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primes are considered secure if they are 2,048 bits long, because the product of
these two primes would be about 1,234 decimal digits.

Prime numbers have shown its existence in nature. Cicadas insect spend
most of their time hiding, only reappearing to mate every 13 or 17 years. Why
this particular number? Scientists invented that cicadas reproduce in cycles that
minimize possible interactions with predators. Any predator reproductive cycle
that divides the cicada’s cycle evenly means that the predator will hatch out
the same time as the cicada at some point. For instance , if the cicada evolved
towards a 12-year reproductive cycle, predators who reproduce at the 2, 3, 4
and 6 year intervals would find themselves with plenty of cicadas to eat. By
using a reproductive cycle with a prime number of years, cicadas would be able
to minimize contact with predators. Simulation models of 1,000 years of cicada
evolution prove that there is a major advantage for reproductive cycle times

based on primes.

3.2 Primes & Fundamental Theorem of Arith-

metic

Positive divisors of an integer have a great importance in the study of number
theory. The integer 1 has only one positive divisor which is 1 itself. Any other
integers has more than one divisor. At Least two divisors of them are 1 and the
integer itself. There are integers which have divisors other than 1 and itself. The

numbers which have only two divisors 1 and itself are called prime numbers.

Definition 3.2.1. An integer p > 1 is said to be a prime number or prime if

its only divisors are 1 and p itself.

An integer which is not prime is known to be a composite number, having
more than two(what are those?) divisors.

Among the first ten positive integers 2,3,5,7 are prime numbers whereas
4,6,8,9,10 are examples of composite numbers. Here 1 is a special type of
integer which is neither prime nor composite. Here the study of prime numbers
starts with the study of prime divisors. Here 5 is prime where 5 { 3 but 55 itself

together implies 5|15, leads us to the following theorem:

Theorem 3.2.1. An integer p > 1 is prime if and only if plab implies pla or
plb.

Proof. Let p be a prime number such that for any two integers a and b, p|ab

holds. If p|a, then we are done. Let p 1 a then the only divisors of p are 1 and p
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itself. As p is prime we have ged(p, @) = 1 implies there exists integers r,¢ such
that 1 = rp + at. Then b = brp + t(ab). Now p|ab and p|prd imply pl|b.
Conversely, let p satisfy the condition and ¢,r be any integers such that
p = qr where ¢ < p. Thus p|gr and by the condition we can say either p|q or p|r.
But ¢|p shows p|r only. Therefore r = pt for some integer ¢. Hence p = gr = gpt
implies gt = 1 implies ¢ = 1. So 1 and p are only divisors of p. This shows p is
prime. O

Let us now generalize the above theorem for more than two terms as follows:

Theorem 3.2.2. If p is prime and pla,a,a, ---a
1,2,3,...,n.

then p

a, for some i =

n’

Proof. We will prove this by mathematical induction. The statement is true
for n = 1. With reference to theorem (3.2.1) the statement is true for n = 2.
Let us assume the statement is true for n = k. Let n = k + 1 holds. Then

pla,a,a,---a,a, . Also choose a,a,a,---a, = b where b is an integer, thus

plba Now if pla, , we are done. If p t a then from n = 2 we have

k+1° k+1
p|b implies p|a, a,a, - - - a, which further implies p|a, for some ¢ by the induction
hypothesis. Thus pla, fori =1,2,...,k+1. So the statement is true for n = k+1.

Thus by principle of mathematical induction the theorem is proved. O

k417

Corollary 3.2.1. If p,q,,9,,4s,--.,q, are all primes and p|lq,q,q, ---q, then

n

p=gq, for somei=1,2,... n.

Proof. By virtue of above theorem, we know that if p|q, for some i =1,2,...,n.
But ¢, being prime so ¢, is not divisible by any integer other than 1 and itself.
Since, p > 1 then we have p = ¢, for some i =1,2,3...,n. O

Let us now consider few integers 35,25,10 and we see that 7|35, 5|25 and
2|10. So the observation is that every integer has a prime factor. We now prove

this result for any integer n > 2.
Theorem 3.2.3. Fvery integer n > 2 has a prime factor.

Proof. We prove the statement by mathematical induction method. Taking
n = 2, the result is obvious as 2 itself is prime. Let us assume that each of the
integers 2,3,...,n — 1 has a prime factor. Now considering n > 2 we can say
that the result is true if n is prime. If n is composite then n = rs for some
integer r, s with 1 < 7, s < n. Then by induction hypothesis r has a prime factor

which is also a prime factor of n. So the theorem is proved. O
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The set of all positive integers is countably infinite and the set of prime
numbers is a subset of the set. So two possibilities to occur. One, the cardinality
of the set is finite and the other which is countably infinite. But the set of prime
numbers that are countably infinite is given in a theorem of Euclid (300 B.C.) and

till the 21st century the proof is considered as an elegant proof of Mathematics.
Theorem 3.2.4. Prime number set is countably infinite.

Proof. Let the number of primes be finite and we write them as p, = 2,p, =
3---p,. Now let us consider a composite number m = p,p,---p, + 1 and
m > 1. As m is composite it has a prime factor p(say). This p obviously one
of p,pyy -+ Pn. Now p|p,p, - pn+ 1,p|p,p, - - P together imply p[1 [Applying
r=-1Ly=1b=pp,---p, and c=p,p,---p, + 1 on alb,alc = a|(bx + cy)].
This leads to a contradiction (Why!). So our assumption is wrong and the
theorem is proved. O

All the above results lead us to the fact that any integer can be factorized
if it is composite. The factorized integers can be prime or composite such as
20 = 4 x 5 where 4 is composite whereas 5 is prime. But the most interesting fact
is that 20 = 22 x 5 where both 2 and 5 are prime. This factorization is known
to be prime factorization. The following Fundamental Theorem of Arithmetic

or the unique factorization theorem enlighten us about the fact:

Theorem 3.2.5. FEvery positive integer n > 2 can be expressed uniquely as

product of primes, n = p,p,p, - -+ p,., where each p, is distinct for 1 <i <r.

Proof. If n is prime then we are done. If n is composite then there exists an
integer d such that d|n with 1 < d < n. By well ordering principle, let p,
be the smallest of them. Here p, must be prime otherwise ¢ be any divisor
of p, such that 1 < t < p, then t|p, and p,|n together imply ¢|n which is
a contradiction(Why!). So we have n = p,n, for some integer n, where 1 <
n, < n. If n, is prime then we are done. If n, is composite then by the same
argument we have another prime p, and integer n, where 1 < n, < n, such
that n = p1pans. Continuing this way we have a decreasing sequence of integers
n > mnyp > ng > --- > 1. This sequence is finite and after finite n,, we will get a
prime p,.. This leads to prime factorization n = p1ps - - - p;-.

To prove the uniqueness let there be two distinct prime factorizations of n
asn = pips - Pr = q1¢a2 - - - §s where r < s and each of p's and q;s are primes.
These primes are in the ordering p, <p, <p, <.-- <p_ and ¢ <gq, <g, <
-+ < gq.. As p,|n this implies p, |q1¢2 - - - g5 then by virtue of Corollary 3.2.1 p, =
q, for some j where 1 < j < n. This follows that p, < q,. Now cancelling the
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common factors from both the sides we have ¢a2q, - - - ¢s = pap, - - - pr. Continuing
as above, up to 7 terms as r < s. After r-th step we have 1 = ¢, ,q,,,---q,
which is absurd as q;s are prime. Hence r = sand p, =¢q,,p, =¢,,..-,0,. =4.,-

So the factorization is unique. O

Let us consider an integer 15 which can be written as 5 X 3 where both 5 and
3 are distinct primes. But if we take 75 it can be expressed as 5 x 5 x 3 where we
can see the representation of primes. By collecting those primes and replacing

them by a single factor we can represent any integer by following corollary viz

Corollary 3.2.2. Any positive integer can be uniquely written as p1p)2 ---p'r
where each n, is a positive integer and p's are prime for i =1,2,3,...,r with

P <P, <py <---<p,.

From the above corollary we can assert that any arbitrary positive integer has
an unique prime factorization. Now in the later part of this section we have given
an alternative proof of the Theorem 2.5.1. For that we have to define the greatest
common divisor and least common multiple of any two arbitrary integers in the
light of prime factorization. Let us take two integers a and b with their unique
prime factorizations a = pipf2 ---pin, b= pll’l pZ? . ~pin with p1 <py < -+- <
pn and ag, by be non negative integers for k = 1,2,--- ,n. Then ged(a,b) =
ptipltz ---p™n and lem(a,b) = pf\/llpy2 pi\/[" where M, = Max(a,,a,) and

m, = min(a,,b,). Here to give alternative proof of the Theorem 2.5.1 we first

k k) 7k

state and prove the lemma as follows:
Lemma 3.2.1. Ifx and y are real numbers, then maz(x,y)+ min(z,y) = z+y.
Proof. If x < y, then min(z,y) = x and max(z,y) = y, and again we find that

max(z,y) + min(z,y) = = + y. Similarly, If 2 > y, then min(z,y) = y and
max(z,y) = x, and again we find that max(z,y) + min(z,y) =z + y. O

Now using the above lemma, let us proceed for the alternate proof:

Proof. Let a and b have prime-power factorizations a = p{1pj2---pin, b =
pll’l pg2 ~~piﬂ, where the powers are nonnegative integers and the primes pis

occurring in the prime-power factorizations of @ and b. Let M, = Max(a,,b,)
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and m, = min(a,,b, ). Then, we have

lem(a,b) ged(a,b) = pfwlpé\/[z . .pnanZ%p;”z e

M. 4+m, M, +m M, +m,
_pl 1 1p2 2 2 pn

_ .a,+b, a,+b .G —+b
_pll 1p22 2 pnn n

— 0y 00by a0y a0 b
_p11p11p22p22 p,"p."

= ab.

O

23
The numbers 2, 3,4 are integers and if we take 31 then this type are the
rational numbers of the form p where ¢ # 0 and ged(p,¢) = 1. But there are
q

numbers of the form v/2,v/3 which can not be written as above. These are said
to be irrational numbers. We are now going to introduce a famous result of

Pythagoras on irrational numbers viz
Theorem 3.2.6. The number \/2 is irrational.

Proof. Let us suppose that /2 is a rational quantity. Then v/2 = % where a, b
2

are integers relatively prime to each other. Squaring we have, 2 = Z—Z = a? = 2b?
implies b%|a®. If b > 1, then by fundamental theorem of arithmetic we can say
that there exists a prime p such that p|b. Then it follows p|a® implies p|a and
hence ged(a,b) > p which is a contradiction unless b = 1. But if b = 1 holds
then a? = 2 which is impossible(Why!). Hence the proof. O

For further discussion of this chapter we will show our interest in finding
extremely large primes. To do so our first aim is to check whether a given
integer is prime or not. We first deal with this question by trial division of n
using the following theorem viz

Theorem 3.2.7. If n is a composite integer, then n has a prime factor not
exceeding \/n.

Proof. Since n is composite, we can write n = ab where a,b are integers with
1 < a < b < n. There must be a < v/n, if not then b > a > v/n which leads to
ab > n, which is not possible. Now from Theorem 3.2.3 the integer a must have
a prime divisor p(say). Then p < a < v/n. Further if p|a and a|n implies p|n.
Then p is the required prime factor of n not exceeding /n. O

We can use this theorem to find all the primes less than or equal to a given

positive integer n. This procedure is called Sieve of Eratosthenes. To illustrate
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the process, let us choose n = 81. Then by virtue of the above theorem, 81 has a
prime factor less than or equal to v/81 = 9. Since, the only prime less than 9 are
2,3,5,7. We only have to find those integers less than 81 which can be divisible
by any one of those primes. In the below table we have shown a complete list
of them. The multiples of any one or two or three of 2,3,5,7 of the numbers in
the table are cancelled by /i \ and \ respectively.

213 A |8 |7 |8 |9
Yo 1t |Y2 13| |16 17
8119 | R0 | 81| 2223 |2 |25
96 | 27 [ 2820 [0 [ 31| 32| 33
43586373839 | 40| 411
W2 [ 43 [ A4 [ 35 [ 46 | 47 [ 38 | 49
50 | 1| 32|53 %435 | 36|57
78 [ 59 [ %0 [ 616243 64] 65
% | 67 | @8 |69 |70 | 71| 72|73
a7 [ 76 [ 77 X8| 79 | g0 | £1

The above table indicates that there exist many primes less than 81. In fact,
from theorem (3.2.4), we have infinitely many primes. A fairly natural question
arises: Is it possible to estimate, how many primes are less than a positive real
number z? We are fortunate enough to have the most renowned theorem of
number theory, and of all mathematics, is the prime number theorem which
answers this question. In 1793, Gauss speculated the theorem but it was an
open problem until 1896, when a French mathematician J. Hadamard and a
Belgian mathematician C. J. de la Vallée-Poussin had proved it independently.

So before going to state the theorem let us begin with a simple definition.

Definition 3.2.2. The function (x), where x is a positive real number, denotes

the number of primes not exceeding .

We now state the prime number theorem, whose proof is beyond the scope
of the book.
()

Statement 3.2.1. In language of limits, the theorem can be stated as lim —— =
1 z—oo Inax

x

The above stated theorem reflects the fact that for large values of z, o isa
nx

good approximation to m(z). Further, it is to be noted that it is not necessary to

find all primes not exceeding x in order to compute w(z). By virtue of counting
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argument based on the Sieve of Eratosthenes,one can compute 7(z) without
finding all the primes less than z.
Our next theorem addresses that the gap between consecutive primes is ar-

bitrarily long.

Theorem 3.2.8. For any positive integer n, there are at least n consecutive
composite positive integers. Stated otherwise, there are arbitrarily large gaps in

the series of primes.
Proof. Consider the n consecutive positive integers
m+I!+2,n+1)!+3,...,(n+ 1) +n+1

Now,2<j53<n+1= ]|(n + 1)!. Finally, an appeal to Proposition 2.2.1 yields
the desired result. O

The following example will exemplify our foregoing theorem.

Example 3.2.1. For n =5, the smallest 5 consecutive composite integers can
be found by locating the first pair of consecutive composite odd integers, 25 and
27. Hence the smallest 5 consecutive composite integers are 24,25,26,27, and
28. These are considerably smaller than the integers (5+1)!+j = 6145 = 720+j
for 7 =2,3,4,5,6. Also, the seven consecutive integers beginning with 8! + 2 =
40322 are all composite. However, these are much larger than the smallest seven
consecutive composites 90,91,92,93,94,95, and 96.

Our next discussion is about the propagation of prime numbers of prime
numbers. Let us choose p a prime and p to be the product of all primes that are
less than or equal to p. The numbers p+ 1 form are called “Euclidean numbers”
as they appear in the proof of Theorem 3.2.4. For example,

2+1=2+1=3
341=2-3+1=7
541=2-3-5+1=31

are all prime numbers but also we can see 13 = 59-509 is not prime. From these

two types of examples, we see that p + 1 is not always a prime.



Prime Numbers 53

If we consider a sequence of integers such as,

n, =2
n,=n, +1
n, =n,n, +1

n, =n,n, --n, ,+1

where each n, > 1 and they are relatively prime to each other. If not, let

ged(n,,n,) = d where i < j. Then dln, = d|n,n,---n,--n

i

... Since, d’n,
J J

therefore d|n,n,---n,_, + 1 together imply d|1, possible when d = 1. So our

i1
assertion, all n;s arej pairwise relatively prime, is true. Now we can say that
there are many distinct primes as there are integers n, .

Let p, be n-th prime number. Then from Euclid’s proof we can estimate the
rate of increase of p,. Here we have p, ., <p,p,---p, +1<p'+1. Ifn=>5
then 31 = p, = pf +1 =7%41 = 16808. Thus we have the following theorem

viz
Theorem 3.2.9. Ifp, be the k-th prime, then p, < 921

Proof. We will prove the theorem by Mathematical Induction on k. If &k = 1,

then the result is obvious. Let us assume k > 1. Then

Pris < PPy Pyt 1
<92.92.. .9k 141 = Ql2+2% 442870 | 921

But 1 < 22! for all k. Therefore Peyr < 92" (How!). Thus the result is true for
k + 1. Hence the proof. O

The last inequation of the above proof gives rise to an interesting corollary
stated as follows:

Corollary 3.2.3. For k > 1 there exists at least k + 1 primes less than 92",
Proof. left to the reader. O

Finally, we conclude this section with remarkable conjecture about primes,
commonly known as Golbach’s Conjecture, stated by Christian Goldbach in a
letter to Euler in 1742.

Goldbach Conjecture: Every even positive integer greater than two can

be written as the sum of two primes.
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Let us exemplify the Conjecture with an example:

10=3+7=5+5
24=5+19=7+17=11+13
100=34+97=11+89=17+83
=29471=41459=47+53

Next with the help of the following lemma, we are going to prove the fact that

there exists infinitely many primes of the form 4n + 3.

Lemma 3.2.2. The product of two or more integers of the form 4n+ 3 (n € Z)

results in the same form.

Proof. It’s sufficient to prove the lemma with two integers of the form 4n + 1.
Set k1 = 4ny + 1, ko = 4no + 1. Multiplying we obtain,

klkg = (4711 + 1)(4712 + 1)
= 4(4’/1177,2 +ny + TLQ) +1
=4dn+1, [n = 4nings + ny + ng € Z|

which is the desired form. O

This facilitates the proof for the following theorem.
Theorem 3.2.10. There exists infinitely many primes of the form 4n + 3.

Proof. Suppose there exists finitely many primes t1, ¢, ..., ts of the form 4n+ 3.
Also, consider N = 4tqty ...ty —1 = 4(t1t2 ... ts — 1) + 3 to be a positive integer.
Further, let N = k1k> ...k, be the prime factorization of N. Since N is odd,
then k; # 2, Vi. Thus k; is of the form, either 4n + 1 or 4n + 3. If k; is of the
form 4n + 1, then using the lemma 3.2.2 we can say that N must be of the form
4n + 1. This is not the case here. Then N must contain one prime factor k; of
the form 4n + 3. But, k; can not be found among t1,ts,...,ts. Otherwise this
leads to k;|1, which is not true. Thus our assumption of finitely many primes of
the form 4n + 3 is wrong. O

The last theorem inspired us to ask a fairly question: Is the number of primes
of the form (4n + 1) also infinite? The following Dirichlet’s statement, whose

proof is beyond the scope of the book, is the answer to the question.
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Theorem 3.2.11. If a and b are positive integers with ged(a,b) = 1, then the
arithmetic progression
a,a+b,a+2b,...

contains infinite number of primes.

From Dirichlet’s statement it can be seen that there exists infinitely many
primes ending with 999, for instance 1999, 1000999, ..., they appear in arith-
metic progression given by 1000n 4+ 999, with ged(1000,999) = 1.

Theorem 3.2.12. There exists no arithmetic progression of the form a,a +

b,a + 2b,... that consists of only primes.

Proof. To begin with, consider a + nb = p, p being a prime. If ny = n + kp for
k=1,2,3... then the ng-th term in the progression is

a+ngb=a+ (n+kp)b
= (a+ nb) + kbp = p + kbp
= p(1 + kb)

Since, p|p(1 + kb), therefore p|(a + nib). Hence (a + nib) can not be a prime,
which is our desired result. O

Remark 3.2.1. From the above theorem, it’s quite clear that the progression

contains infinitely many composite numbers.

Theorem 3.2.13. If all the n(> 2) terms of the arithmetic progression,
p,p+d,p+2d,...

are primes, then g|d where d being the common difference and q(< n) is a prime

number.

Proof. Consider a prime ¢ < n. In anticipation of a contradiction, assume ¢ 1 d.
Again, if possible let us assume that the first ¢ terms of the given progression will
leave the same remainders when divided by q. Then 35,k € Z with 0 < j < k <
g—1or k—j <q—1such that (p+ jd) and (p + kd) generates same remainder
when divided by ¢, which further implies q|(k —Jj). But ged(p,q) = 1 and
by Euclid’s lemma q|(k — 7), which is impossible in the light of the inequality
k —j < q— 1. Hence the first ¢ terms of the given progression will leave ¢
different remainder upon division by ¢. Since they are extended from q integers
0,1,2,...,q — 1, one of them must be zero.This means for some ¢ satisfying
0<t<q-—1,q|(p+td). Hence we conclude, p + td is composite because the
inequality ¢ < n < p < (p + td) holds (for if p < n, then one of the term of the
progression will be p(1 + d)). This leads to a contradiction and hence q|d. O
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Remark 3.2.2. There is a conjecture that there exists arithmetic progression of
finite length, consisting of consecutive prime numbers. For instance, 47,53,59
and 251,257,263, 269.

Consider the function f : ZT — Z defined by f(n) = n? +n + 41. There
was a myth that the image set of the function was only primes. But in 1772,
it was proved to be false by Leonhard Euler. Though the myth was true for
n=0,1,2...,39 but fails for n = 40,41. Here

f(40) = 40 - 41 + 41 = 41*, and
f(41) = 41-42 + 41 = 41 - 43.

Once again f(42) = 1847 turns out to be prime. The polynomial f(n) = (n? +
n + 41) is known as Euler polynomial. It is to be noted that no polynomial of
the form n? +n + g, ¢ being prime, can perform better than Euler polynomial

in giving primes for successive values of n.

Theorem 3.2.14. There exists no non-constant polynomial f : Zv — Z with

integral coefficients that generates solely prime numbers for n € Z+.

Proof. To the contrary, assume that such a polynomial f does exists. Set f(n) =
apnf4ap_1n* " 4. 4asn?®+ayn+ag where the coefficients a;(i = 0,1,2..., k)
are integers with ay # 0. Let f(ng) = p, for some fixed value ng € Z*. Now, for

any t € Z, consider

f(no+ tp) = ax(no+ tp)*+ ax_1(no+tp)* 1+ ... + az(no+ tp)* + ar(no+tp) + ao
= (apn® + ap_ 10"+ . 4 aan® + ain + ag) + pQ(t)
= f(no) +pQ(t)
=p(1+Q(),

Q(t) being a polynomial in ¢ with integral coefficients. This shows p|f(ng + tp),
which further implies f(ng + tp) = p (¢t € Z). This leads to a contradic-
tion(Why!).Thus we have established the theorem. O

3.3 Worked out Exercises

Problem 3.3.1. The lucky numbers are generated by the screening process as
follows: Let us begin with the set of positive integers. Starting the process by
crossing out every second integer in the list, start the count with the integer 1.
Other than 1 the smallest integer left is 3, continuing with the process every third

integer left, beginning with the integer 1. The next integer left is 7, so we cross
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out every seventh integer left. Continuing as above, where at each stage we cross
out every kth integer left where k is the smallest integer left other than one. The
integers that remain are the lucky numbers. Prove that the lucky number set is

countably infinite.

Solution 3.3.1. At each stage of the procedure for generating the lucky numbers
the smallest number left is k, say, is designated to be a lucky number and in-
finitely many primes are left after the deletion of every k integer left. It follows
that there are countably infinite numbers of steps, and at every step a new lucky

number is added to the sequence. Hence the proof.

Problem 3.3.2. Show that the polynomial f(x) = x* — x + 41 is prime for all

integers x with 0 < x < 40. Furthermore, it is composite for x = 41.

Solution 3.3.2. Hint: Find f(1), f(2), f(3),..., f(39), f(40). But f(41) is com-

posite.

Problem 3.3.3. Show that if g(z) = a, 2™ +a, 2" ' +---+a,x + a, where
the coefficients are integers, then 3y € Z such that g(y) is composite.

n—1

Solution 3.3.3. In anticipation to contradiction, suppose there A any y € Z
such that g(y) is composite. Let y, be a positive integer such that g(y,) = p, a
prime. Let k be any integer such that g(y, + kp) = a, (y, + kp)" +a,_, (y, +
kp)" 4+ +a, (y, +kp)+a,. By binomial expansion it follows that g(y,+kp) =

Zaymi + Mp, M being an integer. Now p|(g(y, + Mp) = g(y, + kp) (Why!).
=0

Also g(y, +rp) = p (Why!). This contradicts the fact that a polynomial of degree
n takes on each value mot more than n times. Hence there is an integer y such

that g(y) is composite.

Problem 3.3.4. Show that no integer of the form n +1 is a prime, other than
2=1°+1.

Solution 3.3.4. Note that n must be positive. Otherwise no such integers are
prime (Why!). Since n®+1 = (n+1)(n*—n+1), n®+1 is not prime unless one of
the two factors on the right hand side of the equation is 1 and the other is n®+1.
But (n+1) > 1 for every positive integer n and the only way for n+1=n>+1
is when n = 1(Verify!). In this case, we have 1> +1 = (1 +1)(12 =14 1) = 2.

Hence 2 is the only prime of this form.

Problem 3.3.5. Find all primes that are the difference of the fourth powers of

two integers.
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Solution 3.3.5. Suppose n = a* — b* = (a — b)(a + b)(a® + b?), where a > b.

The integer n cannot be prime because it is divisible by a + b which cannot be 1

orn.

Problem 3.3.6. Show that if a and n are positive integers such that a™ — 1 is

prime, then a = 2 and n is prime.

Solution 3.3.6. Let n be a composite number and k be any divisor of n. Then
1 <k<nand(a®—1)|(a" —1). Asa™ —1 is prime, so a* —1 = 1(Why!). This
is true, if a = 2 and k = 1. This leads to a contradiction as k > 1. Thus we

have a = 2 and n is prime.

Problem 3.3.7. Show that every integer greater than 11 is the sum of two

composite integers.
Solution 3.3.7. Let us assume that n be an integer greater than 11.

Case I n is even: Then there exists an integer k such that n = 2k. Sincen > 11,
therefore n > 12 and thus k > 6. Nown —4 = 2(k — 2) with k — 2 > 4.
By definition of divisibility, we have 2|(n — 4) and (k — 2)|(n —4). By
definition of compositeness, n — 4 is composite. Alson = (n —4) +4. As

4 is composite, therefore n is the sum of two composite numbers.

Case IT n is odd: Then there exists an integer k such that n = 2k + 1. Since
n > 11, therefore n > 13 and thus k > 6. Now n —9 = 2(k — 4) with
k—4 > 2. By definition of divisibility, we have 2|(n—9) and (k—4)|(n—9).

Again by definition of compositeness, we have n — 9 is composite. Also

n=(n—9)+9. As9 is composite, therefore n is the sum of two composite

numbers.
Problem 3.3.8. If p > 5 is a prime number, show that p? + 2 is composite.
Solution 3.3.8. By division algorithm, p = 6q + r wherer = 0,1,2,3,4,5.
Case it If r =0, then p = 6q implies 6|p, a contradiction(Why!). Hence r # 0
Case ii: Ifr =2, then p = 6q + 2 implies 2|p, a contradiction. Hence r # 2
Case iii: If r = 3, then p = 6q + 3 implies 3|p, a contradiction. Hence r # 3
Case iv: Ifr =4, then p = 6q + 4 implies 2|p, a contradiction. Hence r # 4

Thus 7 = 1,5 implies p = 6q + 1 or p = 6q + 5. Therefore 3|(p* + 2) in either
case(Why!). Hence the proof.
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Problem 3.3.9. If p # 5 is an odd prime, prove that either p*> — 1 or p*> + 1 is
divisible by 10.

Solution 3.3.9. Here p is of the form: 10q¢ + 1,10 + 3,10q + 7,10¢ + 9. But
p # 10q + even since it can factor out 2, so fails to be prime. Now,

(10q + 1)* = 100¢® + 20g + 1 = 10|(p* — 1)
(10q + 3)? = 100¢” 4 60q + 9 = 10|(p* + 1)
(10g 4 7)% = 100¢* + 140q + 49 = 10|(p* + 1)
(10g 4 9)? = 100¢* + 180¢ + 81 = 10|(p* — 1).

Problem 3.3.10. If n > 1 is an integer not of the form 6k + 3, prove that

n? + 2" is composite.
Solution 3.3.10. Here n is of the form 6q,6q + 1,6q + 2,6q + 4,6q + 5.

Case (i): When n = 6q, then n? + 2" = 36¢> + 257 = 2|(36¢° + 2%9) as ¢ > 0,
hence a composite number.

Case (ii): When n = 6q + 1, then n® + 2" = 36¢> + 12¢ + 2597 + 1 = 36¢> +
12¢+(2+1)(2%7 —- - .4 (=1)%2150) (W hy!) = 3|(n*+2"), hence a composite

number.

Case (iii): Whenn = 6q+2, then n®+2" = 36¢°+24q+4+2225¢ = 2|(n?+2"),

hence a composite number.

case (iv): Whenn = 6q+4, then n?+2" = 364> +48q+16+2*2%7 = 2|(n?+2"),
hence a composite number.

Case (v): Treated as an ezxercise.(Hint! Similar to 6¢ + 1 as above.)

Problem 3.3.11. Prove that a positive integer a > 1 is a square if and only if

in the prime factorizations of a all the exponents of the primes are even integers.

Solution 3.3.11. Let a > 1 be square. Then a = n?, for some integer n. Let
2k

s

n = p]flp§2 pk Therefore n* = pfklpsz - p“"s shows all exponents are

even.

k

Conwversely, suppose all exponents of a = p’fl p§2 ---p%s are even. Therefore

s

o _ .2m,, 2m 2m, __
k. = 2m, for some m, and for every k,. Therefore a = p™1p;™2--.p7"s =

(p:nlp;n2 . .pms )2.

s

Problem 3.3.12. An integer is said to be square-free if it is not divisible by the

square of any integer greater than 1. Prove the following:
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1. An integer n > 1 is square-free if and only if n can be factored into a

product of distinct primes.

2. Every integer n > 1 is the product of a square-free integer and a perfect

square.

Solution 3.3.12. 1. Let n > 1 be square free and n = pf1p§2 ~-~pfs be
the prime factorization of it. Then k, > 2 and therefore pf|n, a con-
tradiction to the definition of square free. Therefore k, = 1. Hence
n = p,p,p,---p, with p, # p,. If possible, let n be not a square free
and a2|n. Hence n = la?, for some | € 7. Let a = qfqu’zqf?» qkr
Therefore p,p,p, - -p, = lg>* 1 "¢ - > implies q,|p, p,p, - p,. By

r

virtue of Corollary (3.2.1), q; = p, for somei =1,2,3,...,s. After factor-
ing out q; and p,, we still have p,p,p, -+ p, = qukl q3k2 q32k3 e qfkr implies
4;|p.p.ps - - - p, . But the original factorization p,p,p, - - - p, was unique and
q; was factored out. Hence q, fails to divide the remaining factorization,

which shows n to be square free.

2. Letn = p’fl p’;2 - ~pfs be the prime factorization of it. Ifk, is odd and k, >
Fr ,1<r, <sandk,. isodd

with k. > 1. Let b= PP D, Then a = bpkrl 71pkr2 -t ~pkrm -1
i m 1 Tm

1, then k, — 1 is even. Let a = pfﬁ pf“"z ceep
1 2

Also b is square free(Why!). Since k. — 1 is even, pff’i_l = pfl Let

1 4 ! 2 . k[ kl kl.
c=prpz---pm. Then, a=bc”. Finally, suppose aln =p, " p,* ~-~pljj
vy Py .
where all k, are even as aln has factored out all of the odd exponents in
J
the canonical form of n. By previous problem above, aln = d> = n =

btd? = b(cd)2, where b is square free.
Problem 3.3.13. Find all prime numbers that divide 50!.

Solution 3.3.13. All primes less than 50 will divide 50! because each is a term
of 50!. By the fundamental theorem of Arithmetic, each term k of 50! that
18 mon—prime has a unique prime factorization. And each term of the unique
factorization of k is smaller than k, so is prime less than 50. There is no prime
greater than 50 represented in this factorization of k. Hence all primes less than
50 will divide 50!.

Problem 3.3.14. Show that any composite three-digit number must have a

prime factor less than or equal to 31.

Solution 3.3.14. We know 999 is the largest composite three digit number. Now
V999 = 31.6. Here 31 is prime, so if a is composite, largest prime divisor is less

than equal to \/a. Hence 31 is largest possible prime divisor.
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Problem 3.3.15. Prove that the prime number set is countably infinite using
the integer N = p! + 1.

Solution 3.3.15. Let us assume there are finitely many primes, p, being the
largest. Then N =p !+1=1-2---p +1. Now N must have a prime divisor p,
withl <k <n(Why!). Andp,|1-2---p, (Why!). Thereforep,|[(N—1-2---p )=

p.|1 = p, =1, a contradiction.

Problem 3.3.16. Any integer n can be expressed as n = 28m, where k > 0 and

m being an odd integer. Verify!

Solution 3.3.16. With out any loss of generality, assume n > 0, for if n < 0

then —n = 2"m = n = 28(—m). Now the following cases will arise:
Case(i) Ifn is odd, then k =0 and m = n.

Case(ii) If n is even, then n =2k, k, <n.

Case(iii) If k, is odd, then we are done.

Case(iv) If k, is even, then k, = 2k, son = 2%k, where k, <k, < n.

Continuing as above after i-th stage we have 2'k,, where k, < k,_,. This is a
finite process and after a certain stage we will reach at k, =1 and there will be
no odd integer after 1. In that stage, n = 2'k, = 2" - 1. Thus n can be expressed

as n = 28m, where k > 0 and m being an odd integer.

Problem 3.3.17. Prove or Disprove: Every positive integer can be written in

the form p+ a2, where p is either a prime or 1, and a > 0.
Solution 3.3.17. Hint: 25 = p + a® then consider a = 1,2,3,4,5.

Problem 3.3.18. 1. Prove: Any prime of the form 3n+1 is also of the form
6m + 1.

2. The only prime of the form n® —1 is 7.

Solution 3.3.18. 1. Here p = 3n+ 1 is prime implies p is odd. Then p —
1 = 3n is even implies n is even. Hence n = 2m, for integer m. Thus
3n+1=6m+1.

2. Heret =n®>—1=(n—1)n*>+n+1). Ifn =1, then t is prime. If
n=2t="7. Ifn> 2, then t will be a factor of two integers, neither of

which is 1. Hence for n > 2, t can’t be prime.

Problem 3.3.19. Find five primes of the form n* — 2.
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Solution 3.3.19. Hint: Consider n =2,3,5,7,9.

Problem 3.3.20. A positive integer n is said to be square-full, or powerful, if
p?|n for every prime factor p of n. Prove that if n is square-full, then it can be
2;3
b

written in the form n = a“b>, with a and b positive integers.

Solution 3.3.20. Letn = p’flpiC2 ~~~p’fr be the prime factorization of it. Since
n s square-full, k, > 2. Listing first the odd exponents and then the even one,
let us assume

_ ok ok kg — K K Em ko Kn Kn o En Ky
n=ptp,? P, =4q 1qm22qm33 qmﬁqnllqniqns?’ q.t,

’VTLl ’I'Lf
where k. are odd(so k,, >3) and k, are even. Therefore for some v,, k, =
2v,. Therefore

ko koo k., k 2v, 2v, 2v 2v
pry g 3 e m 1 2 3 .
n=4q,"1q,"2q," -q," (4,14, 2 q, " - q,")

s i
mg n,

_ Kk k k Ko v, U, U v, \2
— qmr:l quQ qms - qmss (qni qnz qnz ceegt ) .

k k k k
Hence,n:q g M2 g e g s (Y)Q,Y:qvlquq% .-.qvt.
my my ny ng

’7713 ’VY'LS ’VL2 Tlt
Now k,, is odd and > 3 together implies k,, — 3 is even. Thus

n:q3 3 3 .“q3 ( m1—3qm2—3qm3—3.'.qu—S)(Y)Q.

m m m m m m m m
1 2 3 s 1 2 3 s

Let m, — 3 =2w,,q --q, =0b. Therefore

ml qTILQ qm3 :

n= 02222 e g2 ) (V).

s

my mg

Let X = q"1q"> qi cooqWs. Then n = b3X%Y?. Taking a = XY, we obtain
‘1 ‘wg

n = a’b’.

Problem 3.3.21. Given that p{n for all primes p < /n, prove that n > 1 is

either a prime or the product of two primes.

Solution 3.3.21. Assuming n to be composite and taking n = p,p, ---p, with
X >3, we know that

1< /n<p, <vn
Therefore

Vn<p, <vn
Vn <p, <v/n
Vn <p, <Vn.
Therefore n = (/n)(/n)(¥n) < p,p,p,ps =n = n < n. Hence X < 3 or =

2 or = 1. Thus n > 1 is either a prime(X = 1) or the product of two
primes(X = 2).
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Problem 3.3.22. Prove that if n > 2, then there exists a prime p satisfying
n<p<nl
Solution 3.3.22. Forn > 2,

n<n —1<nl

If n! — 1 is prime, we are done. If n! — 1 is not prime, taking p to be a prime
divisor, we have p < n! — 1. Suppose p < n. Then p is one of the terms in
1,2,3,...,n. So p|nl. Therefore p|n! and p|(n! — 1) together implies p}(n! —
(n! — 1)) = 1. Therefore p > n and hence the result.

Problem 3.3.23. Forn > 1, show that every prime divisor of n! +1 is an odd

integer that is greater than n.

Solution 3.3.23. Because n! is even for n > 1, therefore n! + 1 is odd. Hence
2t (n!+1), so every prime divisor of n! + 1 is odd.

Suppose every prime divisor p, of nl+1 is less than or equal to n. Since p, is
one of the members of n!, therefore p,|n!. Also p,|(n!+1) = p,|(n!+1)—n! =1,

a contradiction. Thus p, is greater than n.

Problem 3.3.24. If a is a positive integer and /a is rational, then Va is an

integer.

Solution 3.3.24. Let ¥/a = f, where 1, s being integers and ged(r, s) = 1 with
s
s#0. Letr =p,p, Py, 8= q,q4, -+ qy- Then p, # q,. Therefore

(0,0 ay)"a = (p,p, Py )"

Therefore (p,p, - px)"|a. Leta = (p,p, - px)"t, for some integert. Therefore

n

(0.0 4y)" (Pups - P )"t = (PuDs - Dx)",
implies q, = 1 for all j. Thus s =1 and - Ya, an integer.
: S
Problem 3.3.25. Prove for n > 2, /n is irrational.

Solution 3.3.25. Suppose, n > 2, /n is rational. Then by Problem 3.3.24, it
is an integer. Let ¥/n =a. Thenn=a". Butn < 2" = a" < 2" = eithera <
2 ora =1. Therefore n =1" = 1, a contradiction.

Problem 3.3.26. Prove that any odd prime p is of the form 4k + 1 or 4k + 3

for any non-negative integer k.
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Solution 3.3.26. By Division Algorithm, any positive integer can be expressed
in the form a = bg+r, 0 < r < b or equivalently written as a = 4q+r, r =
0,1,2,3. Now if;

r=0,a =4q = 2(2q), an even integer.

r=1,a=4q9+1=2(2q) + 1, an odd integer.

r=2a=4q+2 =2(2q) + 2 = 2(2¢ + 1) = 2m, an even integer.
r=3,a=49=2(29)+3 =212+ 1)+ 1=2m+ 1, an odd integer.

Hence any odd prime p is of the form 4k + 1 or 4k + 3 for any non-negative

integer k.

Problem 3.3.27. If p and p?> + 8 are both prime numbers, prove that p3 + 4 is

also prime.

Solution 3.3.27. Referring to Problem 3.3.8, if p > 3 is prime, it is of the
form (6k + 1) or (6k +5). So for p = 6k + 1 or 6k + 5, we have p*> + 8 =
36k% + 12k +9 or p? + 8 = 36k? + 60k + 33 respectively. But 3|(36k2 + 12k +9)
and 3’(36/{2 +60k+33). So p?+8 is not prime, provided p > 3. By the problem,
both p and p*> + 8 are primes. Thus the only possibility is p = 3, which yields
p? +8 =17. Hence p> + 4 = 31.

Problem 3.3.28. Bertrand Conjecture: For any positive integer z, 3 a prime p
satisfying z < p < 2z. Using this proves that for every n > 2, 3 a prime p with
p<n<2p.

Solution 3.3.28. Case-I: n is odd: Sincen > 2 & k > 1, 3 k € Z such
that n = 2k + 1. Addressing to Bertrand’s Conjecture, 3 a prime p satisfying
k<p<2k Nowp< (p+1)< (2k+1) =n= p<n. Further 2k < 2p =
(2k+1) < 2p = n < 2p. But (2k+1) being odd and 2p is even, together conclude
n < 2p. Thus 3 a prime p such that p < n < 2p.

Case-II: n is even: Since k > 1, 3 k € Z such that n = 2k holds. An appeal
to Bertrand’s Conjecture yields, k < p < 2k = n = p < n(p being a prime).
Therefore n = 2k < 2p = n < 2p. Thus p <n < 2p.

Problem 3.3.29. Let p,, denote the n-th prime number. For n > 3, prove that
Pats < PnPn+1Pnt2-

Solution 3.3.29. Note that ppy1 < 2p,. Therefore pyi3 < 2ppyo. So p%+3 <
4p2 1o < 4pnt2(2Pnt1) = 8PntoPns1. Nowps = 11 = 8ppiopni1 < PsPrtaPnt-
Therefore p%_,_g < PnDPn+1Pn+2, if n > 5.

Forn = 4; p% = 289 < papspe = 1001. Forn = 3; p% = 169 < p3psps = 385.
For n = 2; p? = 121 < papsps = 105. Hence for n > 3, p%+3 < PnPrn+1Pn+2-
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Problem 3.3.30. There exist infinitely many primes that do not belong to any
pair of twin primes.

Solution 3.3.30. Here ged(5,21) = 1. By Dirichlet’s theorem, the series 5 +
21k for k = 1,2,3,..., contains infinitely many primes. Let p be one such
prime. Then p =5+ 21k(k € Z) gives p+2 =T7(1 + 3k) and p— 2 = 3(1 4+ 7k).
Thus (p + 2) and (p — 2) fails to be prime. Hence all the primes contained in
(5 + 21k) cannot be numbers of twin primes.

Problem 3.3.31. Prove that there are infinitely many primes of the form 6n+5.

Solution 3.3.31. To the contrary, assume only a finite number of primes of
the form (6n 4 5). Let this be q1,q2,...,qs. Consider N = 6q1q2...qs — 1 =
6(q1g2...9s — 1) + 5. Let N = riro...1y be its prime factorization. Since N
is odd, r; # 2 for each i, so each r; can only be of the form 6n + 1, 6n + 3 or
6n + 5. Since

(6n+1)(6m + 1) = 36mn + 6m + 6n + 1
=6(6mn+m+n)+1
=6k + 1, where k= (6mn+m+n),

this shows the product of two integers of the form (6n + 1) is of the same form.
By similar reasoning, the product of two integers of the form (6n+ 3) is also so.
Furthermore,

(6n+1)(6m + 3) = 6(6mn +m + 3n) + 3
=6k" + 3, where k' = (6mn +m + 3n).

This implies, the product of two integers of the form (6n+1) and (6n+ 3) is of
the form (6n + 3).

So the only way for N to be of the form (6n+5) is, N must contain at least
one factor r; which is of the form (6n +5). But # any q; of the form 6n + 5.
If such q; exists, then from construction of N we get N — 6q1q2...qs = —1.
Furthermore N — 6q1qs . . . qs is divisible by a prime of the form (6n +5), which
contradicts our assumption( Why!).

3.4 Exercises:

1. Prove each of the assertions below:
(a) The only prime of the form n® — 1is 7.
(b) The only prime p for which 3p + 1 is a perfect square is p = 5.
(c) The only prime of the form n? — 4 is 5.
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10.

11.

12.

13.

14.

15.
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. Given that p is a prime and p|a”, prove that p"’a".

. Establish each of the following statements:

(a) If n > 4 is composite, then n divides (n — 1)
(b) Any integer of the form 8™ + 1, where n > 1, is composite.

Prove that a positive integer a > 1 is a square if and only if in the canonical

form of a all the exponents of the primes are even integers.

. Verify that any integer n can be expressed as n = 2¥m | where k > 0 and

m is an odd integer.

. A positive integer n is called square-full, or powerful, if p2|n for every

prime factor p of n (there are 992 square-full numbers less than 250, 000).
If n is square-full, show that it can be written in the form n = a2b3, with

a and b positive integers.

. Given that p { n for all primes p < &n, show that n > 1 is either a prime

or the product of two primes.

. Show that any composite three-digit number must have a prime factor less

than or equal to 31.

. Let g, be the smallest prime that is strictly greater than P, = p1ps...p,+

1. It has been conjectured that the difference ¢, — (p1p2 ... pn) is always

prime. Confirm this for the first five values of n.

Let p,, denotes the n-th prime number and set d,, = p,4+1 — pn. Find five

solutions of the equation d,, = d,, + 1.
For n > 3, show that the integers n,n + 2,n + 4 cannot all be prime.

A conjecture of Lagrange (1775) asserts that every odd integer greater
than 5 can be written as a sum p; + 2p, , where py, p2 are both primes.
Confirm this for all odd integers through 75.

Show that 13 is the largest prime that can divide two successive integers
of the form ny + 3.

Determine all twin primes p and ¢ = p + 2 for which pg — 2 is also prime.

Let p,, denote the n-th prime. For n > 3, show that p,, < p;+p2+...+pn—1.
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