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5.2 Fermat’s Little Theorem

Theorem 5.2.1. Fermat’s Little Theorem: Let p be a prime and p � a then,
ap−1 ≡ 1(mod p).

Proof. Let us begin with the first p − 1 positive multiples of a which are

a, 2a, 3a, · · · , (p − 1)a.

None of them are congruent modulo p to any other. Then ra ≡ sa(mod p) with
1 ≤ r < s ≤ p − 1 implies r ≡ s(mod p), which is not possible. Multiplying we
get,

a · 2a · 3a · · · · · · (p − 1)a ≡ 1 · 2 · 3 · · · · · · (p − 1)( mod 1p) ⇒ ap− ≡ 1( mod p).

This is not the only way to prove the theorem. There are a lot more other
interesting ways to prove this theorem. Mathematical induction is one among
them. To begin with, we fix a prime p. For this prime p it is obvious that 1p ≡ 1(
mod p) i.e. 1p−1 ≡ 1(mod p), when a = 1. Suppose the statement prevails for

1 1a = k. Then kp− ≡ 1(mod p). Now we have to prove (k + 1)p− ≡ 1(mod p)
for some base k+1 ∈ Z and p � (k+1). Taking aid of binomial theorem we have,

( + 1)p = p +
(
p 1k k 1

)
kp− + · · · +

(
p

l − 1

)
k + 1.

Because
(
p
)

= p! for 1 ≤ l ≤ p − 1, it follows that p divides every
l l!(p − l)!

coefficients of the terms of right hand side of the foregoing equation except kp

and 1. Now taking modulo p we have (k+1)p ≡ kp +1(mod p). So by induction
hypothesis we get (k + 1)p ≡ k + 1(mod p). Therefore the result holds for k + 1.
Hence the principle of mathematical induction yields ap ≡ a(mod p) i.e. 1ap− ≡ 1(
mod p) for all a ∈ Z such that p � a.

The above two proofs of Fermat’s Little theorem are mostly theoretic. In-
stead, we can provide some experimental ways by means of combinatorics to
make the theorem more lively and natural. Choose p = 3, a = 2 where 3 � 2.
Consider the following diagrams,
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Figure 5.1: Fermat’s Little Theorem

Here every angle of the triangles are associated with red and blue coloured
balls. There are 23 = 8 ways to pick the colour of the balls. Also we see that
23 − 2 = 6 is divisible by 3. Therefore 23 ≡ 2(mod 3). Thus in general ap−1 ≡ 1(
mod p) holds, where p � a.

Our next corollary investigates the question: Can we drop the condition
gcd(a, p) = 1?

Corollary 5.2.1. If p is prime, then ap ≡ a(mod p) for any integer a.

Proof. When p | a then ap ≡ 0 ≡ a(mod p) and if p � a then by above theorem
ap−1 ≡ 1(mod p) implies ap ≡ a(mod p).

A simple but interesting question to ask: if an ≡ a(mod n) holds, then does
it imply n is prime? The answer is in a negative sense. For instance, pick out
n = 117. Then taking a = 2 we see that 2117 = (27)16 · 25 where 27 = 128 ≡ 11(
mod 117). Thus we find 2117 ≡ 1116 · 25(mod 117) ≡ 48 · 25(mod 117) ≡ 221(
mod 117). But 221 = (27)3. Hence 221 ≡ 113(mod 117) ≡ 121 · 11(mod 117) ≡
4 · 11(mod 117) ≡ 44(mod 117) ≡ 2(mod 117). Here we note 117 = 13 · 9.
Hence, if an ≡ a(mod n) holds then n must be composite.

Our future discussions will be based on some instances where those types
of composite numbers even satisfy this congruence relation under some special

�
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circumstances.

Lemma 5.2.1. If p and q are distinct primes with ap ≡ a(mod q) and aq ≡ a(
mod p) then, apq ≡ a(mod pq).

Proof. It is very clear that (ap)q ≡ aq(mod p) ≡ a(mod p) and (aq)p ≡ ap(
mod q) ≡ a(mod q). So we have p|apq and q|apq. As gcd(p, q) = 1 then we can
directly say that pq|apq. Since gcd(a, b) = 1 and a|c, b|c together imply ab|c,
therefore apq ≡ a(mod pq).

So the above lemma highlights the fact that the converse of Fermat’s theorem
satisfies for some special type of composite numbers which can be expressed as
the product of two distinct primes. These types of numbers are said to be
pseudo-prime to the base a. Now we are in a position to define pseudoprime viz

Definition 5.2.1. A composite integer n for which an ≡ a(mod n) is called a
pseudoprime to the base a.

If a = 2 then, it is called pseudo prime to the base 2 or simply pseudoprime.
Let us take 341 = 11 · 31. So by Fermat’s Little Theorem we have 211 =

2·210 ≡ 2·1024(mod 31) ≡ 2·1(mod 31) ≡ 2(mod 31) and 231 = 2·(210)3 ≡ 2·13(
mod 11) ≡ 2(mod 11). Furthermore, gcd(11, 31) = 1. In view of Lemma(5.2.1)
we can say that 211·31 = 2341 ≡ 2(mod 341) which further yields 341 as a
pseudoprime. In fact, the first five pseudoprimes are 341, 561, 645, 1105, 161038
and the first four are odd. Finding pseudoprimes are difficult as those are rarer
than primes. There are only 245 pseudoprimes and 78498 primes less than
106. We now try to construct an increasing sequence of pseudoprimes from the
following theorem.

Theorem 5.2.2. There are infinitely many psuedo-primes to the base 2.

Proof. Let n be a composite number. Then ∃ r, s ∈ Z such that n = rs where
1 < r ≤ s < n. Let Kn

= 2n − 1 be any integer where (2r − 1)|(2n − 1)[refer to
Problem(2.6.4)] or (2r − 1)|K

n
, making K

n
a composite quantity.

As n is pseudo-prime then 2n ≡ 2(mod n). Hence 2n − 2 = kn for some
k ∈ Z. Therefore

2Kn −1 = 2kn − 1 = (2n − 1)[2n(k−1) + · · · + 2n + 1]

= K
n
[2n(k−1) + · · · + 2n + 1]

≡ 0( mod K
n
).

Hence 2Kn ≡ 2(mod K
n
). Therefore K

n
is a pseudoprime.
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Remark 5.2.1. The number Kn = 2n − 1 shown in the above theorem is said
to be Mersenne number, which is named after Father Marin Mersenne (1588 −
1648)[for further studies refer to Chapter 10 Section 10.4 of this book].

The above discussion generates the fact that the pseudoprimes are the spe-
cial type of composite numbers which satisfies the conditions of Fermat’s Little
theorem. But in pseudoprime, we have a barrier of base element a i.e. for these
types of numbers the condition of Fermat’s theorem does not satisfy for all base
elements a. If we consider 561(= 3 × 11 × 17) with gcd(a, 561) = 1 for any
a ∈ Z+, we have gcd(a, 3) = 1 = gcd(a, 11) = gcd(a, 17). By virtue of Fermat’s
theorem, we get a2 ≡ 1(mod 3), a10 ≡ 1(mod 11), a16 ≡ 1(mod 17) which imply

a560 = (a2)280 ≡ 1( mod 3)

a560 = (a10)56 ≡ 1( mod 11)

a560 = (a16)35 ≡ 1( mod 17).

Since 3, 11, 17 are primes, the last three congruences together conclude a560 ≡ 1(
mod 561). Therefore a561 ≡ a(mod 561) for all a ∈ Z+ with gcd(a, 561) = 1.

The last example spotlights the fact that 561 is a special type of com-
posite number which satisfies the condition of Fermat’s theorem for any in-
teger. R.D.Carmichael first noticed the existence of these types of numbers
in the year 1910. Those numbers are called Carmichael numbers named af-
ter American Mathematician Carmichael. There are six Carmichael numbers
561, 1105, 1729, 2465, 2821, 6601 less than 10, 000. There are just 43 Carmichael
numbers less than 106 and 1547 less than 1010. Thus we are in a position to
define the Carmichael number.

Definition 5.2.2. The composite numbers n which satisfy the property an ≡ a(
mod n) for all integers a are said to be absolute pseudoprime or Carmichael
numbers.

Next our aim is to establish the criterion for the existence of Carmichael
numbers.

Theorem 5.2.3 (Korselt’s Criterion). Let n be a composite square free integers;
n = p1p2 · · · p

n
where p

i
are distinct primes. If (p

i
−1)

∣∣(n−1) for i = 1, 2, · · · , r
then n is Carmichael number.

Proof. Suppose that a is an integer satisfying gcd(a, p
i
) = 1 for each i. Then,

by Fermat’s theorem we have p
i
|(ap

i
−1 −1). As (p

i
−1)|(n−1) so p

i
|(an−1 −1),

as p
i
|(an − a), for all a and i = 1, 2, 3, · · · , r. This implies n

∣∣(an − a) for all a.
Therefore n is Carmichael number.
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The next theorem supplies the pertinent information about the prime fac-
torizations of Carmichael numbers.

Theorem 5.2.4. A Carmichael number must have at least three different odd
prime factors.

Proof. Let n be a Carmichael number. Since n is composite and is the product
of distinct primes so, it cannot have just one prime factor. Then assume, n = pq

for some odd primes p, q with p > q. So

n − 1 = pq − 1 = (p − 1)q + (q − 1) ≡ (q − 1) �≡ 0( mod p − 1),

which render (p−1) � (n−1). Since it has just two different prime factors hence,
n cannot be a Carmichael number.

The development of primality of testing can be done further with the follow-
ing:

Definition 5.2.3. Let n be a positive integer with n−1 = 2kt where k is a non–
negative integer and t is an odd positive integer. We can say n passes Miller’s
test for the base a if either at ≡ 1(mod n) or a2it ≡ −1(mod n) for some i with
0 ≤ i ≤ k − 1.

The next theorem shows the idea of primality testing by means of Miller’s
test.

Theorem 5.2.5. If n is prime and a is a positive integer with n � a, then n

passes Miller’s test for the base a.

Proof. Let n − 1 = 2kt where k is non–negative integer and t is an odd positive
integer. Let z

ω
= a

(n−1)
2ω = a2

k−ω·t for ω = 0, 1, 2, . . . , k. Since n is prime, by
Fermat’s little theorem we have z0 = an−1 ≡ 1(mod n). Furthermore z21 =(
a

n−1
2

)2
= an−1 = z0 ≡ 1(mod n) implies either z1 ≡ −1(mod n) or z1 ≡ 1(

mod n). If z1 ≡ 1(mod n) then z22 =
(
a

n−1
22

)2
= a

n−1
2 = z1 ≡ 1(mod n).

Thus either z2 ≡ 1(mod n) or z2 ≡ −1(mod n). Proceeding as above, z0 ≡
z1 ≡ z2 · · · z

ω
≡ 1(mod n) for ω < k. Also, z2

ω+1 = z
ω

≡ 1(mod n) or z
ω+1 ≡ 1(

mod n). Thus continuing for ω = 1, 2, 3, . . . , k we find that either z
k

≡ 1(mod n)
or z

ω ≡ −1(mod n) for some integer ω with 0 ≤ ω ≤ (k − 1). Hence n passes
Miller’s test for the base a.

Let us illustrate the above theorem by the following example. Choose n =
25 = 5 · 5. Then 724 = (74)6 ≡ 1(mod 5) such that 25 is a pseudoprime to the
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base 7. Also 24 = 2 · 3 then 7 · ≡ −1(mod 25). Therefore 25 passes Miller’s
test for base 7 as well as it is a pseudoprime. So getting motivated from the
example we are going to define:

Definition 5.2.4. If n is composite and passes Miller’s test to the base a, then
n is called strong pseudoprime to the base a.

Let us illustrate the ideas behind the definition(5.2.4) with an example of
strong pseudoprime which has passed Miller’s test. Consider n = 25326001.
Then n−1 = 24×1582875. Here we can check that 21582875 ≡ −1(mod 25326001).
This shows that 25326001 is a strong pseudoprime as it passes Miller’s test.

Strong pseudoprimes are rare but there are still infinitely many of them. We
conclude this section with a theorem that reflects the existence of an infinite
number of strong pseudoprimes to the base 2.

Theorem 5.2.6. There are infinitely many strong pseudoprimes to the base 2.

Proof. To begin with, suppose n to be an odd pseudoprime base 2. We claim
that the composite number N = 2n − 1 is a strong pseudoprime to the base 2.
Referring to Problem 2.6.4 we see that if n is composite then 2n − 1 is also so.
Furthermore, if n is pseudoprime then we have 2n−1 ≡ 1(mod n). This implies
that 2n−1 − 1 = nk for some odd integer k(> 0). We note that

N − 1 = 2n − 2 = 2(2n−1 − 1) = 2nk.

As 2n = (2n − 1) + 1 = N + 1 ≡ 1(mod N) then we can write 2
(N−1)

2 = 2nk ≡ 1(
mod N). The argument shows that N passes Miller’s test for base 2. Thus N

becomes a strong pseudoprime base 2. An appeal to Theorem 5.2.2 concludes
that there are infinitely many strong pseudoprime to the base 2. This finishes
the proof.

5.3 Worked out Exercises

Problem 5.3.1. If gcd(a, 35) = 1, show that a12 ≡ 1(mod 35).

Solution 5.3.1. As gcd(a, 35) = 1, therefore gcd(a, 7) = 1 = gcd(a, 5). An
appeal to Fermat’s theorem indicates a6 ≡ 1(mod 7) ⇒ a12 = (a6) · (a6) ≡ 1(
mod 7) and a4 ≡ 1(mod 5) ⇒ (a4)3 ≡ 1(mod 5). Since gcd(5, 7) = 1, it follows
that 35

∣∣(a12 − 1). Therefore a12 ≡ 1(mod 35).

Problem 5.3.2. If gcd(a, 42) = 1 then 168 = 3 · 7 · 8 divides a6 − 1.

3 21 3
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Solution 5.3.2. Because gcd(a, 42) = 1, therefore gcd(a, 7) = gcd(a, 3) =
gcd(a, 2) = 1. By virtue of Fermat’s theorem, we find a6 ≡ 1(mod 7), a2 ≡ 1(
mod 3) and a ≡ 1(mod 2). Therefore a6 = (a2)3 ≡ 1(mod 3). Moreover,
a6 − 1 = (a3 − 1)(a3 + 1) = (a − 1)(a + 1)(a2 + a + 1)(a2 − a + 1). Because a is
odd therefore, a > 0 ⇒ a ≥ 3. This yields 2

∣∣(a − 1), 4
∣∣(a + 1). Since 7, 3, 8 are

relatively prime to each other, therefore we get 168
∣∣(a6 − 1). Hence 8

∣∣(a6 − 1).

Problem 5.3.3. If gcd(a, 133) = gcd(b, 133) = 1 then, show that 133|(a18−b18).

Solution 5.3.3. We know that 133 = 7 · 19 and gcd(a, 19) = gcd(b, 19) =
1. Therefore in view of Fermat’s theorem we obtain a18 ≡ 1(mod 19) and
b18 ≡ 1(mod 19). Hence a18 − b18 ≡ (1 − 1)(mod 19) ≡ 0(mod 19). Hence
19|(a18 − b18). By similar reasoning, 7|(a6 − b6). Since a18 − b18 = (a6 −
b6)

(
(a6)2 + a6b6 + (b6)2

)
, therefore we have 7|(a18−b18). Thus 7·19 = 133|(a18−

b18).

Problem 5.3.4. Derive the following congruences:
(a) a21 ≡ a(mod 15), ∀a. (b) a7 ≡ a(mod 42) ∀a. (c) a9 ≡ a(mod 30) ∀a.
Solution 5.3.4. (a) Taking into consideration the corollary of Fermat’s the-

orem, we find a21 ≡ a(mod 5) ⇒ (a5)4 ≡ a4(mod 5) ⇒ a21 ≡ a5 ≡ a(
mod 15). Furthermore, a3 ≡ a(mod 3) ⇒ a21 ≡ a7(mod 3). Again,
(a3)2 ≡ a2(mod 3) ⇒ a7 ≡ a3(mod 3) ≡ a(mod 3). Hence a21 ≡ a(
mod 3). Thus, a21 ≡ a(mod 15).

(b) As 42 = 7 · 3 · 2 by Fermat’s theorem we have a7 ≡ a(mod 7) and a3 ≡ a(
mod 3). Therefore a6 ≡ a2(mod 3) ⇒ a7 ≡ a3(mod 3) ≡ a(mod 3). Also,
a2 ≡ a(mod 2) ⇒ a6 ≡ a3(mod 2) ≡ a(mod 2) ⇒ a7 ≡ a2(mod 2) ≡ a(
mod 2). Since 7, 3, 2 are prime to each other therefore, a7 ≡ a(mod (7 · 3 ·
2)) ⇒ a7 ≡ a(mod 42).

(c) Left to the reader.

Problem 5.3.5. If gcd(a, 30) = 1, show that 60
∣∣(a4 + 59).

Solution 5.3.5. Note that gcd(a, 30) = 1 implies gcd(a, 2) = gcd(a, 3) =
gcd(a, 5) = 1. So gcd(a, 4) = gcd(a, 22) = 1. Now 60 = 22 · 3 · 5 and 60|(a4 + 59)
together implies a4 ≡ 1(mod 60). Here a2 ≡ 1(mod 3) implies a4 ≡ 1(mod 3)
and a4 ≡ 1(mod 5). Further, a ≡ 1(mod 2) ⇒ a2 ≡ 1(mod 2) which leads to
2
∣∣(a2 − 1). Hence

a2 ≡ (1 − 2)( mod 2)

≡ −1( mod 2).
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Thus, combining the foregoing equation with 2
∣∣(a2 + 1) yields 2

∣∣(a4 − 1). Since
3, 4, 5 relatively prime to each other, therefore we can conclude 60|(a4−1). Hence

a4 ≡ 1( mod 60)

≡ (1 − 60)( mod 60)

≡ −59( mod 60).

This completes the solution.

Problem 5.3.6. (a) Find the unit digit of 3100 using Fermat’s theorem.
(b) For any integer verify that a5 and a have same unit digit.

Solution 5.3.6. (a) Its suffices to consider modulo 10. Now we plan to use
Fermat’s theorem to get 34 ≡ 1(mod 5). Therefore 3100 ≡ 1(mod 5). Moreover
3 ≡ 1(mod 2). Hence 3100 ≡ 1(mod 2). Further gcd(2, 5) = 1 ⇒ 10

∣∣3100 ≡ 1(
mod 10). Hence the unit digit is 1.

(b) By virtue of Fermat’s theorem, a5 ≡ a(mod 5) and a2 ≡ a(mod 2).
Hence a4 ≡ a2(mod 2) ≡ a(mod 2) implies a5 ≡ a2(mod 2) ≡ a(mod 2). Thus
a5 ≡ a(mod 10). Let 0 ≤ r < 10 holds. Then a5−r ≡ a−r(mod 10). Therefore
a5 − r ≡ 0(mod 10) ⇐⇒ a − r ≡ 0(mod 10). Therefore unit digit’s are same.

Problem 5.3.7. If 7 � a, then prove that either 7|(a3 + 1) or 7|(a3 − 1).

Solution 5.3.7. By Fermat’s theorem, a6 ≡ 1(mod 7). Therefore 7|(a6 −1) but
a6−1 = (a3−1)(a3+1). Therefore 7 � (a3+1) implies 7|(a3−1) and vice–versa.

Problem 5.3.8. If p, q are distinct odd primes such that (p − 1)|(q − 1) and
gcd(a, pq) = 1, show that aq−1 ≡ 1(mod pq).

Solution 5.3.8. Here gcd(a, pq) = 1 implies gcd(a, p) = 1 = gcd(a, q). There-
fore with the help of Fermat’s Theorem we get ap−1 ≡ 1(mod p) and aq−1 ≡ 1(
mod q). Since (p−1)

∣∣(q−1), therefore q−1 = k(p−1)(k ∈ Z). Hence (ap−1)k ≡
1k(mod p) ≡ 1(mod p) ⇒ aq−1 ≡ 1(mod p). Thus pq|(aq−1 − 1) ⇒ aq−1 ≡ 1(
mod pq).

Problem 5.3.9. If p, q are distinct primes then prove that pq−1 + pq−1 ≡ 1(
mod pq).

Solution 5.3.9. By virtue of Fermat’s theorem, pq−1 ≡ 1(mod q) implies
qp−1 ≡ 0(mod q). Therefore pq−1+pq−1 ≡ 1(mod q). Similarly, qp−1+pq−1 ≡ 1(
mod p). Further, gcd(p, q) = 1 yields pq−1 + pq−1 ≡ 1(mod pq).

Problem 5.3.10. Establish the statement: If p is an odd prime, then 1p−1 +
2p−1 · · · (p − 1)p−1 ≡ (p − 1) ≡ −1(mod p).
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Solution 5.3.10. Since p is odd prime, so p ≥ 3 and p � a. if a < p then by
Fermat’s theorem we have, ap−1 ≡ 1(mod p). For p − 1 terms we have,

1. 1p−1 ≡ 1(mod p)

2. 2p−1 ≡ 1(mod p)
...

3. (p − 1)p−1 ≡ 1(mod p).

Therefore 1p−1 + 2p−1 · · · (p − 1)p−1 ≡ (p − 1) ≡ −1(mod p).

Problem 5.3.11. Confirm 1105 = 5 · 13 · 17 is absolute pseudoprime.

Solution 5.3.11. For any integer a, if 1105 � a then 5 � a, 13 � a & 17 � a.
So by Fermat’s theorem, we have a4 ≡ 1(mod 5) ⇒ a1104 = (a4)276 ≡ 1(
mod 5). Also a12 ≡ 1(mod 13) ⇒ a1104 = (a12)92 ≡ 1(mod 13). More-
over, a16 ≡ 1(mod 17) ⇒ a1104 = (a16)69 ≡ 1(mod 17). As 5, 13, 17
are relatively prime to each other, therefore a1104 ≡ 1(mod 1105). Thus
a1105 ≡ a(mod 1105) provided 1105 � a. Clearly, a1105 ≡ a(mod 1105)
prevails provided 1105 | a. Hence 1105 is an absolute pseudo prime as it
satisfies a1105 ≡ a(mod 1105) for any integer a.

Problem 5.3.12. Prove that any integer of the form n = (6k+1)(12k+1)(18k+
1) is an absolute pseudoprime if all three factors are prime; hence 1729 = 7·13·19
is also absolute pseudo–prime.

Solution 5.3.12. Let p1 = 6k+1, p2 = 12k+1, p3 = 18k+1, be all primes. Now
n = 36 ·36k3+36 ·2k2+36 ·9k2+36k+1. Therefore n−1 = 36k[36 ·k2+11k+1]
gives p1 − 1

∣∣n − 1, p2 − 1
∣∣n − 1 and p3 − 1

∣∣n − 1. Since p1 , p2 , p3 are distinct
primes and n is square free, therefore n is absolute pseudoprime.

Problem 5.3.13. Show that 561 is the only Carmichael number of the form 3pq
where p and q are primes.

Solution 5.3.13. Let n = 3pq, with q > p odd primes, be a carmichael number.
Then using Korselt’s criterion, we obtain (p− 1)

∣∣(3pq − 1) = 3(p− 1)q + 3q − 1.
So (p − 1)

∣∣(3q − 1) ⇒ (p − 1)a = 3q − 1 for some a ∈ Z. Since q > p, we must
have a ≥ 4. Similarly, ∃ b ∈ Z satisfying (q − 1)a = 3p − 1. Solving these two
equations for p, q yields

p = 2b + ab − 3
ab − 9 = 1 + 2b + 6

ab − 9 , (5.3.1)

q = 2a + ab − 3
ab − 9 . (5.3.2)
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Since p > 3 being odd prime, therefore 4(ab−9) ≤ 2b+6 reduces to b(2a−1) ≤ 21.
Now a ≥ 4 ⇒ b ≤ 3. Then,

4(ab − 9) ≤ 2b + 6 ≤ 12 ⇒ ab ≤ 21
4 ⇒ a ≤ 5.

Hence a = 4 or 5. If b = 3, then the denominator of (5.3.2) is multiple of
3. So the numerator must be multiple of 3, which is impossible as there � any
‘a′ divisible by 3. Thus b = 1 or 2.The denominator of equation (5.3.2) must
be positive, so ab > 9. Thus the only possible values for a and b is 5 and
2 respectively, which gives p = 11, q = 17. So 561 = 3 · 11 · 17 is the only
Carmichael number of the form 3pq, where p and q are primes.

Problem 5.3.14. Show that there are only a finite number of Carmichael num-
bers of the form n = pqr where p is a fixed prime, and q and r are also primes.

Solution 5.3.14. Assume r > q. Applying Korselt’s Criterion, we get (q −
1)
∣∣(pqr − 1) = (q − 1)pr + pr − 1. Therefore (q − 1)

∣∣(pr − 1) ⇒ pr − 1 = a(q − 1)
for some a ∈ Z. Similarly, pq − 1 = b(r − 1) for some b ∈ Z. Since, r > q so
a > b. Solving last two equations for q and r yields

r = p(a − 1) + a(b − 1)
ab − p2

,

q = p(b − 1) + b(a − 1)
ab − p2

.

Because this last fraction must be an integer, we have

ab − p2 ≤ p2 + pb − p − b,

which further reduces to

a(b − 1) ≤ 2p2 + p(b − 1),

⇒ a − 1 ≤ 2p2

b
+ p(b − 1)

b
≤ 2p2 + p.

So ∃ only finite values for a. Likewise, the same inequality gives

b(a − 1) ≤ 2p2 + p(b − 1),

⇒ b(a − 1 − p) ≤ 2p2 − p.

Since a > b and the denominator of the expression for q must be positive, we
have a ≥ p + 1. Now, a = p + 1 gives

(p + 1)(q − 1) = pq − p + q − 1 = pr − 1 ⇒ p|q, a contradiction.
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Therefore a > p + 1 ⇒ a − p − 1 > 0. The last inequality gives us

b ≤ b(a − p − 1) ≤ 2p2 − p,

which shows ∃ finitely many values of b. Because a, b determine q, r respectively,
therefore there are only a finite number of Carmichael numbers of the form
n = pqr.

Problem 5.3.15. Show that 2047 is a strong pseudoprime base 2.

Solution 5.3.15. Here n = 2047 yields n − 1 = 2046 = 2 × 1023. Now 21023 =
(211)93 = 204893 ≡ 1(mod 2047). So 2047 passes Miller’s test for base 2. Thus
2047 is a strong pseudoprime base 2.

5.4 Wilson’s Theorem

Wilson’s theorem, in number theory, signifies that any prime p divides (p−1)!+1,
where n! is the factorial notation for 1×2×3×4×· · ·×n. For example, 7 divides
(7 − 1)! + 1 = 6! + 1 = 721. The conjecture was first published by the English
mathematician Edward Waring in Meditationes Algebraicae (1770 ‘Thoughts on
Algebra’), where he described it to the English mathematician John Wilson.

After that it was proved by the French mathematician Joseph-Louis Lagrange
in 1771. The converse of the theorem is also true; that is, (n − 1)! + 1 is not
divisible by a composite number n. In theory, these theorems provide a test for
primes; in practice, the calculations are impractical for large numbers.

Theorem 5.4.1. Wilson’s Theorem: If p is a prime then (p−1)! ≡ −1(mod p).

Proof. Let us choose p > 3 and consider the linear congruence ax ≡ 1(mod p)
where a is any one of 1, 2, 3, · · · , p − 1. Therefore gcd(a, p) = 1. Hence, it has
an unique solution viz aã ≡ (mod p) with 1 ≤ ã ≤ p − 1. Because p is prime,
a = ã ⇔ a = 1 or a = p − 1 provided a2 ≡ 1(mod p) ⇒ (a − 1)(a + 1) ≡ 0(
mod p). Therefore (a−1) ≡ 0(mod p) or (a+1) ≡ 0(mod p). Now if we delete
1 and p − 1, then the remaining 2, 3, . . . , p − 2 are set into pairs a and ã, where
a = ã. So if these p−3

2 congruences are multiplied, we obtain 2 · 3 · · · (p − 2) ≡ 1(
mod p) ⇒ (p − 2)! ≡ 1(mod p) ⇒ (p − 1)! ≡ (p − 1) ≡ −1(mod p).

Let us illustrate the use of the theorem by means of an example. Let us take

�
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p = 11. Divide the integers 2, 3, 4, 5, 6, 7, 8, 9 into p−3
2 pairs such as

2 · 6 ≡ 1( mod 11)

3 · 4 ≡ 1( mod 11)

7 · 8 ≡ 1( mod 11)

5 · 9 ≡ 1( mod 11)

Multiplying each pair together we obtain, 9! ≡ 1(mod 11). Hence 10! ≡ 1(
mod 11), shows the result is true for p = 11. An interesting observation is that
the converse is also true. Let n be a non–prime required integer. Then n must
have a divisor d where 1 < d < n. As d ≤ n − 1, we have d|(n − 1)!. Now from
the condition we have, n|((n−1)!+1). Hence combining the conditions, we have
d|((n − 1)! + 1). Thus d|1 leads to contradiction, showing n is prime. Taking
Wilson’s theorem and its converse together we can say that the condition is
necessary and sufficient for an integer to be prime. Thus it gives us a condition
of testing primality.

Now we are at the end of this discussion with an application of Wilson’s the-
orem on quadratic congruences, where quadratic congruences assume the form
Ax2 + Bx + C ≡ 0(mod m), where A �≡ 0(mod m) (otherwise the congruence
would be a linear congruence). We will learn methods to evaluate these quadratic
congruences. However, we will first restrict our modulus m to being only an odd
prime (3, 5, 7, 11, 13, . . .), or rather, any prime except 2. Now we are in a position
to state the following theorem:

Theorem 5.4.2. The quadratic congruence x2 + 1 ≡ 0(mod p) where p is an
odd prime, has a solution if and only if p ≡ 1(mod 4).

Proof. Let a be a solution of x2+1 ≡ 0(mod p) then a2 ≡ −1(mod p). Since p � a
by Fermat’s theorem, we have 1 ≡ ap−1(mod p) ≡ (a2)

p−1
2 (mod p) ≡ (−1)

p−1
2 (

mod p). The possibility that p = 4k + 3 for any integer k does not arise as
(−1)

p−1
2 = (−1)2k+1 = −1. Therefore 1 ≡ (−1)(mod p) implies p|2 which is

a contradiction. So p is of the form 4k + 1. Now, (p − 1)! = 1 · 2 · · · p − 1
2 ·

p + 1
2 · · · (p − 2)(p − 1) and

p − 1 ≡ −1( mod p)

p − 2 ≡ −2( mod p)
...

p + 1
2 ≡

(
p − 1

2

)
( mod p).
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Therefore (p−1)! ≡ (−1)
p−1

2 1 · 2 · · · p − 1
2

2
(mod p). If we assume p = 4k+1,

then (−1)
p−1

2 = 1. Therefore −1 ≡
[(

p − 1
2

)
!
]2

(mod p), by Wilson’s theorem.

Therefore
(
p − 1

2

)
! satisfies x2 + 1 ≡ 0(mod p).

5.5 Worked out Exercises

Problem 5.5.1. Find the remainder when 15! is divided by 17.

Solution 5.5.1. Since (17 − 1)! = 16!, we have by virtue of Wilson’s theorem
(17 − 1)! ≡ −1(mod 17). Therefore 16! ≡ −1(mod 17) ≡ 16(mod 17) ⇒ 15! ≡ 1(
mod 17). Hence the remainder is 1.

Problem 5.5.2. Find the remainder when 2(26)! is divided by 29.

Solution 5.5.2. From Wilson’s theorem, we find 28! ≡ −1(mod 29) ⇒ 28! ≡ 28(
mod 29) ⇒ 27! ≡ 1(mod 29). Here we note that gcd(28, 29) = 1 ⇒ 27(26)! ≡
(1 + 29) = 30(mod 29) ⇒ 9(26)! ≡ 10(mod 29) ⇒ 9(26)! ≡ (10 + 29) = 9(
mod 29) ⇒ 3(26)! ≡ 13(mod 29) ⇒ 3(26)! ≡ (13 + 29) = 42(mod 29) ⇒ (26)! ≡
14(mod 29). Therefore 2(26)! ≡ 28(mod 29). Thus, 28 is the remainder.

Problem 5.5.3. Show that 18! ≡ −1(mod 437).

Solution 5.5.3. Note that 437 = 19 · 23, where both 19 and 23 are prime
numbers. By Wilson’s theorem, we have 18! ≡ −1(mod 19) therefore 19|(18! +
1) holds. So here the only thing we need to show is 23|(18! + 1), because
gcd(19, 23) = 1. Further by Wilson’s theorem, we obtain 22! ≡ −1(mod 23) ≡ 22(
mod 23) ⇒ 21! ≡ 1(mod 23) ≡ 1 + 23 = 24(mod 23) ⇒ 7(20)! ≡ 8(mod 23) ⇒
7 · 5 · 19! ≡ 2 ≡ 2 + 23 ≡ 25(mod 23) ⇒ 7 · 19 · 18! ≡ 5(mod 23) ≡ 5 + 23 = 28(
mod 23) ⇒ 19 · 18! ≡ 4(mod 23) ⇒ 19 · 18! ≡ (4 − 23) = −19(mod 23) ⇒ 18! ≡
−1(mod 23). Therefore 23

∣∣(18! + 1) ⇒ 437
∣∣(18! + 1).

Problem 5.5.4. Prove that for n(> 1) is prime if and only if (n − 2)! ≡ 1(
mod n).

Solution 5.5.4. By Wilson’s theorem and it’s converse we have, n is prime if
and only if (n − 1)! ≡ −1(mod n). Hence (n − 1)! ≡ −1 + n = n − 1(mod n).
Therefore (n − 2)! ≡ 1(mod n), as gcd(n, n − 1) = 1.

Problem 5.5.5. If n is composite then show that (n − 1)! ≡ 0(mod n) except
n = 4.

( )
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Solution 5.5.5. If n = 4, then (4 − 1)! = 3! = 6 ≡ 2(mod 4). Thus this
equivalence is not true for n = 4. If n > 4 is a composite number, then n = r · s
for some integers r and s. Since gcd(n, n−1) = 1, therefore 1 < r < n−1. So r

must be the one of the factor of (n − 1)!. Similarly, for 1 < s < n − 1 the above
argument is also true.

If r = s, then r and s are different factors of (n − 1)!. So n = r · s|(n − 1)!.
Therefore (n − 1)! ≡ 0(mod n).

If r = s, then n = r2. Our claim is r < n
2 . If not then, r ≥ n

2 . Therefore
n = r2 ≥ n2

4 ⇒ 4 ≥ n. But this is not true because n > 4. Hence r <
n
2 ⇒ 2r < n ⇒ 2r ≤ n − 1. Both r and 2r are factors of (n − 1)!, therefore
r(2r)

∣∣(n − 1)! ⇒ r2
∣∣(n − 1)!. Hence (n − 1)! ≡ 0(mod n).

Problem 5.5.6. Given a prime p, establish (p − 1)! ≡ (p − 1)(mod 1 + 2 + 3 +
· · · + (p − 1)).

Solution 5.5.6. An appeal to Wilson’s theorem generates, (p− 1)! ≡ −1 = p− 1(
mod p). Therefore p|{(p−1)!−(p−1)}. We know that, 1+2+3+ · · ·+(p−1) =
p(p − 1)

2 . Since p − 1 is even, therefore (p−1)
2 is an integer and (p−1)

2 < (p − 1).

Furthermore, (p − 1)
∣∣{(p − 1)! − (p − 1)} ⇒ (p−1)

2
∣∣{(p − 1)! − (p − 1)}. Because

gcd
(
(p−1)

2 , p
)

= 1, therefore both p and (p−1)
2 divide {(p − 1)! − (p − 1)}. Thus

p(p−1)
2

∣∣{(p − 1)! − (p − 1)} ⇒ (p − 1)! ≡ (p − 1)(mod 1 + 2 + 3 · · · + (p − 1)).

Problem 5.5.7. If p is a prime prove that p
∣∣(ap + (p − 1)! · a), for any integer

a.

Solution 5.5.7. Taking into consideration Euler’s generalisation theorem and
Wilson’s theorem, we find ap ≡ a(mod p) and −1 ≡ (p − 1)!(mod p) hold re-
spectively. Multiplying last two congruences, we have −ap ≡ (p− 1)! · a(mod p).
This proves, p

∣∣(ap + (p − 1)! · a).

Problem 5.5.8. If p is a prime prove that p|((p − 1)! · ap + a), for any integer
a.

Solution 5.5.8. Hint: Same as Problem(5.5.7)

Problem 5.5.9. Verify 4(29!) + 5! is divided by 31.

Solution 5.5.9. An appeal to Wilson’s theorem gives, 30! ≡ −1(mod 31).
Therefore 30 · 29! ≡ 31 − 1 = 30(mod 31) ⇒ 29! ≡ 1(mod 31). Hence 4(29)! ≡ 4(
mod 31). Thus, we have 4(29!) + 5! ≡ 4 + 120 = 124(mod 31) ≡ 0(mod 31).

Problem 5.5.10. Obtain the solution of x2 ≡ −1(mod 29).

�
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Solution 5.5.10. As 29 ≡ 1(mod 4) so, ∃ a solution given by
[(

p−1
2

)
!
]2 ≡ −1(

mod p)[refer to Theorem 5.4.2]. Therefore ± ( 29−1
2

)
! = ±14! .

Problem 5.5.11. Prove that the odd prime divisor of n2 + 1 is of the form
4k + 1.

Solution 5.5.11. Let p be an odd prime divisor of n2 + 1. Therefore n2 + 1 ≡ 0(
mod p). So n satisfies the quadratic congruence equation x2 ≡ −1(mod p).
Hence p is of the form 4k + 1. Because p is of the form 4k + 3 it follows
that, n2 ≡ −1(mod p) ⇒ 1 ≡ np−1(mod p) ≡ (n2)

p−1
2 (mod p) ≡ (−1)

p−1
2 (

mod p) ⇒ 1 ≡ (−1) 4k+3−1
2 (mod p) ≡ (−1)2k+1(mod p) ≡ −1(mod p). This

proves p
∣∣2, a contradiction.

5.6 Exercises:

1. Verify using Fermat’s theorem: 17
∣∣(11104 + 1).

2. Find the remainder of 97! when divided by 101.

3. Derive the congruence: a13 ≡ a(mod 3 · 7 · 13) for all integer a.

4. Find the remainder of 53! when divided by 61.

5. Prove 18351910 + 19862061 ≡ 0(mod 7).

6. Assume p � a, p � b, p is prime;

(i) If ap ≡ bp(mod p) then, a ≡ b(mod p).

(ii) If ap ≡ bp(mod p) then, ap ≡ bp(mod p2).

7. Using Fermat’s theorem, prove that for a odd prime p;

(i) 1p−1 + 2p−1 + · · · + (p − 1)p−1 ≡ −1(mod p).

(ii) 1p + 2p + · · · + (p − 1)p ≡ 0(mod p)

8. Confirm that the followings are absolute prime: (a) 2821 = 7 · 13 · 31 (b)
2465 = 5 · 17 · 29.

9. Use Korselt’s criterion to determine which of them are Charmichael num-
bers: (a) 8911 (b) 10659 (c) 162401 (d) 126217.

10. Find the remainder when 3456 is divided by 7.

11. Find all positive integers n such that 22
n+1 is divided by 17.
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12. Find 220 + 330 + 440 + 550 + 660mod 17.

13. Determine whether 17 is a prime or not using Wilson’s theorem.

14. If p and p + 2 are a pair of primes then prove that 4((p − 1)! + 1) + p ≡ 0(
mod p(p + 2)).

15. What is the remainder of 149! when divided by 139.

16. Find all Carmichael numbers of the form 5pq where p and q are primes.

17. Find a Carmichael number of the form 7 · 23 · q where q is an odd prime.

18. Show that 1373653 is a strong pseudoprime to base 2, 3.

19. Obtain the solution of x2 ≡ −1(mod 37).
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We give an account of the most important results obtained by Euler in num-
ber theory.

7.2 Euler’s φ–function

The chapter, Fermat’s little theorem addresses the congruence relation with a
prime number. Now the question arises: Can we change the prime number by
an arbitrary positive integer? The answer is in an affirmative sense and Euler’s
generalization is the important result which leads to that answer. Before going
to this significant result we need to introduce an important arithmetic function
called Euler’s φ–function or Euler’s totient function. To meet the purpose, first
let us define this special type of function.

Definition 7.2.1. For any positive integer n with n ≥ 1, Euler’s phi functionor
Euler’s totient function denoted as φ(n) and defined as the number of positive
integers not exceeding n and relatively prime to n.

Let us illustrate the above definition by some example, for which we displayed
below a table of positive integers n and corresponding φ(n).

n 1 2 3 4 5 6 7 8 9 10
φ(n) 1 1 2 2 4 2 6 4 6 4

From the above table, it is clear that φ(1) = 1 and φ(p) = p − 1 for any
prime p. Also, the converse with respect to second equality is true, i.e. if for
any positive integer n, φ(n) = n−1 holds then n is prime. Our next proposition
directs us to ensure the proof of this statement.

Proposition 7.2.1. If p is a prime then φ(p) = p − 1 holds and vice versa.

Proof. If p is a prime, from the definition of φ-function, the number of integers
which are less than p and prime to p is p− 1. Thus, φ(p) = p− 1 for every prime
p.

Conversely, let p be composite. Then it has a divisor q with 1 < q < p and
gcd(p, q) = 1. Now q belongs to the set {1, 2, 3, · · · p − 1} and q not relatively
prime to p implies φ(p) ≤ p−2. Hence if φ(p) = p−1 then p must be prime.

The first important agenda of this section is, for any arbitrary positive integer
n what should be φ(n) when the prime factorisation of n is known. The next
few results of this section helps us to reach that platform from where we can
find φ(n) for any arbitrary positive integer n.

�
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Theorem 7.2.1. If p is prime and α > 0, then φ(pα) = pα 1 − 1
p

.

Proof. Here we need to find those positive integers for which gcd(n, pα) = 1 that
is p � n. Now given below the arrangement of those positive integers not greater
than pα. The arrangement is a rectangular array containing p columns and pα−1

rows:
1 2 · · · p

p + 1 p + 2 · · · 2p
...

...
...

...
pα − p + 1 pα − p + 2 · · · pα

and there are pα−1 integers between 1 and pα which are divisible by p, namely

p, 2p, 3p, . . . , pα−1.

p lies in rightmost column of the above array. Thus there are exactly pα − pα−1

integers which are relatively prime to pα and so by definition of the φ–function,

φ(pα) = pα − pα−1 = pα

(
1 − 1

p

)
.

To understand the above theorem lucidly by means of an example, let us
choose p = 2 and α = 3. Now using the table we have:

1 2
3 4
5 6
7 8

Only the elements of the right sided column divides 23. Thus φ(23) = φ(8)
is the number of elements of the set {1, 3, 5, 7} which is 4 = 23−1(2 − 1). We
are now in the stage to find the phi function for prime powers. But still a
question arises, whether it is possible to find the phi function of any positive
integer directly whose prime factorization is given using the above theorem.
The answer of this statement is in the affirmative sense but for that we have to
check the multiplicative property of this arithmetic function φ. The next part
of the present section deals with this fact.

Now we are in the position to state and prove the following theorem.

Theorem 7.2.2. The function φ is a multiplicative function.

Proof. It suffices to show that φ(mn) = φ(m)φ(n), where gcd(m,n) = 1. If any
one of m,n is 1, the result is true(Why!). Thus we may assume m > 1, n > 1.
We arrange the integers from 1 to mn into m × n order array as follows:

( )
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1 2 · · · r · · · m

m + 1 m + 2 · · · m + r · · · 2m
2m + 1 2m + 2 · · · 2m + r · · · 3m

...
...

...
...

...
...

(n − 1)m + 1 (n − 1)m + 2 · · · (n − 1)m + r · · · mn

We know that there are φ(mn) entries of the above array which are prime to
mn(Why!) and this is same as the number of integers relatively prime to both m

and n(refer to problem(2.6.1)). Now gcd(qm+r,m) = gcd(r,m), so the numbers
in r−th column are relatively prime to m if and only if gcd(r,m) = 1. Thus
there are only φ(m) columns containing integers relatively prime to m. Here
every entry of that φ(m) columns are relatively prime to m. Now to show each
of these φ(m) columns there are φ(n) integers which are relatively prime to n.
In the entries of r-th column there are n integers r,m + r, . . . , (n − 1)m + r no
two of which are congruent modulo n. If it happens, let (im + r) ≡ (jm + r)(
mod n)(0 ≤ i < j < n). Therefore im ≡ jm(mod n) implies i ≡ j(mod n) as
gcd(m,n) = 1, which leads to a contradiction. Thus the numbers in the r-th
column are congruent modulo n to 0, 1, 2, · · · , n − 1, in some order. If s ≡ t(
mod n) for some integer s and t then gcd(s, n) = 1 if and only if gcd(t, n) = 1.
Thus r-th column contains as many integers, which are relatively prime to n,
as does the set {0, 1, 2, . . . , n − 1}, namely φ(n). Therefore the total number of
entries in the array that are relatively prime to both m,n is φ(m)φ(n).

Finally, we are in the position to find the phi-function for any arbitrary
positive integer.

Theorem 7.2.3. If the integer n > 1 has a prime factorization n = pα1
1 pα2

2 · · · pαr
r
,

then φ(n) = (pα1
1 − pα1 −1

1 ) · · · (pαr
r

− pαr −1
r

) = n

(
1 − 1

p1

)
· · ·

(
1 − 1

pr

)
.

Proof. Since φ is multiplicative(Why!) and n has a prime factorization, n =
pα1

1 pα2
2 · · · pαr

r
then we have

φ(n) = φ(pα1
1 )φ(pα2

2 ) · · ·φ(pαr
r

).

Again from the Theorem 7.2.1, we have φ(pαj

j ) = (p
α

j
j − p

α
j
−1

j ) for each
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j = 1, 2, 3, · · · , r. Hence

φ(n) = (pα1
1 − pα1 −1

1 ) · · · (pαr
r

− pαr −1
r

)

= pα1
1 pα2

2 · · · pαr
r

(
1 − 1

p1

)
· · ·

(
1 − 1

pr

)
= n

(
1 − 1

p1

)
· · ·

(
1 − 1

p
r

)
.

The exemplification of the above theorem has been done from the following
example:

Example 7.2.1. Choose n = 720. Then the prime factorization of 720 is 24 ·
32 · 5. Thus applying above theorem, we have

φ(360) = 720
(

1 − 1
2

)(
1 − 1

3

)(
1 − 1

5

)
,

= 720 · 1
2 · 2

3 · 4
5 ,

= 192.

At the outset of this section, a table of positive integers and their correspond-
ing phi-function, was displayed. There, φ(1) = φ(2) = 1 and the values of phi
function for other integers are even. This is not a coincidence, as evident from
our next theorem:

Theorem 7.2.4. For n > 2, φ(n) is an even integer.

Proof. Let us consider n = 2j with j ≥ 2. Then from Theorem 7.2.1, φ(n) =
φ(2j) = 2j−1, an even integer. If n is not a power of 2 then it is divisi-
ble by some odd prime. Then n = pjm, where p being an odd integer and
gcd(p,m) = 1. Therefore φ(n) = φ(pj)φ(m)(Why!) = pj−1φ(m)(p − 1), which
is also even(Why!).

7.3 Worked out Exercises

Problem 7.3.1. Verify that the equality φ(z) = φ(z+1) = φ(z+2) holds, when
z = 5186.
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Solution 7.3.1. Note that

5186 = 2 · 2593, φ(5186) = 5186
(

1
2

)(
2592
2593

)
= 2592.

5187 = 3 · 7 · 13 · 19, φ(5187) = 5187
(

2
3

)(
6
7

)(
12
13

)(
18
19

)
= 2592.

5188 = 22 · 1297, φ(5188) = 5188
(

1
2

)(
1296
1297

)
= 2592.

Problem 7.3.2. Prove: For some k ≥ 1, φ(z) = z

2 if and only if z = 2k.

Solution 7.3.2. Let us consider z = 2k. Then φ(z) = φ(2k) = 2k

(
1 − 1

2

)
=

2k−1 = z

2 .

Conversely, suppose φ(z) = z

2 . Then for
z

2 to be an integer, z must be even.

Let z = 2kp
k2
2 · · · pkr

r
and assume k

i
= 0. Let q = p

k2
2 · · · pkr

r
. So q > 1 and

gcd(2k, q) = 1.

∴ φ(z) = φ(2kq) = φ(2k)φ(q),

= 2k

(
1 − 1

2

)
φ(q) = 2k−1φ(q).

Further z

2 = φ(z) = 2k−1φ(q) ⇒ z = 2kφ(q).

∴ pk2
2 · · · pkr

r
= φ(q) = φ(pk2

2 · · · pkr
r

)

= pk2
2 · · · pkr

r

(
1 − 1

p2

)
· · ·

(
1 − 1

p
r

)
.

∴ p2 · · · p
r

= (p2 − 1) · · · (p
r

− 1).

Therefore for each pi
, p

i
= (p

j
− 1) for some j. This is impossible if k

i
= 0.

Hence k
i

= 0. Thus the converse part follows.

Problem 7.3.3. Prove that the equation φ(z) = φ(z + 2) is satisfied by z =
2(2p − 1) whenever p and 2p − 1 are both odd primes.

Solution 7.3.3. Here 2p − 1 is an odd prime implies gcd(2, 2p − 1) = 1.

∴ φ(z) = φ(2)φ(2p − 1) = (2p − 1)
(

1 − 1
2p − 1

)
= 2p − 2.

Now z + 2 = 2(2p − 1) + 2 = 4p, p being an odd prime, yields gcd(4, p) = 1.

∴ φ(z + 2) = φ(4)φ(p) = 2p
(

1 − 1
p

)
= 2p − 2.

∴ φ(z) = φ(z + 2).

�

�
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Problem 7.3.4. Show that there are infinitely many integers n for which φ(n)
is a perfect square.

Solution 7.3.4. For k ≥ 1, φ(2k) = 2k

(
1 − 1

2

)
= 2k−1. If k is odd, then k−1

is even. Let k = 2m + 1, for some m ∈ Z.

∴ φ(2k) = φ(22m+1) = (2m)2 = a perfect square.

Thus there are infinitely many n = 2k, k being odd, and φ(n) is a perfect square.

Problem 7.3.5. Prove that if the integer n has s distinct odd prime factors,
then 2s

∣∣φ(n).

Solution 7.3.5. Let n = pk1
1 pk2

2 · · · pks
s
, p

i
> 2.

∴ φ(n) = pk1 −1
1 (p1 − 1)pk2 −1

2 (p2 − 1) · · · pks −1
s

(p
s

− 1).

As each pi
is odd, so let p

i
= 2r

i
+ 1 for some r

i
.

∴ φ(n) = pk1 −1
1 (p1 − 1)pk2 −1

2 (p2 − 1) · · · pks −1
s

(p
s

− 1)(2r1)(2r2) · · · (2r
s
),

= 2spk1 −1
1 (p1 − 1)pk2 −1

2 (p2 − 1) · · · pks −1
s

(p
s

− 1)r1r2 · · · r
s
.

∴ 2s
∣∣φ(n).

Problem 7.3.6. If every prime that divides n also dividesm, prove that φ(nm) =
nφ(m).

Solution 7.3.6. Let p1 , p2 , . . . , ps be all those primes which divide both n and
m. Suppose

n = pk1
1 pk2

2 · · · pks
s
, m = pj1

1 pj2
2 · · · pjs

s
qm1

1 qm2
2 · · · qmr

r
, q

i
being prime be such that

∴ nm = pk1+j1
1 pk2+j2

2 · · · pks+js
s

qm1
1 qm2

2 · · · qmr
r

.

∴ φ(nm) = pk1+j1
1 pk2+j2

2 · · · pks+js
s

qm1
1 qm2

2 · · · qmr
r(

1 − 1
p1

)
· · ·

(
1 − 1

p
s

)(
1 − 1

q1

)
· · ·

(
1 − 1

q
r

)
,

= pj1
1 pj2

2 · · · pjs
s

(
1 − 1

p1

)
· · ·

(
1 − 1

p
s

)(
1 − 1

q1

)
· · ·

(
1 − 1

q
r

)
pk1

1 pk2
2 · · · pks

s
,

= φ(m)pk1
1 pk2

2 · · · pks
s
,

= n · φ(m).

Problem 7.3.7. If φ(n)|(n − 1), prove that n is a square-free integer.

q
i
= p

j
.�
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Solution 7.3.7. Let n = pk1
1 pk2

2 · · · pks
s
and suppose n is not square-free such

that k
i

≥ 2 for some i. Now

φ(n) = (pk1
1 − pk1 −1

1 ) · · · (pk
i

i
− pk

i
−1

i
) · · · (pks

s
− pks −1

s
).

Since k
i ≥ 2, ki −1 ≥ 1, so pi

∣∣(pk
i

i −p
k

i
−1

i ) ⇒ pi

∣∣φ(n). By hypothesis φ(n)
∣∣(n−

1) implies p
i

∣∣(n − 1). Again p
i

∣∣n yields p
i

∣∣n − (n − 1) ⇒ p
i

∣∣1, which is a
contradiction. Therefore for all i, k

i
= 1 implies n is square-free.

Problem 7.3.8. Prove that there are no integers n for which φ(n) = n

4 .

Solution 7.3.8. Here φ(1) = 1 = φ(2), φ(3) = 2 = φ(4). So the statement holds
true for n = 1, 2, 3, 4. Let n > 4. On the contrary, suppose φ(n) = n

4 . Let
n = pk1

1 pk2
2 · · · pks

s
, ki ≥ 1.

∴ φ(n) = n

(
1 − 1

p1

)
· · ·

(
1 − 1

ps

)
= n

4 ,

⇒ (p1 − 1)(p2 − 1) · · · (p
s

− 1)
p1p2 · · · p

s

= 1
4 ,

⇒ 4(p1 − 1)(p2 − 1) · · · (p
s

− 1) = p1p2 · · · p
s
,

⇒ 2(p2 − 1) · · · (p
s

− 1) = p2 · · · p
s
, as p1 = 2.

Since p2 , . . . , ps are all odd, therefore p2 · · · ps is odd. But 2(p2 −1) · · · (ps −1) is
even. So p1 = 2 fails to work. Now if all p1 , p2 , . . . , ps

are odd, then p1p2 · · · p
s

is also so. Furthermore 4(p1 − 1)(p2 − 1) · · · (p
s

− 1) is even, which implies no
such n exists.

Problem 7.3.9. If p is a prime and k ≥ 2, show that φ(φ(pk)) = pk−2φ((p −
1)2).

Solution 7.3.9. Here φ(pk) = pk−1(p − 1). Since gcd(p, p − 1) = 1, therefore
gcd(pk−1, p − 1) = 1. Using the multiplicative property of φ, we obtain

φ(φ(pk)) = φ(pk−1(p − 1)) = φ(pk−1)φ(p − 1) = pk−2(p − 1)φ(p − 1).

Now for every positive integer n, φ(n2) = nφ(n). Therefore (p − 1)φ(p − 1) =
φ((p − 1)2). Hence φ(φ(pk)) = pk−2(p − 1)φ(p − 1) = pk−2φ((p − 1)2).

Problem 7.3.10. If n = pk1
1 pk2

2 · · · pks
s
, then prove that

σ(n)φ(n) ≥ n2
(

1 − 1
p21

)(
1 − 1

p22

)
· · ·

(
1 − 1

p2
s

)
.
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Solution 7.3.10. Note that σ(n) = p
k1 +1
1 −1
p1 −1 · · · pks +1

s
−1

ps −1 and φ(n) = p
k1 −1
1 (p1 −

1) · · · pks −1
s

(p
s

− 1). Therefore σ(n)φ(n) = (p2k1
1 −p

k1 −1
1 ) · · · (p2ks

s
−pks −1

s
). But

(p
2k

j
j − p

k
j
−1

j ) = p
2k

j
j

(
1 − p

k
j

−1
j

p
2k

j
j

)
=
(
p

k
j

j

)2(1 − 1
p

k
j

+1
j

)
. For p

j
≥ 1 we find

p
k

j
+1

j ≥ p2
j

⇒ 1
p2

j

≥ 1

p
k

j
+1

j

⇒ − 1
p2

j

≤ − 1

p
k

j
+1

j

⇒ 1 − 1
p2

j

≤ 1 − 1

p
k

j
+1

j

.

∴ p
2k

j
j − p

k
j
−1

j ≥(
p

k
j

j

)2(1 − 1
p2

j

)
.

∴ σ(n)φ(n) ≥
∏

s

(
pks

s

)2(1 − 1
p2

s

)
,

=
∏

s

(
pks

s

)2∏
s

(
1 − 1

p2
s

)
,

= n2
(

1 − 1
p21

)(
1 − 1

p22

)
· · ·

(
1 − 1

p2
s

)
.

7.4 Euler’s Theorem

The first published proof of Fermat’s little theorem(stated in chapter 5 of this
book) was given by Euler in 1736, where he had taken a prime p and an integer a.
But later in the year, 1760 he succeeded in generalizing the result from prime p

to an arbitrary integer n. This generalization is known as Euler’s generalization
of Fermat’s theorem. The present section deals with the proof and related ideas
associated with this remarkable theorem.

Now, as a precursor to launch the proof of Euler’s generalization of Fermat’s
theorem, we need the following lemma:

Lemma 7.4.1. Let n > 1 and gcd(a, n) = 1. If k1 , k2 , · · · , k
φ(n) are the positive

integers less than and prime to n, then ak1 , ak2 , · · · , ak
φ(n) are congruent modulo

n to k1 , k2 , · · · , k
φ(n) in some order.

Proof. Here we are going to show that no two of the integers ak1 , ak2 , · · · , ak
φ(n)

are congruent modulo n. For if, ak
i

≡ ak
j
(mod n) holds with 1 ≤ i < j ≤ φ(n)

then k
i

≡ k
j
(mod n), which is a contradiction since this two integers are less

than n. Since, gcd(k
i
, n) = 1 ∀i and gcd(a, n) = 1 then from the worked out

Problem 2.6.1) gcd(ak
i , n) = 1 ∀i. Let us fix akj for some integer j, there

exists unique integer b where 0 ≤ b < n for which akj ≡ b(mod n). Since,
gcd(b, n) = gcd(ak

j
, n) = 1, so b must be one of the integers k1 , k2 , · · · , k

φ(n) .
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This is true for all j. This proves that the numbers ak1 , ak2 , · · · , ak
φ(n) and

the numbers k1 , k2 , · · · , k
φ(n) are identical with respect to modulo n in a certain

order.

We now represent an example to make a lucid understanding of this lemma.
For that let us take n = 9 and the set {1, 2, 4, 5, 7, 8} is a reduce system modulo
9. Since gcd(2, 9) = 1 then we have, 2 · 1 = 2, 2 · 2 = 4, 2 · 4 = 8, 2 · 5 = 10, 2 · 7 =
14, 2 · 8 = 16 is also a reduce system modulo 9.

Theorem 7.4.1. (Euler): If n is a positive integer and gcd(a, n) = 1 then
aφ(n) ≡ 1(mod n).

Now before going to the proof, we illustrate the idea of it by an example.

Example 7.4.1. From the last example, it is clear that both the sets {1, 2, 4, 5, 7, 8}
and {2·1, 2·2, 2·4, 2·5, 2·7, 2·8} are reduced residue system of modulo 9. Therefore

(2 · 1)(2 · 2)(2 · 4)(2 · 5)(2 · 7)(2 · 8) ≡ 1 · 2 · 4 · 5 · 7 · 8( mod 9),

26 · 1 · 2 · 4 · 5 · 7 · 8 ≡ 1 · 2 · 4 · 5 · 7 · 8( mod 9).

Since we have gcd(1 · 2 · 4 · 5 · 7 · 8, 9) = 1, we conclude that 26 = 2φ(9) ≡ 1(
mod 9).

We now use the idea of this example to the following proof.

Proof. Let us take n > 1 and k1 , k2 , · · · , k
φ(n) be the positive integers less than

n which are relatively prime to n. Since gcd(a, n) = 1, ak1 , ak2 , · · · , ak
φ(n)

are congruent to k1 , k2 , · · · , k
φ(n) (Why!). Then the least positive residue of

ak1 , ak2 , · · · , ak
φ(n) are the integers k1 , k2 , · · · , k

φ(n) in some order. Therefore

(ak1)(ak2) · · · (ak
φ(n)) ≡ k1k2 · · · k

φ(n)( mod n)

and so aφ(n)k1k2 · · · k
φ(n) ≡ k1k2 · · · k

φ(n)( mod n).

Since gcd(k
i , n) = 1 for each i so gcd(k1k2 · · · k

φ(n) , n) = 1[see Problem 2.6.1].
Thus the congruence becomes aφ(n) ≡ 1(mod n).

Remark 7.4.1. If n = p is prime, then φ(p) = p − 1. Further if p � a, then we
have ap−1 ≡ 1(mod p), which is equivalent to Fermat’s Little theorem.

Euler’s theorem has vast application in finding the modulo of a large num-
ber with respect to a positive integer. Applying Euler’s theorem, we can find
congruent modulo of 4301 with respect to 99. Since gcd(4, 99) = 1 and φ(99) =

φ(32 · 11) = 99
(

1 − 1
3

)(
1 − 1

11

)
= 99 × 2

3 × 10
11 = 60, from Euler’s theorem

we have 460 ≡ 1(mod 99). Now 301 = 5 · 60 + 1, therefore 4301 ≡ (460)5 · 41 ≡ 4(
mod 99).
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7.5 Worked out Exercises

Problem 7.5.1. Use Euler’s theorem to evaluate 2100000 modulo 77.

Solution 7.5.1. Here gcd(2, 77) = 1, therefore 2φ(77) ≡ 1(mod 77). Now

φ(77) = 6 · 10 = 60 ⇒ 260 ≡ 1( mod 77).

Hence

260000 ≡ 1( mod 77), (260)300 = 218000 ≡ 1( mod 77) ⇒ 236000 ≡ 1( mod 77).

∴ 296000 ≡ 1( mod 77), (260)300 = 21800 ≡ 1( mod 77) ⇒ 23600 ≡ 1( mod 77).

∴ 299600 ≡ 1( mod 77), (260)3 = 2180 ≡ 1( mod 77) ⇒ 2360 ≡ 1( mod 77).

∴ 299960 ≡ 1( mod 77).

But 210 = 1024, 13 · 77 = 1001 ⇒ 210 ≡ 23(mod 77). Therefore 240 ≡ 234(
mod 77) ⇒ 2100000 ≡ 234(mod 77). Now 232 = 529 = 6 · 77 + 67 ⇒ 232 ≡ −10(
mod 77) ⇒ 234 ≡ 100 ≡ 23(mod 77). Hence

2100000 ≡ 23( mod 77).

Problem 7.5.2. For any prime p, prove that:

τ(p!) = 2τ((p − 1)!).

Solution 7.5.2. Let p! = pk1
1 pk2

2 · · · pks
s

·p = 1·2·3 · · · (p−1)·p and p1 , p2 , · · · p
s
be

distinct primes. Here k
i

≥ 0 are the integers for each i(= 1, 2, · · · s). Therefore
(p − 1)! = p

k1
1 p

k2
2 · · · pks

s
. Since gcd(p, pk1

1 p
k2
2 · · · pks

s
) = 1, therefore

τ(p!) = τ(p · pk1
1 pk2

2 · · · pks
s

)

= τ(p)τ(pk1
1 pk2

2 · · · pks
s

)

= τ(p)τ((p − 1)!)

= 2 · τ((p − 1)!), ∵ τ(p) = 2.

Problem 7.5.3. If gcd(a, n) = 1, show that the linear congruence ax ≡ b(
mod n) has the solution x ≡ baφ(n)−1(mod n).

Solution 7.5.3. If x ≡ baφ(n)−1(mod n), then ax = a(baφ(n)−1) = baφ(n).
Since gcd(a, n) = 1, by Euler’s theorem we have aφ(n) ≡ 1(mod n).

∴ ax = baφ(n) ≡ b · 1 ≡ b( mod n).

Problem 7.5.4. Show that if gcd(a, n) = gcd(a − 1, n) = 1, then

1 + a + a2 + . . . + aφ(n)−1 ≡ 0( mod n).
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Solution 7.5.4. By Euler’s theorem, we have

gcd(a, n) = 1 ⇒ aφ(n) ≡ 1( mod n) ⇒ aφ(n) − 1 ≡ 0( mod n).

But aφ(n) − 1 = (a − 1)(aφ(n)−1 + . . . + a2 + a + 1). Therefore (a − 1)(aφ(n)−1 +
. . . + a2 + a + 1) ≡ 0(mod n). Since gcd(a − 1, n) = 1, therefore 1 + a + a2 +
. . . + aφ(n)−1 ≡ 0(mod n).

Problem 7.5.5. If m and n are relatively prime positive integers, prove that
mφ(n) + nφ(m) ≡ 1(mod mn).

Solution 7.5.5. Since gcd(m,n) = 1, therefore an appeal to Euler’s theorem
produces

mφ(n) ≡ 1( mod n) & nφ(m) ≡ 1( mod m).

But nφ(m) ≡ 0(mod n) & mφ(n) ≡ 0(mod m).

∴ mφ(n) + nφ(m) ≡ 1 + 0 = 1( mod n),

nφ(m) + mφ(n) ≡ 1 + 0 = 1( mod m).

Since gcd(m,n) = 1, therefore combining we obtainmφ(n)+nφ(m) ≡ 1(mod mn).

Problem 7.5.6. Find the units digit of 3100 by means of Euler’s theorem.

Solution 7.5.6. Here gcd(10, 3) = 1. By Euler’s theorem, 3φ(10) ≡ 1(mod 10).
Now, φ(10) = 4, therefore 34 ≡ 1(mod 10). Hence (34)25 ≡ 1(mod 10). There-
fore 3100 ≡ 1(mod 10). Thus, unit digit of 3100 is 1.

Problem 7.5.7. Prove that a15 ≡ a3(mod (215 − 23)) for any integer a.

Solution 7.5.7. Here,

a15 − a3 = a3(a12 − 1) = a3(a6 + 1)(a6 − 1)

= a3(a6 + 1)((a3 + 1))(a3 − 1)

= a3(a6 + 1)((a3 + 1))(a2 + a + 1)(a − 1).

215 − 23 = 23(26 + 1)((23 + 1))(22 + 2 + 1)(2 − 1)

= 23 · 32 · 5 · 7 · 13.

Applying the definition of Euler’s phi function we get,

φ(8) = 4, φ(5) = 4, φ(13) = 12, φ(9) = 6, φ(7) = 6.

Case(i) If gcd(a, 215 − 23) = 1, then this implies,

gcd(a, 8) = 1, gcd(a, 13) = 1, gcd(a, 2) = 1,
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gcd(a, 5) = 1, gcd(a, 9) = 1.

Now applying Euler’s theorem in all those above cases we can write,

a4 ≡ 1( mod 8), a12 ≡ 1( mod 13), a6 ≡ 1( mod 7),

a4 ≡ 1( mod 5), a6 ≡ 1( mod 9).

Considering all the congruences together, we have

a12 ≡ 1( mod 8 · 5 · 13 · 9 · 7).

∴ a15 ≡ a3( mod (215 − 23)).

Case(ii) If gcd(a, 215 − 23) = 1, then for some integer k,

a = k(215 − 23), and

a15−a3 = (a14−a2)a = (a14−a2)k(215−23) ⇒ a15 ≡ a3( mod (215−23)).

Hence combining both the cases for any integer a, we get a15 ≡ a3(mod (215−
23)).

Problem 7.5.8. Use Euler’s theorem to confirm that, for any integer z ≥
0, 51|1032z+9 − 7.

Solution 7.5.8. Here, 51 = 17 · 3. Therefore φ(51) = 16 · 2 = 32. Also,
gcd(10, 51) = 1 gives 10φ(51) = 1032 ≡ 1(mod 51). Thus,

1032z ≡ 1( mod 51). (7.5.1)

Next, we are going to show 109 ≡ 7(mod 51). Now,

10 ≡ 7( mod 3),

10 ≡ 1( mod 3) ⇒ 1018 ≡ 1( mod 3).

∴ 109 = 108 · 10 ≡ 7 · 1( mod 3),

or, 109 ≡ 7( mod 3). (7.5.2)

−10 ≡ 7( mod 17),

∴ (−10)2 ≡ 72 = 49 ≡ −2( mod 17).

∴ (−10)8 = 108 ≡ (−2)4 = 16 ≡ −1( mod 17).

∴ (−10)9 ≡ −10 ≡ 7( mod 17). (7.5.3)

(7.5.2) + (7.5.3) ⇒ 109 ≡ 7( mod 51). (7.5.4)

(7.5.1) + (7.5.4) ⇒ 1032z · 109 ≡ 1 · 7( mod 51),

1032z+9 ≡ 7( mod 51). (7.5.5)

Thus, for any integer z ≥ 0, 51|1032z+9 − 7.

�
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Problem 7.5.9. Prove that if a is an integer, then a7 ≡ a(mod 63).

Solution 7.5.9. From Fermat’s little theorem we see that, a7 ≡ a(mod 7). So
to prove this assertion we need to check a7 ≡ a(mod 9). If 9|a then it is trivial.
If 3 � a then gcd(a, 9) = 1, so from Euler’s theorem it follows that aφ(9) = a6 ≡ 1(
mod 9) or a7 ≡ a(mod 9). Thus together we have a7 ≡ a(mod 63).

Problem 7.5.10. Solve the linear congruence 5x ≡ 3(mod 14) by Euler’s the-
orem.

Solution 7.5.10. Here we multiply both sides of the congruence by 5φ(14)−1 =
55. This gives 56 ·x ≡ 3 · 55(mod 14). Now by Euler’s theorem we have 5φ(14) =
56 ≡ 1(mod 14). This implies, x ≡ 3 · 55 ≡ 15 · 1111 ≡ 15 · 9 ≡ 9(mod 14).

7.6 Properties of φ–function

Present section deals with some curious properties of Euler’s phi function related
with some arithmetic functions. Discussion of this chapter commence with an
important property of totient(φ) function, where the sum of values of φ(d) where
d is the divisor of any positive integer n is always equal to n itself. Famous
German mathematician Carl Friedrich Gauss was the first person to notice that.

Theorem 7.6.1. For each positive integer n ≥ 1, n =
∑
d|n

φ(d) where d is posi-

tive divisor of n.

Proof. Let us choose n = 1 then,
∑
d|1

φ(d) = φ(1) = 1 = n. Thus the equality is

true in this case. Now we are only to prove the result for any positive integer
n > 1. Let us choose a set Sn

= {1, 2, 3, · · · , n} and |S
n
| be the number of

elements in S
n
, then clearly |S

n
| = n. For each divisor d of n we denote S

d
be the

set of all integers not exceeding n and gcd(m,n) = d for each m ∈ S
d
. Now from

the proposition (2.4.2) we have gcd(m,n) = d if and only if gcd
(
m

d
,
n

d

)
= 1.

We now have to show that each S
d

has φ

(
n

d

)
number of elements. Here for a

particular d all the elements of S
d

are multiples of d and less than or equal to

n. Thus the elements of S
d

are d, 2d, 3d, · · · ,
(
n

d

)
d. Now, let ad ∈ S

d
be any

element where gcd
(
a,

n

d

)
= e. Then clearly gcd(ad, n) = ed. Here ed = d if and

only if e = 1 imply that only ad in S
d

are those whose gcd
(
a,

n

d

)
= 1 that is the
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number φ
n

d
. Since each integers of the set {1, 2, 3, · · · , n} lies in exactly one

class S
d
, we have the formula n =

∑
d|n

φ

(
n

d

)
. But d runs through all positive

divisors of n so does n

d
. Thus finally we have, n =

∑
d|n

φ

(
n

d

)
=

∑
d|n

φ(d).

Here we have illustrated the above theorem by means of an example:

Example 7.6.1. Let us choose a number n = 12 and the divisors of 12 are
1, 2, 3, 4, 6, 12. Thus the classes S

d
are,

S1 = {1, 5, 7, 11}, S2 = {2, 10}, S3 = {3, 9}, S4 = {4, 8}, S6 = {6}S12 = {12}.

Now, φ(12) = 4, φ(6) = 2, φ(4) = 2, φ(3) = 2, φ(2) = 1, φ(1) = 1.
Therefore

∑
d|12

φ(12) = φ(12) + φ(6) + φ(4) + φ(3) + φ(2) + φ(1) = 12 = n.

This shows the clarification of our above theorem.

Also, the next part of our discussion is based on the last theorem. Here we
illustrate the theorem with a suitable example, which totally depends on the
multiplicative property of φ[for further details refer to theorem (7.2.2)]. Now
for n = 1, the case is trivial. Let us choose n = 24 and apply the formula
F (n) =

∑
d|n φ(d) where F and φ are both number theoretic functions. Since

φ is multiplicative, F is also so(Why!). Again n = 24 = 23 · 3 be the prime
factorization of 24, which implies F (24) = F (23)F (3). Now

F (23) =
∑
d|23

φ(d)

= φ(1) + φ(2) + φ(4) + φ(8)

= 1 + (2 − 1) + (22 − 2) + (23 − 22)[∵ φ(pk) = pk − pk−1]

= 1 + 1 + 2 + 4 = 23

and F (3) =
∑
d|3

φ(d)

= φ(1) + φ(3) = 1 + 2 = 3.

Therefore F (24) = 23 · 3 = 24 and thus we have n = 24 = F (24) =
∑
d|24

φ(d)

which is our desired result.
Based on the last example, we are going to give the alternative proof of

Theorem 7.6.1 as follows:

( )
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Proof. If n = 1, the case is trivial(Verify!). So we assume n > 1. Let us consider
the number-theoretic function F (n) =

∑
d|n

φ(d). Since φ is multiplicative, F is

also so. Let the prime factorization of n be given by n = pd1
1 pd2

2 · · · pds
s

. Then
F (n) = F (pd1

1 )F (pd2
2 ) · · ·F (pds

s
). For each value of j, we obtain

F (p
d

j
j ) =

∑
d|pd

j
j

φ(d)

= φ(1) + φ(p
j ) + φ(p2

j
) + φ(p3

j
) + . . . + φ(p

d
j

j )

= 1 + (p
j

− 1) + (p2
j

− p
j
) + (p3

j
− p2

j
) + . . . + (p

d
j

j − p
d

j
−1

j )

= p
d

j
j .

Hence F (n) = pd1
1 pd2

2 · · · pds
s

= n ⇒
∑
d|n

φ(d) = n.

Now for the next part of discussion , let us choose a positive integer 20 and
φ(20) = 8. Here the set of positive integers less than 20 and prime to 20 are
{1, 3, 7, 9, 11, 13, 17, 19} and their sum is 1 + 3 + 7 + 9 + 11 + 13 + 17 + 19 = 80 =
1
2 × 20 × 8. This is not a coincidence, in fact our next theorem deals with it.

Theorem 7.6.2. For n > 1, the sum of the positive integers less than n and
prime to n is 1

2nφ(n).

Proof. Let k1 , k2 , · · · , k
φ(n) be the positive integers less than n and prime to n.

Now using Proposition (2.4.3), we have from congruence relation,

k1 + k2 + · · · + k
φ(n) = (n − k1) + (n − k2) + · · · + (n − k

φ(n))

= nφ(n) − (k1 + k2 + · · · + k
φ(n))

Therefore, 2(k1 + k2 + · · · + a
φ(n)) = nφ(n)

⇒ k1 + k2 + · · · + k
φ(n) = 1

2nφ(n),

which proves the theorem.

Finally at this point we can give an application of Mobiöus Inversion formula,
which leads us to the following theorem:

Theorem 7.6.3. For any positive integer n, φ(n) = n
∑
d|n

μ(d)
d
.

Before going to the proof, let us illustrate the theorem by means of an ex-
ample: taking n = 14 we see that,
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14
∑
d|14

μ(d)
d

= 14 μ(1) + μ(2)
2 + μ(7)

7 + μ(14)
14

= 14
[
1 + −1

2 + (−1)
7 + (−1)2

14

]
= 14

[
1 − 1

2 − 1
7 + 1

14

]
= 14 × 6

14 = 6 = φ(14).

Proof. From the Theorem (7.6.1) we know, F (n) =
∑
d|n

φ(d) = n and from

Mobiöus inversion formulae we have, φ(n) =
∑
d|n

μ(d)F
(
n

d

)
. Therefore we get,

φ(n) =
∑
d|n

μ(d)n
d

= n
∑
d|n

μ(d)
d

.

7.7 Worked out Exercises

Problem 7.7.1. For a square-free integer n > 1, show that τ(n2) = n if and
only if n = 3.

Solution 7.7.1. If n = 3, then τ(n2) = τ(32) = 2 + 1 = 3[refer to Theorem
6.2.2]. Next, suppose n is square-free with n > 1 and τ(n2) = n. Let n =
p1p2 · · · p

s
with p

i
= p

j
. Moreover, applying Theorem 6.2.2 we get

τ(n2) = τ(p21p
2
2 · · · p2

s
)

= (2 + 1)(2 + 1) · · · (2 + 1) = 3s.

∴ τ(n2) = n = p1p2 · · · p
s

= 3s,

which implies all p
i = 3. Hence n = 3 and s = 1.

Problem 7.7.2. For n > 2, prove the inequality φ(n2) + φ((n + 1)2) ≤ 2n2.

Solution 7.7.2. If k is composite, then φ(k) ≤ k − √
k. As n2 is composite,

so is (n + 1)2. Therefore φ(n2) ≤ n2 −
√
n2 = n2 − n. Again φ((n + 1)2) ≤

(n + 1)2 − √
(n + 1)2 = n2 + n. Thus φ(n2) + φ((n + 1)2) ≤ 2n2.

Problem 7.7.3. Given an integer z, prove that there exists at least one k for
which z|φ(k).

( ) [ ]

�
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Solution 7.7.3. Let k = pα1
1 pα2

2 · · · pαr
r

be such that

φ(k) = pα1 −1
1 · · · pαr −1

r
(p1 − 1) · · · (pr − 1).

Our claim is z = pα1 −1
1 · · · pαr −1

r
. So let z = qβ1

1 · · · qβs
s
. Choose k = qβ1+1

1 · · · qβs+1
s

.

∴ φ(k) = qβ1
1 · · · qβs

s
(q1 − 1) · · · (qs − 1),

which implies z|φ(k).

Problem 7.7.4. Show that if z is a product of twin primes, say z = p(p + 2),
then

φ(z)σ(z) = (z + 1)(z + 3).

Solution 7.7.4. Here gcd(p, p+2) = 1, so φ(z) = φ(p)φ(p+2) = (p−1)(p+1).
But σ(z) = σ(p)σ(p + 2) = (p + 1)(p + 3). Therefore φ(z)σ(z) = (p − 1)(p +
1)2(p+3). Now (z+1)(z−3) = (p2+2p+1)(p2+2p−3) = (p+1)2(p+3)(p−1).
Hence φ(z)σ(z) = (z + 1)(z + 3).

Problem 7.7.5. Assuming d|n, prove that φ(d)|φ(n).

Solution 7.7.5. Since d|n, so assume n = pk1
1 pk2

2 . . . pkr
r and d = pa1

1 pa2
2 . . . par

r

where 0 ≤ ai ≤ ki. Then φ(n) = n(1 − 1
p1

)(1 − 1
p2

) . . . (1 − 1
pr

) and φ(d) =
d(1 − 1

p1
)(1 − 1

p2
) . . . (1 − 1

pr
). Since d|n, then it follows that φ(d)|φ(n).

Problem 7.7.6. If z is a square-free integer, prove that for all integers k ≥ 2∑
d|z

σ(dk−1)φ(d) = zk.

Solution 7.7.6. Since φ and σ are multiplicative,

F (z) =
∑
d|z

σ(dk−1)φ(d) =
∑
d|z

σ(d)σ(d) · · ·σ(d)︸ ︷︷ ︸
(k−1)times

φ(d),

is also so.

Case(i) Let z be square-free and z = p. Then

F (p) =
∑
d|z

σ(dk−1)φ(d)

= σ(1)φ(1) + σ(pk−1)φ(p)

= 1 + pk−1+1 − 1
p − 1 · (p − 1) = pk = zk.
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Case(ii) If z = p1p2 · · · pr , then∑
d|z

σ(dk−1)φ(d) = F (z) = F (p1)F (p2) · · ·F (p
r
)

= pk
1 p

k
2 · · · pk

r
= (p1p2 · · · p

r
)k = zk.

Problem 7.7.7. For any integer n, prove that 3|σ(3n + 2).

Solution 7.7.7. Let 3n+2 = p
k1
1 p

k2
2 · · · pks

s
. Since 3 ≡ 0(mod 3) and 3n+2 ≡ 2(

mod 3), therefore pk
i

i ≡ 0(mod 3) for i = 1, 2, . . . , s. If all pk
i

i ≡ 1(mod 3), then
p

k1
1 p

k2
2 · · · pks

s
≡ 1(mod 3). Since p

k1
1 p

k2
2 · · · pks

s
≡ 2(mod 3), therefore ∃ one

p
i
satisfying p

k
i

i ≡ 2(mod 3). This implies p
i

≡ 2(mod 3). Because if p
i

≡ 0(
mod 3) and p

i
≡ 1(mod 3), then this yields pk

i
i ≡ 0(mod 3) and p

k
i

i ≡ 1(mod 3)
respectively. But this is not the case. Since p

i
≡ 2(mod 3), then p2

i
≡ 4 ≡ 1(

mod 3) and p3
i

≡ 2(mod 3). Therefore if pr
i

≡ 2(mod 3), then r is odd. Hence
p

k
i

i ≡ 2(mod 3), ki is odd.

∴ σ(pk
i

i
) = p

k
i+1

i − 1
p

i
− 1 = (pi

− 1)(pk
i

i + p
k

i
−1

i + . . . + p
i

+ 1)
p

i
− 1 ,

= pk
i

i
+ pk

i
−1

i
+ . . . + p

i
+ 1, and k

i
is odd.

Since 2 ≡ (−1)(mod 3), therefore if r is odd then pr
i

≡ (−1)(mod 3) and if r is
even then pr

i
≡ 1(mod 3).

∴ σ(pk
i

i
) = pk

i
i

+ pk
i
−1

i
+ . . . + p

i
+ 1

≡ (−1) + 1 + . . . + (−1) + 1( mod 3)

≡ 0( mod 3.).

∴ 3|σ(pk
i

i
) ⇒ 3|(σ(pk1

1 )) · · ·σ(pk
i

i
) · · ·σ(pks

s
)

⇒ σ(pk1
1 pk2

2 · · · pks
s

), ∵, σ is multiplicative
3|σ(3n + 2).

Problem 7.7.8. For any integer n > 1 has the form n = pk1
1 pk2

2 . . . pkr
r , then

show that
∑

d|n μ(d)φ(d) = (2 − p1)(2 − p2) . . . (2 − pr).

Solution 7.7.8. Since μ and φ are multiplicative then μ · φ is also multi-
plicative. Therefore F (n) =

∑
d|n μ(d)φ(d) is also multiplicative. Note that

n = pk1
1 pk2

2 . . . pkr
r is the prime factorization of n. Then

F (pk) =
∑
d|pk

μ(d)φ(d)

= μ(1)φ(1) + μ(p)φ(p) + . . . + μ(pk)φ(pk)

= 1 + (−1)(p − 1) = 2 − p [∵ μ(pk) = 0 for k ≥ 2].

�
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∴ F (n) = (2 − p1)(2 − p2) . . . (2 − pr).

Problem 7.7.9. If the integer z > 1 has the prime factorization z = qk1
1 qk2

2 · · · qks
s
,

prove

∑
d|z

dφ(d) =
(
q
2k1+1
1 + 1
q1 + 1

)(
q
2k2+1
2 + 1
q2 + 1

)
· · ·

(
q2ks+1

s
+ 1

q
s

+ 1

)
.

Solution 7.7.9. Since f(x) = x is multiplicative, therefore f · φ is also so.
Hence

F (z) =
∑
d|z

dφ(d), is multiplicative.

Consider,

F (qk) =
∑
d|qk

dφ(d)

= 1 · φ(1) + q · φ(q) + q2 · φ(q2) + . . . + qk · φ(qk),

= 1 + q(q − q0) + q2(q2 − q) + . . . + qk(qk − qk−1),

= 1 + q2 − q + q4 − q3 + q6 − q5 + . . . + q2k − q2k−1,

= 1 + (−1)1q + (−1)2q2 + (−1)3q3 + . . . + (−1)2kq2k.

∴ q2k+1 + 1 = (q + 1)(q2k − q2k−1 + . . . + q2 − q + 1)(Why!).

⇒ q2k+1 + 1
q + 1 = q2k − q2k−1 + . . . + q2 − q + 1,

⇒ F (qk) = q2k+1 + 1
q + 1 .

∴
∑
d|z

dφ(d) = F (z) = F (qk1
1 qk2

2 · · · qks
s

),

= F (qk1
1 )F (qk2

2 ) · · ·F (qks
s

),

=
(
q
2k1+1
1 + 1
q1 + 1

)(
q
2k2+1
2 + 1
q2 + 1

)
· · ·

(
q2ks+1

s
+ 1

q
s

+ 1

)
.

Problem 7.7.10. Given k > 0, establish that there exists a sequence of k con-
secutive integers n + 1, n + 2, ..., n + k satisfying

μ(n + 1) = μ(n + 2) = · · · = μ(n + k) = 0.

Solution 7.7.10. Let p
k
be the kth prime. Then for i = j. gcd(p2

i
, p2

j
) = 1. By�
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virtue of Chinese Remainder theorem, ∃ a solution to:

X ≡ −1( mod p21 ),

X ≡ −2( mod p22 ),
...

X ≡ −k( mod p2
k
),

where p1 = 2, p2 = 3, . . . , p
k

= kth prime. If n = p1p2 · · · p
k
and N

i
= n

p
i
, then

a simultaneous solution is

X = (−1)N
φ(p2

1 )
1 + (−2)N

φ(p2
2 )

2 + . . . + N
φ(p2

k
)

k .

⇒ X = −Nφ(22)
1 − 2Nφ(32)

2 − . . . − kNφ(k2)
k

.

⇒ X + i ≡ 0( mod p2
i
), for i = 1, 2, 3, . . . , k.

⇒ X + i = ap2
i
, for some integer a.

Hence μ(X + i) = 0, i = 1, 2, 3, . . . , k.

7.8 Exercises:

1. Calculate φ(5040), φ(36000).

2. Prove the following assertions:
(a) φ(3n) = 3φ(n) if and only if 3|n.
(b) φ(3n) = 2φ(n) if and only if 3 � n.

3. If the integer n > 1 has r distinct prime factors, then show that φ(n) ≥ n
2r .

4. If n = pt1
1 pt2

2 . . . ptr
r then prove the inequality τ(n)φ(n) ≥ n.

5. Prove that there are infinitely many integers n satisfying φ(n) = n
3 .

6. Show that Goldbach’s Conjecture implies that for each even integer 2n
there exists integers n1 and n2 with φ(n1) + φ(n2) = 2n.

7. Use Euler’s theorem to establish the following:
(a) For any integer a, a13 ≡ a(mod 2730).
(b) For any odd integer a, a33 ≡ a(mod 4080).

8. For any prime p prove the following assertions:
(a) σ(p!) = (p + 1)σ((p − 1)!);
(b) φ(p!) = (p + 1)φ((p − 1)!).



166 Number Theory and its Applications

9. Prove that 4|σ(4n + 3) for any positive integer n.

10. If the integer n > 1 has the prime factorization n = pt1
1 pt2

2 . . . ptr
r then

establish that:∑
d|n

φ(d)
d = (1 + k1(p1−1)

p1
)(1 + k2(p2−1)

p2
) . . . (1 + kr(pr−1)

pr
).

11. Show that for any integer n, φ(n)|n − 1 if and only if n is prime.

12. Prove that
∑

d|n σ(d)φ( n
d ) = nτ(n).

13. For a positive integer z, prove that
∑
d|z

μ2(d)
φ(d) = z

φ(z) .

14. Show that if p and 2p + 1 are both odd primes, then n = 4p satisfies
φ(n + 2) = φ(n) + 2.

15. For which positive integer n does φ(n) divides n?
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