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primes are considered secure if they are 2, 048 bits long, because the product of
these two primes would be about 1, 234 decimal digits.

Prime numbers have shown its existence in nature. Cicadas insect spend
most of their time hiding, only reappearing to mate every 13 or 17 years. Why
this particular number? Scientists invented that cicadas reproduce in cycles that
minimize possible interactions with predators. Any predator reproductive cycle
that divides the cicada’s cycle evenly means that the predator will hatch out
the same time as the cicada at some point. For instance , if the cicada evolved
towards a 12-year reproductive cycle, predators who reproduce at the 2, 3, 4
and 6 year intervals would find themselves with plenty of cicadas to eat. By
using a reproductive cycle with a prime number of years, cicadas would be able
to minimize contact with predators. Simulation models of 1, 000 years of cicada
evolution prove that there is a major advantage for reproductive cycle times
based on primes.

3.2 Primes & Fundamental Theorem of Arith-
metic

Positive divisors of an integer have a great importance in the study of number
theory. The integer 1 has only one positive divisor which is 1 itself. Any other
integers has more than one divisor. At Least two divisors of them are 1 and the
integer itself. There are integers which have divisors other than 1 and itself. The
numbers which have only two divisors 1 and itself are called prime numbers.

Definition 3.2.1. An integer p > 1 is said to be a prime number or prime if
its only divisors are 1 and p itself.

An integer which is not prime is known to be a composite number, having
more than two(what are those?) divisors.

Among the first ten positive integers 2, 3, 5, 7 are prime numbers whereas
4, 6, 8, 9, 10 are examples of composite numbers. Here 1 is a special type of
integer which is neither prime nor composite. Here the study of prime numbers
starts with the study of prime divisors. Here 5 is prime where 5 � 3 but 5|5 itself
together implies 5|15, leads us to the following theorem:

Theorem 3.2.1. An integer p > 1 is prime if and only if p|ab implies p|a or
p|b.

Proof. Let p be a prime number such that for any two integers a and b, p|ab
holds. If p|a, then we are done. Let p � a then the only divisors of p are 1 and p
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itself. As p is prime we have gcd(p, a) = 1 implies there exists integers r, t such
that 1 = rp + at. Then b = brp + t(ab). Now p|ab and p|prb imply p|b.

Conversely, let p satisfy the condition and q, r be any integers such that
p = qr where q < p. Thus p|qr and by the condition we can say either p|q or p|r.
But q|p shows p|r only. Therefore r = pt for some integer t. Hence p = qr = qpt

implies qt = 1 implies q = 1. So 1 and p are only divisors of p. This shows p is
prime.

Let us now generalize the above theorem for more than two terms as follows:

Theorem 3.2.2. If p is prime and p|a1a2a3 · · · a
n
, then p|a

i
for some i =

1, 2, 3, . . . , n.

Proof. We will prove this by mathematical induction. The statement is true
for n = 1. With reference to theorem (3.2.1) the statement is true for n = 2.
Let us assume the statement is true for n = k. Let n = k + 1 holds. Then
p|a1a2a3 · · · a

k
a

k+1 . Also choose a1a2a3 · · · a
k

= b where b is an integer, thus
p|ba

k+1 . Now if p|a
k+1 we are done. If p � a

k+1 , then from n = 2 we have
p|b implies p|a1a2a3 · · · a

k
which further implies p|a

i
for some i by the induction

hypothesis. Thus p|a
i

for i = 1, 2, . . . , k+1. So the statement is true for n = k+1.
Thus by principle of mathematical induction the theorem is proved.

Corollary 3.2.1. If p, q1 , q2 , q3 , . . . , qn are all primes and p|q1q2q3 · · · qn then
p = qi for some i = 1, 2, . . . , n.

Proof. By virtue of above theorem, we know that if p|qi
for some i = 1, 2, . . . , n.

But q
i

being prime so q
i

is not divisible by any integer other than 1 and itself.
Since, p > 1 then we have p = q

i
for some i = 1, 2, 3 . . . , n.

Let us now consider few integers 35, 25, 10 and we see that 7|35, 5|25 and
2|10. So the observation is that every integer has a prime factor. We now prove
this result for any integer n ≥ 2.

Theorem 3.2.3. Every integer n ≥ 2 has a prime factor.

Proof. We prove the statement by mathematical induction method. Taking
n = 2, the result is obvious as 2 itself is prime. Let us assume that each of the
integers 2, 3, . . . , n − 1 has a prime factor. Now considering n > 2 we can say
that the result is true if n is prime. If n is composite then n = rs for some
integer r, s with 1 < r, s < n. Then by induction hypothesis r has a prime factor
which is also a prime factor of n. So the theorem is proved.
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The set of all positive integers is countably infinite and the set of prime
numbers is a subset of the set. So two possibilities to occur. One, the cardinality
of the set is finite and the other which is countably infinite. But the set of prime
numbers that are countably infinite is given in a theorem of Euclid (300 B.C.) and
till the 21st century the proof is considered as an elegant proof of Mathematics.

Theorem 3.2.4. Prime number set is countably infinite.

Proof. Let the number of primes be finite and we write them as p1 = 2, p2 =
3 · · · p

n
. Now let us consider a composite number m = p1p2 · · · p

n
+ 1 and

m > 1. As m is composite it has a prime factor p(say). This p obviously one
of p1 , p2 , · · · pn. Now p|p1p2 · · · pn + 1, p|p1p2 · · · pn together imply p|1 [Applying
x = −1, y = 1, b = p1p2 · · · pn and c = p1p2 · · · pn + 1 on a|b, a|c ⇒ a|(bx + cy)].
This leads to a contradiction (Why!). So our assumption is wrong and the
theorem is proved.

All the above results lead us to the fact that any integer can be factorized
if it is composite. The factorized integers can be prime or composite such as
20 = 4×5 where 4 is composite whereas 5 is prime. But the most interesting fact
is that 20 = 22 × 5 where both 2 and 5 are prime. This factorization is known
to be prime factorization. The following Fundamental Theorem of Arithmetic
or the unique factorization theorem enlighten us about the fact:

Theorem 3.2.5. Every positive integer n ≥ 2 can be expressed uniquely as
product of primes, n = p1p2p3 · · · pr , where each pi is distinct for 1 ≤ i ≤ r.

Proof. If n is prime then we are done. If n is composite then there exists an
integer d such that d|n with 1 < d < n. By well ordering principle, let p1

be the smallest of them. Here p1 must be prime otherwise t be any divisor
of p1 such that 1 < t < p1 then t|p1 and p1 |n together imply t|n which is
a contradiction(Why!). So we have n = p1n1 for some integer n1 where 1 <

n1 < n. If n1 is prime then we are done. If n1 is composite then by the same
argument we have another prime p2 and integer n2 where 1 < n2 < n1 such
that n = p1p2n2. Continuing this way we have a decreasing sequence of integers
n > n1 > n2 > · · · > 1. This sequence is finite and after finite nn we will get a
prime pr. This leads to prime factorization n = p1p2 · · · pr.

To prove the uniqueness let there be two distinct prime factorizations of n

as n = p1p2 · · · pr = q1q2 · · · qs where r ≤ s and each of p′
i
s and q′

j
s are primes.

These primes are in the ordering p1 ≤ p2 ≤ p3 ≤ · · · ≤ pr and q1 ≤ q2 ≤ q3 ≤
· · · ≤ qs . As p1 |n this implies p1 |q1q2 · · · qs then by virtue of Corollary 3.2.1 p1 =
q

j
for some j where 1 ≤ j ≤ n. This follows that p1 < q1 . Now cancelling the
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common factors from both the sides we have q2q3 · · · qs = p2p3 · · · pr. Continuing
as above, up to r terms as r < s. After r-th step we have 1 = q

r+1qr+2 · · · q
s

which is absurd as q′
j
s are prime. Hence r = s and p1 = q1 , p2 = q2 , . . . , pr

= q
s
.

So the factorization is unique.

Let us consider an integer 15 which can be written as 5×3 where both 5 and
3 are distinct primes. But if we take 75 it can be expressed as 5×5×3 where we
can see the representation of primes. By collecting those primes and replacing
them by a single factor we can represent any integer by following corollary viz

Corollary 3.2.2. Any positive integer can be uniquely written as pn1
1 pn2

2 · · · pnr
r

where each ni is a positive integer and p′
i
s are prime for i = 1, 2, 3, . . . , r with

p1 < p2 < p3 < · · · < pr .

From the above corollary we can assert that any arbitrary positive integer has
an unique prime factorization. Now in the later part of this section we have given
an alternative proof of the Theorem 2.5.1. For that we have to define the greatest
common divisor and least common multiple of any two arbitrary integers in the
light of prime factorization. Let us take two integers a and b with their unique
prime factorizations a = pa1

1 pa2
2 · · · pan

n
, b = pb1

1 pb2
2 · · · pbn

n
with p1 < p2 < · · · <

pn and ak, bk be non negative integers for k = 1, 2, · · · , n. Then gcd(a, b) =
pm1

1 pm2
2 · · · pmn

n
and lcm(a, b) = pM1

1 pM2
2 · · · pMn

n
where M

k
= Max(a

k
, a

k
) and

m
k

= min(a
k
, b

k
). Here to give alternative proof of the Theorem 2.5.1 we first

state and prove the lemma as follows:

Lemma 3.2.1. If x and y are real numbers, then max(x, y)+min(x, y) = x+y.

Proof. If x < y, then min(x, y) = x and max(x, y) = y, and again we find that
max(x, y) + min(x, y) = x + y. Similarly, If x > y, then min(x, y) = y and
max(x, y) = x, and again we find that max(x, y) + min(x, y) = x + y.

Now using the above lemma, let us proceed for the alternate proof:

Proof. Let a and b have prime-power factorizations a = pa1
1 pa2

2 · · · pan
n

, b =
pb1

1 pb2
2 · · · pbn

n
, where the powers are nonnegative integers and the primes p′

i
s

occurring in the prime-power factorizations of a and b. Let M
k

= Max(a
k
, b

k
)
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and m
k

= min(a
k
, b

k
). Then, we have

lcm(a, b) gcd(a, b) = pM1
1 pM2

2 · · · pMn
n

pm1
1 pm2

2 · · · pmn
n

= pM1+m1
1 pM2+m2

2 · · · pMn+mn
n

= pa1+b1
1 pa2+b2

2 · · · pan+bn
n

= pa1
1 pb1

1 pa2
2 pb2

2 · · · pan
n

pbn
n

= ab.

The numbers 2, 3, 4 are integers and if we take 2
3 ,

3
4 then this type are the

rational numbers of the form p

q
where q = 0 and gcd(p, q) = 1. But there are

numbers of the form
√

2,
√

3 which can not be written as above. These are said
to be irrational numbers. We are now going to introduce a famous result of
Pythagoras on irrational numbers viz

Theorem 3.2.6. The number
√

2 is irrational.

Proof. Let us suppose that
√

2 is a rational quantity. Then
√

2 = a

b
where a, b

are integers relatively prime to each other. Squaring we have, 2 = a2

b2
⇒ a2 = 2b2

implies b2|a2. If b > 1, then by fundamental theorem of arithmetic we can say
that there exists a prime p such that p|b. Then it follows p|a2 implies p|a and
hence gcd(a, b) ≥ p which is a contradiction unless b = 1. But if b = 1 holds
then a2 = 2 which is impossible(Why!). Hence the proof.

For further discussion of this chapter we will show our interest in finding
extremely large primes. To do so our first aim is to check whether a given
integer is prime or not. We first deal with this question by trial division of n

using the following theorem viz

Theorem 3.2.7. If n is a composite integer, then n has a prime factor not
exceeding

√
n.

Proof. Since n is composite, we can write n = ab where a, b are integers with
1 < a ≤ b < n. There must be a ≤ √

n, if not then b ≥ a >
√
n which leads to

ab > n, which is not possible. Now from Theorem 3.2.3 the integer a must have
a prime divisor p(say). Then p ≤ a ≤ √

n. Further if p|a and a|n implies p|n.
Then p is the required prime factor of n not exceeding

√
n.

We can use this theorem to find all the primes less than or equal to a given
positive integer n. This procedure is called Sieve of Eratosthenes. To illustrate

�
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the process, let us choose n

prime factor less than or equal to
√

81 = 9. Since, the only prime less than 9 are
2, 3, 5, 7. We only have to find those integers less than 81 which can be divisible
by any one of those primes. In the below table we have shown a complete list
of them. The multiples of any one or two or three of 2, 3, 5, 7 of the numbers in
the table are cancelled by �, � and respectively.

= 81. Then by virtue of the above theorem, 81 has a

��

�2 �3 �4 �5 �6 �7 �8 �9
�10 11 �12 13 �14 �15 �16 17
�18 19 �20 �21 �22 23 �24 �25
�26 �27 �28 29 ��30 31 �32 �33
�34 �35 �36 37 �38 �39 �40 41
��42 43 �44 �45 �46 47 �48 49
�50 �51 �52 53 �54 �55 �56 �57
�58 59 �60 61 �62 �63 �64 �65
�66 67 �68 69 �70 71 �72 73
�74 �75 �76 �77 �78 79 �80 �81

The above table indicates that there exist many primes less than 81. In fact,
from theorem (3.2.4), we have infinitely many primes. A fairly natural question
arises: Is it possible to estimate, how many primes are less than a positive real
number x? We are fortunate enough to have the most renowned theorem of
number theory, and of all mathematics, is the prime number theorem which
answers this question. In 1793, Gauss speculated the theorem but it was an
open problem until 1896, when a French mathematician J. Hadamard and a
Belgian mathematician C. J. de la Vallée-Poussin had proved it independently.
So before going to state the theorem let us begin with a simple definition.

Definition 3.2.2. The function π(x), where x is a positive real number, denotes
the number of primes not exceeding x.

We now state the prime number theorem, whose proof is beyond the scope
of the book.

Statement 3.2.1. In language of limits, the theorem can be stated as lim
x→∞

π(x)
ln x

=
1.

The above stated theorem reflects the fact that for large values of x, x

ln x
is a

good approximation to π(x). Further, it is to be noted that it is not necessary to
find all primes not exceeding x in order to compute π(x). By virtue of counting
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argument based on the Sieve of Eratosthenes,one can compute π(x) without
finding all the primes less than x.

Our next theorem addresses that the gap between consecutive primes is ar-
bitrarily long.

Theorem 3.2.8. For any positive integer n, there are at least n consecutive
composite positive integers. Stated otherwise, there are arbitrarily large gaps in
the series of primes.

Proof. Consider the n consecutive positive integers

(n + 1)! + 2, (n + 1)! + 3, . . . , (n + 1)! + n + 1.

Now, 2 ≤ j ≤ n + 1 ⇒ j
∣∣(n + 1)!. Finally, an appeal to Proposition 2.2.1 yields

the desired result.

The following example will exemplify our foregoing theorem.

Example 3.2.1. For n = 5, the smallest 5 consecutive composite integers can
be found by locating the first pair of consecutive composite odd integers, 25 and
27. Hence the smallest 5 consecutive composite integers are 24, 25, 26, 27, and
28. These are considerably smaller than the integers (5+1)!+j = 6!+j = 720+j

for j = 2, 3, 4, 5, 6. Also, the seven consecutive integers beginning with 8! + 2 =
40322 are all composite. However, these are much larger than the smallest seven
consecutive composites 90, 91, 92, 93, 94, 95, and 96.

Our next discussion is about the propagation of prime numbers of prime
numbers. Let us choose p a prime and p̃ to be the product of all primes that are
less than or equal to p. The numbers p̃+ 1 form are called “Euclidean numbers”
as they appear in the proof of Theorem 3.2.4. For example,

2̃ + 1 = 2 + 1 = 3

3̃ + 1 = 2 · 3 + 1 = 7

5̃ + 1 = 2 · 3 · 5 + 1 = 31

are all prime numbers but also we can see 1̃3 = 59 ·509 is not prime. From these
two types of examples, we see that p̃ + 1 is not always a prime.
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If we consider a sequence of integers such as,

n1 = 2

n2 = n1 + 1

n3 = n1n2 + 1
...

n
k

= n1n2 · · ·n
k−1 + 1

where each n
k

> 1 and they are relatively prime to each other. If not, let
gcd(n

i
, n

j
) = d where i < j. Then d|n

i
⇒ d

∣∣n1n2 · · ·n
i
· · ·n

j−1 . Since, d
∣∣n

j

therefore d|n1n2 · · ·n
j−1 + 1 together imply d|1, possible when d = 1. So our

assertion, all n′
k
s are pairwise relatively prime, is true. Now we can say that

there are many distinct primes as there are integers n
k
.

Let p
n

be n-th prime number. Then from Euclid’s proof we can estimate the
rate of increase of p

n . Here we have pn+1 ≤ p1p2 · · · pn + 1 < pn
n

+ 1. If n = 5
then 31 = p6 = p55 + 1 = 75 + 1 = 16808. Thus we have the following theorem
viz

Theorem 3.2.9. If p
k
be the k-th prime, then p

k
≤ 22

k−1.

Proof. We will prove the theorem by Mathematical Induction on k. If k = 1,
then the result is obvious. Let us assume k > 1. Then

p
k+1 ≤ p1p2 · · · p

k
+ 1

≤ 2 · 22 · · · 2k−1 + 1 = 21+2+22+···+2k−1
+ 1 = 22

k−1 + 1.

But 1 ≤ 22
k−1 for all k. Therefore p

k+1 ≤ 22
k

(How!). Thus the result is true for
k + 1. Hence the proof.

The last inequation of the above proof gives rise to an interesting corollary
stated as follows:

Corollary 3.2.3. For k ≥ 1 there exists at least k + 1 primes less than 22
k

.

Proof. left to the reader.

Finally, we conclude this section with remarkable conjecture about primes,
commonly known as Golbach’s Conjecture, stated by Christian Goldbach in a
letter to Euler in 1742.

Goldbach Conjecture: Every even positive integer greater than two can
be written as the sum of two primes.
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Let us exemplify the Conjecture with an example:

10 = 3 + 7 = 5 + 5

24 = 5 + 19 = 7 + 17 = 11 + 13

100 = 3 + 97 = 11 + 89 = 17 + 83

= 29 + 71 = 41 + 59 = 47 + 53

Next with the help of the following lemma, we are going to prove the fact that
there exists infinitely many primes of the form 4n + 3.

Lemma 3.2.2. The product of two or more integers of the form 4n+ 3 (n ∈ Z)
results in the same form.

Proof. It’s sufficient to prove the lemma with two integers of the form 4n + 1.
Set k1 = 4n1 + 1, k2 = 4n2 + 1. Multiplying we obtain,

k1k2 = (4n1 + 1)(4n2 + 1)

= 4(4n1n2 + n1 + n2) + 1

= 4n + 1, [n = 4n1n2 + n1 + n2 ∈ Z]

which is the desired form.

This facilitates the proof for the following theorem.

Theorem 3.2.10. There exists infinitely many primes of the form 4n + 3.

Proof. Suppose there exists finitely many primes t1, t2, . . . , ts of the form 4n+3.
Also, consider N = 4t1t2 . . . ts −1 = 4(t1t2 . . . ts −1)+3 to be a positive integer.
Further, let N = k1k2 . . . kn be the prime factorization of N . Since N is odd,
then ki = 2, ∀ i. Thus ki is of the form, either 4n + 1 or 4n + 3. If ki is of the
form 4n+ 1, then using the lemma 3.2.2 we can say that N must be of the form
4n + 1. This is not the case here. Then N must contain one prime factor ki of
the form 4n + 3. But, ki can not be found among t1, t2, . . . , ts. Otherwise this
leads to ki|1, which is not true. Thus our assumption of finitely many primes of
the form 4n + 3 is wrong.

The last theorem inspired us to ask a fairly question: Is the number of primes
of the form (4n + 1) also infinite? The following Dirichlet’s statement, whose
proof is beyond the scope of the book, is the answer to the question.

�
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Theorem 3.2.11. If a and b are positive integers with gcd(a, b) = 1, then the
arithmetic progression

a, a + b, a + 2b, . . .

contains infinite number of primes.

From Dirichlet’s statement it can be seen that there exists infinitely many
primes ending with 999, for instance 1999, 1000999, . . ., they appear in arith-
metic progression given by 1000n + 999, with gcd(1000, 999) = 1.

Theorem 3.2.12. There exists no arithmetic progression of the form a, a +
b, a + 2b, . . . that consists of only primes.

Proof. To begin with, consider a + nb = p, p being a prime. If nk = n + kp for
k = 1, 2, 3 . . . then the nk-th term in the progression is

a + nkb = a + (n + kp)b

= (a + nb) + kbp = p + kbp

= p(1 + kb)

Since, p|p(1 + kb), therefore p|(a + nkb). Hence (a + nkb) can not be a prime,
which is our desired result.

Remark 3.2.1. From the above theorem, it’s quite clear that the progression
contains infinitely many composite numbers.

Theorem 3.2.13. If all the n(> 2) terms of the arithmetic progression,

p, p + d, p + 2d, . . .

are primes, then q|d where d being the common difference and q(< n) is a prime
number.

Proof. Consider a prime q < n. In anticipation of a contradiction, assume q � d.
Again, if possible let us assume that the first q terms of the given progression will
leave the same remainders when divided by q. Then ∃j, k ∈ Z with 0 ≤ j < k ≤
q − 1 or k − j ≤ q − 1 such that (p+ jd) and (p+ kd) generates same remainder
when divided by q, which further implies q

∣∣(k − j). But gcd(p, q) = 1 and
by Euclid’s lemma q

∣∣(k − j), which is impossible in the light of the inequality
k − j ≤ q − 1. Hence the first q terms of the given progression will leave q

different remainder upon division by q. Since they are extended from q integers
0, 1, 2, . . . , q − 1, one of them must be zero.This means for some t satisfying
0 ≤ t ≤ q − 1, q|(p + td). Hence we conclude, p + td is composite because the
inequality q < n ≤ p ≤ (p + td) holds (for if p ≤ n, then one of the term of the
progression will be p(1 + d)). This leads to a contradiction and hence q

∣
d.∣
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Remark 3.2.2. There is a conjecture that there exists arithmetic progression of
finite length, consisting of consecutive prime numbers. For instance, 47, 53, 59
and 251, 257, 263, 269.

Consider the function f : Z+ −→ Z defined by f(n) = n2 + n + 41. There
was a myth that the image set of the function was only primes. But in 1772,
it was proved to be false by Leonhard Euler. Though the myth was true for
n = 0, 1, 2 . . . , 39 but fails for n = 40, 41. Here

f(40) = 40 · 41 + 41 = 412, and

f(41) = 41 · 42 + 41 = 41 · 43.

Once again f(42) = 1847 turns out to be prime. The polynomial f(n) = (n2 +
n + 41) is known as Euler polynomial. It is to be noted that no polynomial of
the form n2 + n + q, q being prime, can perform better than Euler polynomial
in giving primes for successive values of n.

Theorem 3.2.14. There exists no non-constant polynomial f : Z+ −→ Z with
integral coefficients that generates solely prime numbers for n ∈ Z+.
Proof. To the contrary, assume that such a polynomial f does exists. Set f(n) =
akn

k +ak−1n
k−1+ . . .+a2n

2+a1n+a0 where the coefficients ai(i = 0, 1, 2 . . . , k)
are integers with ak = 0. Let f(n0) = p, for some fixed value n0 ∈ Z+. Now, for
any t ∈ Z, consider

f(n0+ tp) = ak(n0+ tp)k + ak−1(n0+ tp)k−1+ . . . + a2(n0+ tp)2+ a1(n0+ tp) + a0

= (akn
k + ak−1n

k−1 + . . . + a2n
2 + a1n + a0) + pQ(t)

= f(n0) + pQ(t)

= p(1 + Q(t)),

Q(t) being a polynomial in t with integral coefficients. This shows p|f(n0 + tp),
which further implies f(n0 + tp) = p (t ∈ Z). This leads to a contradic-
tion(Why!).Thus we have established the theorem.

3.3 Worked out Exercises

Problem 3.3.1. The lucky numbers are generated by the screening process as
follows: Let us begin with the set of positive integers. Starting the process by
crossing out every second integer in the list, start the count with the integer 1.
Other than 1 the smallest integer left is 3, continuing with the process every third
integer left, beginning with the integer 1. The next integer left is 7, so we cross

�
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out every seventh integer left. Continuing as above, where at each stage we cross
out every κth integer left where κ is the smallest integer left other than one. The
integers that remain are the lucky numbers. Prove that the lucky number set is
countably infinite.

Solution 3.3.1. At each stage of the procedure for generating the lucky numbers
the smallest number left is κ, say, is designated to be a lucky number and in-
finitely many primes are left after the deletion of every κ integer left. It follows
that there are countably infinite numbers of steps, and at every step a new lucky
number is added to the sequence. Hence the proof.

Problem 3.3.2. Show that the polynomial f(x) = x2 − x + 41 is prime for all
integers x with 0 ≤ x ≤ 40. Furthermore, it is composite for x = 41.

Solution 3.3.2. Hint: Find f(1), f(2), f(3), . . . , f(39), f(40). But f(41) is com-
posite.

Problem 3.3.3. Show that if g(x) = an
xn + a

n−1x
n−1 + · · · + a1x + a0 where

the coefficients are integers, then ∃ y ∈ Z such that g(y) is composite.

Solution 3.3.3. In anticipation to contradiction, suppose there � any y ∈ Z

such that g(y) is composite. Let y0 be a positive integer such that g(y0) = p, a
prime. Let κ be any integer such that g(y0 + κp) = an(y0 + κp)n + an−1(y0 +
κp)n−1+· · ·+a1(y0 +κp)+a0 . By binomial expansion it follows that g(y0 +κp) =

n∑
j=0

a
j
xj

0 + Mp, M being an integer. Now p|(g(y0 + Mp) = g(y0 + κp) (Why!).

Also g(y0 +κp) = p (Why!). This contradicts the fact that a polynomial of degree
n takes on each value not more than n times. Hence there is an integer y such
that g(y) is composite.

Problem 3.3.4. Show that no integer of the form n3 + 1 is a prime, other than
2 = 13 + 1.

Solution 3.3.4. Note that n must be positive. Otherwise no such integers are
prime (Why!). Since n3+1 = (n+1)(n2−n+1), n3+1 is not prime unless one of
the two factors on the right hand side of the equation is 1 and the other is n3+1.
But (n+ 1) > 1 for every positive integer n and the only way for n+ 1 = n3 + 1
is when n = 1(Verify!). In this case, we have 13 + 1 = (1 + 1)(12 − 1 + 1) = 2.
Hence 2 is the only prime of this form.

Problem 3.3.5. Find all primes that are the difference of the fourth powers of
two integers.
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Solution 3.3.5. Suppose n = a4 − b4 = (a − b)(a + b)(a2 + b2), where a > b.
The integer n cannot be prime because it is divisible by a + b which cannot be 1
or n.

Problem 3.3.6. Show that if a and n are positive integers such that an − 1 is
prime, then a = 2 and n is prime.

Solution 3.3.6. Let n be a composite number and k be any divisor of n. Then
1 < k < n and (ak − 1)|(an − 1). As an − 1 is prime, so ak − 1 = 1(Why!). This
is true, if a = 2 and k = 1. This leads to a contradiction as k > 1. Thus we
have a = 2 and n is prime.

Problem 3.3.7. Show that every integer greater than 11 is the sum of two
composite integers.

Solution 3.3.7. Let us assume that n be an integer greater than 11.

Case I n is even: Then there exists an integer k such that n = 2k. Since n > 11,
therefore n ≥ 12 and thus k ≥ 6. Now n − 4 = 2(k − 2) with k − 2 ≥ 4.
By definition of divisibility, we have 2|(n − 4) and (k − 2)|(n − 4). By
definition of compositeness, n − 4 is composite. Also n = (n − 4) + 4. As
4 is composite, therefore n is the sum of two composite numbers.

Case II n is odd: Then there exists an integer k such that n = 2k + 1. Since
n > 11, therefore n ≥ 13 and thus k ≥ 6. Now n − 9 = 2(k − 4) with
k−4 ≥ 2. By definition of divisibility, we have 2|(n−9) and (k−4)|(n−9).
Again by definition of compositeness, we have n − 9 is composite. Also
n = (n−9)+9. As 9 is composite, therefore n is the sum of two composite
numbers.

Problem 3.3.8. If p ≥ 5 is a prime number, show that p2 + 2 is composite.

Solution 3.3.8. By division algorithm, p = 6q + r where r = 0, 1, 2, 3, 4, 5.

Case i: If r = 0, then p = 6q implies 6|p, a contradiction(Why!). Hence r = 0

Case ii: If r = 2, then p = 6q + 2 implies 2|p, a contradiction. Hence r = 2

Case iii: If r = 3, then p = 6q + 3 implies 3|p, a contradiction. Hence r = 3

Case iv: If r = 4, then p = 6q + 4 implies 2|p, a contradiction. Hence r = 4

Thus r = 1, 5 implies p = 6q + 1 or p = 6q + 5. Therefore 3|(p2 + 2) in either
case(Why!). Hence the proof.

�
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Problem 3.3.9. If p = 5 is an odd prime, prove that either p2 − 1 or p2 + 1 is
divisible by 10.

Solution 3.3.9. Here p is of the form: 10q + 1, 10q + 3, 10q + 7, 10q + 9. But
p = 10q + even since it can factor out 2, so fails to be prime. Now,

(10q + 1)2 = 100q2 + 20q + 1 ⇒ 10|(p2 − 1)

(10q + 3)2 = 100q2 + 60q + 9 ⇒ 10|(p2 + 1)

(10q + 7)2 = 100q2 + 140q + 49 ⇒ 10|(p2 + 1)

(10q + 9)2 = 100q2 + 180q + 81 ⇒ 10|(p2 − 1).

Problem 3.3.10. If n > 1 is an integer not of the form 6k + 3, prove that
n2 + 2n is composite.

Solution 3.3.10. Here n is of the form 6q, 6q + 1, 6q + 2, 6q + 4, 6q + 5.

Case (i): When n = 6q, then n2 + 2n = 36q2 + 26q ⇒ 2|(36q2 + 26q) as q > 0,
hence a composite number.

Case (ii): When n = 6q + 1, then n2 + 2n = 36q2 + 12q + 26q+1 + 1 = 36q2 +
12q+(2+1)(26q −· · ·+(−1)6q16q)(Why!) ⇒ 3|(n2+2n), hence a composite
number.

Case (iii): When n = 6q+2, then n2+2n = 36q2+24q+4+2226q ⇒ 2|(n2+2n),
hence a composite number.

case (iv): When n = 6q+4, then n2+2n = 36q2+48q+16+2426q ⇒ 2|(n2+2n),
hence a composite number.

Case (v): Treated as an exercise.(Hint! Similar to 6q + 1 as above.)

Problem 3.3.11. Prove that a positive integer a > 1 is a square if and only if
in the prime factorizations of a all the exponents of the primes are even integers.

Solution 3.3.11. Let a > 1 be square. Then a = n2, for some integer n. Let
n = pk1

1 pk2
2 · · · pks

s
. Therefore n2 = p2k1

1 p2k2
2 · · · p2ks

s
shows all exponents are

even.
Conversely, suppose all exponents of a = pk1

1 pk2
2 · · · pks

s
are even. Therefore

k
i

= 2m
i
for some m

i
and for every k

i
. Therefore a = p2m1

1 p2m2
2 · · · p2ms

s
=

(pm1
1 pm2

2 · · · pms
s

)2.

Problem 3.3.12. An integer is said to be square-free if it is not divisible by the
square of any integer greater than 1. Prove the following:

�
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1. An integer n > 1 is square-free if and only if n can be factored into a
product of distinct primes.

2. Every integer n > 1 is the product of a square-free integer and a perfect
square.

Solution 3.3.12. 1. Let n > 1 be square free and n = pk1
1 pk2

2 · · · pks
s

be
the prime factorization of it. Then k

i ≥ 2 and therefore p2
i
|n, a con-

tradiction to the definition of square free. Therefore ki = 1. Hence
n = p1p2p3 · · · p

s
with p

i
= p

j
. If possible, let n be not a square free

and a2|n. Hence n = la2, for some l ∈ Z. Let a = qk1
1 qk2

2 qk3
3 · · · qkr

r
.

Therefore p1p2p3 · · · p
s

= lq2k1
1 q2k2

2 q2k3
3 · · · q2kr

r
implies q

j
|p1p2p3 · · · p

s
. By

virtue of Corollary (3.2.1), q
j

= p
i
for some i = 1, 2, 3, . . . , s. After factor-

ing out q
j and pi , we still have p1p2p3 · · · ps = lq2k1

1 q2k2
2 q2k3

3 · · · q2kr
r

implies
qj |p1p2p3 · · · ps . But the original factorization p1p2p3 · · · ps was unique and
q

j
was factored out. Hence q

j
fails to divide the remaining factorization,

which shows n to be square free.

2. Let n = pk1
1 pk2

2 · · · pks
s
be the prime factorization of it. If k

i
is odd and k

i
>

1, then k
i − 1 is even. Let a = p

kr1
r1

p
kr2
r2

· · · pkrm
rm

, 1 ≤ ri ≤ s and kr
i
is odd

with k
r

i
≥ 1. Let b = p

r1
p

r2
· · · p

rm
. Then a = bp

kr1
−1

r1
p

kr2
−1

r2
· · · pkrm

−1
rm

.

Also b is square free(Why!). Since kr
i

− 1 is even, p
kr

i
−1

r
i

= p2l
i

r
i
. Let

c = pl1
r1
pl2

r2
· · · plm

rm
. Then, a = bc2. Finally, suppose a|n = p

k
l1

l1
p

k
l2

l2
· · · p

k
l
j

l
j

where all k
l
j
are even as a|n has factored out all of the odd exponents in

the canonical form of n. By previous problem above, a|n = d2 ⇒ n =
bc2d2 = b(cd)2, where b is square free.

Problem 3.3.13. Find all prime numbers that divide 50!.

Solution 3.3.13. All primes less than 50 will divide 50! because each is a term
of 50!. By the fundamental theorem of Arithmetic, each term k of 50! that
is non–prime has a unique prime factorization. And each term of the unique
factorization of k is smaller than k, so is prime less than 50. There is no prime
greater than 50 represented in this factorization of k. Hence all primes less than
50 will divide 50!.

Problem 3.3.14. Show that any composite three-digit number must have a
prime factor less than or equal to 31.

Solution 3.3.14. We know 999 is the largest composite three digit number. Now√
999 = 31.6. Here 31 is prime, so if a is composite, largest prime divisor is less

than equal to
√
a. Hence 31 is largest possible prime divisor.
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Problem 3.3.15. Prove that the prime number set is countably infinite using
the integer N = p! + 1.

Solution 3.3.15. Let us assume there are finitely many primes, pn
being the

largest. Then N = p
n
!+1 = 1 ·2 · · · p

n
+1. Now N must have a prime divisor p

k

with 1 ≤ k ≤ n(Why!). And p
k
|1·2 · · · pn(Why!). Therefore pk

|(N−1·2 · · · pn) ⇒
p

k
|1 ⇒ p

k
= 1, a contradiction.

Problem 3.3.16. Any integer n can be expressed as n = 2km, where k ≥ 0 and
m being an odd integer. Verify!

Solution 3.3.16. With out any loss of generality, assume n > 0, for if n < 0
then −n = 2km ⇒ n = 2k(−m). Now the following cases will arise:

Case(i) If n is odd, then k = 0 and m = n.

Case(ii) If n is even, then n = 2k1 , k1 < n.

Case(iii) If k1 is odd, then we are done.

Case(iv) If k1 is even, then k1 = 2k2 so n = 22k2 where k2 < k1 < n.

Continuing as above after i-th stage we have 2ik
i
, where k

i
< k

i−1 . This is a
finite process and after a certain stage we will reach at k

t
= 1 and there will be

no odd integer after 1. In that stage, n = 2tkt = 2t · 1. Thus n can be expressed
as n = 2km, where k ≥ 0 and m being an odd integer.

Problem 3.3.17. Prove or Disprove: Every positive integer can be written in
the form p + a2, where p is either a prime or 1, and a ≥ 0.

Solution 3.3.17. Hint: 25 = p + a2 then consider a = 1, 2, 3, 4, 5.

Problem 3.3.18. 1. Prove: Any prime of the form 3n+1 is also of the form
6m + 1.

2. The only prime of the form n3 − 1 is 7.

Solution 3.3.18. 1. Here p = 3n + 1 is prime implies p is odd. Then p −
1 = 3n is even implies n is even. Hence n. = 2m, for integer m. Thus
3n + 1 = 6m + 1.

2. Here t = n3 − 1 = (n − 1)(n2 + n + 1). If n = 1, then t is prime. If
n = 2, t = 7. If n > 2, then t will be a factor of two integers, neither of
which is 1. Hence for n > 2, t can’t be prime.

Problem 3.3.19. Find five primes of the form n2 − 2.
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Solution 3.3.19. Hint: Consider n = 2, 3, 5, 7, 9.

Problem 3.3.20. A positive integer n is said to be square-full, or powerful, if
p2|n for every prime factor p of n. Prove that if n is square-full, then it can be
written in the form n = a2b3, with a and b positive integers.

Solution 3.3.20. Let n = pk1
1 pk2

2 · · · pkr
r
be the prime factorization of it. Since

n is square-full, k
i ≥ 2. Listing first the odd exponents and then the even one,

let us assume

n = pk1
1 pk2

2 · · · pks
s

= q
km1
m1

q
km2
m2

q
km3
m3

· · · qkms
ms

q
kn1
n1

q
kn2
n2

q
kn3
n3

· · · qknt
nt

,

where k
m

i
are odd(so kms

≥ 3) and kn
i
are even. Therefore for some vi , kn

i
=

2vi . Therefore

n = q
km1
m1

q
km2
m2

q
km3
m3

· · · qkms
ms

(q2v1
n1

q2v2
n2

q2v3
n3

· · · q2vt
nt

)

= q
km1
m1

q
km2
m2

q
km3
m3

· · · qkms
ms

(qv1
n1

qv2
n2

qv3
n3

· · · qvt
nt

)2.

Hence, n = q
km1
m1

q
km2
m2

q
km3
m3

· · · qkms
ms

(Y )2, Y = qv1
n1

qv2
n2

qv3
n3

· · · qvt
nt
.

Now k
m

i
is odd and ≥ 3 together implies k

m
i

− 3 is even. Thus

n = q3
m1

q3
m2

q3
m3

· · · q3
ms

(qm1 −3
m1

qm2 −3
m2

qm3 −3
m3

· · · qms −3
ms

)(Y )2.

Let m
i

− 3 = 2w
i
, q

m1
q

m2
q

m3
· · · q

ms
= b. Therefore

n = b3(q2w1
m1

q2w2
m2

q2w3
m2

· · · q2ws
ms

)(Y 2).

Let X = qw1
m1

qw2
m2

q3
mw3

· · · qws
ms
. Then n = b3X2Y 2. Taking a = XY , we obtain

n = a2b3.

Problem 3.3.21. Given that p � n for all primes p ≤ 3
√
n, prove that n > 1 is

either a prime or the product of two primes.

Solution 3.3.21. Assuming n to be composite and taking n = p1p2 · · · p
X
with

X ≥ 3, we know that
1 < 3

√
n < p

i
≤ √

n.

Therefore
3
√
n ≤ p1 ≤ √

n

3
√
n ≤ p2 ≤ √

n

3
√
n ≤ p3 ≤ √

n.

Therefore n = ( 3
√
n)( 3

√
n)( 3

√
n) < p1p1p2p3 = n ⇒ n < n. Hence X < 3 or =

2 or = 1. Thus n > 1 is either a prime(X = 1) or the product of two
primes(X = 2).
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Problem 3.3.22. Prove that if n > 2, then there exists a prime p satisfying
n < p < n!.

Solution 3.3.22. For n > 2,

n < n! − 1 < n!.

If n! − 1 is prime, we are done. If n! − 1 is not prime, taking p to be a prime
divisor, we have p < n! − 1. Suppose p ≤ n. Then p is one of the terms in
1, 2, 3, . . . , n. So p|n!. Therefore p|n! and p

∣∣(n! − 1) together implies p
∣∣(n! −

(n! − 1)
)

= 1. Therefore p > n and hence the result.

Problem 3.3.23. For n > 1, show that every prime divisor of n! + 1 is an odd
integer that is greater than n.

Solution 3.3.23. Because n! is even for n > 1, therefore n! + 1 is odd. Hence
2 � (n! + 1), so every prime divisor of n! + 1 is odd.

Suppose every prime divisor pi
of n!+1 is less than or equal to n. Since p

i
is

one of the members of n!, therefore p
i
|n!. Also p

i
|(n!+1) ⇒ p

i
|(n!+1)−n! = 1,

a contradiction. Thus p
i is greater than n.

Problem 3.3.24. If a is a positive integer and n
√
a is rational, then n

√
a is an

integer.

Solution 3.3.24. Let n
√
a = r

s
, where r, s being integers and gcd(r, s) = 1 with

s = 0. Let r = p1p2 · · · p
X
, s = q1q2 · · · q

Y
. Then pi = qj . Therefore

(q1q2 · · · q
Y

)na = (p1p2 · · · p
X

)n.

Therefore (p1p2 · · · p
X

)n|a. Let a = (p1p2 · · · p
X

)nt, for some integer t. Therefore

(q1q2 · · · q
Y

)n(p1p2 · · · p
X

)nt = (p1p2 · · · p
X

)n,

implies qj
= 1 for all j. Thus s = 1 and r

s
= n

√
a, an integer.

Problem 3.3.25. Prove for n ≥ 2, n
√
n is irrational.

Solution 3.3.25. Suppose, n ≥ 2, n
√
n is rational. Then by Problem 3.3.24, it

is an integer. Let n
√
n = a. Then n = an. But n < 2n ⇒ an < 2n ⇒ either a <

2 or a = 1. Therefore n = 1n = 1, a contradiction.

Problem 3.3.26. Prove that any odd prime p is of the form 4k + 1 or 4k + 3
for any non-negative integer k.

� �
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Solution 3.3.26. By Division Algorithm, any positive integer can be expressed
in the form a = bq + r, 0 ≤ r < b or equivalently written as a = 4q + r, r =
0, 1, 2, 3. Now if;

r = 0, a = 4q = 2(2q), an even integer.

r = 1, a = 4q + 1 = 2(2q) + 1, an odd integer.

r = 2, a = 4q + 2 = 2(2q) + 2 = 2(2q + 1) = 2m, an even integer.

r = 3, a = 4q = 2(2q) + 3 = 2(2q + 1) + 1 = 2m + 1, an odd integer.

Hence any odd prime p is of the form 4k + 1 or 4k + 3 for any non-negative
integer k.

Problem 3.3.27. If p and p2 + 8 are both prime numbers, prove that p3 + 4 is
also prime.

Solution 3.3.27. Referring to Problem 3.3.8, if p > 3 is prime, it is of the
form (6k + 1) or (6k + 5). So for p = 6k + 1 or 6k + 5, we have p2 + 8 =
36k2 + 12k + 9 or p2 + 8 = 36k2 + 60k + 33 respectively. But 3

∣∣(36k2 + 12k + 9)
and 3

∣∣(36k2 +60k+33). So p2 +8 is not prime, provided p > 3. By the problem,
both p and p2 + 8 are primes. Thus the only possibility is p = 3, which yields
p2 + 8 = 17. Hence p3 + 4 = 31.

Problem 3.3.28. Bertrand Conjecture: For any positive integer z, ∃ a prime p

satisfying z ≤ p < 2z. Using this proves that for every n ≥ 2, ∃ a prime p with
p < n < 2p.

Solution 3.3.28. Case-I: n is odd: Since n ≥ 2 & k ≥ 1, ∃ k ∈ Z such
that n = 2k + 1. Addressing to Bertrand’s Conjecture, ∃ a prime p satisfying
k < p < 2k. Now p < (p + 1) < (2k + 1) = n ⇒ p < n. Further 2k < 2p ⇒
(2k+1) ≤ 2p ⇒ n ≤ 2p. But (2k+1) being odd and 2p is even, together conclude
n < 2p. Thus ∃ a prime p such that p < n < 2p.

Case-II: n is even: Since k ≥ 1, ∃ k ∈ Z such that n = 2k holds. An appeal
to Bertrand’s Conjecture yields, k < p < 2k = n ⇒ p < n(p being a prime).
Therefore n = 2k < 2p ⇒ n < 2p. Thus p < n < 2p.

Problem 3.3.29. Let pn denote the n-th prime number. For n ≥ 3, prove that
p2n+3 < pnpn+1pn+2.

Solution 3.3.29. Note that pn+1 < 2pn. Therefore pn+3 < 2pn+2. So p2n+3 <

4p2n+2 < 4pn+2(2pn+1) = 8pn+2pn+1. Now p5 = 11 ⇒ 8pn+2pn+1 < p5pn+2pn+1.
Therefore p2n+3 < pnpn+1pn+2, if n ≥ 5.

For n = 4; p27 = 289 < p4p5p6 = 1001. For n = 3; p26 = 169 < p3p4p5 = 385.
For n = 2; p25 = 121 < p2p3p4 = 105. Hence for n ≥ 3, p2n+3 < pnpn+1pn+2.
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Problem 3.3.30. There exist infinitely many primes that do not belong to any
pair of twin primes.

Solution 3.3.30. Here gcd(5, 21) = 1. By Dirichlet’s theorem, the series 5 +
21k for k = 1, 2, 3, . . ., contains infinitely many primes. Let p be one such
prime. Then p = 5 + 21k(k ∈ Z) gives p + 2 = 7(1 + 3k) and p − 2 = 3(1 + 7k).
Thus (p + 2) and (p − 2) fails to be prime. Hence all the primes contained in
(5 + 21k) cannot be numbers of twin primes.

Problem 3.3.31. Prove that there are infinitely many primes of the form 6n+5.

Solution 3.3.31. To the contrary, assume only a finite number of primes of
the form (6n + 5). Let this be q1, q2, . . . , qs. Consider N = 6q1q2 . . . qs − 1 =
6(q1q2 . . . qs − 1) + 5. Let N = r1r2 . . . rt be its prime factorization. Since N

is odd, ri = 2 for each i, so each ri can only be of the form 6n + 1, 6n + 3 or
6n + 5. Since

(6n + 1)(6m + 1) = 36mn + 6m + 6n + 1

= 6(6mn + m + n) + 1

= 6k + 1, where k = (6mn + m + n),

this shows the product of two integers of the form (6n + 1) is of the same form.
By similar reasoning, the product of two integers of the form (6n+ 3) is also so.
Furthermore,

(6n + 1)(6m + 3) = 6(6mn + m + 3n) + 3

= 6k′ + 3, where k′ = (6mn + m + 3n).

This implies, the product of two integers of the form (6n + 1) and (6n + 3) is of
the form (6n + 3).

So the only way for N to be of the form (6n+ 5) is, N must contain at least
one factor ri which is of the form (6n + 5). But � any qi of the form 6n + 5.
If such qi exists, then from construction of N we get N − 6q1q2 . . . qs = −1.
Furthermore N − 6q1q2 . . . qs is divisible by a prime of the form (6n + 5), which
contradicts our assumption(Why!).

3.4 Exercises:

1. Prove each of the assertions below:
(a) The only prime of the form n3 − 1is 7.
(b) The only prime p for which 3p + 1 is a perfect square is p = 5.
(c) The only prime of the form n2 − 4 is 5.
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2. Given that p is a prime and p
∣∣an, prove that pn

∣∣an.

3. Establish each of the following statements:
(a) If n > 4 is composite, then n divides (n − 1)!.
(b) Any integer of the form 8n + 1, where n ≥ 1, is composite.

4. Prove that a positive integer a > 1 is a square if and only if in the canonical
form of a all the exponents of the primes are even integers.

5. Verify that any integer n can be expressed as n = 2km , where k ≥ 0 and
m is an odd integer.

6. A positive integer n is called square-full, or powerful, if p2
∣∣n for every

prime factor p of n (there are 992 square-full numbers less than 250, 000).
If n is square-full, show that it can be written in the form n = a2b3, with
a and b positive integers.

7. Given that p � n for all primes p ≤ 3
√
n, show that n > 1 is either a prime

or the product of two primes.

8. Show that any composite three-digit number must have a prime factor less
than or equal to 31.

9. Let qn be the smallest prime that is strictly greater than Pn = p1p2 . . . pn +
1. It has been conjectured that the difference qn − (p1p2 . . . pn) is always
prime. Confirm this for the first five values of n.

10. Let pn denotes the n-th prime number and set dn = pn+1 − pn. Find five
solutions of the equation dn = dn + 1.

11. For n > 3, show that the integers n, n + 2, n + 4 cannot all be prime.

12. A conjecture of Lagrange (1775) asserts that every odd integer greater
than 5 can be written as a sum pl + 2p2 , where p1, p2 are both primes.
Confirm this for all odd integers through 75.

13. Show that 13 is the largest prime that can divide two successive integers
of the form n2 + 3.

14. Determine all twin primes p and q = p + 2 for which pq − 2 is also prime.

15. Let pn denote the n-th prime. For n > 3, show that pn < pl+p2+. . .+pn−l.
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