(%o4) 3.141592653589793238462643383279502884197b0
(%i5) slength(string(%));
(%o5) 43
(%i6) fpprec;
(%o6) 16
(%i7) tval : bfloat(integrate(exp(x),x,-1,1)),fpprec:30;
(%o7) 2.35040238728760291376476370119b0
(%i8) slength(string(%));
(%o8) 33

5

Next we illustrate passing both a bigfloat number as well as local values of fpprec and fpprintprec to a second
function. Function f1 is designed to call function f2:

(%i1) f2(w) := block([v2],
disp(" in f2 "),
display([w,fpprec,fpprintprec]),
v2 : sin(w),
display(v2),
print(" "),
v2)$

(%i2) f1(x,fp,fprt) :=
block([fpprintprec,fpprec:fp,v1],
fpprintprec:fprt,
disp(" in f1 "),
display([x,fpprec,fpprintprec]),
v1 : f2(bfloat(x))ˆ2,
print(" in f1, v1 = ",v1),
v1)$

And here we call f1 with values x = 0.5, fp = 30, fprt = 8:

(%i3) f1(0.5,30,8);
in f1

[x, fpprec, fpprintprec] = [0.5, 30, 8]
in f2

[w, fpprec, fpprintprec] = [5.0b-1, 30, 8]
v2 = 4.7942553b-1

in f1, v1 = 2.2984884b-1
(%o3) 2.29848847065930141299531696279b-1
(%i4) [fpprec,fpprintprec];
(%o4) [16, 0]

We see that the called function (f2) maintains the values of fpprec and fpprintprec which exist in the
calling function (f1).

Bigfloat numbers are “contagious” in the sense that, for example, multiplying (or adding) an integer or ordinary
float number with a bigfloat results in a bigfloat number. In the above example sin(w) is a bigfloat since w is
one.

(%i5) 1 + 2.0b0;
(%o5) 3.0b0
(%i6) 1.0 + 2.0b0;
(%o6) 3.0b0
(%i7) sin(0.5b0);
(%o7) 4.79425538604203b-1

The Maxima symbol %pi is not automatically converted by contagion (in the present version of Maxima), and
an extra use of bfloat does the conversion.

(%i8) a:2.38b-1$
(%i9) exp(%pi*a);

2.38b-1 %pi
(%o9) %e
(%i10) bfloat(%);
(%o10) 2.112134508503361b0

6

A recent comment by Maxima developer Volker van Nek on the Maxima mailing list illustrates how the setting
of fpprec can affect what is printed to the screen when doing bigfloat arithmetic.

(%i11) 1b0 + 1b-25,fpprec:26;
(%o11) 1.0000000000000000000000001b0
(%i12) slength(string(%));
(%o12) 29

Note that 1b-25 is the bigfloat version of 10−25. In the case above the value of fpprec is large enough to see the
effect of the bigfloat addition. The number of digits identified by the conversion of the number to a string and
then finding the length of the string is 29− 3 = 26 since the three string characters [.,b,0] do not contribute
to the precision of the number. If we leave the fpprec at 26 and add to 1 the bigfloat equivalent of 10−26,
Maxima prints out a bigfloat version of 1, but if we subtract from that answer 1b0 we do not get zero:

(%i13) 1b0 + 1b-25,fpprec:26;
(%o13) 1.0000000000000000000000001b0
(%i14) slength(string(%));
(%o14) 29
(%i15) 1b0 +10b0ˆ(-26),fpprec:26;
(%o15) 1.0b0
(%i16) % - 1b0,fpprec:26;
(%o16) 9.6935228033557930648993206b-27
(%i17) slength(string(%));
(%o17) 31

Of the thirty one characters present in this string, the five characters [.,b,−,2,7] do not contribute to the pre-
cision, , leaving 26 digits of precision. Note that the setting of fpprintprec was 0 in the above, which provides
for printing of the same number of significant digits as the value of fpprec.

Here are three ways to enter the bigfloat equivalent of 1/10 = 10−1 = 0.1:

(%i18) [1b-1,bfloat(10ˆ(-1)),10b0ˆ(-1)];
(%o18) [1.0b-1, 1.0b-1, 1.0b-1]

We next show that once bigfloat numbers are in play inside a block function in which a local value of fpprec
is set, the subsequent arithmetic is the same whether or not you wrap each operation with bfloat.

(%i19) test1(h,j,fp):=
block([fpprec:fp,u,a,x,w],
u:bfloat(h*j),
a:bfloat(exp(-u)),
x:bfloat(exp(u-a)),
w:bfloat(exp(-a)+x),
[x,w])$

(%i20) test2(h,j,fp):=
block([fpprec:fp,u,a,x,w],
u:bfloat(h*j),
a:exp(-u),
x:exp(u-a),
w:exp(-a)+x,
[x,w])$

(%i21) [xt,wt]:test1(1/16,9,60)$
(%i22) [x1,w1]:test1(1/16,9,40)$
(%i23) [x2,w2]:test2(1/16,9,40)$

7

(%i24) [x1,w1]-[xt,wt],fpprec:60;
(%o24) [- 2.29699398191727953386796229322249912456243487302509210328785b-42,

- 9.07907621847706474924315736438559811433348894389391230442376b-42]
(%i25) [x2,w2]-[xt,wt],fpprec:60;
(%o25) [- 2.29699398191727953386796229322249912456243487302509210328785b-42,

- 9.07907621847706474924315736438559811433348894389391230442376b-42]
(%i26) bfloat([x1,w1]-[xt,wt]),fpprec:60;
(%o26) [- 2.29699398191727953386796229322249912456243487302509210328785b-42,

- 9.07907621847706474924315736438559811433348894389391230442376b-42]
(%i27) map(’bfloatp,%o5);
(%o27) [true, true]
(%i28) map(’bfloatp,%o4);
(%o28) [true, true]

In the above, we used the “completely bfloat wrapped” version test1(..) to define answers with 60 digit pre-
cision, and then used test1(..) and test2(..) to compute comparison answers at 40 digit precision. We see that
there is no difference in precision between the answers returned by the two test versions (each using 40 digit
precision).

We also see, from the output %08, that arith_job, fpprec:60; using interactive mode produces the
same answer (with bigfloats already in play) whether or not the “arithmetic_job” is wrapped in bfloat.
The numbers returned by both test versions are bigfloats, as indicated by the last two outputs.

9.2.2 Using print and printf with Bigfloats

In Sec. 9.2.1 we described the relations between the settings of fpprec and fpprintprec. Once you have
generated a bigfloat with some precision, it is convenient to be able to control how many digits are displayed.
We start with the use of print. If you start with the global default value of 16 for fpprec and the default
value of 0 for fpprintprec, you can use a simple one line command for a low number of digits, as shown in the
following. We first define a bigfloat bf1 to have fpprec = 45 digits of precision:

(%i1) [fpprec,fpprintprec];
(%o1) [16, 0]
(%i2) bf1:bfloat(integrate(exp(x),x,-1,1)),fpprec:45;
(%o2) 2.35040238728760291376476370119120163031143596b0
(%i3) slength(string(%));
(%o3) 48

We then use print with fpprintprec to get increasing numbers of digits on the screen:

(%i4) print(bf1),fpprintprec:12$
2.35040238728b0
(%i5) [fpprec,fpprintprec];
(%o5) [16, 0]
(%i6) print(bf1),fpprintprec:15$
2.3504023872876b0
(%i7) [fpprec,fpprintprec];
(%o7) [16, 0]
(%i8) print(bf1),fpprintprec:16$
2.35040238728760291376476370119120163031143596b0
(%i9) [fpprec,fpprintprec];
(%o9) [16, 0]
(%i10) slength(string(%o8));
(%o10) 48

8

As you see above, when fpprintprec reaches the global value of fpprec = 16 all 45 digits are printed. To
control the number of printed digits, you need to locally set the value of fpprec as shown here:

(%i11) print(bf1),fpprec:20,fpprintprec:18$
2.35040238728760291b0

To use this construct in a do loop, wrap it in ev(...):

(%i12) for j:14 thru 18 do ev(print(bf1),fpprec:j+2,fpprintprec:j)$
2.3504023872876b0
2.3504023872876b0
2.350402387287602b0
2.3504023872876029b0
2.35040238728760291b0

A more formal approach is to define a small function which we call bfprint:

(%i13) bfprint(bf,fpp):=
block([fpprec, fpprintprec],

fpprec : fpp+2,
fpprintprec:fpp,
print(" number of digits = ",fpp),
print(" ",bf))$

with the behavior:

(%i14) bfprint(bf1,24)$
number of digits = 24
2.35040238728760291376476b0

Using printf with bigfloats

We first show some interactive use of printf with bigfloats.

(%i1) bf:bfloat(exp(-20)),fpprec:30;
(%o1) 2.06115362243855782796594038016b-9
(%i2) slength(string(%));
(%o2) 34
(%i3) printf(true,"˜d˜a",3,string(bf))$
32.06115362243855782796594038016b-9

The format string is enclosed in double quotes, with ˜ d used for an integer, ˜ f used for a floating point number,
˜ a used for a Maxima string, ˜ e used for exponential display of a floating point number, and ˜ h used for a
bigfloat number. You can include the newline instruction with ˜ % anywhere and as many times as you wish.
In the example above, we used the string formatting to display the bigfloat number bf, which required that bf be
converting to a Maxima string using string. Because we did not include any spaces between the integer format
instruction ˜ d and the string format character ˜ a, we get 32.0... instead of 3 2.0....

(%i4) printf(true," ˜d˜a",3,string(bf))$
32.06115362243855782796594038016b-9

(%i5) printf(true," ˜d ˜a",3,string(bf))$
3 2.06115362243855782796594038016b-9

9

(%i6) (printf(true," ˜d ˜a",3,string(bf)),
printf(true," ˜d ˜a",3,string(bf)))$

3 2.06115362243855782796594038016b-9 3 2.06115362243855782796594038016b-9
(%i7) (printf(true," ˜d ˜a˜%",3,string(bf)),

printf(true," ˜d ˜a",3,string(bf)))$
3 2.06115362243855782796594038016b-9
3 2.06115362243855782796594038016b-9

To get the output on successive lines we had to include the newline instruction ˜ %. To control the number of
significant figures displayed, we use fpprintprec:

(%i8) fpprintprec:8$
(%i9) printf(true," ˜d ˜a",3,string(bf))$

3 2.0611536b-9

Next let’s show what we get if we use the other options:

(%i10) printf(true," ˜d ˜f",3,bf)$
3 0.0000000020611536224385579

(%i11) printf(true," ˜d ˜e",3,bf)$
3 2.0611536224385579E-9

(%i12) printf(true," ˜d ˜h",3,bf)$
3 0.0000000020611536

A Table of Bigfloats using block and printf

Here is an example of using printf with bigfloats inside a block to make a table.

(%i1) print_test(fp) :=
block([fpprec,fpprintprec,val],
fpprec : fp,
fpprintprec : 8,
display(fpprec),
print(" k value "),
print(" "),
for k thru 4 do
(val : bfloat(exp(kˆ2)),

printf(true," ˜d ˜a ˜%",k,string(val))))$
(%i2) print_test(30)$

fpprec = 30

k value

1 2.7182818b0
2 5.459815b1
3 8.1030839b3
4 8.8861105b6

Note the crucial use of the newline instruction ˜ % to get the table output. Some general use examples of printf
can be found in the Maxima manual and in the file

C:\Program Files\Maxima-5.17.1\share\maxima\5.17.1\share\
contrib\stringproc\rtestprintf.mac

10

We can use printf for the titles and empty lines with the alternative version. We first define an alternative
function print_test2:

(%i3) print_test2(fp) :=
block([fpprec,fpprintprec,val],
fpprec : fp,
fpprintprec : 8,
display(fpprec),
printf(true,"˜% ˜a ˜a ˜%˜%",k,value),
for k thru 4 do
(val : bfloat(exp(kˆ2)),

printf(true," ˜d ˜a ˜%",k,string(val))))$

Here we try out the alternative function with fp = 30:

(%i4) print_test2(30)$
fpprec = 30

k value

1 2.7182818b0
2 5.459815b1
3 8.1030839b3
4 8.8861105b6

9.2.3 Adding Bigfloats Having Differing Precision

If A and B are bigfloats with different precisions, the precision of the sum (A + B) is the precision of the
least precise number. As an example, we calculate an approximation to π using both 30 and 50 digit precision,
and add the numbers using 40 digit precision, and then using 60 digit precision. In both cases, the result has 30
digit precision.

(%i1) fpprintprec:8$
(%i2) pi50 : bfloat(%pi),fpprec:50;
(%o2) 3.1415926b0
(%i3) pi30 : bfloat(%pi),fpprec:30;
(%o3) 3.1415926b0
(%i4) abs(pi30 - pi50),fpprec:60;
(%o4) 1.6956855b-31
(%i5) twopi : bfloat(2*%pi),fpprec:60;
(%o5) 6.2831853b0
(%i6) pisum40 : pi30 + pi50,fpprec:40;
(%o6) 6.2831853b0
(%i7) abs(pisum40 - twopi),fpprec:60;
(%o7) 1.6956855b-31
(%i8) pisum60 : pi30 + pi50,fpprec:60;
(%o8) 6.2831853b0
(%i9) abs(pisum60 - twopi),fpprec:60;
(%o9) 1.6956855b-31

11

9.2.4 Polynomial Roots Using bfallroots

The Maxima function bfallroots has the same syntax as allroots, and computes numerical approxima-
tions of the real and complex roots of a polynomial or polynomial expression of one variable. In all respects,
bfallroots is identical to allroots except that bfallroots computes the roots using bigfloats, and
to take advantage of bigfloats you need to set both ffprec and ratepsilon to compatible values (as our example
shows). The source code of bfallroots with some comments is in the file cpoly.lisp in the src direc-
tory.

Our example is a cubic equation whose three degenerate roots are simply π. We are using Maxima 5.23.2 for
this revised section, with display2d:false set in our init file. We first compute a 50 digit approximation
to the true root.

(%i1) fpprec;
(%o1) 16
(%i2) pi50 : ev (bfloat (%pi), fpprec:50);
(%o2) 3.1415926535897932384626433832795028841971693993751b0
(%i3) slength(string (%));
(%o3) 53

We next define the symbolic cubic expression whose roots we would like to approximately calculate.

(%i4) e : expand ((x-%pi)ˆ3);
(%o4) xˆ3-3*%pi*xˆ2+3*%piˆ2*x-%piˆ3

As a warm-up, we use the default 16 digit floating point precision and find the root(s) using both allroots
and bfallroots. We first need to turn the symbolic expression into a polynomial whose coefficients have
the default 16 digit accuracy.

(%i6) e_f16 : float (e);
(%o6) xˆ3-9.424777960769379*xˆ2+29.60881320326807*x-31.00627668029982

Now find the approximate roots of this numerical polynomial in x using allroots.

(%i7) sar16 : map (’rhs, allroots (%i*e_f16));
(%o7) [3.14159265358979-1.8873791418627661E-15*%i,

9.9920072216264089E-16*%i+3.141592653589795,
8.8817841970012523E-16*%i+3.141592653589795]

We first check to see how well the approximate solutions behave as far as causing the approximate numerical
polynomial to be zero (as roots should do).

(%i8) for s in sar16 do (subst (s,x,e_f16), disp (expand (%%)))$
6.3108872417680944E-30*%i

-6.3108872417680944E-30*%i

-3.1554436208840472E-30*%i

which is very good root behavior.

12

We next compare the approximate roots (taking realpart) to pi50.

(%i9) for s in sar16 do disp (pi50 - realpart(s))$
3.663735981263017b-15

-1.665334536937735b-15

-1.665334536937735b-15

The above accuracy in finding π corresponds to the default floating point precision being used.

Retaining the default precision, we try out bfallroots.

(%i10) sbfar16 : map (’rhs, bfallroots (%i*e_f16));
(%o10) [3.141592653589788b0-1.207367539279858b-15*%i,

5.967448757360216b-16*%i+3.141592653589797b0,
6.106226635438361b-16*%i+3.141592653589795b0]

We then again check the roots against the expression:

(%i11) for s in sbfar16 do (subst (s,x,e_f16), disp (expand (%%)))$
7.888609052210118b-31*%i+2.664535259100376b-15

1.332267629550188b-15

1.332267629550188b-15-3.944304526105059b-31*%i

and compare the accuracy against our “true value”.

(%i12) for s in sbfar16 do disp (pi50 - realpart(s))$
5.662137425588298b-15

-3.774758283725532b-15

-1.554312234475219b-15

Thus we see that bfallroots provides no increased accuracy unless we set fpprec and ratepsilon to
values which will cause Maxima to use higher precision.

In order to demonstrate the necessity of setting ratepsilon, we first try out bfallroots using only the
fpprec setting. Let’s try to solve for the roots with 40 digit accuracy, first converting the symbolic cubic to a
numerical cubic with coefficients having 40 digit accuracy.

(%i13) e_f40 : ev (bfloat (e),fpprec : 40);
(%o13) xˆ3-9.424777960769379715387930149838508652592b0*xˆ2

+2.960881320326807585650347299962845340594b1*x
-3.100627668029982017547631506710139520223b1

The coefficients are now big floats, with the tell-tale b0 or b1 power of ten factor attached to the end.

13

Now set fpprec : 40 and use bfallroots:

(%i16) fpprec:40$
(%i17) sbfar40 : map (’rhs, bfallroots (%i*e_f40));
‘rat’ replaced -3.100627668029982017547631506710139520223B1

by -14821/478 = -3.100627615062761506276150627615062761506B1
‘rat’ replaced 2.960881320326807585650347299962845340594B1

by 32925/1112 = 2.960881294964028776978417266187050359712B1
‘rat’ replaced -9.424777960769379715387930149838508652592B0

by -103993/11034 = -9.424777959035707812216784484321189052021B0
(%o17) [5.444584912690149273860860372375096164019b-3*%i

+3.138436376741899641306089676703354562429b0,
3.138436376741899641306089676703354687072b0
-5.444584912690149273860860372375167833945b-3*%i,

7.166992586513730038213070271942264501126b-35*%i
+3.14790520555190852960460513091447980252b0]

Check the 40 digit expression using these roots

(%i18) for s in sbfar40 do (subst (s,x,e_f40), disp (expand (%%)))$
1.321649848909340099656224265221838153703b-9*%i
+2.492462307131280208085778687675933071752b-7

2.492462307131280208085778687675940418592b-7
-1.321649848909340099656224265204773970573b-9*%i

8.567776759672472832399742389749133357356b-39*%i
+2.515445418347819864275611335161734182841b-7

and check the closeness of the roots to the “true value”,

(%i19) for s in sbfar40 do disp (pi50 - realpart(s))$
3.156276847893597156553706576148321768144b-3

3.156276847893597156553706576148197124968b-3

-6.312551962115291141961747634976918322456b-3

which are really poor results, apparently caused by inaccurate rat replacement of decimal coefficients by
ratios of whole numbers. Look, for example, at the third rat replacemnt above and its difference from the actual
40 digit accurate number:

(%i20) bfloat (9.424777960769379715387930149838508652592B0 -
103993/11034);

(%o20) 1.733671903171145665517319600570931418138b-9
(%i21) ratepsilon;
(%o21) 2.0E-8

14

So we are driven to the conclusion that, with the present design of Maxima, we must set ratepsilon to a
small number which somehow “matches” the setting of fpprec.

(%i22) ratepsilon : 1.0e-41$
(%i23) sbfar40 : map (’rhs, bfallroots (%i*e_f40));
‘rat’ replaced -3.100627668029982017547631506710139520223B1

by -689775162029634828708/22246307389364524529
= -3.100627668029982017547631506710139520223B1

‘rat’ replaced 2.960881320326807585650347299962845340594B1
by 1094430324967716480409/36962991979932468848

= 2.960881320326807585650347299962845340594B1
‘rat’ replaced -9.424777960769379715387930149838508652592B0

by -787357891006146598194/83541266890691994833
= -9.424777960769379715387930149838508652592B0

(%o23) [3.141592653589793238462643383279502884197b0,
3.141592653589793238462643383279502884192b0
-2.066298663554802260101294694335978730541b-40*%i,

2.066298663554802260101294694335978730541b-40*%i
+3.141592653589793238462643383279502884203b0]

(%i24) for s in sbfar40 do (subst (s,x,e_f40), disp (expand (%%)))$
2.20405190779178907744138100729171064591b-39

0.0b0

7.346839692639296924804603357639035486367b-40

(%i25) for s in sbfar40 do disp (pi50 - realpart(s))$
9.183549615799121156005754197048794357958b-41

5.050952288689516635803164808376836896877b-39

-5.510129769479472693603452518229276614775b-39

which provides roughly 40 digit accuracy solutions for the roots.

Of course, you can use ratprint : false to avoid those pesky rat conversion messages.

15

9.2.5 Bigfloat Number Gaps and Binary Arithmetic

fpprec as set by the user is the number of DECIMAL digits being requested. In fact, the actual arithmetic is
carried out with binary arithmetic. Due to the inevitably finite number of binary bits used to represent a floating
point number there will be a range of floating point numbers which are not recognised as different.

For a simple example, let’s take the case fpprec = 4. Consider the gap around the number x:bfloat(2/3)
whose magnitude is less than 1. We will find that ?fpprec has the value 16 and that Maxima behaves as if (for
this case) the fractional part of a bigfloat number is represented by the state of a system consisting of 18 binary
bits.

Let u = 2−18. If we let x1 = x + u we get a number which is treated as having a nonzero difference from
x. However, if we let w be a number which is one significant digit less than u, and define x2 = x + w, x2 is
treated as having zero difference from x. Thus the gap in bigfloats around our chosen x is ulp = 2 · 2−18 = 2−17,
and this gap should be the same size (as long as fpprec = 4) for any bigfloat with a magnitude less than 1.

If we consider a bigfloat number whose decimal magnitude is less than 1, its value is represented by a “fractional
binary number”. For the case that this fractional binary number is the state of 18 (binary) bits, the smallest base
2 number which can occur is the state in which all bits are off (0) except the least significant bit which is on
(1), and the decimal equivalent of this fractional binary number is precisely 2−18. Adding two bigfloats (each
of which has a decimal magnitude less than 1) when each is represented by the state of an 18 binary bit system
(interpreted as a fractional binary number), it is not possible to increase the value of any one bigfloat by less
than this smallest base 2 number.

(%i1) fpprec:4$
(%i2) ?fpprec;
(%o2) 16
(%i3) x :bfloat(2/3);
(%o3) 6.667b-1
(%i4) u : bfloat(2ˆ(-18));
(%o4) 3.815b-6
(%i5) x1 : x + u;
(%o5) 6.667b-1
(%i6) x1 - x;
(%o6) 1.526b-5
(%i7) x2 : x + 3.814b-6;
(%o7) 6.667b-1
(%i8) x2 - x;
(%o8) 0.0b0
(%i9) ulp : bfloat(2ˆ(-17));
(%o9) 7.629b-6

In computer science Unit in the Last Place, or Unit of Least Precision, ulp(x), associated with a floating
point number x is the gap between the two floating-point numbers closest to the value x. We assume here that
the magnitude of x is less than 1. These two closest numbers will be x + u and x− u where u is the smallest
positive floating point number which can be accurately represented by the systems of binary bits whose states
are used to represent the fractional parts of the floating point numbers.

The amount of error in the evaluation of a floating-point operation is often expressed in ULP. We see that for
fpprec = 4, 1 ULP is about 8 · 10−6. An average error of 1 ULP is often seen as a tolerable error.

16

We can repeat this example for the case fpprec = 16.

(%i10) fpprec:16$
(%i11) ?fpprec;
(%o11) 56
(%i12) x :bfloat(2/3);
(%o12) 6.666666666666667b-1
(%i13) u : bfloat(2ˆ(-58));
(%o13) 3.469446951953614b-18
(%i14) x1 : x + u;
(%o14) 6.666666666666667b-1
(%i15) x1 - x;
(%o15) 1.387778780781446b-17
(%i16) x2 : x + 3.469446951953613b-18;
(%o16) 6.666666666666667b-1
(%i17) x2 - x;
(%o17) 0.0b0
(%i18) ulp : bfloat(2ˆ(-57));
(%o18) 6.938893903907228b-18

9.2.6 Effect of Floating Point Precision on Function Evaluation

Increasing the value of fpprec allows a more accurate numerical value to be found for the value of a function
at some point. A simple function which allows one to find the absolute value of the change produced by in-
creasing the value of fpprec has been presented by Richard Fateman.∗ This function is uncert(f, arglist), in
which f is a Maxima function, depending on one or more variables, and arglist is the n-dimensional point at
which one wants the change in value of f produced by an increase of fpprec by 10. This function returns a two
element list consisting of the numerical value of the function at the requested point and also the absolute value
of the difference induced by increasing the value of the current fpprec setting by the amount 10.

We present here a version of Fateman’s function which has an additional argument to control the amount of the
increase of fpprec, and also has been simplified to accept only a function of one variable.

The function fdf is available in the Ch. 8 files fdf.mac, qbromberg.mac, quad_ts.mac, and quad_de.mac,
and is defined by the code

fdf (%ff, %xx, %dfp) :=
block([fv1,fv2,df],
fv1:bfloat(%ff(bfloat(%xx))),
block([fpprec:fpprec + %dfp],
fv2: bfloat(%ff(bfloat(%xx))),
df: abs(fv2 - fv1)),

[bfloat(fv2),bfloat(df)])$

Here is an example of how this function can be used.

(%i1) (fpprintprec:8,load(fdf))$
(%i2) fpprec;
(%o2) 16
(%i3) g(x) := sin(x/2)$

∗see his draft paper “Numerical Quadrature in a Symbolic/Numerical Setting”, Oct. 16, 2008, available as the file quad.pdf in
the folder: http://www.cs.berkeley.edu/∼fateman/papers/

17

(%i4) fdf(g,1,10);
(%o4) [4.7942553b-1, 1.834924b-18]
(%i5) fdf(g,1,10),fpprec:30;
(%o5) [4.7942553b-1, 2.6824592b-33]
(%i6) fpprec;
(%o6) 16

In the first example, fpprec is 16, and increasing the value to 26 produces a change in the function value of
about 2× 10−18. In the second example, fpprec is 30, and increasing the value to 40 produces a change in the
function value of about 3× 10−33.

In the later section describing the “tanh-sinh” quadrature method, we will use this function for a heuristic
estimate of the contribution of floating point errors to the approximate numerical value produced for an integral
by that method.

9.3 Arbitrary Precision Quadrature with Maxima
9.3.1 Using bromberg for Arbitrary Precision Quadrature

A bigfloat version of the romberg function is defined in the file brmbrg.lisp located in share/numeric.
You need to use load(brmbrg) or load(”brmbrg.lisp”) to use the function bromberg.

The use of bromberg is identical to the use of the romberg which we discussed in Chapter 8 (Numerical
Integration), except that rombergtol (used for a relative error precision return) is replaced by the bigfloat
brombergtol with a default value of 1.0b-4, and rombergabs (used for an absolute error return) is replaced
by the bigfloat brombergabs which has the default value 0.0b0, and rombergit (which causes an return after
halving the step size that many times) is replaced by the integer brombergit which has the default value 11,
and finally, rombergmin (the minimum number of halving iterations) is replaced by the integer brombergmin
which has the default value 0.

If the function being integrated has a magnitude of order one over the domain of integration, then an absolute
error precision of a given size is approximately equivalent to a relative error precision of the same size. We
will test bromberg using the function exp(x) over the domain [-1, 1], and use only the absolute error precision
parameter brombergabs, setting brombergtol to 0.0b0 so that the relative error test cannot be satisfied. Then
the approximate value of the integral is returned when the absolute value of the change in value from one halv-
ing iteration to the next is less than the bigfloat number brombergabs.

We explore the use and behavior of bromberg for the simple integral
∫ 1

−1
ex dx, binding a value accurate

to 42 digits to tval, defining parameter values, calling bromberg first with fpprec equal to 30 together with
brombergabs set to 1.0b-15 and find an actual error (compared with tval) of about 7× 10−24.

(%i1) (fpprintprec:8,load(brmbrg));
(%o1) C:/PROGRA˜1/MAXIMA˜3.1/share/maxima/5.18.1/share/numeric/brmbrg.lisp
(%i2) [brombergtol,brombergabs,brombergit,brombergmin,fpprec,fpprintprec];
(%o2) [1.0b-4, 0.0b0, 11, 0, 16, 8]
(%i3) tval: bfloat(integrate(exp(x),x,-1,1)),fpprec:42;
(%o3) 2.3504023b0
(%i4) fpprec;
(%o4) 16

18

(%i5) (brombergtol:0.0b0,brombergit:100)$
(%i6) b15:(brombergabs:1.0b-15,bromberg(exp(x),x,-1,1)),fpprec:30;
(%o6) 2.3504023b0
(%i7) abs(b15 - tval),fpprec:42;
(%o7) 6.9167325b-24
(%i8) b20:(brombergabs:1.0b-20,bromberg(exp(x),x,-1,1)),fpprec:30;
(%o8) 2.3504023b0
(%i9) abs(b20 - tval),fpprec:42;
(%o9) 1.5154761b-29

We see that, for the case of this test integral involving a well behaved integrand, the actual error of the re-
sult returned by bromberg is much smaller than the requested “difference error” supplied by the parameter
brombergabs.

For later use, we define qbromberg (in a file qbromberg.mac) with the code:

qbromberg(%f,a,b,rprec,fp, itmax) :=
block([brombergtol,brombergabs,brombergit,

fpprec:fp],
if rprec > fp then
(print(" rprec should be less than fp "),

return(done)),
brombergabs : bfloat(10ˆ(-rprec)),
brombergtol : 0.0b0,
brombergit : itmax,
bromberg(%f(x),x,a,b))$

This function, with the syntax

qbromberg (f, a, b, rprec, fp, itmax)

uses the Maxima function bromberg to integrate the Maxima function f over the interval [a, b], setting
the local value of fpprec to fp, setting brombergtol to 0, setting brombergabs to 10−rprec, where
rprec is called the “requested precision”.

Here is a test of qbromberg for this simple integral.

(%i10) load(qbromberg)$
(%i11) qbr20 : qbromberg(exp,-1,1,20,40,100);
(%o11) 2.3504023b0
(%i12) abs(qbr20 - tval);
(%o12) 0.0b0
(%i13) abs(qbr20 - tval),fpprec:40;
(%o13) 1.0693013b-29

We have to be careful in the above step-by-step method to set fpprec to a large enough value to see the actual
size of the error in the returned answer.

19

Instead of the work involved in the above step by step method, it is more convenient to define a function qbrlist
which is passed a desired fpprec as well as a list of requested precision goals for bromberg. The function
qbrlist then assumes a sufficiently accurate tval is globally defined, and proceeds through the list to calcu-
late the bromberg value for each requested precision, computes the error in the result, and prints a line con-
taining (rprec, fpprec, value, value-error). Here is the code for such a function, available in qbromberg.mac:

qbrlist(%f,a,b,rplist,fp,itmax) :=
block([fpprec:fp,fpprintprec,brombergtol,

brombergabs,brombergit,val,verr,pr],
if not listp(rplist) then (print("rplist # list"),return(done)),
brombergtol : 0.0b0,
brombergit : itmax,
fpprintprec:8,
print(" rprec fpprec val verr "),
print(" "),
for pr in rplist do
(brombergabs : bfloat(10ˆ(-pr)),
val: bromberg(%f(x),x,a,b),
verr: abs(val - tval),
print(" ",pr," ",fp," ",val," ",verr)))$

and here is an example of use of qbrlist in which the requested precision rprec (called pr in the code) is
set to three different values supplied by the list rplist for each setting of fpprec used. We first define an
accurate comparison value tval:

(%i1) (fpprintprec:8, load(brmbrg), load(qbromberg))$
(%i2) tval: bfloat(integrate(exp(x),x,-1,1)),fpprec:42;
(%o2) 2.3504023b0

Here is our test for three different values of fpprec:

(%i3) qbrlist(exp,-1,1,[10,15,17],20,100)$
rprec fpprec val verr
10 20 2.3504023b0 4.5259436b-14
15 20 2.3504023b0 1.3552527b-20
17 20 2.3504023b0 1.3552527b-20

(%i4) qbrlist(exp,-1,1,[10,20,27],30,100)$
rprec fpprec val verr
10 30 2.3504023b0 4.5259437b-14
20 30 2.3504023b0 1.4988357b-29
27 30 2.3504023b0 5.5220263b-30

(%i5) qbrlist(exp,-1,1,[10,20,30,35],40,100)$
rprec fpprec val verr
10 40 2.3504023b0 4.5259437b-14
20 40 2.3504023b0 1.0693013b-29
30 40 2.3504023b0 1.1938614b-39
35 40 2.3504023b0 1.1938614b-39

We see that with fpprec equal to 40, increasing rprec from 30 to 35 results in no improvement in the actual
error of the result.

20

When bromberg Fails

If the integrand has end point algebraic and/or logarithmic singularities, bromberg may fail. Here is an example
in which the integrand has a logarithmic singularity at the lower end point:

∫ 1

0

√
t ln(t)dt. The integrate

function has no problem with this integral.

(%i6) g(x):= sqrt(x)*log(x)$
(%i7) integrate(g(t),t,0,1);

4
(%o7) - -

9
(%i8) (load(brmbrg),load(qbromberg))$
(%i9) qbromberg(g,0,1,30,40,100);
log(0) has been generated.
#0: qbromberg(%f=g,a=0,b=1,rprec=30,fp=40,itmax=100)
-- an error. To debug this try debugmode(true);

You can instead use the tanh-sinh quadrature method for this integral (see Sec. 9.3.3).

9.3.2 A Double Exponential Quadrature Method for a ≤ x < ∞
This method (H. Takahasi and M. Mori, 1974; see Sec 9.3.3) is effective for integrands which contain a factor
with some sort of exponential damping as the integration variable becomes large.

An integral of the form
∫∞
a

g(y)dy can be converted into the integral
∫∞
0

f(x)dx by making the change of
variable of integration y → x given by y = x + a. Then f(x) = g(x + a).

The double exponential method used here then converts the integral
∫∞
0

f(x)dx into the integral
∫∞
−∞F(u)du

using a variable transformation x → u:

x(u) = exp(u− exp(−u)) (9.1)

and hence

F(u) = f(x(u))w(u), where w(u) =
dx

du
= exp(−exp(−u)) + x(u). (9.2)

You can confirm that x(0) = exp(−1), w(0) = 2x(0) and that x(−∞) = 0, x(∞) = ∞.

Because of the rapid decay of the integrand when the magnitude of u is large, one can approximate the value of
the infinite domain u integral by using a trapezoidal numerical approximation with step size h using a modest
number (2N + 1) of function evaluations.

I(h,N) ' h
N∑

j=−N

F(uj) where uj = j h (9.3)

This method is implemented in the Ch. 8 file quad_de.mac. We first demonstrate the available functions on
the simple integral

∫∞
0

e−x dx = 1.

(%i1) fpprintprec:8$
(%i2) g(x):= exp(-x)$
(%i3) tval : bfloat(integrate(g(x),x,0,inf)),fpprec:45;
(%o3) 1.0b0

21

(%i4) load(quad_de);
(%o4) c:/work3/quad_de.mac
(%i5) quad_de(g,0,30,40);
(%o5) [1.0b0, 4, 4.8194669b-33]
(%i6) abs(first(%) - tval),fpprec:45;
(%o6) 9.1835496b-41

The package function quad_de(f, a, rp, fp) integrates the Maxima function f over the domain [x ≥ a],
using fpprec : fp, and returns a three element list when vdiff (the absolute value of the difference obtained
for the integral in successive k levels) becomes less than or equal to 10−rp. The parameter rp is called the
“requested precision”, and the value of h is repeatedly halved until the vdiff magnitude either satisfies this
criterion or starts increasing. The first element is the appoximate value of the integral. The second element (4
above) is the “final k-level” used, where h = 2−k. The third and last element is the final value of vdiff. We see
in the above example that requesting precision rp = 30 and using floating point precision fpprec : 40 results
in an answer good to about 40 digits. This sort of accuracy is typical.

The package function idek(f, a, k, fp) integrates the Maxima function f over the domain [a,∞] using
a “k-level approximation” with h = 1/2k and fpprec : fp.

(%i7) idek(g,0,4,40);
(%o7) 1.0b0
(%i8) abs(% - tval),fpprec:45;
(%o8) 9.1835496b-41

The package function idek_e(f, a, k, fp) does the same calculation as idek(f, a, k, fp), but returns
both the approximate value of the integral and also a rough estimate of the amount of the error which is due
to the floating point arithmetic precision being used. (The error of the approximation has three contributions:
1. the quadrature algorithm being used, 2. the step size h being used, and 3. the precision of the floating point
arithmetic being used.)

(%i9) idek_e(g,0,4,40);
(%o9) [1.0b0, 8.3668155b-42]
(%i10) abs(first(%) - tval),fpprec:45;
(%o10) 9.1835496b-41

The package function ide(f, a, rp, fp) follows the same path as quad_de(f, a, rp, fp), but
shows the progression toward success as the k level increases (and h decreases):

(%i11) ide(g,0,30,40);
rprec = 30 fpprec = 40

k value vdiff
1 1.0b0
2 1.0b0 4.9349774b-8
3 9.9999999b-1 4.8428706b-16
4 1.0b0 4.8194669b-33

22

The package function ide_test(f, a, rp, fp) follows the path of ide(f, a, rp, fp), but adds
to the table the value of the error of the approximate result for each k level attempted. The use of this function
depends on an accurate value of the integral being bound to the global variable tval.

(%i12) ide_test(g,0,30,40);
rprec = 30 fpprec = 40

k value vdiff verr
1 1.0b0 4.9349775b-8
2 1.0b0 4.9349774b-8 4.8428706b-16
3 9.9999999b-1 4.8428706b-16 4.8194668b-33
4 1.0b0 4.8194669b-33 9.1835496b-41

Test Integral 1

Here we test this double exponential method code with the known integral
∫ ∞

0

e−t

√
t

dt =
√

π (9.4)

(%i13) g(x):= exp(-x)/sqrt(x)$
(%i14) integrate(g(t),t,0,inf);
(%o14) sqrt(%pi)
(%i15) tval : bfloat(%),fpprec:45;
(%o15) 1.7724538b0
(%i16) quad_de(g,0,30,40);
(%o16) [1.7724538b0, 4, 1.0443243b-34]
(%i17) abs(first(%) - tval),fpprec:45;
(%o17) 1.8860005b-40
(%i18) idek_e(g,0,4,40);
(%o18) [1.7724538b0, 2.7054206b-41]

Again we see that the combination rp = 30, fp = 40 leads to an answer good to about 40 digits of precision.

Test Integral 2

Our second known integral is ∫ ∞

0

e−t2/2 dt =
√

π/2 (9.5)

(%i19) g(x) := exp(-xˆ2/2)$
(%i20) tval : bfloat(sqrt(%pi/2)),fpprec:45$
(%i21) quad_de(g,0,30,40);
(%o21) [1.2533141b0, 5, 1.099771b-31]
(%i22) abs(first(%) - tval),fpprec:45;
(%o22) 2.1838045b-40
(%i23) idek_e(g,0,5,40);
(%o23) [1.2533141b0, 1.3009564b-41]

23

Test Integral 3

Our third test integral is ∫ ∞

0

e−t cos t dt = 1/2 (9.6)

(%i24) g(x) := exp(-x)*cos(x)$
(%i25) integrate(g(x),x,0,inf);

1
(%o25) -

2
(%i26) tval : bfloat(%),fpprec:45$
(%i27) quad_de(g,0,30,40);
(%o27) [5.0b-1, 5, 1.7998243b-33]
(%i28) abs(first(%) - tval),fpprec:45;
(%o28) 9.1835496b-41
(%i29) idek_e(g,0,5,40);
(%o29) [5.0b-1, 9.8517724b-42]

9.3.3 The tanh-sinh Quadrature Method for a ≤ x ≤ b

H. Takahasi and M. Mori (1974: see references at the end of this section) presented an efficient method for
the numerical integration of the integral of a function over a finite domain. This method is known under the
names “tanh-sinh method” and “double exponential method”. This method can handle integrands which have
algebraic and logarithmic end point singularities, and is well suited for use with arbitrary precision work.

Quoting (loosely) David Bailey’s (see references below) slide presentations on this subject:

The tanh-sinh quadrature method can accurately handle all “reasonable functions”, even those
with “blow-up singularities” or vertical slopes at the end points of the integration interval. In many
cases, reducing the step size h by half doubles the number of correct digits in the result returned
(”quadratic convergence”).

An integral of the form
∫ b

a
g(y)dy can be converted into the integral

∫ 1

−1
f(x)dx by making the change

of variable of integration y → x given by y = αx + β with α = (b− a)/2 and β = (a + b)/2. Then
f(x) = αg(αx + β).

The tanh-sinh method introduces a change of variables x → u which implies
∫ 1

−1

f(x)dx =

∫ ∞

−∞
F(u)du. (9.7)

The change of variables is expressed by

x(u) = tanh
(π

2
sinhu

)
(9.8)

and you can confirm that

u = 0 ⇒ x = 0, u → −∞⇒ x → −1,u →∞⇒ x → 1 (9.9)

We also have x(−u) = −x(u).

24

The “weight” w(u) = dx(u)/du is

w(u) =
π
2
coshu

cosh2
(

π
2
sinhu

) (9.10)

with the property w(−u) = w(u), in terms of which F(u) = f(x(u)w(u). Moreover, F(u) has “double
exponential behavior” of the form

F(u) ≈ exp
(
−π

2
exp(|u |)

)
for u → ±∞. (9.11)

Because of the rapid decay of the integrand when the magnitude of u is large, one can approximate the value
of the infinite domain integral by using a trapezoidal numerical approximation with step size h using a modest
number (2N + 1) of function evaluations.

I(h,N) ' h
N∑

j=−N

F(uj) where uj = j h (9.12)

This method is implemented in the Ch.8 file quad_ts.mac and we will illustrate the available functions us-
ing the simple integral

∫ 1

−1
ex dx.

The package function quad_ts (f, a, b, rp, fp) is the most useful workhorse for routine use, and
uses the tanh-sinh method to integrate the Maxima function f over the finite interval [a, b], stopping when
the absolute value of the difference (Ik − Ik−1) is less than 10−rp (rp is the “requested precision” for the
result), using fp digit precision arithmetic (fpprec set to fp, and bfloat being used to enforce this arithmetic
precision). This function returns the list
[approx-value, k-level-used, abs(vdiff)], where the last element should be smaller than
10−rp .

(%i1) fpprintprec:8$
(%i2) tval : bfloat(integrate(exp(x),x,-1,1)),fpprec:45;
(%o2) 2.3504023b0
(%i3) load(quad_ts);

_kmax% = 8 _epsfac% = 2
(%o3) c:/work3/quad_ts.mac
(%i4) bfprint(tval,45)$

number of digits = 45
2.35040238728760291376476370119120163031143596b0

(%i5) quad_ts(exp,-1,1,30,40);
construct _yw%[kk,fpprec] array for kk = 8 and fpprec = 40 ...working...

(%o5) [2.3504023b0, 5, 0.0b0]
(%i6) abs(first(%) - tval),fpprec:45;
(%o6) 2.719612b-40

A value of the integral accurate to about 45 digits is bound to the symbol tval. The package function
bfprint(bf, fpp) allows controlled printing of fpp digits of the “true value” tval to the screen. We then
compare the approximate quadrature result with this “true value”. The package quad_ts.mac defines two
global parameters. _kmax% is the maximum “k-level” possible (the defined default is 8, which means the
minimum step size for the transformed “u-integral” is du = h = 1/28 = 1/256. The actual “k-level” needed
to return a result with the requested precision rp is the integer in the second element of the returned list. The
global parameter _epsfac% (default value 2) is used to decide how many (y, w) numbers to pre-compute
(see below).

25

We see that a “k-level” approximation with k = 5 and h = 1/25 = 1/32 returned an answer with an actual
precision of about 40 digits (when rp = 30 and fp = 40).

The first time 40 digit precision arithmetic is called for, a set of (y, w) numbers are calculated and stored in an
array which we call _yw%[8, 40]. The y(u) values will later be converted to x(u) numbers using high
precision, and the original integrand function f(x(u)) is also calculated at high precision. The w(u) num-
bers are what we call “weights”, and are needed for the numbers F(u) = f(x(u))w(u) used in the trapezoidal
rule evaluation. The package precomputes pairs (y, w) for larger and larger values of u until the magnitude
of the weight w becomes less than eps, where eps = 10−np, where n is the global parameter _epsfac%
(default 2) and p is the requested floating point precision fp.

Once the set of 40-digit precision (y, w) numbers have been “pre-computed”, they can be used for the
evaluation of any similar precision integrals later, since these numbers are independent of the actual function
being integrated, but depend only on the nature of the tanh-sinh transformation being used.

The package function qtsk(f, a, b, k, fp) (note: arg k replaces rp) integrates the Maxima function
f over the domain [a,b] using a “k-level approximation” with h = 1/2k and fpprec : fp.

(%i7) qtsk(exp,-1,1,5,40);
(%o7) 2.3504023b0
(%i8) abs(% - tval),fpprec:45;
(%o8) 2.719612b-40

A heuristic value of the error contribution due to the arithmetic precision being used (which is separate from
the error contribution due to the nature of the algorithm and the step size being used) can be found by using
the package function qtsk_e(f, a, b, k, fp);. The first element of the returned list is the value of
the integral, the second element of the returned list is a rough estimate of the contribution of the floating point
arithmetic precision being used to the error of the returned answer.

(%i9) qtsk_e(exp,-1,1,5,40);
(%o9) [2.3504023b0, 2.0614559b-94]
(%i10) abs(first(%) - tval),fpprec:45;
(%o10) 2.719612b-40

The very small estimate of the arithmetic precision contribution (two parts in 1094) to the error of the
answer is due to the high precision being used to convert from the pre-computed y to the needed abcissa x via
x : bfloat(1− y) and the subsequent evaluation f(x). The precision being used depends on the size of the
smallest y number, which will always be that appearing in the last element of the hashed array _yw%[8, 40].

(%i11) last(_yw%[8,40]);
(%o11) [4.7024891b-83, 8.9481574b-81]

(In Eq. (9.12) we have separated out the (u = 0, x = 0) term, and used the symmetry properties x(−u) = −x(u),
and w(−u) = w(u) to write the remainder as a sum over positive values of u (and hence positive values of x)
so only the large u values of y(u) need to be pre-computed).

We see that the smallest y number is about 5× 10−83 and if we subtract this from 1 we will get 1 unless we
use a very high precision. It turns out that as u approaches plus infinity, x (as used here) approaches b (which
is 1 in our example) from values less than b. Since a principal virtue of the tanh-sinh method is its ability to
handle integrands which “blow up” at the limits of integration, we need to make sure we stay away (even if

26

only a little) from those end limits.

We can see the precision with which the arithmetic is being carried out in this crucial step by using the fpxy(fp)
function

(%i12) fpxy(40)$
the last y value = 4.7024891b-83
the fpprec being used for x and f(x) is 93

and this explains the small number returned (as the second element) by qtsk_e(exp, -1, 1, 5, 40);.

The package function qts(f, a, b, rp, fp) follows the same path as quad_ts(f, a, b, rp, fp),
but shows the progression toward success as the k level increases (and h decreases):

(%i13) qts(exp,-1,1,30,40)$
rprec = 30 fpprec = 40
k newval vdiff
1 2.350282b0
2 2.3504023b0 1.2031242b-4
3 2.3504023b0 8.136103b-11
4 2.3504023b0 1.9907055b-23
5 2.3504023b0 0.0b0

The package function qts_test(f, a, b, rp, fp) follows the path of qts(f, a, b, rp, fp),
but adds to the table the value of the error of the approximate result for each k level attempted. The use of this
function depends on an accurate value of the integral being bound to the global variable tval.

(%i14) qts_test(exp,-1,1,30,40)$
rprec = 30 fpprec = 40

k value vdiff verr
1 2.350282b0 1.2031234b-4
2 2.3504023b0 1.2031242b-4 8.136103b-11
3 2.3504023b0 8.136103b-11 1.9907055b-23
4 2.3504023b0 1.9907055b-23 2.7550648b-40
5 2.3504023b0 0.0b0 2.7550648b-40

Test Integral 1

Here we test this tanh-sinh method code with the known integral which confounded bromberg in Sec. 9.3.1 :
∫ 1

0

√
t ln(t)dt = −4/9 (9.13)

(%i15) g(x):= sqrt(x)*log(x)$
(%i16) tval : bfloat(integrate(g(t),t,0,1)),fpprec:45;
(%o16) - 4.4444444b-1
(%i17) quad_ts(g,0,1,30,40);
(%o17) [- 4.4444444b-1, 5, 3.4438311b-41]
(%i18) abs(first(%) - tval),fpprec:45;
(%o18) 4.4642216b-41
(%i19) qtsk_e(g,0,1,5,40);
(%o19) [- 4.4444444b-1, 7.6556481b-43]

Requesting thirty digit accuracy with forty digit arithmetic returns a value for this integral which has about
forty digit precision. Note that “vdiff” is approximately the same as the actual absolute error.

27

Test Integral 2

Consider the integral ∫ 1

0

arctan(
√

2 + t2)

(1 + t2)
√

2 + t2
dt = 5π2/96. (9.14)

(%i20) g(x):= atan(sqrt(2+xˆ2))/(sqrt(2+xˆ2)*(1+xˆ2))$
(%i21) integrate(g(t),t,0,1);

1
/ 2
[atan(sqrt(t + 2))

(%o21) I --------------------- dt
] 2 2
/ (t + 1) sqrt(t + 2)
0

(%i22) quad_qags(g(t),t,0,1);
(%o22) [0.514042, 5.70701148E-15, 21, 0]
(%i23) float(5*%piˆ2/96);
(%o23) 0.514042
(%i24) tval: bfloat(5*%piˆ2/96),fpprec:45;
(%o24) 5.1404189b-1
(%i25) quad_ts(g,0,1,30,40);
(%o25) [5.1404189b-1, 5, 1.5634993b-36]
(%i26) abs(first(%) - tval),fpprec:45;
(%o26) 7.3300521b-41
(%i27) qtsk_e(g,0,1,5,40);
(%o27) [5.1404189b-1, 1.3887835b-43]

Test Integral 3

We consider the integral ∫ 1

0

√
t√

1− t2
dt = 2

√
π Γ(3/4)/Γ(1/4) (9.15)

(%i28) g(x):= sqrt(x)/sqrt(1 - xˆ2)$
(%i29) quad_qags(g(t),t,0,1);
(%o29) [1.1981402, 8.67914629E-11, 567, 0]
(%i30) integrate(g(t),t,0,1);

1 3
beta(-, -)

2 4
(%o30) ----------

2
(%i31) tval : bfloat(%),fpprec:45;
(%o31) 1.1981402b0
(%i32) quad_ts(g,0,1,30,40);
(%o32) [1.1981402b0, 5, 1.3775324b-40]
(%i33) abs(first(%) - tval),fpprec:45;
(%o33) 1.8628161b-40
(%i34) qtsk_e(g,0,1,5,40);
(%o34) [1.1981402b0, 1.5833892b-45]

28

An alternative route to the “true value” is to convert beta to gamma’s using makegamma:

(%i35) makegamma(%o30);
3

2 sqrt(%pi) gamma(-)
4

(%o35) --------------------
1

gamma(-)
4

(%i36) float(%);
(%o36) 1.1981402
(%i37) bfloat(%o11),fpprec:45;
(%o37) 1.1981402b0

Test Integral 4

We next consider the integral ∫ 1

0

ln2 t dt = 2 (9.16)

(%i38) g(x) := log(x)ˆ2$
(%i39) integrate(g(t),t,0,1);
(%o39) 2
(%i40) quad_ts(g,0,1,30,40);
(%o40) [2.0b0, 5, 0.0b0]
(%i41) abs(first(%) - bfloat(2)),fpprec:45;
(%o41) 1.8367099b-40
(%i42) qtsk_e(g,0,1,5,40);
(%o42) [2.0b0, 1.2570464b-42]

Test Integral 5

We finally consider the integral ∫ π/2

0

ln(cos t)dt = −π ln(2)/2 (9.17)

(%i43) g(x) := log(cos(x))$
(%i44) quad_qags(g(t),t,0,%pi/2);
(%o44) [- 1.088793, 1.08801856E-14, 231, 0]
(%i45) integrate(g(t),t,0,%pi/2);

%pi

2

/
[

(%o45) I log(cos(t)) dt
]
/
0

29

(%i46) float(-%pi*log(2)/2);
(%o46) - 1.088793
(%i47) tval : bfloat(-%pi*log(2)/2),fpprec:45;
(%o47) - 1.088793b0
(%i48) quad_ts(g,0,%pi/2,30,40);
(%o48) [1.2979374b-80 %i - 1.088793b0, 5, 9.1835496b-41]
(%i49) ans: realpart(first(%));
(%o49) - 1.088793b0
(%i50) abs(ans - tval),fpprec:45;
(%o50) 1.9661653b-40
(%i51) qtsk_e(g,0,%pi/2,5,40);
(%o51) [1.2979374b-80 %i - 1.088793b0, 2.4128523b-42]

We see that the tanh-sinh result includes a tiny imaginary part due to bigfloat errors, and taking the real part
produces an answer good to about 40 digits (using rp = 30, fp = 40).

References for the tanh-sinh Quadrature Method

This method was initially described in the article Double Exponential Formulas for Numerical Integration, by Hidetosi
Takahasi and Masatake Mori, in the journal Publications of the Research Institute for Mathematical Sciences (Publ.
RIMS), vol.9, Number 3, (1974), 721-741, Kyoto University, Japan. A recent summary by the second author is Discovery
of the Double Exponential Transformation and Its Developments, by Masatake Mori, Publ. RIMS, vol.41, Number 4,
(2005), 897-935. Both of the above articles can be downloaded from the Project Euclid RIMS webpage

http://projecteuclid.org/
DPubS?service=UI&version=1.0&verb=Display&page=past&handle=euclid.prims

A good summary of implementation ideas can be found in the report Tanh-Sinh High-Precision Quadrature, by David
H. Bailey, Jan. 2006, LBNL-60519, which can be downloaded from the webpage

http://crd.lbl.gov/˜dhbailey/dhbpapers/

Further Improvements for the tanh-sinh Quadrature Method

The code provided in the file quad_ts.mac has been lightly tested, and should be used with caution.

No proper investigation has been made of the efficiency of choosing to use a floating point precision (for all terms of the
sum) based on the small size of the smallest y value.

No attempt has been made to translate into Lisp and compile the code to make timing trials for comparison purposes.

These (and other) refinements are left to the initiative of the hypothetical alert reader of limitless dedication (HAROLD).

9.3.4 The Gauss-Legendre Quadrature Method for a ≤ x ≤ b

Loosely quoting from David Bailey’s slide presentations (see references at the end of the previous section)

The Gauss-Legendre quadrature method is an efficient method for continuous, well-behaved func-
tions. In many cases, doubling the number of points at which the integrand is evaluated doubles
the number of correct digits in the result. This method performs poorly for functions with alge-
braic and/or logarithmic end point singularities. The cost of computing the zeros of the Legendre
polynomials and the corresponding “weights” increases as n2 and thus becomes impractical for
use beyond a few hundred digits.

30

Since one can always make a change of integration variable from the domain [a, b] to the integration domain
[-1, 1], this method approximates an integral over [-1, 1] as the sum

∫ 1

−1

f(x)dx ≈
N∑

j=1

wj f(xj) (9.18)

where the xj are the roots of the N-th degree Legendre polynomial PN(x) on [-1, 1], and the weights wj are

wj =
−2

(N + 1)P′
N(xj)PN+1(xj)

(9.19)

This method is implemented with our Ch.9 package file quad_gs.mac, and Richard Fateman’s lisp file:

http://www.cs.berkeley.edu/˜fateman/generic/quad-maxima.lisp

which should be downloaded to use this package.

Except for the “driver” Maxima function quad_gs(f,a,b,rp), all the Maxima functions in quad_gs.mac
are functions defined by Fateman in either the comment section of the above lisp file, or in the file
http://www.cs.berkeley.edu/˜fateman/papers/quadmax.mac.

An introduction to arbitrary precision code and some background to the problem of arbitrary precision quadra-
ture has been provided by Richard Fateman in his draft paper Numerical Quadrature in a Symbolic/Numerical
Setting, quad.pdf (see Sec. 9.2.6).

We will illustrate the available functions using the simple integral
∫ 1

−1
ex dx.

The package function gaussunit(f, N) integrates the Maxima function f over the domain [−1,1] using N point
Gauss-Legendre quadrature.

(%i1) load("quad-maxima.lisp");
(%o1) quad-maxima.lisp
(%i2) fpprintprec:8$
(%i3) tval : bfloat(integrate(exp(x),x,-1,1)),fpprec:45;
(%o3) 2.3504023b0
(%i4) load(quad_gs);
(%o4) c:/work3/quad_gs.mac
(%i5) arrays;
(%o5) [ab_and_wts]
(%i6) arrayinfo(ab_and_wts);
(%o6) [hashed, 2]
(%i7) gaussunit(exp,4);
(%o7) 2.350402b0
(%i8) abs(% - tval),fpprec:45;
(%o8) 2.9513122b-7
(%i9) fpprec;
(%o9) 16
(%i10) arrayinfo(ab_and_wts);
(%o10) [hashed, 2, [4, 16]]
(%i11) first(ab_and_wts[4, 16]);
(%o11) [8.6113631b-1, 3.3998104b-1]
(%i12) second(ab_and_wts[4, 16]);
(%o12) [3.4785484b-1, 6.5214515b-1]

31

(%i13) lp4 : legenp(4,x);
4 2

35 x 15 x 3
(%o13) ----- - ----- + -

8 4 8
(%i14) float(solve(lp4));
(%o14) [x = - 0.861136, x = 0.861136, x = - 0.339981, x = 0.339981]

With the default value of fpprec = 16 and using only four integrand evaluation points, the error is about 2
parts in 107. The first element of the two index hashed array ab_and_wts[4,16] is a list of the positive
zeros of the fourth order Legendre polynomial P4(x) (calculated with the arithmetic precision fpprec = 16).

That fourth order Legendre polynomial P4(x) can be displayed with this package using legenp(4, x).
Using solve we see that the roots for negative x are simply the the positive roots with a minus sign, so the
algorithm used makes use of this symmetry and keeps track of only the positive roots.

We can verify that the list of roots returned is correct to within the global floating point precision (we do this
two different ways):

(%i15) lfp4(x) := legenp(4,x)$
(%i16) map(’lfp4,%o11);
(%o16) [0.0b0, - 3.4694469b-18]
(%i17) map(lambda([z],legenp(4,z)),%o11);
(%o17) [0.0b0, - 3.4694469b-18]

The second element of ab_and_wts[4,16] is a list of the weights which are associated with the positive
roots (the negative roots have the same weights), with order corresponding to the order of the returned positive
roots.

The package function gaussunit_e(f, N) does the same job as gaussunit(f, N), but returns a
rough estimate of the amount contributed to the error by the floating point precision used (as the second element
of a list:

(%i18) gaussunit_e(exp,4);
(%o18) [2.350402b0, 1.2761299b-17]

We see that the error attributable to the floating point precision used is insignificant compared to the error due
to the low number of integrand evaluation points for this example.

An arbitrary finite integration interval is allowed with the functions gaussab(f, a, b, N) and
gaussab_e(f, a, b, N) which use N point Gauss-Legendre quadrature over the interval [a,b], with the
latter function being the analog of gaussunit_e(f, N).

(%i19) gaussab(exp,-1,1,4);
(%o19) 2.350402b0
(%i20) abs(% - tval),fpprec:45;
(%o20) 2.9513122b-7
(%i21) gaussab_e(exp,-1,1,4);
(%o21) [2.350402b0, 1.2761299b-17]

32

The package function quad_gs (f, a, b, rp) integrates the Maxima function f over the finite inter-
val [a,b], successively doubling the number of integrand evaluation points, stopping when the absolute value
of the difference (In − In/2) is less than 10−rp (rp is the “requested precision” for the result), using the global
setting of fpprec to use the corresponding precision arithmetic. We emphasize that Fateman’s code uses a
global setting of fpprec to achieve higher precision quadrature, rather than the method used in the previous two
sections in which fpprec was set “locally” inside a block. This function returns the list
[approx-value, number-function-evaluations, abs(vdiff)], where the last element
should be smaller than 10−rp.

Here we test this function for fpprec = 16, 30, and 40.

(%i22) quad_gs(exp,-1,1,10);
fpprec = 16

(%o22) [2.3504023b0, 20, 6.6613381b-16]
(%i23) abs(first(%) -tval),fpprec:45;
(%o23) 6.2016267b-16
(%i24) fpprec:30$
(%i25) quad_gs(exp,-1,1,20);

fpprec = 30

(%o25) [2.3504023b0, 20, 1.2162089b-24]
(%i26) abs(first(%) -tval),fpprec:45;
(%o26) 2.2001783b-30
(%i27) fpprec:40$
(%i28) quad_gs(exp,-1,1,30);

fpprec = 40

(%o28) [2.3504023b0, 40, 1.8367099b-40]
(%i29) abs(first(%) -tval),fpprec:45;
(%o29) 2.7905177b-40
(%i30) gaussab_e(exp,-1,1,40);
(%o30) [2.3504023b0, 1.8492214b-41]

We have checked the contribution to the error due to the forty digit arithmetic precision used, with N = 40
point Gauss-Legendre quadrature (remember that N is the middle element of the list returned by
quad_gs (f, a, b, rp) and is also the last argument of the function gaussab_e(f, a, b, N).

We see that requesting 30 digit precision for the answer while using the global fpprec set to 40 results in an
answer good to about 39 digits. Finally, let’s check on what abscissae and weight arrays have been calculated
so far:

(%i31) arrayinfo(ab_and_wts);
(%o31) [hashed, 2, [4, 16], [10, 16], [10, 30], [10, 40], [20, 16], [20, 30],

[20, 40], [40, 40]]

Using quad_gs (f, a, b, rp) with fpprec = 16 led to the calculation of the abscissae and weight
array for the index pairs [10,16] and [20,16] before the requested precision was achieved (the func-
tion always starts with N = 10 point quadrature and then successively doubles that number until success is
achieved).

Using quad_gs (f, a, b, rp) with fpprec = 30 led to the calculation of the abscissae and weight
array for the index pairs [10,30] and [20,30] before the requested precision was achieved.

33

Using quad_gs (f, a, b, rp) with fpprec = 40 led to the calculation of the abscissae and weight
array for the index pairs [10,40], [20,40], and [40,40] before the requested precision was achieved.

Finally, we have the function quad_gs_table(f, a, b, rp) which prints out a table showing the pro-
gression toward success:

(%i32) quad_gs_table(exp,-1,1,30)$
fpprec = 40

new val N vdiff
2.3504023b0 10
2.3504023b0 20 1.2162183b-24
2.3504023b0 40 1.8367099b-40

