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integer is divisible by 3, then the original integer is divisible by 3.
Also, congruences have their own restrictions. For instance, knowing the

number of minutes past the hour is useful but knowing the hour the minutes are
past is often more useful. So congruences discard absolute information. Also, if
a ≡ b(mod n) and c ≡ d(mod n), then it follows that ax ≡ bx(mod n), but not
usually xc ≡ xd(mod n) or ac ≡ bd(mod n).

4.2 Congruences

The language of congruences was developed at the beginning of the nineteenth
century by famous Mathematician Gauss. The language of congruence is ex-
tremely useful in number theory.

Definition 4.2.1. If a and b are integers, we say that a is congruent to b modulo
m if m|(a−b), symbolically denoted by a ≡ b(mod m). If a and b are incongruent
modulo m, then m � (a − b) and is denoted by a �≡ b(mod m).

Example 4.2.1. Since 6|(20 − 2) = 18, therefore, 20 ≡ 2(mod 6). Similarly,
4 ≡ −5(mod 9) and 300 ≡ 6(mod 7).

In working with congruences, the following proposition is needed.

Proposition 4.2.1. If a and b are integers, then a ≡ b(mod m) if and only if
there is an integer l such that a = b + lm.

Proof. Let a ≡ b(mod m) hold. Then m|(a− b) implies there exists an integer l

such that a = b+ lm. Conversely, if there exists an integer l such that a = b+ lm

holds, then a − b = lm implies l|(a − b) implies a ≡ b(mod m).

Here we have given an example to understand the above theorem lucidly.

Example 4.2.2. Let us consider 16 ≡ 2(mod 7). Then 16 − 2 = 14 is divisible
by 7 and also we can write 16 as 16 = 2 + 2 × 7.

In the following theorem, we have shown some standard properties related to
congruence relation which depicts how an algebraic operations(addition, subtrac-
tion, or multiplication) to both sides of a congruence preserves the congruence.

Theorem 4.2.1. If a, b, c, d and m are integers with m > 0 satisfying a ≡ b(
mod m) and c ≡ d(mod m), then

1. a ± c ≡ b ± d(mod m)

2. ac ≡ bd(mod m)
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3. a ± c ≡ b ± c(mod m)

4. ac ≡ bc(mod m)

5. a(mod m) ≡ b(mod m).

Proof. 1. Here a ≡ b(mod m) and c ≡ d(mod m) implies m|(a − b) and
m|(c − d), which further implies there exists integers k and l satisfying
a − b = km and c − d = lm. From the identity (a ± c) − (b ± d) =
(a − b) ± (c − d) = km ± lm = m(k ± l), we see both m|((a + c) − (b + d)

)
and m|((a − c) − (b − d)

)
as k + l, k − l both are integers. Therefore

a ± c ≡ b ± d(mod m).

2. Here a ≡ b(mod m) and c ≡ d(mod m) implies m|(a − b) and m|(c − d),
this again implies that (c − d)b, (a − b)c both are divisible by m. Thus,
(a−b)c+(c−d)b = (ac−bd) is divisible by m. Therefore ac ≡ bd(mod m).

3. Since a ≡ b(mod m), therefore m|(a − b). Now (a ± c) − (b ± c) = a − b is
divisible by m. Therefore a ± c ≡ b ± c(mod m).

4. Note that a ≡ b(mod m) ⇒ m|(a − b). Now (a − b)c = ac − bc is divisible
by m. Therefore ac ≡ bc(mod m).

5. As a ≡ b(mod m), then for some integer k we have a − b = km. Now k

can be written as k = k1 − k2 where k1, k2 are integers. Again, a − b =
(k1 − k2)m = k1m − k2m ⇒ a − k1m = b − k2m = r. Therefore r ≡ a(
mod m), r ≡ b(mod m) ⇒ a(mod m) ≡ b(mod m).

Example 4.2.3. Since 18 ≡ 3(mod 5) and 22 ≡ 2(mod 5), using Theorem
(4.2.1) we see that 40 = 18 + 22 ≡ 3 + 2 ≡ 0(mod 5),−4 = 18 − 22 ≡ 3 − 2 ≡ 1(
mod 5) and 396 = 18 · 22 ≡ 3 · 2 ≡ 6(mod 5).

Example 4.2.4. Since 27 ≡ 3(mod 8), it follows 34 = 27 + 7 ≡ 3 + 7 ≡ 10(
mod 8), 23 = 27 − 4 ≡ 3 − 4 ≡ −1(mod 8), and 25 = 27 − 2 ≡ 3 − 2 ≡ 1(mod 8).

Next before proceeding further, the following example reflects the fact that
a congruence is not necessarily retained when divided both sides by an integer.

Example 4.2.5. We have 20 = 10 · 2 ≡ 4 · 2 = 8(mod 6). But 5 �≡ 2(mod 6).

However, the next theorem provides us with a well-founded congruence when
both sides of a congruence are divided by the same integer.
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Theorem 4.2.2. If a, b, c and m are integers such that m > 0, d = gcd(c,m)
and ac ≡ bc(mod m), then a ≡ b

(
mod m

d

)
.

Proof. Here ac ≡ bc(mod m) implies m|(ac−bc) = c(a−b), which further implies
there exists an integer k satisfying c(a − b) = km. Dividing both sides by d,

we have c

d
(a − b) = km

d
. Since gcd

( c
d
,
m

d

)
= 1, it follows m

d
|(a − b) ⇒ a ≡ b

(
mod m

d

)
.

Theorem(4.2.2) has a corollary that is worth a separate statement.

Corollary 4.2.1. For any arbitrary positive integers a and b, lcm(a, b) = ab if
and only if gcd(a, b) = 1.

Proof. Obvious.

Example 4.2.6. Since 15 = 5(mod 10) and gcd(5, 10) = 5, we see that 15
5 ≡ 5

5
(

mod 10
5
)
or 3 ≡ 1(mod 2).

Example 4.2.7. Since 42 ≡ 7(mod 5) and gcd(5, 7) = 1, we can conclude that
42
7 = 7

7
(
mod 5

)
, or that 6 ≡ 1(mod 5).

In our next theorem using the principle of mathematical induction we have
shown that if we increase the exponential power of elements of both sides of a
congruence then the congruence relation is preserved.

Proposition 4.2.2. Let a, b be any two integers. For some integer m > 0, if
a ≡ b(mod m) holds then for any positive integer n, an ≡ bn(mod m) is also
true.

Proof. We are going to prove this theorem by the principle of mathematical
induction. As a ≡ b(mod m) then the result is obviously true for n = 1. Let us
assume the result is true for n = k. Then ak ≡ bk(mod m) holds. Now using the
property(2) of Theorem (4.2.1)we have ak+1 ≡ bk+1(mod m). Thus the result
is true for n = k + 1. Therefore from the principle of mathematical induction
the result is true for all n.

Example 4.2.8. Here in this example we have tried to clarify the above propo-
sition by an example. For that let us choose 8 ≡ 3(mod 5) then for n = 3 we
see that 83 = 512 ≡ 27 = 33(mod 5).

In our following theorem we have shown the way to combine congruences of
two same numbers with different congruent moduli. To prove this theorem, first
we need to prove the following result.
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Result 4.2.1. Let a be any integer and n1 , n2 be two positive integers with
n1 |a, n2 |a. Then lcm(n1 , n2)|a.

Proof. Let l be the least common multiple of n1 and n2 . If l � a, then the division
algorithm yields m = lq+r for some integers q and r where 0 ≤ r < l. Then r =
m− lq. As l and m are multiples of a and b, then there exists integers t1 , t2t

′
1, t

′
2

such that m = at1 = bt′1, l = at2 = bt′2. Therefore r = at1 − at2q = a(t1 − t2q)
and r = bt′1 − bt′2q = b(t′1 − t′2q). This shows that r is a multiple of both a and
b. As l is least, then r ≥ l. This contradicts the fact 0 < r < l. Therefore
m = lq ⇒ l|m.

Now the proof of the main theorem as follows.

Theorem 4.2.3. For any integers a and b with positive integers t1 , t 2 , · · · tk if
a ≡ b(mod t1 ), a ≡ b(mod t2 ),· · · , a ≡ b(mod tk) then a ≡ b(mod lcm(t1 , t 2 , · · · , t k)).

Proof. Since a ≡ b(mod t1), a ≡ b(mod t2), · · · , a ≡ b(mod tk) then we have,
t1 |(a − b), t2 |(a − b), · · · tk|(a − b). Now by above result we can say that
lcm(t1 , t2 , · · · , tk)|(a − b). This implies a ≡ b(mod lcm(t1 , t2 , · · · , tk)).

In next corollary, we are going to describe an useful consequence of the above
theorem.

Corollary 4.2.2. For any integers a and b with positive relatively prime integers
t1 , t2 , · · · tk if a ≡ b(mod t1), a ≡ b(mod t2), · · · , a ≡ b(mod tk) then a ≡ b(
mod (t1t2 · · · tk)).

Proof. Since a ≡ b(mod t1), a ≡ b(mod t2), · · · , a ≡ b(mod tk), therefore t1 |(a−
b), t2 |(a−b), · · · tk|(a−b). As t1 , t2 , · · · tk are relatively prime integers, therefore
lcm(t1 , t2 , · · · , tk) = t1t2 · · · tk. Then Theorem 4.2.3 gives a ≡ b(mod (t1t2 · · · tk)).

In the following proposition we have seen that the congruence relation is
nothing but an equivalence relation.

Proposition 4.2.3. Let m be any non-zero integer. Define a relation ‘ ≡
mod m’ on set of integers Z by a ≡ b(mod m) if and only if m|(a − b). The
relation ‘ ≡ mod m’ is an equivalence relation.

Proof. A relation on a set is said to be equivalence if it is reflexive, symmetric
and transitive.

1. Reflexivity: Since m|(a − a), we see that a ≡ a(mod m).
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2. Symmetricity: If a ≡ b(mod m), then m|(a − b). Hence there exists an
integer l such that a−b = lm. This shows that (−l)m = b−a ⇒ m|(b−a).
Consequently, b ≡ a(mod m).

3. Transitivity: Let a ≡ b(mod m) and b ≡ c(mod m). Then m|(a − b) and
m|(b − c) holds. Hence there exists integers k and l such that a − b = km

and b− c = lm. Therefore a− c = (a− b) + (b− c) = km+ lm = (k + l)m.
Consequently, m|(a − c) implies a ≡ c(mod m).

Infact this equivalence relation is also called congruence relation. From the
basic concept of algebra we can say that this equivalence relation always forms
an equivalence class. In this case this is called congruence class. For example
if we choose a positive integer 5 which leaves the remainder 0, 1, 2, 3, 4 when
divides any integer. Here if we choose remainder as 1 then we have the set of
integers {6, 11, 16, · · · } whose all the elements have remainder 1 when divided
by 5. For that the above set can be written as [1] which is a congruence class
modulo 5. Thus the definition of congruence class as follows.

Definition 4.2.2. Let m be a positive integer and a be any integer then set of
integers, {b : b ≡ a(mod m)} is called congruence class modulo m and denoted
by [a].

From the above definition of congruence class another important fact we
can discuss on integers. If we choose a set of integers say, {5, 21,−2, 62, 34}
then for congruent modulo 5 we have, 5 ≡ 0(mod 5), 21 ≡ 1(mod 5), 62 ≡ 2(
mod 5), −2 ≡ 3(mod 5), 34 ≡ 4(mod 5). Here we see that each of the elements
of the above set are congruent modulo 5 with exactly one of the set {0, 1, 2, 3, 4}.
Then this arbitrary set {5, 21,−2, 62, 34} is said to be a complete set of residue
modulo 5. Now we are in the position to define that arbitrary set.

Definition 4.2.3. An arbitrary set of m integers {a1, a2, · · · , am} is said to be
a complete set of residue modulo m or CRS(mod m) if every integer of the set
is congruent modulo m to exactly one of a1, a2, · · · , am. More specifically if,

1. ai ≡ aj(mod m), ∀i = j, i, j = 1, 2, · · ·m
2. For each integer n, there exists a unique integer aj such that n ≡ aj(

mod m), j = 1, 2, · · ·m.
Obviously the set {0, 1, 2, · · · ,m−1} forms a CRS(mod m). It is called trivial

CRS(mod m). For an example if we choose m = 5 then the set {0, 1, 2, 3, 4} is
the trivial CRS(mod 5).

� �
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Now in the following theorems we have shown here that addition and mul-
tiplication of any arbitrary element with all the elements of a complete residue
system under some conditions preserves the properties of complete residue sys-
tem.

Theorem 4.2.4. If {a1 , a2 , · · · , am} is a set of complete residue system modulo
m and c be any integer then {a1 + c, a2 + c, · · · , am + c} is also a set of complete
residue system modulo m.

Proof. It’s suffices to show that all the elements of {a1 +c, a2 +c, · · · , a
m

+c} are
distinct under congruent modulo m. Since {a1 , a2 , · · · , a

m
} is a set of complete

residue system modulo m then a
i

≡ a
j

for i = j where i, j = 1, 2, · · ·m. Thus
ai − aj is not divisible by m. Also, (ai + c) − (aj + c) = ai − aj which follows
that (ai + c) − (aj + c) is not divisible by m. Therefore ai + c �≡ aj + c(mod m)
for i = j where i, j = 1, 2, · · ·m. This proves the theorem.

Theorem 4.2.5. If {a1 , a2 , · · · , a
m

} is a set of complete residue system modulo
m and c be any integer prime to m, then {ca1 , ca2 , · · · , ca

m
} is also a set of

complete residue system modulo m.

Proof. Again here to prove this theorem we are to show all the elements of
{ca1 , ca2 , · · · , ca

m
} are distinct under congruent modulo m. Since {a1 , a2 , · · · , a

m
}

is a set of complete residue system modulo m then a
i

≡ a
j

for i = j where i, j =
1, 2, · · ·m. Thus a

i
−a

j
is not divisible by m. Also we have ca

i
−caj = c(a

i
−a

j
).

Now c is prime to m implies gcd(c,m) = 1 and a
i

− a
j

is not divisible by m.
Combining these two concepts we can conclude that ca

i − caj is not divisible by
m. Therefore cai ≡ caj (mod m) for i = j where i, j = 1, 2, · · ·m. This proves
the assertion of this theorem.

Combining the above two theorems, lead us to the following straightforward
corollary:

Corollary 4.2.3. If {a1 , a2 , · · · , am} is a set of complete residue system modulo
m and c be any integer prime to m, then {ca1 + d, ca2 + d, · · · , cam + d} is also
a set of complete residue system modulo m for any integer d.

4.3 Worked out Exercises

Problem 4.3.1. Give an example to show that a2 = b2(mod n) need not imply
that a ≡ b(mod n).

� �

�

� �
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Solution 4.3.1. Let us consider a = 5, b = 4,m = 3. Since 3∣(25 − 16) = 9,
therefore 52 ≡ 42(mod 3). But 5 �≡ 4(mod 3).

Problem 4.3.2. What is the remainder when the sum 15 + 25 + 35 + . . .+ 995 +
1005 is divided by 4?

Solution 4.3.2. Here

15 ≡ 1( mod 4) 1 ≡ 5 ≡ 9 . . . ( mod 4)

32 = 25 ≡ 0( mod 4) 2 ≡ 6 ≡ 10 . . . ( mod 4)

243 = 35 ≡ 3( mod 4) 3 ≡ 7 ≡ 11 . . . ( mod 4)

45 ≡ 0( mod 4) 4 ≡ 8 ≡ 12 . . . ( mod 4).

Each block of four numbers will have same remainder sum. Since 15 + 25 + 35 +
45 ≡ 1 + 0 + 3 + 0 ≡ 4 ≡ 0(mod 4), therefore 25 blocks will all have remainder
0 implies entire remainder is 0.

Problem 4.3.3. For n ≥ 1, use congruence theory to establish 27
∣∣(25n+1 +

5n+2).

Solution 4.3.3. Here 32 ≡ 5(mod 27) ⇒ 25 ≡ 5(mod 27). Now

25n ≡ 5n( mod 27)

2 · 25n ≡ 2 · 5n( mod 27).

∴ 25n+1 + 25n+2 ≡ 2 · 5n + 5n+2( mod 27)

≡ 5n(5 + 25)( mod 27)

≡ 5n · 27( mod 27)

≡ 0( mod 27).

Problem 4.3.4. Find the remainder when the sum 1! + 2! + 3! + . . . + 100! is
divided by 18.

Solution 4.3.4. Note that 6! ≡ 0(mod 18) ⇒ (6 + n)! ≡ 0(mod 18) for n ∈ Z.
Then

1! + 2! + 3! + · · · + 100! ≡ (1! + 2! + 3! + 4! + 5!)( mod 18)

≡ 153( mod 18)

≡ 9( mod 18).

Therefore the remainder is 9.

Problem 4.3.5. Prove for any integer a, a3 ≡ 0, 1, or 6(mod 7).

∣
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Solution 4.3.5. By division Algorithm, we have a = 7k + r, 0 ≤ r < 7. Now

a = 7k : a3 = (7k)3 = 7 · 72k3 ⇒ a3 ≡ 0( mod 7).

a = 7k + 1 : a3 = (7k + 1)3 = (7k)3 + 3 · (7k)2 + 3 · 7k + 1.

∴ a3 − 1 = 7[72k3 + 3 · 7k2 + 3 · k] ⇒ a3 ≡ 1( mod 7)

By similar way, a = 7k + 2 : a3 ≡ 1( mod 7)

a = 7k + 3 : a3 ≡ 6( mod 7)

a = 7k + 4 : a3 ≡ 1( mod 7)

a = 7k + 5 : a3 ≡ 6( mod 7)

a = 7k + 6 : a3 ≡ 1( mod 7).

Problem 4.3.6. If {a1 , a2 , . . . , an} is a complete set of residues modulo n and
gcd(a, n) = 1, prove that {aa1 , aa2 , . . . , aan

} is also a complete set of residues
modulo n.

Solution 4.3.6. Consider aai
and aa

j
with i = j, 1 ≤ i < j ≤ n. If aa

i
and

aa
j are congruent moduli n, then aai − aaj = kn ⇒ a(ai − aj ) = kn for some

k. Since gcd(a, n) = 1, Euclid’s Lemma gives n
∣∣(ai − aj ), contradicting the

fact a
i

≡ a
j
. Therefore aa

i
≡ aa

j
. Hence by Proposition 4.2.1, the statement

follows.

Problem 4.3.7. Find the remainder when 10515 is divided by 7.

Solution 4.3.7. Here 515 = 85 × 6 + 5 ⇒ 10515 = (106)85 · 105. Further,

102 ≡ 2( mod 7)

⇒ 106 ≡ 23 ≡ 1( mod 7)

⇒ (106)85 ≡ 1( mod 7)

⇒ 10515(106)85 · 105 ≡ 1 · 5 ≡ 5( mod 7).

So the desired remainder is 5.

Problem 4.3.8. Verify that if a ≡ b(mod n1) and a ≡ b(mod n2), then a ≡
b(mod n), where the integer n = lcm(n1 , n2). Hence whenever n1 & n2 are
relatively prime, a ≡ b(mod n1n2).

Solution 4.3.8. Let k1 , k2 ∈ Z be such that a − b = k1n1 , & a − b = k2n2 . Let
d = gcd(n1 , n2). Then ∃ r ∈ Z such that n1 = dr.

∴ a − b = k2n2 = k2n2

n1

dr
= k2

r

n1n2

d
.

�

�
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But n1 n2
d = lcm(n1 , n2)[refer to Theorem 2.5.1].

∴ a − b = k2

r
lcm(n1 , n2).

Finally, our aim is to show k2

r
∈ Z. Let s ∈ Z be such that n2 = ds. Since

a − b = k1n1 = k2n2 , then k1dr = k2ds ⇒ k1r = k2s. Since gcd(r, s) = 1,
therefore r divides k2 . This shows that

k2
r ∈ Z.

Problem 4.3.9. Show that 41 divides 240 − 1.

Solution 4.3.9. Here 220 = (25)4 = (32)4. This shows that 220 = (32)4 ≡
(−9)4 ≡ (81)2(mod 41). However 81 ≡ −1(mod 41) ⇒ 220 ≡ 1(mod 41).
Hence 41

∣∣(220 − 1).

Problem 4.3.10. Justify, ak ≡ bk(mod n) and k ≡ j(mod n) need not imply
that aj ≡ bj(mod n).

Solution 4.3.10. Since 4 ≡ 9(mod 5), therefore

22 ≡ 32( mod 5),

2 ≡ 7( mod 5),

27 ≡ 37( mod 5)[Verify!].

Problem 4.3.11. If gcd(a, n) = 1, then prove that the integers c, c + a, c +
2a, c + 3a, . . . , c + (n − 1)a form a complete set of residues modulo n for any c.

Solution 4.3.11. Consider c + ra & c + sa, r = s, 0 ≤ r, s ≤ n − 1. Suppose
s > r.

∴ c + sa − (c + ra) = (s − r)a.

Note that s ≤ n− 1, r ≤ n− 1 together implies s− r < n. Therefore n � (s− r).
Since gcd(a, n) = 1, therefore � k ∈ Z such that (s−r)a = nk ⇒ c+sa �≡ c+ra.
This completes the solution.

Problem 4.3.12. Find all CRS modulo 6.

Solution 4.3.12. Here the set {0, 1, 2, 3, 4, 5} forms trivial CRS modulo 6. By
virtue of Theorem(4.2.4)and Theorem(4.2.5), we conclude that {k, k + a, k +
2a, k + 3a, k + 4a, k + 5a} forms a CRS modulo 6, where k is any arbitrary
integer and a is an integer prime to 6.

Problem 4.3.13. Prove that the integer 53103 + 10353 is divisible by 39.

�

�
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Solution 4.3.13. Note that 39 = 3·13, 53 = 3·17+2 = 3·18−1, 103 = 34·3+1.
Now

53 ≡ −1( mod 3) 53 ≡ 1( mod 13)

53103 ≡ (−1)103( mod 3) 53103 ≡ 1( mod 13).

Furthermore,

103 ≡ 1( mod 3) 103 ≡ −1( mod 13)

10353 ≡ 153( mod 3) 10353 ≡ −1( mod 13).

Adding those congruences with respect to modulo 3 and modulo 13 we get, 53103+
10353 ≡ 0(mod 3) and 53103 + 10353 ≡ 0(mod 13) respectively. This yields
3
∣∣(53103 + 10353), 13

∣∣(53103 + 10353). Since gcd(3, 13) = 1, therefore 3 · 13 =
39

∣∣(53103 + 10353).

4.4 Linear Congruences

The present section deals with the notion of linear equation in the sense of
congruence relation. Consider a linear equation of the form 2x + 3y = 5 with
two unknown integers x and y. Then it can be expressed as y = 5 − 2x

3 . If we

consider 5 − 2x
3 as an integer then the above linear equation can be written as

2x ≡ 5(mod y). The foregoing congruence relation with unknown integer x is
said to be linear congruence equation, whose definition is as follows:

Definition 4.4.1. A congruence of the form ax ≡ b(mod m) where a, b,m are
integers with m > 0 and x an unknown integer, is called linear congruence in
one variable.

Here we have dealt with the various aspects of linear congruences. In the
beginning, we have tried to relate linear congruences with the linear Diophantine
equation of two variables x and y. Our following theorem is based on that.

Theorem 4.4.1. Let (x0, y0) be an integral solution of ax + by = c for some
integers a, b, c where a, b are non zero integers then x0 is the solution of ax ≡
c(mod m) considering m = |b|. Conversely, if x0 is a solution of the above
congruence then there is an integer y0 for which (x0, y0) is a solution of ax+by =
c.
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Proof. Since (x0, y0) satisfies ax + by = c then we have by0 = c − ax0. This
shows that b divides ax0 − c. Therefore m = |b| divides ax0 − c and x0 becomes
a solution of ax ≡ c(mod m).

For the converse part we have x0 a solution of ax ≡ c(mod m). Since m = |b|
divides ax0 − c then for some integer y0 we can write ax0 − c = by0. This proves
that (x0, y0) satisfies ax + by = c.

Now we are going to illustrate the above fact by following examples.

Example 4.4.1. Here we have shown that a linear Diophantine equation 221x+
35y = 11 can be solved using linear congruence. Firstly the equation 221x +
35y = 11 has been written as 221x ≡ 11(mod 35). Here the solution of this
congruence equation is x ≡ 1(mod 35). Then we have x = 1 + 35t for some
integer t. Here x0 = 1 is the particular value of x and y0 = 1

35 [11 − 221 · 1] = −6
is particular value of y . Therefore y = −6 − 221t, x = 1 + 35t is the general
solution.

Example 4.4.2. Let us choose the congruence equation 5x ≡ 2(mod 26) and
this has been written as 5x − 26y = 2 for some integer y. Here gcd(5, 26) = 1
can be written as 1 = 26 − 5 · 5. Thus here the particular value of x is x0 = −10.
Then we have x = −10 − 26t for some integer t. Therefore x ≡ −10 ≡ 16(
mod 26) is the solution of above congruence.

Here in the Example 4.4.1 we have solved the linear Diophantine equation by
converting it to linear congruence equation and also from the Example 4.4.2 we
have solved the linear congruence equation by converting it to linear Diophantine
equation. So from the above two examples we can say that the linear congruences
and linear diophantine equations are relatable.

In particular, we have seen that x = x0 is a solution of ax ≡ b(mod m)
then any integer x1 ≡ x0(mod m) is also a solution. Thus if we can find a
particular solution x0 of ax ≡ b(mod m), then all the elements belonging to the
class of x0 , are the solutions of ax ≡ b(mod m). For instance, choose 4x ≡ (
mod 5) where x = 2 is a solution. Now it’s obvious that all the elements of [2]
such as x = 7, 12 and so on are its solutions. Now the question arises, how many
incongruent solutions modulo m do exist?. The following theorem reflects, under
which condition it is possible to find a solution of a linear congruence equation
and if the solutions exist, how many of them are incongruent modulo m.

Theorem 4.4.2. Let a, b,m are integers with m > 0 then the linear congruence
ax ≡ b(mod m) has a solution if and only if d|b, where d = gcd(a,m). If d|b
then it has exactly d numbers of incongruent solutions.
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Proof. Theorem 4.4.1 asserts that any linear congruence ax ≡ b(mod m) is
equivalent to linear Diophantine equation ax−my = b, for any integer y. So for
particular integer x0 satisfying ax0 ≡ b(mod m) we get an integer y0 satisfying
ax0 − my0 = b. Again by virtue of Theorem 2.7.1, if d � b then � any solutions.
Also, if d|b then the Diophantine equation ax + mk = b have infinite number of
solutions given by x = x0+

(m
d

)
n, k = k0−(a

d

)
n for some integer n. Here k0 is

a particular value for k. Then comparing both the diophantine equations, yields
y = −k. Thus, the solutions of ax − my = b are given by

x = x0+
(m
d

)
n, −y = −k0−(a

d

)
n ⇒ y = k0+

(a
d

)
n.

Next, to determine the number of incongruent solutions of ax ≡ b(mod m),
consider x1 = x0+

(m
d

)
n1 and x2 = x0+

(m
d

)
n2 as two solutions of ax ≡ b(

mod m) for some integers n1 , n2 . If these two are congruent then,

x0+
(m
d

)
n1 ≡ x0+

(m
d

)
n2( mod m).

∴
(m
d

)
n1 ≡(m

d

)
n2( mod m)

Now, gcd
(
m,

m

d

)
= m

d
and

(m
d

)∣∣m. So using Theorem 4.2.2 we obtain n1 ≡ n2(

mod m). This proves that x = x0+
(m
d

)
n has exactly d numbers of incongruent

solutions as n ranges through a complete residue system of residues modulo
d.

In the above theorem, taking a and m as relatively prime integers gives a
straightforward corollary:

Corollary 4.4.1. If a and m are relatively prime then the linear congruence
ax ≡ b(mod m) has a unique solution modulo m.

Next our aim is to exemplify the foregoing theorem and corresponding corol-
lary by an example:

Example 4.4.3. Consider the linear congruence 8x ≡ 16(mod 24). Since
gcd(8, 24) = 8 and 8|16, using the last theorem our aim is to show that ∃ 8
incongruent solutions modulo 24. Here x0 = 2 is a particular solution. Then
x ≡ 2+

(24
8
)
t ≡ 2 + 3t(mod 24) are the incongruent solutions modulo 24 where

t = 0(1)7. Thus the solutions are x ≡ 2, 5, 8, 11, 14, 17, 20, 23(mod 24). Now, if
we choose the congruence 8x ≡ 16(mod 23) then gcd(8, 23) = 1. Then by virtue
of the last corollary, it has only one incongruent solution modulo 23 which is
x ≡ 2(mod 23).



80 Number Theory and its Applications

Example 4.4.4. Consider the linear congruence 8x ≡ 16(mod 24). Since
gcd(8, 24) = 8 and 8|16, using the last theorem our aim is to show that ∃, 8
incongruent solutions modulo 24. Here x0 = 2 is a particular solution. Then
x ≡ 2+

(24
8
)
t ≡ 2 + 3t(mod 24) are the incongruent solutions modulo 24 where

t = 0(1)7. Thus the solutions are x ≡ 2, 5, 8, 11, 14, 17, 20, 23(mod 24). Now, if
we choose the congruence 8x ≡ 16(mod 23) then gcd(8, 23) = 1. Then by virtue
of the last corollary, it has only one incongruent solution modulo 23 which is
x ≡ 2(mod 23).

After solving a linear congruence equation, we are turning our discussion
to solve a simultaneous system of linear congruences. This system actually
came from Chinese puzzles as early as the first century A.D. In number theory,
the Chinese remainder theorem gives a unique solution to simultaneous linear
congruences with coprime moduli. In its basic form, the Chinese remainder
theorem will determine a number p that, when divided by some given divisors,
leaves given remainders.

The earliest known statement of the theorem is by the Chinese mathemati-
cian Sun-tzu Suan-ching in the 3rd century AD, whose original formulation was
x ≡ 2(mod 3) ≡ 3(mod 5) ≡ 2(mod 7) with the solution x = 23 + 105k where
k ∈ Z.

The Chinese remainder theorem is widely used for computing with large
integers, as it allows replacing a computation for which one knows a bound on
the size of the result by several similar computations on small integers.

Theorem 4.4.3. (Chinese Remainder Theorem): Let m1 ,m2 , · · ·m
k
be pairwise

relatively prime integers. Then for k number of integers a1 , a2 , · · · a
k
the system

of congruences x ≡ a1(mod m1), x ≡ a2(mod m2), · · ·x ≡ a
k
(mod m

k
) has a

unique solution modulo M = m1m2 · · ·m
k
.

Proof. Let M
r = M

mr

= m1m2 · · ·mr−1mr+1 · · ·m
k

is the product of all integers

omitting mr , shows that gcd(Mr ,mr ) = 1. Then from the Corollary 4.4.1 it is
possible to find a unique solution xr of the linear congruence Mrx ≡ 1(mod mr ).
Our task is to show that the integer x̃ = a1M1x1 + a2M2x2 + · · · akMk

x
k

is a
simultaneous solution of the above system. First our aim is to check, x̃ satisfies
x ≡ a1(mod m1). Since all the integers M2 ,M3 , · · ·M

k
contain m1 as a factor

so a
i
M

i
x

i
≡ 0(mod m1) for all i = 2, 3, · · · k, then x̃ ≡ a1M1x1(mod m1). As

M1x1 ≡ 1(mod m1) it follows that x̃ ≡ a1(mod m1). This shows that x̃ satisfies
the linear congruence x ≡ a1(mod m1). Proceeding as above, we can show that
x̃ also satisfies other congruences.



Theory of Congruences 81

To proceed for the uniqueness part, let x′ and x̃ be its two solutions. Then
we have x

′ ≡ ar ≡ x̃(mod mr) for r = 1, 2, · · · , k. Therefore m
r

divides (x
′ − x̃)

for each r = 1, 2, · · · , k. Since all m
r
’s are relatively prime then from Corollary

2.4.1 we have M = m1m2 · · ·m
k
|(x′ − x̃). This implies x

′ ≡ x̃(mod M =
m1m2 · · ·m

k
). Therefore x̃ is the unique solution of the given system.

In the following example, we have illustrated the preceding theorem lucidly.

Example 4.4.5. Let us consider a system of simultaneous linear congruences
as x ≡ 2(mod 3), x ≡ 4(mod 5), x ≡ 5(mod 7). Here M = 3 · 5 · 7 = 105
then we have M1 = 105

3 = 35, M2 = 105
5 = 21, M3 = 105

7 = 15. As
Mrxr ≡ 1(mod mr ) so the linear congruences are 35x1 ≡ 1(mod 3), 21x2 ≡ 1(
mod 5), 15x3 ≡ 1(mod 7). Those linear congruences are satisfied by x1 =
2, x2 = 1, x3 = 1 respectively. Thus a solution of the system is given by
x̃ = a1M1x1 + a2M2x2 + a3M3x3 = 140 + 84 + 75 ≡ 299(mod 105). Thus the
unique solution of this system is x̃ ≡ 89(mod 105).

4.5 Worked out Exercises

Problem 4.5.1. Solve: (1) 36x ≡ 8(mod 102) (2) 140x ≡ 133(mod 301).

Solution 4.5.1. 1. Since gcd(36, 102) = 6 � 8, therefore � any solution.

2. Here 140 = 22 · 5 · 7, 301 = 7 × 43. Therefore gcd(140, 301) = 7 and
7|133. Hence 7 incongruent solutions do exist. Dividing both sides of the
congruence by 7 we have,

20x ≡ 19( mod 43)

40x ≡ 38

43x − 40x ≡ 43 − 38( mod 43)

3x ≡ 5( mod 43)

42x ≡ 70( mod 43)

43x − 42x ≡ 86 − 70( mod 43)

x ≡ 16( mod 43).

∴ x ≡ 16 + 43t, for t = 0, 1, 2, 3, 4, 5, 6.

∴ x ≡ 16, 59, 102, 145, 188, 231, 274( mod 301).

Problem 4.5.2. Using congruences, solve the Diophantine equations: 12x +
25y = 331.
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Solution 4.5.2. Note that

12x ≡ 331( mod 25),

or, 24x ≡ 662( mod 25),

or, 25x − 24x ≡ 662 − 650( mod 25),

or, x ≡ 12( mod 25).

∴ x = 12 + 25u, ∀u ∈ Z.
Further, 25y ≡ 331( mod 12),

or, 25y − 24y ≡ 331 − 324( mod 12),

or, y ≡ 7( mod 12).

∴ y = 7 + 12v, ∀v ∈ Z.
∴ 12x + 25y = 12(12 + 25u) + 25(7 + 12v),

or, 331 = 319 + 300u + 300v,

or, 12 = 25u + 25v.

∴ x = 12 + 25u = 24 − 25v.

Hence x = 24 − 25v, y = 7 + 12v for v ∈ Z.
Problem 4.5.3. Solve: x ≡ 5(mod 6), x ≡ 4(mod 11), x ≡ 3(mod 17).

Solution 4.5.3. Here

x ≡ 5( mod 6) N = 6 · 11 · 17 = 1122.

x ≡ 4( mod 11) N1 = 11 · 17 = 187.

x ≡ 3( mod 17) N2 = 6 · 17 = 102.

N3 = 6 · 11 = 66.

Now 187x1 ≡ 1(mod 6) ⇒ 187x1 − 186x1 = x1 ≡ 1(mod 6). Again

102x2 ≡ 1( mod 11) 66x3 ≡ 1( mod 17)

102x2 − 99x2 = 3x2 ≡ 1( mod 11) 66x3 − 68x3 = −2x3 ≡ 1( mod 17)

21x2 ≡ 7( mod 11) 18x3 ≡ −9( mod 17)

21x2 − 22x2 = −x2 ≡ 7( mod 11) 18x3 − 17x3 = x3 ≡ −9( mod 17).

∴ x1 = 1, x2 = −7, x3 = −9.

∴ a1N1x1 = 5 · 187 · 1, a2N2x2 = 4 · (102) · (−7), a3N3x3 = 3 · (66) · (−9).

∴ a1N1x1 + a2N2x2 + a3N3x3 = −3703.

∴ x ≡ −3703 + 4 · 1122 = 785( mod 1122).
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Problem 4.5.4. Obtain three consecutive integers, each having a square factor.

Solution 4.5.4. Note that a ≡ 0(mod 22), a + 1 ≡ 0(mod 32), a + 2 ≡ 0(
mod 52). Since 22, 32 and 55 are relatively prime to each other, therefore by
virtue of Chinese Remainder Theorem we find

a ≡ 0( mod 4) N = 4 · 9 · 25 = 900

a ≡ −1( mod 9) N1 = 9 · 25 = 225

a ≡ −2( mod 25) N2 = 4 · 25 = 100

N3 = 4 · 9 = 36.

Now 225x1 ≡ 1(mod 4) ⇒ 225x1 − 224x1 = x1 ≡ 1(mod 4). Again

100x2 ≡ 1( mod 9) 36x3 ≡ 1( mod 25)

100x2 − 99x2 ≡ 1( mod 9) 72x3 ≡ 2( mod 25)

x2 ≡ 1( mod 9) 72x3 − 75x3 ≡ −3( mod 25)

3x3 ≡ −2( mod 25)

24x3 ≡ −16( mod 25)

24x3 − 25x3 = −x3 ≡ −16( mod 25)

x3 ≡ 16( mod 25).

∴ a1N1x1 + a2N2x2 + a3N3x3 = −1252.

∴ x ≡ 548( mod 900).

Thus the desired three consecutive numbers are 548, 549, 550.

Problem 4.5.5. Prove that the congruences x ≡ a(mod n) and x ≡ b(mod m)
admit a simultaneous solution if and only if gcd(n,m)

∣∣(a−b); if a solution exists,
confirm that it is unique modulo lcm(n,m).

Solution 4.5.5. Suppose there exists a solution for x. Let d = gcd(n,m). This
implies ∃ r, s ∈ Z such that n = dr,m = ds. Now

x ≡ a( mod n) ⇒ x = a + nt, t ∈ Z,
x ≡ b( mod m) ⇒ x = b + mk, k ∈ Z.

∴ a + nt = b + mk ⇒ nt − mk = b − a.

Substituting for m,n we obtain

d(sk − rt) = a − b ⇒ d = gcd(n,m)
∣
(a − b).∣
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Next, let us assume d = gcd(m,n) and d|(a − b). Then for some t ∈ Z, dt =
a−b ⇒ ∃ x0 , y0 such that nx0 +my0 = d. Therefore dt = nx0t+my0t = a−b ⇒
my0t + b = a − x0tn. Let x ≡ a(mod n), x ≡ b(mod m). So ∃ a simultaneous
solutions. Let y be any other solution. Then

x ≡ a( mod n) y ≡ a( mod n).

x ≡ b( mod m) y ≡ b( mod m).

∴ x ≡ y( mod n).

x ≡ y( mod m).

By virtue of worked out Problem 4.3.8, we obtain x ≡ y(mod lcm(m,n)).

Problem 4.5.6. A certain integer between 1 and 1200 leaves the remainders
1, 2, 6 when divided by 9, 11, 13, respectively. What is the integer?

Solution 4.5.6. From the given conditions, we have

x ≡ 1( mod 9), 1 < x < 1200.

x ≡ 2( mod 11),

x ≡ 6( mod 13).

Since 9, 13, 11 are relatively prime, therefore Chinese Remainder Theorem is
applicable here. Rest proceeding similarly as in Problem 4.5.4, we obtain the
integer 838.

Problem 4.5.7. Obtain the two incongruent solutions modulo 210 of the system:

2x ≡ 3( mod 5)

4x ≡ 2( mod 6)

3x ≡ 2( mod 7).

Solution 4.5.7. Here

2x ≡ 3( mod 5) (4.5.1)

4x ≡ 2( mod 6) (4.5.2)

3x ≡ 2( mod 7). (4.5.3)

From(4.5.1), 4x ≡ 6( mod 5), From(4.5.2), 4x2 ≡ 2
2( mod 6

2),

4x − 5x = x ≡ 1( mod 5), 2x ≡ 1( mod 3),

x ≡ −1 + 5( mod 5), 4x ≡ 2( mod 3),

x ≡ 4( mod 5). 4x − 3x = x ≡ 2( mod 3),

x ≡ 2( mod 6).
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Since gcd(4, 6) = 2, therefore from Theorem 4.4.2 we can say that there ∃ 2
incongruent solutions given by x0 , x0 + 6

2 , x0 being a solution. Here x0 = 2 is
a solution, so 5 is the other. Therefore x ≡ 5(mod 6) is the other congruence
equation. From (4.5.3), we obtain

6x ≡ 4( mod 7),

6x − 7x = −x ≡ −3( mod 7),

−x ≡ −3( mod 7),

∴ x ≡ 3( mod 7).

Therefore x ≡ 4(mod 5), x ≡ 2(mod 6) or x ≡ 5(mod 6), x ≡ 3(mod 7). Note
that N = 5 · 6 · 7 = 210. Therefore N1 = 6 · 7 = 42, N2 = 5 · 7 = 35 and
N3 = 5 · 6 = 30. Thus

42x1 ≡ 1( mod 5) 35x2 ≡ 1( mod 6)

42x1 − 40x1 = 2x1 ≡ 1( mod 5). 35x2 − 36x2 = −x2 ≡ 1( mod 6)

6x1 ≡ 3( mod 5) x2 ≡ 5( mod 6).

6x1 − 5x1 = x1 ≡ 3( mod 5)

x1 ≡ 3( mod 5).

30x3 ≡ 1( mod 7)

30x3 − 28x3 = 2x3 ≡ 1( mod 7)

8x3 ≡ 4( mod 7)

8x3 − 7x3 = x3 ≡ 4( mod 7).

Therefore a1N1x1 + a2N2x2 + a3N3x3 = 1214 or 1739(Verify!). Thus the
solutions are x ≡ 164(mod 210) or x ≡ 59(mod 210).

Problem 4.5.8. Obtain the eight incongruent solutions of the linear congruence
3x + 4y ≡ 5(mod 8).

Solution 4.5.8. Set 3x ≡ 5 − 4y(mod 8). Since gcd(3, 8) = 1 and 1|(5 − 4y),
there exists one solution for any value of y. Because there are eight incongruent
values of 5 − 4y(y = 0, 1, 2, 3, 4, 5, 6, 7), let us solve this for each values of y.
First, let us take y ≡ 0(mod 7). Then

3x ≡ 5( mod 8)

15x ≡ 25( mod 8)

16x − 15x = x ≡ −1 ≡ 7( mod 8).
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By similar reasoning, x ≡ 3(mod 8) for y ≡ 1(mod 8), x ≡ 7(mod 8) for y ≡ 2(
mod 8), x ≡ 3(mod 8) for y ≡ 3(mod 8), x ≡ 7(mod 8) for y ≡ 4(mod 8),
x ≡ 3(mod 8) for y ≡ 5(mod 8), x ≡ 7(mod 8) for y ≡ 6(mod 8) and x ≡ 3(
mod 8) for y ≡ 7(mod 8).

Problem 4.5.9. The basket-of-eggs problem is often phrased in the following
form: One egg remains when the eggs are removed from the basket 2, 3, 4, 5, or 6
at a time; but, no eggs remain if they are removed 7 at a time. Find the smallest
number of eggs that could have been in the basket.

Solution 4.5.9. From the given conditions, we have

x ≡ 1( mod 2) (4.5.4)

x ≡ 1( mod 3) (4.5.5)

x ≡ 1( mod 4) (4.5.6)

x ≡ 1( mod 5) (4.5.7)

x ≡ 1( mod 6) (4.5.8)

x ≡ 0( mod 7). (4.5.9)

If (4.5.6) is true, then x = 1 + 4n = 1 + 2(2n). Since gcd(2, 4) = 1, therefore we
can eliminate (4.5.4). Moreover, if (4.5.8) is true, then x = 1 + 6n = 1 + 3(2n).
Because gcd(3, 6) = 1, whence we can eliminate (4.5.5). Multiplying (4.5.6) by
3 and (4.5.8) by 2, we obtain

3x ≡ 3( mod 3 · 4) = 3( mod 12) (4.5.10)

2x ≡ 2( mod 2 · 6) = 2( mod 12). (4.5.11)

∴ 3x − 3 ≡ 2x − 2( mod 12),

x ≡ 1( mod 12). (4.5.12)

If (4.5.12) holds true, then (4.5.6) and (4.5.8) is also so. Now we have x ≡ 1(
mod 5), x ≡ 0(mod 7) and x ≡ 1(mod 12). Note that 5, 7, 12 are relatively
prime. Thus N = 5 · 7 · 12 = 420. Therefore N1 = 7 · 12 = 84, N2 = 5 · 12 = 60
and N3 = 5 · 7 = 35. Hence

84x1 ≡ 1( mod 5) 35x3 ≡ 1( mod 12)

84x1 − 85x1 = −1x1 ≡ 1( mod 5) 35x3 − 36x3 = −x3 ≡ 1( mod 12)

x1 ≡ −1( mod 5). x3 ≡ 5 − 1( mod 12).

Since a2 = 0, therefore 60x2 ≡ 1(mod 7). Thus a1N1x1 + a2N2x2 + a3N3x3 =
−119(Verify!). Hence −119 + 420 = 301 eggs in basket.

�

�
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4.6 System of Linear Congruences

In this section, our discussion will be restricted to solve the system of linear
congruence equations involving the same numbers of unknowns with the same
modulus.

Let us begin with an example. Consider the system of linear congruence
equations:

x + 2y ≡ 1(mod 5) (4.6.1)

2x + y ≡ 1(mod 5). (4.6.2)

Now (4.6.1) × 2 − (4.6.2) yields

3y ≡ 1(mod 5).

Note that 2 is the inverse of 3 modulo 5. So multiplying both sides of the
foregoing equation by 2 we get,

y ≡ 2(mod 5).

Similarly, (4.6.2) × 2 − (4.6.1) we get,

3x ≡ 1(mod 5).

Since 2 is the inverse of 3 modulo 5, therefore proceeding as above we get

x ≡ 2(mod 5).

Thus the solutions of the system of linear congruences are in pairs satisfying
x ≡ 2(mod 5) and y ≡ 2(mod 5).

This example motivates us to devise a general method for solving the system
of linear congruences.

Theorem 4.6.1. Let p, q, r, s, u, v and m be integers with m > 0, such that
gcd(D,m) = 1 where D = ps − qr. Then the system of congruences

px + qy ≡ u(mod m) (4.6.3)

rx + sy ≡ v(mod m) (4.6.4)

has a unique solution modulo m given by,

x ≡ D̄(us − qv)(mod m)

y ≡ D̄(pv − ur)(mod m)

where D̄ is the inverse of D modulo m.
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Proof. Let us begin with a calculation. Here (4.6.3) × s − (4.6.4) × q yields

Dx ≡ (us − qv)(mod m).

Since D̄ is the inverse of D modulo m, therefore multiplying both sides by D̄ we
get

x ≡ D̄(us − qv)(mod m).

Similarly, applying D̄ on (4.6.3) × r − (4.6.4) × s gives

y ≡ D̄(pv − ur)(mod m).

Our claim is that any pair (x, y) is a solution. For this we have,

px + qy ≡ D̄{p(us − qv) + q(pv − ur)}(mod m)

≡ D̄u(ps − qr)(mod m)

≡ D̄Du(mod m)

≡ u( mod m)

and rx + sy ≡ D̄{r(us − qv) + s(pv − ur)}(mod m)

≡ D̄v(ps − qr)(mod m)

≡ D̄Dv(mod m)

≡ v(mod m).

This proves the theorem.

In the Theorem 4.6.1 we have discussed the solution for a system of two linear
congruences with two unknowns. But the method fails for n linear congruences
with n unknowns where n > 2. To overcome this, we require the algebra of
matrices. The following definition on congruence relation between matrices will
pave the way for our future discussions.

Definition 4.6.1. For any two matrices S = (sij)n×k and T = (tij)n×k, S is
said to be congruent to T modulo m(> 0) if sij ≡ tij(mod m) for every i and j

with 1 ≤ i ≤ n, 1 ≤ j ≤ k. This is denoted as S ≡ T (mod m).

Example 4.6.1. Consider S =
(

8 4
9 7

)
and T =

(
13 4
14 12

)
. Then S ≡ T (

mod 5).

Proposition 4.6.1. For any two matrices [S]
n×k

and [T ]
n×k

with S ≡ T (mod m), ∃
matrices [U ]

k×p
and [V ]p×n respectively, with all integer entries, such that SU ≡

TU(mod m) and V S ≡ V T (mod m).
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Proof. Let S = (sij)n×k, T = (tij)n×k and U = (uij)k×p be the matrices with
integral entries. Now the entries of SU and TU are

∑n
r=1 sirurj and

∑n
r=1 tirurj

respectively. Since S ≡ T (mod m), therefore we have sir ≡ tir(mod m) for all
i and r. In view of Theorem 4.2.1 we get,

n∑
r=1

sirurj ≡
n∑

r=1
tirurj(mod m).

This proves SU ≡ TU(mod m). Similarly we can show that V S ≡ V T (mod m).

We continue our development of the method for solving system of congru-
ences,

s11x1 + s12x2 + . . . s1nxn ≡ t1(mod m)

s21x1 + s22x2 + . . . s2nxn ≡ t2(mod m)
...
...

sn1x1 + sn2x2 + . . . snnxn ≡ tn(mod m).

The system can be written as SX ≡ T (mod m), where

S =

⎛⎜⎜⎜⎜⎝
s1,1 s1,2 · · · s1,n

s2,1 s2,2 · · · s2,n

...
...

. . .
...

sm,1 sm,2 · · · sm,n

⎞⎟⎟⎟⎟⎠X =

⎛⎜⎜⎜⎜⎝
x1

x2
...
xn

⎞⎟⎟⎟⎟⎠ and T =

⎛⎜⎜⎜⎜⎝
t1

t2
...
tn

⎞⎟⎟⎟⎟⎠ .

This method is based on finding the inverse S̄ of S modulo m. Here S̄ is defined
as S̄S ≡ SS̄ ≡ I(mod m), where In×n is the identity matrix.

To illustrate this, let us choose S =
(

1 2
3 4

)
. Then S̄ =

(
3 1
4 2

)
where

SS̄ =
(

11 5
25 11

)
≡

(
1 0
0 1

)
(mod 5) and S̄S =

(
6 10
10 16

)
≡

(
1 0
0 1

)
(mod 5).

Next proposition describes a method for finding inverses of 2 × 2 matrices.

Proposition 4.6.2. Let S =
(
a b

c d

)
be a matrix with integer entries and m be

a positive integer such that D = detS = ad − bc with gcd(D,m) = 1. Then the

matrix S̄ = D̄

(
d −b

−c a

)
is the inverse of S modulo m, where D̄ is the inverse

of D modulo m.
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Proof. Whether S is the inverse of S, it suffices to examine SS ≡ SS ≡ I(
mod m). For this, let us consider

SS̄ ≡
(
a b

c d

)
D̄

(
d −b

−c a

)
≡ D̄

(
ad − bc 0

0 ad − bc

)
≡ D̄D

(
1 0
0 1

)
≡ I( mod m)

S̄S ≡ D̄

(
d −b

−c a

)(
a b

c d

)
≡ D̄

(
ad − bc 0

0 ad − bc

)
≡ D̄D

(
1 0
0 1

)
≡ I( mod m).

Since D̄ is inverse of D modulo m, therefore D̄D ≡ 1(mod m) holds in both the
cases. Thus S̄ is the inverse of S modulo m.

Finally we are going to conclude with a need to find the solution for the
system of congruences SX ≡ T (mod m) where S is a n × n matrix. For that
we need to find S̄, the inverse of S modulo m. In our last proposition, we have
found the inverse S̄ for 2 × 2 matrices. But for n × n matrices where n > 2, we
need to find S̄ with the notion of the adjoint of a matrix S denoted by adj S.
Our first task is to find S̄ for an n × n matrix. The following proposition serves
this purpose.

Proposition 4.6.3. Let S be an n × n matrix with integer entries and m be
a positive integer with gcd(D,m) = 1. Then the matrix S̄ = D̄(adj S) is the
inverse of S modulo m where D = detS and D̄ is the inverse of D modulo m.

Proof. Note that gcd(D,m) = 1 implies detS = 0. Now from the property of
adjoint of a square matrix, we have

S(adj S) = (detS)I = DI.

Also gcd(D,m) = 1 implies that ∃ an inverse D̄ of D modulo m. This follows
that,

S(D̄(adjS)) ≡ S(adjS)D̄ ≡ DD̄ ≡ I(mod m) and

D̄(adjS)S ≡ D̄D ≡ I(mod m).

Combining we get S̄ = D̄(adj S) is an inverse of S modulo m.

This leads us to solve the system SX ≡ T (mod m). Here if we multiply both
sides of the congruence by S̄ we obtain,

S̄(SX) ≡ S̄T (mod m)

(S̄S)X ≡ S̄T (mod m)

X ≡ S̄T (mod m).

The following example illustrates the fact lucidly.

¯ ¯ ¯

�
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Example 4.6.2. Let us consider the system,

x + 2y + 3z ≡ 1(mod 7)

x + 3y + 5z ≡ 1(mod 7)

x + 4y + 6z ≡ 1(mod 7).

This can be written as SX ≡ T (mod m) where

S =

⎛⎜⎝1 2 3
1 3 5
1 4 6

⎞⎟⎠ , X =

⎛⎜⎝x

y

z

⎞⎟⎠ and T =

⎛⎜⎝1
1
1

⎞⎟⎠ .

Here D = detS = −1. Then D̄ = 6. Also adj S =

⎛⎜⎝−2 0 1
−1 3 −2
1 −2 1

⎞⎟⎠ . Thus we

have

S̄ = 6

⎛⎜⎝−2 0 1
−1 3 −2
1 −2 1

⎞⎟⎠ =

⎛⎜⎝−12 0 6
−6 18 −12
6 −12 6

⎞⎟⎠

X ≡

⎛⎜⎝−12 0 6
−6 18 −12
6 −12 6

⎞⎟⎠
⎛⎜⎝1

1
1

⎞⎟⎠ (mod 7) ≡

⎛⎜⎝−6
0
0

⎞⎟⎠ (mod 7).

∴ The solution is x ≡ 1(mod 7), y ≡ 0(mod 7), z ≡ 0(mod 7).

4.7 Worked out Exercises

Problem 4.7.1. Find the solution of the system of linear congruences

2x + 3y ≡ 5(mod 7)

x + 5y ≡ 6(mod 7).

Solution 4.7.1. Multiplying second equation by 2 and then subtracting with first
one we get

−7y ≡ −7( mod 7).

This shows that y can take any residue modulo 7. If y = 0, then x ≡ 6(mod 7).
So the first solution is (6, 0). Continuing this manner we can find other solutions
too.
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Problem 4.7.2. Find the inverse modulo 5 for the matrix

S =
(

2 2
1 2

)

Solution 4.7.2. Here D = 4 − 2 = 2. Then D̄D ≡ 1(mod 5) ⇒ D̄ = 3. Let S̄
be the inverse of S. Then

S̄ = 3
(

2 −2
−1 2

)
=

(
6 −6

−3 6

)
. ∴ S̄ ≡

(
1 4
2 1

)
( mod 5).

Problem 4.7.3. Find the inverse modulo 5 for the matrix

S =

⎛⎜⎝1 2 3
1 2 5
1 4 6

⎞⎟⎠
Solution 4.7.3. Here D = 1(12 − 20) − 2(6 − 5) + 3(4 − 2) = −4. Then D̄D ≡ 1(
mod 7) ⇒ D̄ = 5. Now

adj S =

⎛⎜⎝−1 0 4
−1 3 −2
2 −2 0

⎞⎟⎠ shows S̄ = 5

⎛⎜⎝−1 0 4
−1 3 −2
2 −2 0

⎞⎟⎠ ≡

⎛⎜⎝2 0 6
2 1 4
3 4 0

⎞⎟⎠ ( mod 7).

4.8 Exercises:

1. Find the remainders when 250 and 4165 are divided by 7.

2. Establish the following divisibility statements by theory of congruence for
integers n(≥ 1):
(a) 7

∣∣52n + 3 · 25n−2;
(b) 17

∣∣23n+1 + 3 · 52n+1;
(c) 43

∣∣6n+2 + 72n+1.

3. For n(≥ 1), show that (−13)n+1 ≡ (−13)n + (−13)n−1(mod 181).

4. Find the remainder when 2340 is divided by 341.

5. Prove the assertions below:
(a)If a is an odd integer, then a2 ≡ 1(mod 8).
(b)For any integer a, a4 ≡ 0 or 1(mod 5).

6. Prove the following statements:
(a) The product of any set of n consecutive integers is divisible by n. (b)
Any n consecutive integers form a complete set of residues modulo n.
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7. Using theory of congruence show that 89∣244 − 1 and 97∣248 − 1.

8. Solve the following linear congruences:
(a) 5x ≡ 2(mod 26);
(b) 34x ≡ 60(mod 98).

9. Using congruences, solve the Diophantine equations below:
(a) 4x + 51y = 9;
(b) 5x − 53y = 17.

10. Solve each of the following sets of simultaneous congruences:
(a) x ≡ 5(mod 11), x ≡ 14(mod 29), x ≡ 15(mod 31);
(b) 2x ≡ 1(mod 5), 3x ≡ 9(mod 6), 4x ≡ 1(mod 7), 5x ≡ 9(mod 11).

11. Obtain three consecutive integers, the first of which is divisible by a square,
the second by a cube, and the third by a fourth power.

12. Check that whether the system x ≡ 5(mod 6) and x ≡ 7(mod 15) has a
solution or not.

13. Solve the system of congruences,
3x + 4y ≡ 5(mod 13)
2x + 5y ≡ 7(mod 13).

14. Find an integer having the remainders 2, 3, 4, 5 when divided by 3, 4, 5, 6
respectively.

15. Verify that 0, 1, 2, 22, 23, . . . , 29 form a complete set of residues modulo 11,
but
0, 1, 22, 32, . . . , 102 does not.

16. Find the solution of the following system of linear congruences,

4x + y ≡ 5( mod 7)

x + 2y ≡ 4( mod 7)

17. Find the solution of the following system of linear congruences,

x + 3y ≡ 1( mod 5)

3x + 4y ≡ 2( mod 5).

18. Find the inverse modulo 5 for the matrix,(
0 1
1 0

)

∣ ∣
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19. Find the inverse modulo 7 for the matrix,⎛⎜⎝1 1 0
1 0 1
0 1 1

⎞⎟⎠
20. Find all solutions of the following system,

x + y ≡ 1( mod 7)

x + z ≡ 1( mod 7)

y + z ≡ 1( mod 7).
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