
Congruences

Divisibility is a powerful tool in the theory of numbers. We have seen this amply
demonstrated in work on Pythagorean triples, greatest common divisors, and fac-
torization into primes. In this chapter we will discuss the theory of congruences.
Congruences provide a convenient way to describe divisibility properties. In fact,
they are so convenient and natural that they make the theory of divisibility very
similar to the theory of equations.

We say that a is congruent to b modulo m, and we write

a ≡ b (mod m),

if m divides a− b. For example,

7 ≡ 2 (mod 5) and 47 ≡ 35 (mod 6),

since

5|(7− 2) and 6|(47− 35).

In particular, if a divided by m leaves a remainder of r, then a is congruent to r
modulo m. Notice that the remainder satisfies 0 ≤ r < m, so every integer is con-
gruent, modulo m, to a number between 0 and m− 1.

The number m is called the modulus of the congruence. Congruences with the
same modulus behave in many ways like ordinary equations. Thus, if

a1 ≡ b1 (mod m) and a2 ≡ b2 (mod m), then

a1 ± a2 ≡ b1 ± b2 (mod m) and a1a2 ≡ b1b2 (mod m).

Warning. It is not always possible to divide congruences. In other words,
if ac ≡ bc (mod m), it need not be true that a ≡ b (mod m). For example,
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15 · 2 ≡ 20 · 2 (mod 10), but 15 �≡ 20 (mod 10). Even more distressing, it
is possible to have

uv ≡ 0 (mod m) with u �≡ 0 (mod m) and v �≡ 0 (mod m).

Thus 6 · 4 ≡ 0 (mod 12), but 6 �≡ 0 (mod 12) and 4 �≡ 0 (mod 12). How-
ever, if gcd(c,m) = 1, then it is okay to cancel c from the congruence
ac ≡ bc (mod m). You will be asked to verify this as an exercise.

Congruences with unknowns can be solved in the same way that equations are
solved. For example, to solve the congruence

x+ 12 ≡ 5 (mod 8),

we subtract 12 from each side to get

x ≡ 5− 12 ≡ −7 (mod 8).

This solution is fine, or we can use the equivalent solution x ≡ 1 (mod 8). Notice
that −7 and 1 are the same modulo 8, since their difference is divisible by 8.

Here’s another example. To solve

4x ≡ 3 (mod 19),

we will multiply both sides by 5. This gives

20x ≡ 15 (mod 19).

But 20 ≡ 1 (mod 19), so 20x ≡ x (mod 19). Thus the solution is

x ≡ 15 (mod 19).

We can check our answer by substituting 15 into the original congruence. Is
4 · 15 ≡ 3 (mod 19)? Yes, because 4 · 15− 3 = 57 = 3 · 19 is divisible by 19.

We solved this last congruence by a trick, but if all else fails, there’s always
the “climb every mountain” technique.1 To solve a congruence modulo m, we can
just try each value 0, 1, . . . ,m − 1 for each variable. For example, to solve the
congruence

x2 + 2x− 1 ≡ 0 (mod 7),

we just try x = 0, x = 1, . . . , x = 6. This leads to the two solutions x ≡ 2 (mod 7)
and x ≡ 3 (mod 7). Of course, there are other solutions, such as x ≡ 9 (mod 7).

1Also known as the “ford every stream” technique for those who prefer wet feet to vertigo.
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But 9 and 2 are not really different solutions, since they are the same modulo 7.
So when we speak of “finding all the solutions to a congruence,” we normally
mean that we will find all incongruent solutions, that is, all solutions that are not
congruent to one another.

We also observe that there are many congruences, such as x2 ≡ 3 (mod 10),
that have no solutions. This shouldn’t be too surprising. After all, there are ordinary
equations such as x2 = −1 that have no (real) solutions.

Our final task in this chapter is to solve congruences that look like

ax ≡ c (mod m).

Some congruences of this type have no solutions. For example, if

6x ≡ 15 (mod 514)

were to have a solution, then 514 would have to divide 6x− 15. But 6x− 15 is al-
ways odd, so it cannot be divisible by the even number 514. Hence the congruence
6x ≡ 15 (mod 514) has no solutions.

Before giving the general theory, let’s try an example. We will solve the con-
gruence

18x ≡ 8 (mod 22).

This means we need to find a value of x with 22 dividing 18x− 8, so we have to
find a value of x with 18x− 8 = 22y for some y. In other words, we need to solve
the linear equation

18x− 22y = 8.

We know that we can solve the equation

18u− 22v = gcd(18, 22) = 2,

and indeed we easily find the solution u = 5 and v = 4. But we really want the
right-hand side to equal 8, so we multiply by 4 to get

18 · (5 · 4)− 22 · (4 · 4) = 8.

Thus, 18 · 20 ≡ 8 (mod 22), so x ≡ 20 (mod 22) is a solution to the original
congruence. We will soon see that this congruence has two different solutions
modulo 22; the other one turns out to be x ≡ 9 (mod 22).

Suppose now that we are asked to solve an arbitrary congruence of the form

ax ≡ c (mod m).

59



Congruences

We need to find an integer x such that m divides ax−c. The number m will divide
the number ax− c if we can find an integer y such that ax− c = my. Rearranging
this last equation slightly, we see that ax ≡ c (mod m) has a solution if, and only
if, the linear equation ax−my = c has a solution.

To make our formulas a bit neater, we will let g = gcd(a,m). Our first obser-
vation is that every number of the form ax−my is a multiple of g; so if g does not
divide c, then ax−my = c has no solutions and so ax ≡ c (mod m) also has no
solutions.

Next suppose that g does divide c. We know from the Linear Equation Theorem
that there is always a solution to the equation

au+mv = g.

Suppose we find a solution u = u0, v = v0, either by trial and error or by using
the Euclidean algorithm method. Since we are assuming that g divides c, we can
multiply this equation by the integer c/g to obtain the equation

a
cu0
g

+m
cv0
g

= c.

This means that

x0 ≡ cu0
g

(mod m) is a solution to the congruence ax ≡ c (mod m).

Are there other solutions? Suppose that x1 is some other solution to the con-
gruence ax ≡ c (mod m). Then ax1 ≡ ax0 (mod m), so m divides ax1 − ax0.
This implies that

m

g
divides

a(x1 − x0)

g
,

and we know that m/g and a/g have no common factors, so m/g must divide
x1 − x0. In other words, there is some number k such that

x1 = x0 + k · m
g
.

But any two solutions that differ by a multiple of m are considered to be the
same, so there will be exactly g different solutions that are obtained by taking
k = 0, 1, . . . , g − 1.

This completes our analysis of the congruence ax ≡ c (mod m). We summa-
rize our findings in the following statement.
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Theorem 1 (Linear Congruence Theorem). Let a, c, and m be integers with m ≥
1, and let g = gcd(a,m).
(a) If g � c, then the congruence ax ≡ c (mod m) has no solutions.
(b) If g|c, then the congruence ax ≡ c (mod m) has exactly g incongruent solu-

tions. To find the solutions, first find a solution (u0, v0) to the linear equation

au+mv = g.

Then x0 = cu0/g is a solution to ax ≡ c (mod m), and a complete set of
incongruent solutions is given by

x ≡ x0 + k · m
g

(mod m) for k = 0, 1, 2, . . . , g − 1.

For example, the congruence

943x ≡ 381 (mod 2576)

has no solutions, since gcd(943, 2576) = 23 does not divide 381. On the other
hand, the congruence

893x ≡ 266 (mod 2432)

has 19 solutions, since gcd(893, 2432) = 19 does divide 266. Notice that we are
able to determine the number of solutions without having computed any of them.
To actually find the solutions, we first solve

893u− 2432v = 19.

We find the solution (u, v) = (79, 29). Multiplying by 266/19 = 14 gives the
solution

(x, y) = (1106, 406) to the equation 893x− 2432y = 266.

Finally, the complete set of solutions to

893x ≡ 266 (mod 2432)

is obtained by starting with x ≡ 1106 (mod 2432) and adding multiples of the
quantity 2432/19 = 128. (Don’t forget that if the numbers go above 2432 we are
allowed to subtract 2432.) The 19 incongruent solutions are

1106, 1234, 1362, 1490, 1618, 1746, 1874, 2002, 2130, 2258,

2386, 82, 210, 338, 466, 594, 722, 850, 978.
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Important Note. The most important case of the Linear Congruence Theorem is
when gcd(a,m) = 1. In this case, it says that the congruence

ax ≡ c (mod m) (∗)

has exactly one solution. We might even write the solution as a fraction

x ≡ c

a
(mod m),

but if we do, then we must remember that the symbol “ c
a (mod m)” is really only

a convenient shorthand for the solution to the congruence (∗).

Nonlinear congruences are also very important in number theory. As an exam-
ple, consider the congruence

x2 + 1 ≡ 0 (mod m)

whose solutions are square roots of −1 modulo m. For some values of m such as
m = 5 and m = 13, there are solutions,

22 + 1 ≡ 0 (mod 5) and 52 + 1 ≡ 0 (mod 13),

while for other values such as m = 3 and m = 7, there are no solutions.
You probably already know that a polynomial of degree d with real coefficients

has no more than d real roots.2 This well-known “fact” is not true for congruences,
since for example the congruence

x2 + x ≡ 0 (mod 6)

has four distinct roots modulo 6, namely 0, 2, 3, and 5. However, if we look at
congruences modulo primes, then order and harmony are restored to the world.
And although the statement of the following theorem may seem innocuous, we
will see later that it is a powerful tool for proving many important results.

Theorem 2 (Polynomial Roots Mod p Theorem). Let p be a prime number and let

f(x) = a0x
d + a1x

d−1 + · · ·+ ad

be a polynomial of degree d ≥ 1 with integer coefficients and with p � a0. Then the
congruence

f(x) ≡ 0 (mod p)

has at most d incongruent solutions.

2In fact, the Fundamental Theorem of Algebra implies that a polynomial of degree d with com-
plex coefficients always has exactly d complex roots, provided that you count multiple roots appro-
priately.
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There are many ways to prove this important theorem, but for the sake of vari-
ety and to introduce you to a new mathematical tool, we give a “Proof by Contra-
diction.” 3 In a proof by contradiction, we begin by making a statement. We then
use that statement to make deductions, eventually ending up with a conclusion that
is clearly false. This allows us to deduce that the original statement was false, since
it led to a false conclusion.

The particular statement with which we begin is the following:

Statement:

⎧
⎪⎪⎨

⎪⎪⎩

There exists at least one polynomial F (x) with integer
coefficients and with leading coefficient not divisible by
p such that the congruence F (x) ≡ 0 (mod p) has more
distinct roots modulo p than its degree.

Now among all such polynomials, we choose one having smallest possible degree,
say

F (x) = A0x
d +A1x

d−1 +A2x
d−2 + · · ·+Ad.

Then we let
r1, r2, . . . , rd+1

be distinct mod p solution to the congruence

F (x) ≡ 0 (mod p).

We are going to use the fact that for any value of r, the difference F (x)− F (r)
can be factored. To see this, we write

F (x)− F (r) = A0(x
d − rd) +A1(x

d−1 − rd−1) + · · ·+Ad−1(x− r).

Each term xi − ri has a factor of x− r, since

xi − ri = (x− r)(xi−1 + xi−2r + xi−3r2 + · · ·+ xri−2 + ri−1).

Pulling an x− r out of each term, we find that

F (x)− F (r) = (x− r)(some messy polynomial of degree d− 1).

In other words, there is a polynomial

G(x) = B0x
d−1 +B1x

d−2 + · · ·+Bd−2x+Bd−1

3The classical Latin phrase for “proof by contradiction” is reductio ad absurdum, literally “re-
duction to an absurdity.” As G.H. Hardy says in his monograph A Mathematician’s Apology, proof
by contradiction “is one of a mathematician’s finest weapons. It is a far finer gambit than any chess
gambit: a chess player may offer the sacrifice of a pawn or even a piece, but a mathematician offers
the game.”
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of degree d− 1 such that

F (x) = F (r) + (x− r)G(x).

In particular, if we substitute r = r1 and use the fact that F (r1) ≡ 0 (mod p), we
find that

F (x) ≡ (x− r1)G(x) (mod p).

We have assumed that F (x) ≡ 0 (mod p) has d + 1 distinct incongruent so-
lutions x = r1, r2, . . . , rd+1. If we substitute one of the solutions rk with k ≥ 2
for x, we find that

0 ≡ F (rk) ≡ (rk − r1)G(rk) (mod p).

We know that r1 �≡ rk (mod p), so the Prime Divisibility Property tells us that
G(rk) ≡ 0 (mod p). (Note that this is where we use the assumption that the
modulus p is prime. Do you see why the argument would fall apart if the modulus
were composite?)

We now know that r2, r3, . . . , rd+1 are solutions to G(x) ≡ 0 (mod p). Thus
G(x) is a polynomial of degree d− 1 that has d distinct roots modulo p. This
contradicts the fact that among such polynomials, the polynomial F (x) was one
having the smallest possible degree. Hence the original statement must be false,
which shows that there are no polynomials having more roots modulo p than their
degree. Stated in a positive manner, we have proven that every polynomial of
degree d has at most d roots modulo p. This completes the proof of Theorem 2.

Exercises

1. Suppose that a1 ≡ b1 (mod m) and a2 ≡ b2 (mod m).
(a) Verify that a1 + a2 ≡ b1 + b2 (mod m) and that a1 − a2 ≡ b1 − b2 (mod m).
(b) Verify that a1a2 ≡ b1b2 (mod m).

2. Suppose that
ac ≡ bc (mod m)

and also assume that gcd(c,m) = 1. Prove that a ≡ b (mod m).

3. Find all incongruent solutions to each of the following congruences.
(a) 7x ≡ 3 (mod 15) (b) 6x ≡ 5 (mod 15)
(c) x2 ≡ 1 (mod 8) (d) x2 ≡ 2 (mod 7)
(e) x2 ≡ 3 (mod 7)

4. Prove that the following divisibility tests work.
(a) The number a is divisible by 4 if and only if its last two digits are divisible by 4.
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(b) The number a is divisible by 8 if and only if its last three digits are divisible by 8.
(c) The number a is divisible by 3 if and only if the sum of its digits is divisible by 3.
(d) The number a is divisible by 9 if and only if the sum of its digits is divisible by 9.
(e) The number a is divisible by 11 if and only if the alternating sum of the digits of a is

divisible by 11. (If the digits of a are a1a2a3 . . . ad−1ad, the alternating sum means
to take a1 − a2 + a3 − · · · with alternating plus and minus signs.)

[Hint. For (a), reduce modulo 100, and similarly for (b). For (c), (d), and (e), write a as a
sum of multiples of powers of 10 and reduce modulo 3, 9, and 11.]

5. Find all incongruent solutions to each of the following linear congruences.
(a) 8x ≡ 6 (mod 14)

(b) 66x ≡ 100 (mod 121)

(c) 21x ≡ 14 (mod 91)

6. Determine the number of incongruent solutions for each of the following congruences.
You need not write down the actual solutions.
(a) 72x ≡ 47 (mod 200)

(b) 4183x ≡ 5781 (mod 15087)

(c) 1537x ≡ 2863 (mod 6731)

7. Write a program that solves the congruence

ax ≡ c (mod m).

[If gcd(a,m) does not divide c, return an error message and the value of gcd(a,m).] Test
your program by finding all of the solutions to the congruences in Exercise 6.

8. Write a program that takes as input a positive integer m and a polynomial f(X)
having integer coefficients and produces as output all of the solutions to the congruence

f(X) ≡ 0 (mod m).

(Don’t try to be fancy. Just substitute X = 0, 1, 2, . . .m − 1 and see which values are
solutions.) Test your program by taking the polynomial

f(X) = X11 + 21X7 − 8X3 + 8

and solving the congruence f(X) ≡ 0 (mod m) for each of the following values of m,

m ∈ {130, 137, 144, 151, 158, 165, 172}.

9. (a) How many solutions are there to the congruence

X4 + 5X3 + 4X2 − 6X − 4 ≡ 0 (mod 11) with 0 ≤ X < 11?

Are there four solutions, or are there fewer than four solutions?
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(b) Consider the congruence X2 − 1 ≡ 0 (mod 8). How many solutions does it have
with 0 ≤ X < 8? Notice that there are more than two solutions. Why doesn’t this
contradict the Polynomial Roots Mod p Theorem (Theorem 2)?

10. Let p and q be distinct primes. What is the maximum number of possible solutions to
a congruence of the form

x2 − a ≡ 0 (mod pq),

where as usual we are only interested in solutions that are distinct modulo pq?
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