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(265) (MMAG, Vol. 64, no. 5, p. 851). We will show that these are the positive
integers N which are not a power of 2. Indeed let N be an integer of the
form

N=<§)+kn:w+nk (k>1,n>1).
Since 2N = k(k + 2n — 1), it follows that 2N must have an odd factor
larger than 2, and therefore similarly for N. It follows that NV cannot be
a power of 2.

Conversely, let N be a positive integer which has an odd factor larger
than 2. Consider the factorization of 2V as a product of two positive
integers of which one is odd. Let A be the smallest of these two factors
and B the largest. Setting k = A and n = B%_A, it follows that

k A(A-1) B+1-A AB
= :—:N
(2>+kn 7 +A 5 5 )

which gives the result.
REMARK: Since

k
<2>—i—kn:1+2+---+(k—1)+kn:n+(n+1)+-~+(n+k—1),

the problem is equivalent to the one that consists of searching for the
positive integers which can be written as the sum of consecutive integers.
(266) They are the integers n of the form n = 4m + 2, m = 0,1,2.. ., since
34m+2 =9 = 1 (mod 10), while 3*™ = 1 (mod 10), 3*™*! =3 (mod 10)
and 3*™*+3 =7 (mod 10).
(267) It is the number 5. Indeed, since n! = 0 (mod 7) as soon as n > 7, we
have

U421+ 4500 =114+ 2! + 31 + 41 4+ 5! + 6!
=14246+34+14+6=5 (mod7).

(268) Since for ¢ > 4, 12|i!, the remainder is 1 +2 +6 = 9.

(269) For n odd, 10-32™" +1 = 0 (mod 3), while for each even integer n, 10 -
32" +1=0 (mod 11).

(270) The answer is YES. Since n® = 1 (mod 9) for each integer n such that
(n,3) =1 and since n? = 4 (mod 9) for n = 2 (mod 9), it follows that if
n =2 (mod 9), we have n6+n?+4 = 0 (mod 9). On the other hand, since
n®4+n2+4 =0 (mod 4) for all even n, we may conclude that 36|n® +n?+4
forn=18k+2,k=0,1,2,....

(271) If the equation 3k — 1 = z? + 3y? had a solution, then we would have
z? = —1 =2 (mod 3), which is impossible because z2 = 0,1 (mod 3).

(272) We know that

[log n/ log p] n
m = — .
> [
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Amongst the integers 1,2, ..., n, those which are divisible by p are: p,2p, ...,
k1p, where k1 = [n/p]. Since

nl=1-2--(p—1)(p)p+1)(p+2)---(2p - 1)(2p)
(2p+1)(2p+2)---3p—1)(Bp)((k1 — D)p + 1)((k1 — 1)p + 2)-
oo (kip = 1) (kip)(kip + 1) (kip +2) - -

and since from Wilson’s Theorem, the product of the integers in each set

{1725"'ap71}5 {p+11p+2a52p~1}aa{(klﬁl)p_kla(klhl)p_*'
2,...,k1p — 1} is congruent modulo p to —1, it follows that

n! k n
= (= | — | = !
Pl (—1)" k! (n {p} p>. (mod p).
Now, amongst the integers 1,2, ..., kq, those which are divisible by p are:
D,2p, ..., kap, where ka = [k1/p] = [n/p?]. It follows that

o o [ (- [5] om

where 1 < ky < k1. Continuing this process, the result follows.

(273) We must show that n'* —n = 0 (mod 10) or equivalently that n'3 —n =0
(mod 2) and n'3 —n =0 (mod 5). Using Fermat’s Little Theorem, n? =
n (mod 2) which implies n'® = n (mod 2). Similarly, n® = n (mod 5)
implies n'® = n (mod 5).

(274) Since n must be divisible by 7 and by 11, it can be written as n = 7%-11°.
But n/7 = 771 - 11°* must be the 7-th power of an integer, in which case
a =1 (mod 7) and b = 0 (mod 7). Moreover, n/11 = 7% - 11°~! must
be the 11-th power of an integer, so that ¢ = 0 (mod 11) and b = 1
(mod 11). Solving this system of congruences gives a = 22 (mod 77) and
b =56 (mod 77). Hence, the smallest positive integer satisfying the given
constraints is n = 722 . 1159,

(275) Consider the system of congruences z+j—1 = 0 (mod p?), i=1,2,...,k,
where p; stands for the j-th prime number. From the Chinese Remainder
Theorem, this system has one solution; that is there exists an integer
n which verifies these k congruences. Therefore, each of the k integers
n,n+1,...,n+k — 1 is divisible by a perfect square, as required.

(276) Since z = a (mod m), there exists k € Z such that £ = a + km and
therefore a + km = b (mod n). Hence, there exists j € Z such that
a+km = b+jn, that is km —jn = —(a—b). Since (m,n)|m and (m,n)|n,
it follows that (m,n)|(a —b).

Reciprocally, assume that (m,n)|(a — b). Then, there exists M € Z
such that a — b = M(m,n) and since (m,n) = kym + kan, ki, k2 € Z,
it follows that there exist integers j and k such that a — b = —km + jn,
k= —kiM, j = koM. Therefore, we have a + km = b+ jn. Setting
z = a+km, we obtain z = a (mod m) and moreover x = a+km = b+ jn,
that is z = b (mod n).
(277) Letting N = (), then

EIN=p(p—-1)---(p—k+1)=0 (mod p),

and since (k!,p) =1 then N =0 (mod p).
(278) (a) This follows from Problem 277 and induction on n.
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(279)

(280)

(281)

(282)

(283)
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(b) Since a? = b (mod p), then by Fermat’s Little Theorem, we have
a =b (mod p) and therefore there exists an integer k such that a =
b+ kp. Hence, by the Binomial Theorem, there exists an integer K

such that
a? = (b+ kp)?
=W+ (’1’) ¥ kp + (Z) P72kPp? + -+ KPpP = WP + Kp?,
where we used the result of Problem 277, thus completing the proof
of part (b).
Let N = (P.}) = (p=1)p=2)---(p— k). We then have

k!
k!N = (—=1)k! (mod p)

and since (k!,p) = 1, we conclude that N = (—1)* (mod p).
From Wilson’s Theorem,

P-D=@-DE-2)p-rE-r-1!
=(-1)rlp—r—1)=-1 (mod p).

Since (—1)"r! =1 (mod p), we obtain the result.

For the second part, it is enough to notice that (—1)%9! = 1 (mod 269)
and that (—1)!515! =1 (mod 479).

Assume that a solution exists. First, if 8 is odd,

P _1=(-1)P-1=-2=1#0 (mod 3),
which contradicts the given equation. Similarly, if 3 is even,

2 - 1= (22 1) (22 +1),

which means that 3|(2%/2 — 1) > 3 or 3|(20/2 +1) > 3, and this is why we
must have that p|(2%/2 — 1) and p|(2°/2 4 1), implying that p|2, which is
not possible.

(P.Giblin [14]) Assume that ¢ is a prime factor of n. Since n is odd, it
follows that ¢ is odd. We will first prove that p|(g — 1). Observe that
47 = 2"~ =1 (mod n), so that 4° = 1 (mod q). It follows that r, the
order of 4 modulo g, is a factor of p; we therefore have that r = 1 or r = p.
If r =1, then4=1 (mod ¢), which implies that ¢ = 3, in which case 3|n,
which contradicts the fact that n is not a multiple of 3. Hence, r = p,
which implies that p|qg — 1, as required. We shall finally show that n = q.
Since ¢ —1 > p, we have ¢ > p—1 > n/2 > /n, because n > 4. We
have thus shown that each prime factor g of n is larger than \/n, which is
impossible unless n itself is a prime number.

(Francesco Sica) Assume that p*|ja—b. Then there exists a positive integer
¢ which is not divisible by p and such that

b=a+ cp*.
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We then have

_ ko _ a (P) i p—iy k(p—i)
peraty = 3 (0o
= o +pap—lcpk + P(P2— 1)ap~2c2p2k (mod pk+2)
= aP +aP lep**!  (mod pFt?).
We have thus established that
€ a? — W = aP lephtl  (mod pFt?),

hence, in particular (x). Moreover, it follows from (**) that p**2 divides
aP—bP+aP~LcpFtl but, since p faPLc, it follows that p*+2 divides exactly
aP — bP, as required.

The answer is NO. If p = 2, then p|1, a contradiction. Hence, p > 3.
If § is even, then p® +1 =1+ 1 = 2 (mod 4) while 2 = 0 (mod 4), a
contradiction, while if § is odd, then

2 =p +1=(p+ )P -p 2+ —p+1)=(p+1)Q,

where @ > 1 is odd, which is nonsense.
If a solution {m,n} exists, then it is clear that n > 1 and that m > n > 1,
in which case

l4n=m?-n =(m-n)(m+n)>m+n>1+n,

which is nonsense.

Second solution. Assume that 1 +n+n? =m? withn > 1, m > 1.
We then have 4 + 4n + 4n? = 4m? and therefore (2n + 1)? + 3 = (2m)2.
But, the only squares which differ by 3 are 1 and 4. This implies that
n = 0, which contradicts the fact that n > 1.
Let (1) be the equation for which we seek the solutions and let {p, ¢} be
a solution. First of all, it is clear that

(2) p?+1<q<p®+p.

Indeed, these inequalities are consequences of the following two inequali-
ties:

@P*+1)? = p' 2’ +1<p +pP +pPHp+1=¢°

P +p)?® = p'+20°+p° >+ +PP+p+1=¢%
But it follows from (1) that p(1+p+p? +p3) =¢> -1 =(¢g—1)(g+ 1)

and this shows that p|(¢ — 1)(¢ +1). It follows that p|(q — 1) or p|(g + 1).
If p[(g — 1), then it follows from (2) that

p?<q—-1<p?®+p—1, and therefore p? +1 < q—-1<p*+p—2.

Observing that the interval [p? + 1,p% + p — 2| contains no multiple of p,
it is therefore impossible that p|(g — 1).
If p|(g + 1), then, from (2), we have

pP’+2<q+1<p?+p+1, and therefore p? +3<q+1<p*+p.
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The fact that the only multiple of p in the interval [p? + 3, p? +p| is p*> +p
implies that g + 1 = p? + p; that is ¢ = p? +p — 1. Substituting this value
of ¢ in (1), we obtain

l+p+p°+p°+p* = (P*+p—1)%
p’—2p*=3p = 0,
p*-2p—3 = 0,
(p—3)p+1) = 0,

an equation that implies that p = 3, which gives g = 11.
It is easy to establish that for each integer m # 0 (mod 7), we have
m3=+1or —1 (mod 7). On the other hand, by hypothesis we have

(%) el tai+ad+ai=0 (mod 7).

Therefore, none of the z;’s is divisible by 7, and the congruence () is
impossible. Thus the result.

(AMM, Vol. 81, 1974, p. 172). If p = 2, then 22 + 32 = 13 is not a power
of an integer larger than 1. Assume that p is odd; then using Problem 8,

p—1
2P 4 3P — (2 + 3) Z(_l)ka—l~k 3]6,
k=0
and since 3 = —2 (mod 5), we have that
p—1 p—1
Z(—l)k2p_1_k3k = ZQP_I =2P"1p  (mod 5).
k=0 k=0

If p # 5, then 2°~!p # 0 (mod p) and therefore 2P + 37 = 5k, for k #Z 0
(mod 5). Hence, 2P + 3P is never the power of an integer. On the other
hand, for p = 5, 2% + 3% = 275 is obviously not a power of an integer.
Hence, the result.

Letting n =6k +7, k€ N, 0 <r <5, then

" +2" 4+ 3" 44" 45" +6"=1"+2"4+3" 44" +5 +6" (mod 7).

Hence, if r = 0, we have 1" +2" 43" +4"+5%4+6" = 6 (mod 7), while for
r=1,2,3,4,5 we have 1" + 2" + 3" + 4" + 5" + 6" = 0 (mod 7). Hence,
the result.

The answer is YES. Indeed, by hypothesis (n, 100) = 1; we may therefore
use Euler’s Theorem and obtain that n?(!°9) = 1 (mod 100). Hence,
n%® =1 (mod 100), which means that the last two digits of n4%0 = (n40)10
are indeed 0 and 1.

We need to examine to what values the quantities 4°, 41, 42, ... are con-
gruent modulo 10. But we easily verify that each of these numbers is
congruent to 1, 4 or 6.

We must first show that (n+1)3—n3 £ 0 (mod 3) for each integer n > 1.
But this quantity is equal to 3n? +3n+ 1, which is congruent to 1 modulo
3, thus the result. Similarly, we prove that (n + 1)3 —n® # 0 (mod 5),
for each integer n > 1. Indeed, it is enough to consider n = 5m + r,
r=0,1,2,3,4.
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(293) This is true since
2(32)" 4+ 5%5" =2.5"—2.5"=0 (mod 27).

ince = - = - mo , the result is immediate.
294) Si 982 169 132 d 337), th It is i di
ince =9 (mo , then ¥ = 199+10k for 4 certain integer k.
295) S 1919 =9 d 10), then 191° g
We thus obtain

1991% =79 (mod 100),

which implies that the last two digits are 7 and 9.

(296) We have 280 = 23 . 5.7 and since both a and b are odd, then a? = 1
(mod 8) and b®> = 1 (mod 8). Therefore, a'?> = 1 = b'? (mod 8). Using
Fermat’s Little Theorem, a* = b* = 1 (mod 5) and therefore a'? = b'2
(mod 5). Similarly, Fermat’s Little Theorem allows one to obtain a!'? =
b2 (mod 7). The result then follows by combining these congruences.

(297) We only need to observe that 2730 = 2-3-5-7-13 and use Fermat’s Little
Theorem five times.

(298) The required integer is 21424. Indeed, we must solve the congruences
n =4 (mod 12), n = 4 (mod 17), n = 4 (mod 45), n = 4 (mod 70).
The first two are equivalent to n = 4 (mod 204), while the last two give
n =4 (mod 1530). Finally, the solution of these last two congruences is
given by n =4 (mod 21420), which gives the result.

(299) The answer is YES. From Fermat’s Little Theorem, n'®* = n” = n (mod 7),
n'' =n% (mod 7) and n” =n (mod 7), so that the polynomial is con-
gruent to 3n +4n® +n +3n® +3n = 7Tn + 7n® = 0 (mod 7). Thus the
result.

(300) Since

<2p> _2@2p-1D(2p-2)---(2p—(p—-1))
p p!
and since

(2p-1)(2p—-2)---2p—(p—-1)=(-1)! (modp),

it is clear that

2p\ _ (p—1)! _
<p>=2(p—1)!:2 (mod 7).

(301) It is clear that 7|n = “abc” if and only if
n=100a+10b+c=2a+3b+c=0 (mod 7),

and the result follows.

(302) Tt is clear that “abcabc” =“abc”-1001. But 13|1001, thus obtaining the
result.

(303) Since 256! = (—1)%¢! = —1 = 2 (mod 3) and since from Fermat’s Little
Theorem, 2°6! = (210)%6 .2 = 2 (mod 11) and 2°6! = (216)3.5.2 =2
(mod 17), we conclude that 251 =2 (mod 561). The second part can be
obtained in a similar manner.

(304) Since
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and since we have n!3> =n (mod 5) and n!3 =n (mod 7), then
12 13+23 _n? +n13+§ B n13—n+n13—n+n
35" 35 5 7 '3 5 7 ’

a number which is an integer for each n € N.

The answer is YES. The case n = 1 implies that we can choose r =
431/481. We will show that for this rational number r, the number in the
statement is an integer for each n € N, (n,481) = 1. But this number is
an integer when (n,481) = 1 if and only if

50 36 431\ _ 50 5 431
"\w1" Tas1) T w81 481

is an integer. Since 481 = 13- 37 and since for each n € N,

n¥"=n (mod37) and n'*=n (mod 13),

we conclude that the number 227136 4+ r is an integer for all n € N when

r = 431/481. o

If p = 3, then considering the numbers 111, 111111, 111111 111,..., that
is all the numbers containing 3, 6, 9, ... times the digit “1”, we obtain
infinitely many numbers of the required form. Let p > 7, p prime. An
integer N made up entirely of “1” can be written as N = (10™ — 1)/9.
But from Fermat’s Little Theorem, 10°P~! =1 (mod p), which means that
10me-1) = 1 (mod p) for m = 1,2,3,.... Since p # 3, this means that
p|(10mP=1) —1)/9, for m = 0,1,2,3,..., and the result follows.

Indeed, we easily check that 234° = 1 (mod 341), while n = 341 = 11 - 31
is not prime.

(AMM, Vol. 67, 1960, p. 923). From Fermat’s Little Theorem, it fol-
lows that b3 = b (mod 3) and b = b (mod 2) and therefore that b3 = b
(mod 6). Since b3 — b = b(b? — 1), we have

Pl 1= 1D 3 4+P 5+ b+ 1)

and therefore b3 — b is a factor of b? — b, in which case 8 —b =0 (mod 6).
Fermat’s Little Theorem allows one to write % — b = 0 (mod p), and
since (6,p) = 1, we have ¥ — b = 0 (mod 6p). Similarly, we obtain
aP —a =0 (mod 6p). Combining the congruences ab? — ab =0 (mod 6p)
and —ba? + ab =0 (mod 6p) then yields the result.

The answer is NOT ALWAYS. Assume that n is an odd integer. Since
1424+---4(n—1) = n(n —1)/2 and since n is odd, it follows that
(n —1)/2 is an integer and consequently the congruence is true.

Assume that n is an even integer. Letting n = 2m, then

1+24+---+(n—-1)=m2m—1)#0 (mod 2m).

Using the formula Zle i? = w (see Problem 1), with k = n—1,
we obtain that n must satisfy n = £1 (mod 6).

The answer is YES. Since 134+ 23+ .-+ (n —1)3 = n-n(n — 1)2/4 (see
Problem 1), it follows that the congruence is true if n3 — 2n? +n =0
(mod 4). Setting n =4m +r, 0 < r < 3, we obtain that the congruence
is true except in the case n = 4m + 2.
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(312) Since
5" = (44 1)

n n n n
— 4" 471—1 3 42
(e (e () e ()

it follows that
5" =4n+1 (mod 16)
and that
5"=14+4n+8n(n—1) (mod 64).
(313) If we can show that, for each integer k > 1, we have

52" =1+ 2¥*2  (mod 2++3),

then the result will follow. But this last congruence can easily be obtained
by induction on k. For k = 1, the result is immediate. Assuming that
the congruence is true for k, that is that 52° = 1 4 2k+2 4 M2k+3 for a
certain positive integer M, then squaring each side of this last equation,
we obtain

2k+1

5277 =142 (mod 2FF%).

The general case can be handled essentially in the same manner.
(314) This follows from the fact that the given expression is equal to
n—n nd-n
5 + 3 + n,
which using Fermat’s Little Theorem is easily seen to be an integer.
(315) It is clear that z = 0 (mod 13) is not a solution. So let 1 < z < 12. Then,
from Fermat’s Little Theorem, we have that x'2 = 1 (mod 13) and this
is why 224 = 1 (mod 13). The congruence to be solved can therefore be
reduced to 7z =1 (mod 13), which leads to the solution z = 2 (mod 13).

(316) The seven pairs are {2,9}, {3,6}, {4,13}, {5,7}, {10,12}, {11,14} and

{8,15}.
(317) Since (m;,m;) = 1 for i # j, it follows from Euler’s Theorem that
mf(mj ) =1 (mod m;). Since the function ¢ is a multiplicative func-

tion, we have mf(m)/¢(mi) = 1 (mod m;) for ¢ # j. On the other hand,

mf(m)/qs(mj) =0 (mod m;), so that for j =1,2,...,r, we obtain

mf(m)/rﬁ(ml) + mg(m)ﬂf’(m?) 4o mfM/m) = 1 (mod m;)

Since the integers m; are relatively prime, the result follows.
(318) From Wilson’s Theorem,

P-D!=@-1)-(—(k-1)(p—Fk)
=(-DFY k-1 (p—k)!=-1 (mod p),
and multiplying by (—1)¥~1, the result follows.

(319) The answer is YES to both questions. We first use Fermat’s Little Theo-
rem for p and then for ¢, in which case we obtain

p7 14+ '=1 (modp), p'4+¢'=1 (mody),

since (p, q) = 1, and the result follows.
To prove the second part, we call upon Euler’s Theorem.
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(320) We have

32 =9(9") =98+ 1)" =9(8" +n8" ' +--- +8n+1)

n(n —1)

=9<8"+n8"‘1+~--+82n 5 )+9(8n+1),

and this is why
32 =74+ 9=8n+9 (mod 64).

(321) We will prove that the required GCD is equal to p. First of all, from
Wilson’s Theorem, it follows that for p prime, (p — 1)! = —1 (mod p),
a congruence which can be written as (p — 2)!(p — 1) = —1 (mod p),
implying that (p—2)! =1 (mod p) and therefore that p| ((p — 2)! — 1). It
remains to show that if 2 < k < p—1, then k does not divide (p —2)! —1.
But if 2 < k < p—2 and k|(p—2)! — 1, we obtain that k|1, a contradiction.
It remains to consider the case when (p — 1)|((p —2)! — 1). Since p is a
prime number, p — 1 is an even number, and therefore, using Problem
180, (p — 1)|(p — 2)! except for p — 1 = 4, that is when p = 5. Hence,
(p—=1)f((p—2)!—1) for p > 5.

(322) This follows from the fact that dividing by 7 the number 55614 leaves 4 as
a remainder, while dividing by 7 the number 12857 leaves 3 as a remainder.
Indeed,

56614 = (_0)6614 _ 96614 _ 93-2204+2 _ g2204 . 4 = 4 (mod 7),

12857 = 5857 — 5614245 — 1142 . 55 — (_9)5 = _32=3 (mod 7).
(323) (a) Since 10 =1 (mod 3), we have

3IN << a,10"+---4+a;10+ay=0 (mod 3)
< ap+--+a+a =0 (mod3).

(b) We have

4N <= a,10"+---+a110+ap =0 (mod 4)
<= 10a; +ap =0 (mod 4),
since 10 =0 (mod 4) for each j > 2.

(c) We have

6|N < a,10"+ ---+a110+ap=0 (mod 6)

<~ 4(ap+---+az+a1)+a =0 (mod6),

<~ 4d(an+---+az+a1+ap) =3ap (mod 6),
since 10 —4 = 0 (mod 6) for each j > 1; indeed, 107 —4 = 999. .. 96,
a number which is even and divisible by 3.

(d) If N has three digits (that is n = 2), then the result is obvious. We
examine the case n = 3, so that N = 1000a3 + 100ay + 10a; + ag.
We must prove that

1000a3 + 100az + 10a1 +ap =0 (mod 7)
<= 100az + 10a; +agp —a3 =0 (mod 7).
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This boils down to proving that

1001as + 100ag + 10a1 +ap —az =0 (mod 7)
<= 100a3 + 10a; + ag —az =0 (mod 7),
an equivalence which is easily verified since 7|1001.
To prove the case n = 4, we proceed essentially in the same manner,
this time using the identity
10%*as 4 10%°a3 + 10%as + 10a; + ao
= 10010a4 + 1001az + 100as + 10a; + ag — (10a4 + a3)
and by observing that 7|10010. The same argument works also for
the case n = 5.
If n > 6, we use the same argument by also observing that 106 — 1 =
(103 —1)(10% + 1), where 7|103 + 1; that 107 — 10 = 10(10° — 1); that
108 — 100 = 10%(108 — 1); and so on.
(e) We have
8IN < a,10"+---+a110+ap =0 (mod 8)
<= 100ay + 10a; + ap =0 (mod 8),
since 10/ =0 (mod 8) for each integer j > 3.
(f) Since 10 =1 (mod 9), it follows that
IN <= 10"+ - +a110+ap =0 (mod 9)
<~ ap+---+a;+a =0 (mod9).

(g) We have

1IIN <= 0, 10"+ +a1104+a; =0 (mod 11)
— a,(11-1D"+a,_(11-1)"" 1 4...
+a1(11—=1)4+ap=0 (mod 11)
= (-D)"ap+(-D"tap_1+--
+as —a; +ap =0 (mod 11)
= (D"{(-D"an+ ()" ap_1+---
+as —a; +apg} =0 (mod 11)
= an—ap1+ -+ ()" a4+ (=1)"ag
=0 (mod 11),
and the result follows.

(324) Observe that 168 = 8 -3 - 7. Since 8|“770ab45¢”, it follows that using
Problem 215 we have 8|“45¢” and then ¢ = 6. Similarly, 3|“770ab456”
implies ¢ + b =1 (mod 3), and 7|“770ab456” implies (using Problem 323
(e)) that 456 — (10a + b) + 77 = 0 (mod 7), that is 3a + b =1 (mod 7).
Therefore, a + b = 1 and 3a + b = 1, which allows us to conclude that
a =0 and b = 1. The three required numbers are therefore a =0, b =1

and ¢ = 6.
(325) Since (a,m) = 1, using Euler’s Theorem, we have

a®™ —1=0 (mod m).
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But
a®™ —1=(a—1)(a®™ o924 . La41)
and since (@ — 1,m) = 1, the result follows.

(326) If pla, then aP~V'+1 = g. o~ 1D' = 0= ¢ (mod p). If pfa, then (a,p) =
1, and it follows from Fermat’s Little Theorem that a?~! = 1 (mod p)
and therefore that a(P~V' = (ap_l)(p_m = 1 (mod p), in which case
aP~D'+1 = ¢ (mod p), as required.

(327) Using Fermat’s Little Theorem,

Pyt (p-1Pl=14-+1l=p-1=-1 d p).
+ (r—1) +o+1l=p (mod p)
p—1

(328) Using Fermat’s Little Theorem, we have a? = a (mod p) for each positive
integer a. Hence,

P4+ 4. .+ (p-1P =142+ +p=pp+1)/2=0 (mod p),
since p + 1 is an even number.

(329) This is a consequence of the congruence (k—1)!(p — k)! = (=1)F (mod p)
(see Problem 318) and Fermat’s Little Theorem, because

p—1

> (k= 1)!(p — k)lkP?

k=1
=—-1Ptpopl gl _(p—2)P L4 (p—1)Pt
=-141-14---—1+1=0 (mod p).
(330) From Wilson’s Theorem, we have (4n)! = —1 (mod p), in which case
(4n)(4n —1)---[4n — (2n — 1)](2n)! = -1 (mod p).

Since 4n = p— 1 = —1 (mod p), we have 4n — 1 = —2 (mod p) and

therefore 4n — 2 = p — 3 = —2 (mod p), so that 4n — (2n — 1) = —2n

(mod p), and the result follows.

For the generalization, we have from Wilson’s Theorem (m+n)! = —1
(mod p), and therefore

(%) (m+n)(m+n-1)---Im+n—(n—1)m'=-1 (mod p).
We have m+n=p—1= -1 (mod p) and m+n—1= —2 (mod p), and

so on, until we obtain m+n—(n—1) = —n (mod p). Then, substituting
in (x), we find
(*x) (=1)"m!n! = -1 (mod p).

Since m +n is even, the second relation of the problem is proved. Finally,
the last congruence can be obtained by setting m =n = 7’;—1 in (k).

(331) From Wilson’s Theorem, n is prime if and only if (n —1)! = —1 (mod n).
Therefore,

“l=(n-D=mn-1)(n-2)(n-3)!=2(n-3)! (mod n),

and the result follows.

(332) This follows immediately from Fermat’s Little Theorem and Wilson’s The-
orem. Indeed, a? = a (mod p) and a(p — 1)! = —a (mod p), allowing us
to conclude that a? + a(p — 1)! =0 (mod p).



(333)

(334)

(335)

(336)

(337)

(338)
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(n—1!+1

From Wilson’s Theorem, is an integer if and ouly if n is a

n
prime number, in which case the sum appearing in the statement is equal

to
S =31 = (@),

p<z p<lz
as required.
If d = (r,s), then r = dry and s = ds;. It is clear that
(@)/4=1 (modmi) and (a?)*’¢=1 (mod my).
Therefore,

o) = (¢TI D/8) = 16/D =1 (mod my),

almsl = (g)(/D/d) = 17/d) = 1 (mod my),
and the result follows.
Let m = ¢¢e?---q¥. If (a,¢;) = 1, 1 < i < r, then at@’) =
1 (mod ¢f*). Now, since ¢*|m implies ¢(¢{*)|¢(m), then a?(™ =
(mod ¢). If @ > 0 and ¢ > 2 are positive integers, then on the one
hand, we have ¢! > a (we can prove this by induction on a) and on the

other hand, for i = 1,2,...,r, we have ¢® !|m and ¢~ *|¢(m). There-
fore,
(*) g Hm — ¢(m).

Since m — ¢(m) > 0, then for m > 1, it follows from (x) that
m—¢(m) > ¢t > .
Therefore, in the case (a,q;) > 1, that is ¢;|a, we have

q;n—cb(m) lam—(b(m)'

g
It follows that for each positive integer a, the relation

a™ M) (g¢(m) _ 1)

(o7}
q;

is true for s = 1,2,...,r and therefore that m|a™¢(™),
Let a1,a2, ..., a, be acomplete residue system modulo m. Since (m+1)/2
is a positive integer, say (m + 1)/2 = k, it follows that

i LA m(m+ 1)
a; = i=——==mk=0 (modm),
2T od )

as was to be shown.

Let E = {z1,x2,...,Z,} be a complete residue system. The set E’ con-

tains the same number of elements as E' and for z;,z; € E, ¢ # j, we have
ax; +b=azx; +b (mod m),

then az; = az; (mod m) and therefore z; = z; (mod m), which contra-
dicts our hypothesis.

The answer is YES. Indeed, the set {6,12,18,24,30,36} is a reduced
residue system modulo 7.
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(339) We must show that

Z k=0 (modm).
k<m
(k,m)=1
Let a1, as,...,a4(m) be integers smaller than m and relatively prime to

m. Since (k,m) =1 <= (m — k,m) =1, we have

a1+a2+...+a¢(m) = (m—al)~|—(m—a2)+---+(m_a¢(m))
= me(m)— (a1 +az + -+ ay(m))-

Since ¢(m) is an even integer when m > 2, we then have

Z k:@mzo (mod m).

(340) The result follows immediately from Wilson’s Theorem since r17g - - - rp_1 =
(p—1)! (mod p).
(341) The set {1,3,7,9} is a reduced residue system modulo 10. However,

E' ={3z+2|zeE}={511,23,29}

is not a reduced residue system modulo 10, since (5,10) # 1.

(342) (MMAG, Vol. 64, 1991, p. 63). The only solution is (z,y,2) = (2,3,5).
First of all, we observe that (z,y) = (z,2) = (y,2) = 1. Then, 2 <z <
y < z, and combining the three given congruences we obtain

zy+2z2+yz—1=0 (mod z,y and z).
Since z, y and z are pairwise coprime, we have
zy+zz+yz—1=0 (mod zyz).

It follows that xy +zz +yz — 1 = k(zyz) for some integer k > 1. Dividing
by zyz, we obtain that
1 1 1

1
-+ -—4+-=—+k>1
z Yy T zTY=Z

Since x < y < z, it follows that

1 1 1 3
(%) I<—+-+-<=
Ty z

and this is why x = 2. In this case, the inequalities give

1 1 1 2

2 'y z vy

which implies that y = 3. It follows that the only possible values of z are
4 and 5. Hence, for 2 < z < y < z, the solutions are (z,y,2) = (2, 3,4)
and (2,3,5). Since 2 and 4 are not relatively prime, the only solution is
(1" Y, Z) = (27 3,5).
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Let p, stand for the r—th prime number. For each integer ¢, 1 < i < n, let

M; = P(i—1)k+1"P(i—1)k+2 P(i—1)k+3 ' * * Pik—1"Pik, and consider the system
of congruences

z=-1 (mod my),

z=-2 (mod msy),

z=-n (mod my,).
Since the m;’s are pairwise coprime, the Chinese Remainder Theorem
guarantees a solution zg. Then, mq|(zo + 1),...,my|(zo + n). Therefore,
o+ 1,z0+2,...,29+n is a sequence of n consecutive integers which are

divisible by at least k& prime numbers.
For the second part (n =4 and k = 1), we must solve

z=-1 (mod 3),
z=-2 (mod 5),
z=-3 (mod7),
z=-4 (mod 11).

In this case, x = 788 (mod 1155) and therefore zo = 788. The four
numbers are therefore 789, 790, 791 and 792.

We must solve the system
z=1 (mod 3),
x=2 (mod 4),
z=3 (mod 5).

Using the Chinese Remainder Theorem, we find that z = 58 (mod 60).
The required positive integers are therefore the numbers 605 + 58, with
j=0,1,2,....

We must solve the system

@ =0 (mod?2)
a+1=0 ( )
a+2=0 (mod4),
a+3=0 ( )
a+4=0 ( )
This system is equivalent to:

a=2 (
a=2 (mod 3),
a=2 (
a=2 (
a=2 (mod6

Since [2,3,4,5,6] = 60, we have a =
integer a is 62.
We obtain

(mod 60). Hence, the smallest

—

_ 1 _
= =0.3, 32 = 0.1 of period 1,

1/3% = 0.037 of period 3, 1/3* = 0.012345679 of period 9. However,

w

1 -
- = 0.142857 is of period 6,
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and

1
== 0.020408163265306122448979591836734693877551

is of period 42 (= 6-7). On the other hand, the period of 1/73is 6-7- 7.
It seems reasonable to make the following conjectures:
e Let p be a prime number such that (p,30) = 1; if 1/p is of period m,
then 1/p™ is of period mp" 1.
e For n > 2, 1/3" is of period 3"2.
(TYCM, Vol. 28, no. 4, 1997, p. 320). Assume that the decimal expansion
of a/b is formed by the repetition of the block B = ab of length n > 1.

Then,
a B ab

5 =0.BBB...= =1 = 1on =1
so that > = 10™ — 1. Hence, for n > 1, b must be an odd integer. If
n > 1, then b2 = 1 (mod 4) and therefore 10" — 1 =1 (mod 4), which is
impossible. Hence, n = 1 and b = 3, and it follows that the only positive
rational numbers having the required property are 1/3 and 2/3.
First assume that 10" = 1 (mod n), that is that there exists an integer k
such that 10" = 1+ kn. Then, for each fraction m/n, we have

(1) 100" = km + .
n n

Assume that m/n = 0.ajaza3 . .. ; then equation (1) allows us to write
m
km + —7; =a102...0h.0p4+1AR42 - - -

Equating integer parts and equating fractional parts shows that

(2) km = aias...ap
and that

m
(3) ; = 0.ah+1ah+2 e

But equation (3) confirms that the digits ap41, ap42,. .. are precisely the
digits a1, az,... . This means that the expansion of m/n repeats itself
after h digits and therefore that the period of m/n is h.

Conversely, if m/n is of period h, that is

m
— =0.a1a2...apa1...0ap ...,
n

then m m
10h——alag...ah:0.a1a2...ah...: —
n n

Consequently
(10" — 1)m
n

is an integer. Since m and n are relatively prime, then we have n|(10"—1).

Finally, assume that the period of m/n is h and that 10f0 = 1
(mod n). Then, m/n also has hy digits which repeat themselves and
ho > h. In particular, h is the smallest positive integer satisfying 10" = 1
(mod n).
In the solution of Problem 348, it is proved that km = ajas...an, which
yields the result.

=aiadz...ap
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This follows from the fact that 10"(m/n) — (m/n) = a1az .. . a,.

Let N =271 4+24-1 _ 1, We will show that 2¢ —1 > 3 is a proper divisor
of N, thereby showing that N is a composite number. Since 2¢ — 1 is an
odd number, it is enough to show that 2¢ — 1|2N. But

2N =27 424 _2=2" 1424 1=(24)/d 1424 1
= (24— 1)@V 424G ... 424 L 1) 4 (24— 1),
which proves the result.
Let n = 29 — 1, where q is a prime, be such a number. Since q is odd and

u%(n) = 0, there exists an odd prime number p such that p?|n. We then
have

(1) 29=1 (mod p?).

On the other hand, using Euler’s Theorem, we have 2¢(P*) = 1 (mod p?),
so that

(2) 2P~ =1 (mod p?).

It follows from (1) and (2) that g|p(p — 1), which implies that g|(p — 1)
(since if ¢ = p, then 29 = 1 (mod q), contradicting the fact that 297! =
(mod q)). Hence, there exists a positive integer a such that p — 1 = ag,
which in light of (1) gives

271 = (29 =1°=1 (mod p?),

thus establishing that p is a Wieferich prime.

REMARK: Only two Wieferich primes have been found so far, namely 1093
and 3511; it is known that there are no other such primes smaller than
1.25 x 103,

We will show that the three smallest prime factors of n are 2, 3 and 11.
First of all, it is clear that 2|n. To see that 3|n, it is sufficient to observe
that

59 7112 =9% _ 112 - (_1)% _1-1-1=0 (mod 3).

Clearly, 5 and 7 are not prime factors of n. Let us check if 11 divides
n. By Fermat’s Little Theorem, we have 51 = 1 (mod 11) and 7% = 1
(mod 11), so that

5% = 5%.56=1.1252=42=16=5 (mod 11),

7112 = 710,72 =1.49=49=5 (mod 11).
Combining these two congruences, we easily conclude that 11|n.

a
Let N = m + % — 1. We will show that m — 1|N. To do so, since m —1
is odd, it is clear that we shall reach our goal if we can manage to show
that m — 1|2N. But
IN=me4+m—-2=m—14+m—-1=(m—-1)m* 1 4+m*24...
+m+1) + (m - 1),

which proves the result.



